Properties

Label 405.3.i.d.296.3
Level $405$
Weight $3$
Character 405.296
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(26,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,12,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 296.3
Root \(0.178197 + 1.72286i\) of defining polynomial
Character \(\chi\) \(=\) 405.296
Dual form 405.3.i.d.26.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.711747 - 0.410927i) q^{2} +(-1.66228 + 2.87915i) q^{4} +(-1.93649 - 1.11803i) q^{5} +(-0.418861 - 0.725489i) q^{7} +6.01972i q^{8} -1.83772 q^{10} +(-12.4462 + 7.18582i) q^{11} +(10.9057 - 18.8892i) q^{13} +(-0.596246 - 0.344243i) q^{14} +(-4.17544 - 7.23208i) q^{16} -23.5454i q^{17} -6.32456 q^{19} +(6.43797 - 3.71697i) q^{20} +(-5.90569 + 10.2290i) q^{22} +(-33.6644 - 19.4361i) q^{23} +(2.50000 + 4.33013i) q^{25} -17.9258i q^{26} +2.78505 q^{28} +(0.231001 - 0.133369i) q^{29} +(-15.1359 + 26.2162i) q^{31} +(-26.7966 - 15.4710i) q^{32} +(-9.67544 - 16.7584i) q^{34} +1.87320i q^{35} +9.53950 q^{37} +(-4.50148 + 2.59893i) q^{38} +(6.73025 - 11.6571i) q^{40} +(-16.7167 - 9.65138i) q^{41} +(-9.81139 - 16.9938i) q^{43} -47.7793i q^{44} -31.9473 q^{46} +(-19.1984 + 11.0842i) q^{47} +(24.1491 - 41.8275i) q^{49} +(3.55873 + 2.05464i) q^{50} +(36.2566 + 62.7982i) q^{52} -49.0012i q^{53} +32.1359 q^{55} +(4.36724 - 2.52143i) q^{56} +(0.109610 - 0.189849i) q^{58} +(-63.4235 - 36.6176i) q^{59} +(24.1623 + 41.8503i) q^{61} +24.8791i q^{62} +7.97367 q^{64} +(-42.2376 + 24.3859i) q^{65} +(-38.6491 + 66.9422i) q^{67} +(67.7907 + 39.1390i) q^{68} +(0.769751 + 1.33325i) q^{70} +104.044i q^{71} +47.6754 q^{73} +(6.78971 - 3.92004i) q^{74} +(10.5132 - 18.2093i) q^{76} +(10.4265 + 6.01972i) q^{77} +(-34.1096 - 59.0796i) q^{79} +18.6732i q^{80} -15.8641 q^{82} +(-24.4304 + 14.1049i) q^{83} +(-26.3246 + 45.5955i) q^{85} +(-13.9664 - 8.06353i) q^{86} +(-43.2566 - 74.9226i) q^{88} +53.7774i q^{89} -18.2719 q^{91} +(111.919 - 64.6165i) q^{92} +(-9.10961 + 15.7783i) q^{94} +(12.2474 + 7.07107i) q^{95} +(57.4605 + 99.5245i) q^{97} -39.6941i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{4} - 16 q^{7} - 40 q^{10} + 24 q^{13} - 84 q^{16} + 16 q^{22} + 20 q^{25} - 256 q^{28} + 56 q^{31} - 128 q^{34} + 304 q^{37} - 60 q^{40} + 48 q^{43} + 48 q^{46} + 92 q^{49} + 328 q^{52} + 80 q^{55}+ \cdots + 232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.711747 0.410927i 0.355873 0.205464i −0.311396 0.950280i \(-0.600796\pi\)
0.667269 + 0.744817i \(0.267463\pi\)
\(3\) 0 0
\(4\) −1.66228 + 2.87915i −0.415569 + 0.719787i
\(5\) −1.93649 1.11803i −0.387298 0.223607i
\(6\) 0 0
\(7\) −0.418861 0.725489i −0.0598373 0.103641i 0.834555 0.550925i \(-0.185725\pi\)
−0.894392 + 0.447283i \(0.852392\pi\)
\(8\) 6.01972i 0.752465i
\(9\) 0 0
\(10\) −1.83772 −0.183772
\(11\) −12.4462 + 7.18582i −1.13147 + 0.653256i −0.944305 0.329072i \(-0.893264\pi\)
−0.187168 + 0.982328i \(0.559931\pi\)
\(12\) 0 0
\(13\) 10.9057 18.8892i 0.838900 1.45302i −0.0519160 0.998651i \(-0.516533\pi\)
0.890816 0.454365i \(-0.150134\pi\)
\(14\) −0.596246 0.344243i −0.0425890 0.0245888i
\(15\) 0 0
\(16\) −4.17544 7.23208i −0.260965 0.452005i
\(17\) 23.5454i 1.38502i −0.721407 0.692512i \(-0.756504\pi\)
0.721407 0.692512i \(-0.243496\pi\)
\(18\) 0 0
\(19\) −6.32456 −0.332871 −0.166436 0.986052i \(-0.553226\pi\)
−0.166436 + 0.986052i \(0.553226\pi\)
\(20\) 6.43797 3.71697i 0.321899 0.185848i
\(21\) 0 0
\(22\) −5.90569 + 10.2290i −0.268441 + 0.464953i
\(23\) −33.6644 19.4361i −1.46367 0.845049i −0.464489 0.885579i \(-0.653762\pi\)
−0.999178 + 0.0405297i \(0.987095\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.100000 + 0.173205i
\(26\) 17.9258i 0.689453i
\(27\) 0 0
\(28\) 2.78505 0.0994662
\(29\) 0.231001 0.133369i 0.00796556 0.00459892i −0.496012 0.868316i \(-0.665203\pi\)
0.503977 + 0.863717i \(0.331869\pi\)
\(30\) 0 0
\(31\) −15.1359 + 26.2162i −0.488256 + 0.845685i −0.999909 0.0135078i \(-0.995700\pi\)
0.511653 + 0.859192i \(0.329034\pi\)
\(32\) −26.7966 15.4710i −0.837395 0.483470i
\(33\) 0 0
\(34\) −9.67544 16.7584i −0.284572 0.492893i
\(35\) 1.87320i 0.0535201i
\(36\) 0 0
\(37\) 9.53950 0.257824 0.128912 0.991656i \(-0.458851\pi\)
0.128912 + 0.991656i \(0.458851\pi\)
\(38\) −4.50148 + 2.59893i −0.118460 + 0.0683929i
\(39\) 0 0
\(40\) 6.73025 11.6571i 0.168256 0.291428i
\(41\) −16.7167 9.65138i −0.407724 0.235399i 0.282087 0.959389i \(-0.408973\pi\)
−0.689811 + 0.723989i \(0.742307\pi\)
\(42\) 0 0
\(43\) −9.81139 16.9938i −0.228172 0.395205i 0.729095 0.684413i \(-0.239941\pi\)
−0.957266 + 0.289208i \(0.906608\pi\)
\(44\) 47.7793i 1.08589i
\(45\) 0 0
\(46\) −31.9473 −0.694507
\(47\) −19.1984 + 11.0842i −0.408477 + 0.235834i −0.690135 0.723681i \(-0.742449\pi\)
0.281658 + 0.959515i \(0.409116\pi\)
\(48\) 0 0
\(49\) 24.1491 41.8275i 0.492839 0.853622i
\(50\) 3.55873 + 2.05464i 0.0711747 + 0.0410927i
\(51\) 0 0
\(52\) 36.2566 + 62.7982i 0.697242 + 1.20766i
\(53\) 49.0012i 0.924552i −0.886736 0.462276i \(-0.847033\pi\)
0.886736 0.462276i \(-0.152967\pi\)
\(54\) 0 0
\(55\) 32.1359 0.584290
\(56\) 4.36724 2.52143i 0.0779864 0.0450255i
\(57\) 0 0
\(58\) 0.109610 0.189849i 0.00188982 0.00327326i
\(59\) −63.4235 36.6176i −1.07497 0.620637i −0.145438 0.989367i \(-0.546459\pi\)
−0.929536 + 0.368731i \(0.879792\pi\)
\(60\) 0 0
\(61\) 24.1623 + 41.8503i 0.396103 + 0.686070i 0.993241 0.116068i \(-0.0370290\pi\)
−0.597138 + 0.802138i \(0.703696\pi\)
\(62\) 24.8791i 0.401276i
\(63\) 0 0
\(64\) 7.97367 0.124589
\(65\) −42.2376 + 24.3859i −0.649809 + 0.375167i
\(66\) 0 0
\(67\) −38.6491 + 66.9422i −0.576852 + 0.999138i 0.418985 + 0.907993i \(0.362386\pi\)
−0.995838 + 0.0911446i \(0.970947\pi\)
\(68\) 67.7907 + 39.1390i 0.996922 + 0.575573i
\(69\) 0 0
\(70\) 0.769751 + 1.33325i 0.0109964 + 0.0190464i
\(71\) 104.044i 1.46541i 0.680548 + 0.732703i \(0.261742\pi\)
−0.680548 + 0.732703i \(0.738258\pi\)
\(72\) 0 0
\(73\) 47.6754 0.653088 0.326544 0.945182i \(-0.394116\pi\)
0.326544 + 0.945182i \(0.394116\pi\)
\(74\) 6.78971 3.92004i 0.0917528 0.0529735i
\(75\) 0 0
\(76\) 10.5132 18.2093i 0.138331 0.239597i
\(77\) 10.4265 + 6.01972i 0.135409 + 0.0781782i
\(78\) 0 0
\(79\) −34.1096 59.0796i −0.431767 0.747843i 0.565258 0.824914i \(-0.308776\pi\)
−0.997026 + 0.0770712i \(0.975443\pi\)
\(80\) 18.6732i 0.233414i
\(81\) 0 0
\(82\) −15.8641 −0.193464
\(83\) −24.4304 + 14.1049i −0.294342 + 0.169938i −0.639898 0.768460i \(-0.721024\pi\)
0.345556 + 0.938398i \(0.387690\pi\)
\(84\) 0 0
\(85\) −26.3246 + 45.5955i −0.309701 + 0.536417i
\(86\) −13.9664 8.06353i −0.162401 0.0937620i
\(87\) 0 0
\(88\) −43.2566 74.9226i −0.491552 0.851393i
\(89\) 53.7774i 0.604240i 0.953270 + 0.302120i \(0.0976943\pi\)
−0.953270 + 0.302120i \(0.902306\pi\)
\(90\) 0 0
\(91\) −18.2719 −0.200790
\(92\) 111.919 64.6165i 1.21651 0.702353i
\(93\) 0 0
\(94\) −9.10961 + 15.7783i −0.0969107 + 0.167854i
\(95\) 12.2474 + 7.07107i 0.128921 + 0.0744323i
\(96\) 0 0
\(97\) 57.4605 + 99.5245i 0.592376 + 1.02603i 0.993911 + 0.110182i \(0.0351434\pi\)
−0.401535 + 0.915844i \(0.631523\pi\)
\(98\) 39.6941i 0.405042i
\(99\) 0 0
\(100\) −16.6228 −0.166228
\(101\) −15.1964 + 8.77366i −0.150460 + 0.0868679i −0.573340 0.819318i \(-0.694352\pi\)
0.422880 + 0.906186i \(0.361019\pi\)
\(102\) 0 0
\(103\) 35.7698 61.9550i 0.347279 0.601505i −0.638486 0.769633i \(-0.720439\pi\)
0.985765 + 0.168128i \(0.0537723\pi\)
\(104\) 113.708 + 65.6492i 1.09334 + 0.631242i
\(105\) 0 0
\(106\) −20.1359 34.8765i −0.189962 0.329023i
\(107\) 76.3675i 0.713715i −0.934159 0.356858i \(-0.883848\pi\)
0.934159 0.356858i \(-0.116152\pi\)
\(108\) 0 0
\(109\) −126.921 −1.16441 −0.582206 0.813041i \(-0.697810\pi\)
−0.582206 + 0.813041i \(0.697810\pi\)
\(110\) 22.8727 13.2055i 0.207933 0.120050i
\(111\) 0 0
\(112\) −3.49786 + 6.05848i −0.0312309 + 0.0540935i
\(113\) 13.0424 + 7.53006i 0.115420 + 0.0666377i 0.556599 0.830782i \(-0.312106\pi\)
−0.441179 + 0.897419i \(0.645440\pi\)
\(114\) 0 0
\(115\) 43.4605 + 75.2758i 0.377917 + 0.654572i
\(116\) 0.886783i 0.00764468i
\(117\) 0 0
\(118\) −60.1886 −0.510073
\(119\) −17.0819 + 9.86225i −0.143546 + 0.0828761i
\(120\) 0 0
\(121\) 42.7719 74.0831i 0.353487 0.612257i
\(122\) 34.3948 + 19.8579i 0.281925 + 0.162769i
\(123\) 0 0
\(124\) −50.3203 87.1573i −0.405809 0.702881i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 158.031 1.24434 0.622168 0.782884i \(-0.286252\pi\)
0.622168 + 0.782884i \(0.286252\pi\)
\(128\) 112.862 65.1608i 0.881733 0.509069i
\(129\) 0 0
\(130\) −20.0416 + 34.7131i −0.154166 + 0.267024i
\(131\) 182.922 + 105.610i 1.39635 + 0.806184i 0.994008 0.109306i \(-0.0348627\pi\)
0.402343 + 0.915489i \(0.368196\pi\)
\(132\) 0 0
\(133\) 2.64911 + 4.58839i 0.0199181 + 0.0344992i
\(134\) 63.5279i 0.474089i
\(135\) 0 0
\(136\) 141.737 1.04218
\(137\) −59.9802 + 34.6296i −0.437812 + 0.252771i −0.702669 0.711517i \(-0.748009\pi\)
0.264857 + 0.964288i \(0.414675\pi\)
\(138\) 0 0
\(139\) 79.9210 138.427i 0.574971 0.995879i −0.421074 0.907026i \(-0.638347\pi\)
0.996045 0.0888529i \(-0.0283201\pi\)
\(140\) −5.39323 3.11379i −0.0385231 0.0222413i
\(141\) 0 0
\(142\) 42.7544 + 74.0529i 0.301088 + 0.521499i
\(143\) 313.465i 2.19206i
\(144\) 0 0
\(145\) −0.596443 −0.00411340
\(146\) 33.9328 19.5911i 0.232417 0.134186i
\(147\) 0 0
\(148\) −15.8573 + 27.4656i −0.107144 + 0.185579i
\(149\) 8.50348 + 4.90948i 0.0570703 + 0.0329496i 0.528264 0.849080i \(-0.322843\pi\)
−0.471193 + 0.882030i \(0.656177\pi\)
\(150\) 0 0
\(151\) −105.325 182.427i −0.697514 1.20813i −0.969326 0.245779i \(-0.920956\pi\)
0.271812 0.962350i \(-0.412377\pi\)
\(152\) 38.0720i 0.250474i
\(153\) 0 0
\(154\) 9.89466 0.0642511
\(155\) 58.6213 33.8450i 0.378202 0.218355i
\(156\) 0 0
\(157\) −105.638 + 182.971i −0.672854 + 1.16542i 0.304237 + 0.952596i \(0.401598\pi\)
−0.977091 + 0.212821i \(0.931735\pi\)
\(158\) −48.5548 28.0331i −0.307309 0.177425i
\(159\) 0 0
\(160\) 34.5943 + 59.9191i 0.216214 + 0.374494i
\(161\) 32.5642i 0.202262i
\(162\) 0 0
\(163\) −222.763 −1.36664 −0.683322 0.730117i \(-0.739465\pi\)
−0.683322 + 0.730117i \(0.739465\pi\)
\(164\) 55.5755 32.0865i 0.338875 0.195650i
\(165\) 0 0
\(166\) −11.5922 + 20.0782i −0.0698323 + 0.120953i
\(167\) 28.8944 + 16.6822i 0.173020 + 0.0998933i 0.584009 0.811747i \(-0.301483\pi\)
−0.410989 + 0.911640i \(0.634817\pi\)
\(168\) 0 0
\(169\) −153.368 265.642i −0.907505 1.57184i
\(170\) 43.2699i 0.254529i
\(171\) 0 0
\(172\) 65.2370 0.379285
\(173\) −25.8164 + 14.9051i −0.149228 + 0.0861567i −0.572755 0.819727i \(-0.694125\pi\)
0.423527 + 0.905884i \(0.360792\pi\)
\(174\) 0 0
\(175\) 2.09431 3.62744i 0.0119675 0.0207283i
\(176\) 103.937 + 60.0079i 0.590550 + 0.340954i
\(177\) 0 0
\(178\) 22.0986 + 38.2759i 0.124149 + 0.215033i
\(179\) 111.841i 0.624808i −0.949949 0.312404i \(-0.898866\pi\)
0.949949 0.312404i \(-0.101134\pi\)
\(180\) 0 0
\(181\) −49.0790 −0.271155 −0.135577 0.990767i \(-0.543289\pi\)
−0.135577 + 0.990767i \(0.543289\pi\)
\(182\) −13.0050 + 7.50842i −0.0714558 + 0.0412550i
\(183\) 0 0
\(184\) 117.000 202.650i 0.635870 1.10136i
\(185\) −18.4732 10.6655i −0.0998549 0.0576513i
\(186\) 0 0
\(187\) 169.193 + 293.051i 0.904775 + 1.56712i
\(188\) 73.7002i 0.392022i
\(189\) 0 0
\(190\) 11.6228 0.0611725
\(191\) −241.575 + 139.474i −1.26479 + 0.730229i −0.973998 0.226557i \(-0.927253\pi\)
−0.290795 + 0.956785i \(0.593920\pi\)
\(192\) 0 0
\(193\) −44.9473 + 77.8511i −0.232888 + 0.403373i −0.958657 0.284565i \(-0.908151\pi\)
0.725769 + 0.687939i \(0.241484\pi\)
\(194\) 81.7947 + 47.2242i 0.421622 + 0.243424i
\(195\) 0 0
\(196\) 80.2851 + 139.058i 0.409618 + 0.709479i
\(197\) 212.709i 1.07974i 0.841748 + 0.539870i \(0.181527\pi\)
−0.841748 + 0.539870i \(0.818473\pi\)
\(198\) 0 0
\(199\) 96.4911 0.484880 0.242440 0.970166i \(-0.422052\pi\)
0.242440 + 0.970166i \(0.422052\pi\)
\(200\) −26.0661 + 15.0493i −0.130331 + 0.0752465i
\(201\) 0 0
\(202\) −7.21067 + 12.4893i −0.0356964 + 0.0618280i
\(203\) −0.193515 0.111726i −0.000953275 0.000550374i
\(204\) 0 0
\(205\) 21.5811 + 37.3796i 0.105274 + 0.182340i
\(206\) 58.7951i 0.285413i
\(207\) 0 0
\(208\) −182.144 −0.875695
\(209\) 78.7167 45.4471i 0.376635 0.217450i
\(210\) 0 0
\(211\) 32.8947 56.9752i 0.155899 0.270025i −0.777487 0.628899i \(-0.783506\pi\)
0.933386 + 0.358874i \(0.116839\pi\)
\(212\) 141.082 + 81.4537i 0.665481 + 0.384215i
\(213\) 0 0
\(214\) −31.3815 54.3543i −0.146643 0.253992i
\(215\) 43.8779i 0.204083i
\(216\) 0 0
\(217\) 25.3594 0.116864
\(218\) −90.3356 + 52.1553i −0.414384 + 0.239244i
\(219\) 0 0
\(220\) −53.4189 + 92.5242i −0.242813 + 0.420564i
\(221\) −444.754 256.779i −2.01246 1.16190i
\(222\) 0 0
\(223\) −51.1512 88.5966i −0.229378 0.397294i 0.728246 0.685316i \(-0.240336\pi\)
−0.957624 + 0.288022i \(0.907002\pi\)
\(224\) 25.9209i 0.115718i
\(225\) 0 0
\(226\) 12.3772 0.0547665
\(227\) 10.8510 6.26481i 0.0478016 0.0275983i −0.475909 0.879495i \(-0.657881\pi\)
0.523710 + 0.851896i \(0.324547\pi\)
\(228\) 0 0
\(229\) −11.6491 + 20.1769i −0.0508695 + 0.0881085i −0.890339 0.455298i \(-0.849533\pi\)
0.839469 + 0.543407i \(0.182866\pi\)
\(230\) 61.8657 + 35.7182i 0.268981 + 0.155297i
\(231\) 0 0
\(232\) 0.802841 + 1.39056i 0.00346052 + 0.00599380i
\(233\) 356.382i 1.52954i −0.644306 0.764768i \(-0.722854\pi\)
0.644306 0.764768i \(-0.277146\pi\)
\(234\) 0 0
\(235\) 49.5701 0.210937
\(236\) 210.855 121.737i 0.893453 0.515835i
\(237\) 0 0
\(238\) −8.10534 + 14.0389i −0.0340560 + 0.0589868i
\(239\) −152.008 87.7618i −0.636016 0.367204i 0.147062 0.989127i \(-0.453018\pi\)
−0.783078 + 0.621923i \(0.786352\pi\)
\(240\) 0 0
\(241\) −52.2192 90.4463i −0.216677 0.375296i 0.737113 0.675770i \(-0.236189\pi\)
−0.953790 + 0.300474i \(0.902855\pi\)
\(242\) 70.3045i 0.290515i
\(243\) 0 0
\(244\) −160.658 −0.658433
\(245\) −93.5291 + 53.9991i −0.381751 + 0.220404i
\(246\) 0 0
\(247\) −68.9737 + 119.466i −0.279246 + 0.483668i
\(248\) −157.814 91.1141i −0.636348 0.367396i
\(249\) 0 0
\(250\) −4.59431 7.95757i −0.0183772 0.0318303i
\(251\) 130.945i 0.521694i −0.965380 0.260847i \(-0.915998\pi\)
0.965380 0.260847i \(-0.0840018\pi\)
\(252\) 0 0
\(253\) 558.658 2.20813
\(254\) 112.478 64.9391i 0.442826 0.255666i
\(255\) 0 0
\(256\) 37.6053 65.1344i 0.146896 0.254431i
\(257\) −368.616 212.821i −1.43430 0.828095i −0.436858 0.899530i \(-0.643909\pi\)
−0.997445 + 0.0714350i \(0.977242\pi\)
\(258\) 0 0
\(259\) −3.99573 6.92080i −0.0154275 0.0267212i
\(260\) 162.144i 0.623632i
\(261\) 0 0
\(262\) 173.592 0.662566
\(263\) −64.5192 + 37.2502i −0.245320 + 0.141636i −0.617620 0.786477i \(-0.711903\pi\)
0.372299 + 0.928113i \(0.378569\pi\)
\(264\) 0 0
\(265\) −54.7851 + 94.8905i −0.206736 + 0.358077i
\(266\) 3.77099 + 2.17718i 0.0141767 + 0.00818490i
\(267\) 0 0
\(268\) −128.491 222.553i −0.479444 0.830422i
\(269\) 205.067i 0.762331i −0.924507 0.381165i \(-0.875523\pi\)
0.924507 0.381165i \(-0.124477\pi\)
\(270\) 0 0
\(271\) −233.351 −0.861073 −0.430537 0.902573i \(-0.641676\pi\)
−0.430537 + 0.902573i \(0.641676\pi\)
\(272\) −170.282 + 98.3125i −0.626038 + 0.361443i
\(273\) 0 0
\(274\) −28.4605 + 49.2950i −0.103870 + 0.179909i
\(275\) −62.2310 35.9291i −0.226294 0.130651i
\(276\) 0 0
\(277\) 211.857 + 366.948i 0.764828 + 1.32472i 0.940338 + 0.340243i \(0.110509\pi\)
−0.175510 + 0.984478i \(0.556157\pi\)
\(278\) 131.367i 0.472543i
\(279\) 0 0
\(280\) −11.2762 −0.0402720
\(281\) 348.665 201.302i 1.24080 0.716377i 0.271544 0.962426i \(-0.412466\pi\)
0.969257 + 0.246049i \(0.0791324\pi\)
\(282\) 0 0
\(283\) 136.167 235.847i 0.481154 0.833383i −0.518612 0.855010i \(-0.673551\pi\)
0.999766 + 0.0216266i \(0.00688449\pi\)
\(284\) −299.558 172.950i −1.05478 0.608978i
\(285\) 0 0
\(286\) 128.811 + 223.108i 0.450389 + 0.780097i
\(287\) 16.1704i 0.0563427i
\(288\) 0 0
\(289\) −265.386 −0.918290
\(290\) −0.424516 + 0.245094i −0.00146385 + 0.000845153i
\(291\) 0 0
\(292\) −79.2498 + 137.265i −0.271404 + 0.470085i
\(293\) 383.812 + 221.594i 1.30994 + 0.756294i 0.982086 0.188434i \(-0.0603412\pi\)
0.327854 + 0.944728i \(0.393675\pi\)
\(294\) 0 0
\(295\) 81.8794 + 141.819i 0.277557 + 0.480743i
\(296\) 57.4251i 0.194004i
\(297\) 0 0
\(298\) 8.06976 0.0270797
\(299\) −734.266 + 423.929i −2.45574 + 1.41782i
\(300\) 0 0
\(301\) −8.21922 + 14.2361i −0.0273064 + 0.0472960i
\(302\) −149.929 86.5615i −0.496453 0.286627i
\(303\) 0 0
\(304\) 26.4078 + 45.7397i 0.0868679 + 0.150460i
\(305\) 108.057i 0.354285i
\(306\) 0 0
\(307\) −390.824 −1.27304 −0.636522 0.771259i \(-0.719627\pi\)
−0.636522 + 0.771259i \(0.719627\pi\)
\(308\) −34.6633 + 20.0129i −0.112543 + 0.0649769i
\(309\) 0 0
\(310\) 27.8157 48.1781i 0.0897279 0.155413i
\(311\) 2.57850 + 1.48870i 0.00829100 + 0.00478681i 0.504140 0.863622i \(-0.331810\pi\)
−0.495849 + 0.868409i \(0.665143\pi\)
\(312\) 0 0
\(313\) −65.0527 112.675i −0.207836 0.359983i 0.743197 0.669073i \(-0.233309\pi\)
−0.951033 + 0.309091i \(0.899975\pi\)
\(314\) 173.638i 0.552988i
\(315\) 0 0
\(316\) 226.799 0.717717
\(317\) 114.036 65.8384i 0.359733 0.207692i −0.309230 0.950987i \(-0.600071\pi\)
0.668964 + 0.743295i \(0.266738\pi\)
\(318\) 0 0
\(319\) −1.91672 + 3.31986i −0.00600854 + 0.0104071i
\(320\) −15.4409 8.91483i −0.0482529 0.0278588i
\(321\) 0 0
\(322\) 13.3815 + 23.1774i 0.0415574 + 0.0719796i
\(323\) 148.914i 0.461035i
\(324\) 0 0
\(325\) 109.057 0.335560
\(326\) −158.551 + 91.5394i −0.486352 + 0.280796i
\(327\) 0 0
\(328\) 58.0986 100.630i 0.177130 0.306798i
\(329\) 16.0829 + 9.28549i 0.0488843 + 0.0282234i
\(330\) 0 0
\(331\) −80.2413 138.982i −0.242421 0.419885i 0.718983 0.695028i \(-0.244608\pi\)
−0.961403 + 0.275143i \(0.911275\pi\)
\(332\) 93.7850i 0.282485i
\(333\) 0 0
\(334\) 27.4207 0.0820978
\(335\) 149.687 86.4220i 0.446828 0.257976i
\(336\) 0 0
\(337\) 64.0569 110.950i 0.190080 0.329228i −0.755197 0.655498i \(-0.772459\pi\)
0.945277 + 0.326270i \(0.105792\pi\)
\(338\) −218.319 126.046i −0.645914 0.372918i
\(339\) 0 0
\(340\) −87.5174 151.585i −0.257404 0.445837i
\(341\) 435.056i 1.27583i
\(342\) 0 0
\(343\) −81.5089 −0.237635
\(344\) 102.298 59.0618i 0.297378 0.171691i
\(345\) 0 0
\(346\) −12.2498 + 21.2173i −0.0354041 + 0.0613217i
\(347\) 190.211 + 109.818i 0.548159 + 0.316480i 0.748379 0.663271i \(-0.230832\pi\)
−0.200220 + 0.979751i \(0.564166\pi\)
\(348\) 0 0
\(349\) −201.732 349.411i −0.578030 1.00118i −0.995705 0.0925806i \(-0.970488\pi\)
0.417675 0.908596i \(-0.362845\pi\)
\(350\) 3.44243i 0.00983551i
\(351\) 0 0
\(352\) 444.688 1.26332
\(353\) 47.4748 27.4096i 0.134489 0.0776475i −0.431246 0.902235i \(-0.641926\pi\)
0.565735 + 0.824587i \(0.308592\pi\)
\(354\) 0 0
\(355\) 116.325 201.480i 0.327675 0.567549i
\(356\) −154.833 89.3929i −0.434924 0.251104i
\(357\) 0 0
\(358\) −45.9584 79.6022i −0.128375 0.222353i
\(359\) 480.460i 1.33833i 0.743114 + 0.669165i \(0.233348\pi\)
−0.743114 + 0.669165i \(0.766652\pi\)
\(360\) 0 0
\(361\) −321.000 −0.889197
\(362\) −34.9318 + 20.1679i −0.0964967 + 0.0557124i
\(363\) 0 0
\(364\) 30.3729 52.6075i 0.0834422 0.144526i
\(365\) −92.3231 53.3028i −0.252940 0.146035i
\(366\) 0 0
\(367\) −261.182 452.380i −0.711667 1.23264i −0.964231 0.265063i \(-0.914607\pi\)
0.252564 0.967580i \(-0.418726\pi\)
\(368\) 324.618i 0.882114i
\(369\) 0 0
\(370\) −17.5310 −0.0473810
\(371\) −35.5499 + 20.5247i −0.0958217 + 0.0553227i
\(372\) 0 0
\(373\) 116.642 202.030i 0.312714 0.541637i −0.666235 0.745742i \(-0.732095\pi\)
0.978949 + 0.204105i \(0.0654285\pi\)
\(374\) 240.845 + 139.052i 0.643971 + 0.371797i
\(375\) 0 0
\(376\) −66.7238 115.569i −0.177457 0.307365i
\(377\) 5.81791i 0.0154321i
\(378\) 0 0
\(379\) 248.596 0.655927 0.327964 0.944690i \(-0.393638\pi\)
0.327964 + 0.944690i \(0.393638\pi\)
\(380\) −40.7173 + 23.5082i −0.107151 + 0.0618636i
\(381\) 0 0
\(382\) −114.627 + 198.540i −0.300071 + 0.519738i
\(383\) −405.552 234.145i −1.05888 0.611346i −0.133759 0.991014i \(-0.542705\pi\)
−0.925123 + 0.379668i \(0.876038\pi\)
\(384\) 0 0
\(385\) −13.4605 23.3143i −0.0349623 0.0605565i
\(386\) 73.8803i 0.191400i
\(387\) 0 0
\(388\) −382.061 −0.984694
\(389\) 419.362 242.119i 1.07805 0.622414i 0.147682 0.989035i \(-0.452819\pi\)
0.930370 + 0.366621i \(0.119486\pi\)
\(390\) 0 0
\(391\) −457.631 + 792.641i −1.17041 + 2.02721i
\(392\) 251.790 + 145.371i 0.642321 + 0.370844i
\(393\) 0 0
\(394\) 87.4078 + 151.395i 0.221847 + 0.384251i
\(395\) 152.543i 0.386184i
\(396\) 0 0
\(397\) −298.943 −0.753005 −0.376503 0.926416i \(-0.622873\pi\)
−0.376503 + 0.926416i \(0.622873\pi\)
\(398\) 68.6772 39.6508i 0.172556 0.0996252i
\(399\) 0 0
\(400\) 20.8772 36.1604i 0.0521931 0.0904010i
\(401\) 404.875 + 233.754i 1.00966 + 0.582929i 0.911093 0.412201i \(-0.135240\pi\)
0.0985694 + 0.995130i \(0.468573\pi\)
\(402\) 0 0
\(403\) 330.136 + 571.812i 0.819196 + 1.41889i
\(404\) 58.3370i 0.144399i
\(405\) 0 0
\(406\) −0.183645 −0.000452327
\(407\) −118.731 + 68.5491i −0.291721 + 0.168425i
\(408\) 0 0
\(409\) 92.0790 159.486i 0.225132 0.389940i −0.731227 0.682134i \(-0.761052\pi\)
0.956359 + 0.292194i \(0.0943853\pi\)
\(410\) 30.7206 + 17.7366i 0.0749283 + 0.0432599i
\(411\) 0 0
\(412\) 118.919 + 205.973i 0.288637 + 0.499934i
\(413\) 61.3507i 0.148549i
\(414\) 0 0
\(415\) 63.0790 0.151998
\(416\) −584.472 + 337.445i −1.40498 + 0.811166i
\(417\) 0 0
\(418\) 37.3509 64.6936i 0.0893562 0.154769i
\(419\) 372.253 + 214.920i 0.888431 + 0.512936i 0.873429 0.486951i \(-0.161891\pi\)
0.0150022 + 0.999887i \(0.495224\pi\)
\(420\) 0 0
\(421\) 152.517 + 264.168i 0.362274 + 0.627477i 0.988335 0.152297i \(-0.0486671\pi\)
−0.626061 + 0.779774i \(0.715334\pi\)
\(422\) 54.0692i 0.128126i
\(423\) 0 0
\(424\) 294.974 0.695693
\(425\) 101.955 58.8635i 0.239893 0.138502i
\(426\) 0 0
\(427\) 20.2413 35.0589i 0.0474035 0.0821052i
\(428\) 219.874 + 126.944i 0.513723 + 0.296598i
\(429\) 0 0
\(430\) 18.0306 + 31.2299i 0.0419316 + 0.0726277i
\(431\) 128.880i 0.299025i −0.988760 0.149512i \(-0.952230\pi\)
0.988760 0.149512i \(-0.0477704\pi\)
\(432\) 0 0
\(433\) 243.886 0.563247 0.281624 0.959525i \(-0.409127\pi\)
0.281624 + 0.959525i \(0.409127\pi\)
\(434\) 18.0495 10.4209i 0.0415887 0.0240112i
\(435\) 0 0
\(436\) 210.978 365.425i 0.483894 0.838130i
\(437\) 212.912 + 122.925i 0.487213 + 0.281293i
\(438\) 0 0
\(439\) 129.807 + 224.833i 0.295688 + 0.512147i 0.975145 0.221569i \(-0.0711177\pi\)
−0.679457 + 0.733716i \(0.737784\pi\)
\(440\) 193.449i 0.439658i
\(441\) 0 0
\(442\) −422.070 −0.954909
\(443\) 468.529 270.505i 1.05763 0.610622i 0.132852 0.991136i \(-0.457586\pi\)
0.924775 + 0.380514i \(0.124253\pi\)
\(444\) 0 0
\(445\) 60.1249 104.139i 0.135112 0.234021i
\(446\) −72.8135 42.0389i −0.163259 0.0942576i
\(447\) 0 0
\(448\) −3.33986 5.78481i −0.00745504 0.0129125i
\(449\) 791.947i 1.76380i −0.471436 0.881900i \(-0.656264\pi\)
0.471436 0.881900i \(-0.343736\pi\)
\(450\) 0 0
\(451\) 277.412 0.615104
\(452\) −43.3603 + 25.0341i −0.0959299 + 0.0553852i
\(453\) 0 0
\(454\) 5.14876 8.91792i 0.0113409 0.0196430i
\(455\) 35.3834 + 20.4286i 0.0777656 + 0.0448980i
\(456\) 0 0
\(457\) −305.680 529.453i −0.668883 1.15854i −0.978217 0.207586i \(-0.933439\pi\)
0.309333 0.950954i \(-0.399894\pi\)
\(458\) 19.1477i 0.0418073i
\(459\) 0 0
\(460\) −288.974 −0.628204
\(461\) 508.349 293.496i 1.10271 0.636650i 0.165779 0.986163i \(-0.446986\pi\)
0.936931 + 0.349513i \(0.113653\pi\)
\(462\) 0 0
\(463\) −97.6424 + 169.122i −0.210891 + 0.365273i −0.951994 0.306118i \(-0.900970\pi\)
0.741103 + 0.671391i \(0.234303\pi\)
\(464\) −1.92907 1.11375i −0.00415747 0.00240032i
\(465\) 0 0
\(466\) −146.447 253.654i −0.314264 0.544321i
\(467\) 753.763i 1.61405i 0.590515 + 0.807027i \(0.298925\pi\)
−0.590515 + 0.807027i \(0.701075\pi\)
\(468\) 0 0
\(469\) 64.7544 0.138069
\(470\) 35.2814 20.3697i 0.0750667 0.0433398i
\(471\) 0 0
\(472\) 220.427 381.791i 0.467007 0.808880i
\(473\) 244.229 + 141.006i 0.516340 + 0.298109i
\(474\) 0 0
\(475\) −15.8114 27.3861i −0.0332871 0.0576550i
\(476\) 65.5752i 0.137763i
\(477\) 0 0
\(478\) −144.255 −0.301788
\(479\) 532.474 307.424i 1.11164 0.641803i 0.172384 0.985030i \(-0.444853\pi\)
0.939253 + 0.343226i \(0.111520\pi\)
\(480\) 0 0
\(481\) 104.035 180.194i 0.216289 0.374623i
\(482\) −74.3337 42.9166i −0.154219 0.0890386i
\(483\) 0 0
\(484\) 142.198 + 246.293i 0.293796 + 0.508870i
\(485\) 256.971i 0.529837i
\(486\) 0 0
\(487\) 478.197 0.981924 0.490962 0.871181i \(-0.336645\pi\)
0.490962 + 0.871181i \(0.336645\pi\)
\(488\) −251.927 + 145.450i −0.516244 + 0.298053i
\(489\) 0 0
\(490\) −44.3794 + 76.8673i −0.0905701 + 0.156872i
\(491\) 534.531 + 308.612i 1.08866 + 0.628537i 0.933219 0.359309i \(-0.116987\pi\)
0.155439 + 0.987845i \(0.450321\pi\)
\(492\) 0 0
\(493\) −3.14022 5.43902i −0.00636961 0.0110325i
\(494\) 113.373i 0.229499i
\(495\) 0 0
\(496\) 252.797 0.509672
\(497\) 75.4826 43.5799i 0.151877 0.0876860i
\(498\) 0 0
\(499\) −391.548 + 678.181i −0.784665 + 1.35908i 0.144533 + 0.989500i \(0.453832\pi\)
−0.929199 + 0.369580i \(0.879501\pi\)
\(500\) 32.1899 + 18.5848i 0.0643797 + 0.0371697i
\(501\) 0 0
\(502\) −53.8089 93.1998i −0.107189 0.185657i
\(503\) 369.395i 0.734383i 0.930145 + 0.367191i \(0.119681\pi\)
−0.930145 + 0.367191i \(0.880319\pi\)
\(504\) 0 0
\(505\) 39.2370 0.0776970
\(506\) 397.623 229.568i 0.785816 0.453691i
\(507\) 0 0
\(508\) −262.691 + 454.994i −0.517108 + 0.895657i
\(509\) −195.406 112.818i −0.383901 0.221645i 0.295613 0.955308i \(-0.404476\pi\)
−0.679514 + 0.733662i \(0.737809\pi\)
\(510\) 0 0
\(511\) −19.9694 34.5880i −0.0390790 0.0676869i
\(512\) 459.474i 0.897410i
\(513\) 0 0
\(514\) −349.815 −0.680574
\(515\) −138.536 + 79.9836i −0.269001 + 0.155308i
\(516\) 0 0
\(517\) 159.298 275.913i 0.308120 0.533680i
\(518\) −5.68789 3.28391i −0.0109805 0.00633959i
\(519\) 0 0
\(520\) −146.796 254.258i −0.282300 0.488958i
\(521\) 1007.73i 1.93422i 0.254367 + 0.967108i \(0.418133\pi\)
−0.254367 + 0.967108i \(0.581867\pi\)
\(522\) 0 0
\(523\) 935.517 1.78875 0.894376 0.447316i \(-0.147620\pi\)
0.894376 + 0.447316i \(0.147620\pi\)
\(524\) −608.134 + 351.106i −1.16056 + 0.670050i
\(525\) 0 0
\(526\) −30.6142 + 53.0254i −0.0582020 + 0.100809i
\(527\) 617.271 + 356.382i 1.17129 + 0.676246i
\(528\) 0 0
\(529\) 491.026 + 850.482i 0.928215 + 1.60772i
\(530\) 90.0507i 0.169907i
\(531\) 0 0
\(532\) −17.6142 −0.0331095
\(533\) −364.614 + 210.510i −0.684079 + 0.394953i
\(534\) 0 0
\(535\) −85.3815 + 147.885i −0.159592 + 0.276421i
\(536\) −402.973 232.657i −0.751816 0.434061i
\(537\) 0 0
\(538\) −84.2676 145.956i −0.156631 0.271293i
\(539\) 694.124i 1.28780i
\(540\) 0 0
\(541\) −399.149 −0.737798 −0.368899 0.929469i \(-0.620265\pi\)
−0.368899 + 0.929469i \(0.620265\pi\)
\(542\) −166.087 + 95.8902i −0.306433 + 0.176919i
\(543\) 0 0
\(544\) −364.272 + 630.937i −0.669617 + 1.15981i
\(545\) 245.781 + 141.902i 0.450975 + 0.260371i
\(546\) 0 0
\(547\) −240.416 416.413i −0.439518 0.761268i 0.558134 0.829751i \(-0.311517\pi\)
−0.997652 + 0.0684831i \(0.978184\pi\)
\(548\) 230.256i 0.420175i
\(549\) 0 0
\(550\) −59.0569 −0.107376
\(551\) −1.46098 + 0.843497i −0.00265151 + 0.00153085i
\(552\) 0 0
\(553\) −28.5744 + 49.4923i −0.0516716 + 0.0894978i
\(554\) 301.578 + 174.116i 0.544364 + 0.314289i
\(555\) 0 0
\(556\) 265.702 + 460.209i 0.477881 + 0.827714i
\(557\) 751.542i 1.34927i −0.738152 0.674634i \(-0.764301\pi\)
0.738152 0.674634i \(-0.235699\pi\)
\(558\) 0 0
\(559\) −428.000 −0.765653
\(560\) 13.5472 7.82146i 0.0241914 0.0139669i
\(561\) 0 0
\(562\) 165.441 286.552i 0.294379 0.509879i
\(563\) 580.948 + 335.410i 1.03188 + 0.595755i 0.917522 0.397685i \(-0.130186\pi\)
0.114356 + 0.993440i \(0.463520\pi\)
\(564\) 0 0
\(565\) −16.8377 29.1638i −0.0298013 0.0516173i
\(566\) 223.818i 0.395438i
\(567\) 0 0
\(568\) −626.315 −1.10267
\(569\) 238.438 137.662i 0.419048 0.241937i −0.275622 0.961266i \(-0.588884\pi\)
0.694670 + 0.719329i \(0.255550\pi\)
\(570\) 0 0
\(571\) 450.144 779.673i 0.788344 1.36545i −0.138637 0.990343i \(-0.544272\pi\)
0.926981 0.375109i \(-0.122395\pi\)
\(572\) −902.513 521.066i −1.57782 0.910955i
\(573\) 0 0
\(574\) 6.64484 + 11.5092i 0.0115764 + 0.0200509i
\(575\) 194.361i 0.338020i
\(576\) 0 0
\(577\) −596.236 −1.03334 −0.516669 0.856185i \(-0.672828\pi\)
−0.516669 + 0.856185i \(0.672828\pi\)
\(578\) −188.887 + 109.054i −0.326795 + 0.188675i
\(579\) 0 0
\(580\) 0.991453 1.71725i 0.00170940 0.00296077i
\(581\) 20.4659 + 11.8160i 0.0352253 + 0.0203373i
\(582\) 0 0
\(583\) 352.114 + 609.879i 0.603969 + 1.04610i
\(584\) 286.993i 0.491426i
\(585\) 0 0
\(586\) 364.236 0.621564
\(587\) 430.788 248.715i 0.733880 0.423706i −0.0859598 0.996299i \(-0.527396\pi\)
0.819840 + 0.572593i \(0.194062\pi\)
\(588\) 0 0
\(589\) 95.7281 165.806i 0.162527 0.281504i
\(590\) 116.555 + 67.2929i 0.197550 + 0.114056i
\(591\) 0 0
\(592\) −39.8317 68.9905i −0.0672832 0.116538i
\(593\) 898.856i 1.51578i −0.652384 0.757889i \(-0.726231\pi\)
0.652384 0.757889i \(-0.273769\pi\)
\(594\) 0 0
\(595\) 44.1053 0.0741266
\(596\) −28.2703 + 16.3219i −0.0474333 + 0.0273857i
\(597\) 0 0
\(598\) −348.408 + 603.460i −0.582622 + 1.00913i
\(599\) −24.7424 14.2851i −0.0413063 0.0238482i 0.479205 0.877703i \(-0.340925\pi\)
−0.520511 + 0.853855i \(0.674258\pi\)
\(600\) 0 0
\(601\) 10.1053 + 17.5030i 0.0168142 + 0.0291231i 0.874310 0.485368i \(-0.161314\pi\)
−0.857496 + 0.514491i \(0.827981\pi\)
\(602\) 13.5100i 0.0224419i
\(603\) 0 0
\(604\) 700.315 1.15946
\(605\) −165.655 + 95.6408i −0.273810 + 0.158084i
\(606\) 0 0
\(607\) 356.813 618.019i 0.587831 1.01815i −0.406685 0.913568i \(-0.633315\pi\)
0.994516 0.104584i \(-0.0333512\pi\)
\(608\) 169.477 + 97.8475i 0.278745 + 0.160933i
\(609\) 0 0
\(610\) −44.4036 76.9092i −0.0727927 0.126081i
\(611\) 483.524i 0.791365i
\(612\) 0 0
\(613\) −76.1530 −0.124230 −0.0621150 0.998069i \(-0.519785\pi\)
−0.0621150 + 0.998069i \(0.519785\pi\)
\(614\) −278.168 + 160.600i −0.453042 + 0.261564i
\(615\) 0 0
\(616\) −36.2370 + 62.7643i −0.0588263 + 0.101890i
\(617\) −174.590 100.800i −0.282966 0.163371i 0.351799 0.936075i \(-0.385570\pi\)
−0.634766 + 0.772705i \(0.718903\pi\)
\(618\) 0 0
\(619\) 102.132 + 176.897i 0.164995 + 0.285779i 0.936653 0.350258i \(-0.113906\pi\)
−0.771659 + 0.636037i \(0.780573\pi\)
\(620\) 225.039i 0.362966i
\(621\) 0 0
\(622\) 2.44699 0.00393406
\(623\) 39.0149 22.5252i 0.0626242 0.0361561i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.0200000 + 0.0346410i
\(626\) −92.6021 53.4638i −0.147927 0.0854055i
\(627\) 0 0
\(628\) −351.200 608.296i −0.559235 0.968624i
\(629\) 224.611i 0.357093i
\(630\) 0 0
\(631\) −639.903 −1.01411 −0.507055 0.861914i \(-0.669266\pi\)
−0.507055 + 0.861914i \(0.669266\pi\)
\(632\) 355.642 205.330i 0.562725 0.324890i
\(633\) 0 0
\(634\) 54.1096 93.7206i 0.0853464 0.147824i
\(635\) −306.025 176.684i −0.481929 0.278242i
\(636\) 0 0
\(637\) −526.726 912.316i −0.826885 1.43221i
\(638\) 3.15054i 0.00493815i
\(639\) 0 0
\(640\) −291.408 −0.455325
\(641\) −494.249 + 285.355i −0.771059 + 0.445171i −0.833252 0.552893i \(-0.813524\pi\)
0.0621934 + 0.998064i \(0.480190\pi\)
\(642\) 0 0
\(643\) −226.846 + 392.909i −0.352794 + 0.611056i −0.986738 0.162322i \(-0.948102\pi\)
0.633944 + 0.773379i \(0.281435\pi\)
\(644\) −93.7571 54.1307i −0.145586 0.0840538i
\(645\) 0 0
\(646\) 61.1929 + 105.989i 0.0947258 + 0.164070i
\(647\) 983.536i 1.52015i −0.649837 0.760074i \(-0.725163\pi\)
0.649837 0.760074i \(-0.274837\pi\)
\(648\) 0 0
\(649\) 1052.51 1.62174
\(650\) 77.6209 44.8145i 0.119417 0.0689453i
\(651\) 0 0
\(652\) 370.294 641.368i 0.567936 0.983693i
\(653\) −471.532 272.239i −0.722101 0.416905i 0.0934244 0.995626i \(-0.470219\pi\)
−0.815526 + 0.578721i \(0.803552\pi\)
\(654\) 0 0
\(655\) −236.151 409.026i −0.360536 0.624467i
\(656\) 161.195i 0.245724i
\(657\) 0 0
\(658\) 15.2626 0.0231955
\(659\) −93.4729 + 53.9666i −0.141840 + 0.0818916i −0.569241 0.822171i \(-0.692763\pi\)
0.427400 + 0.904062i \(0.359429\pi\)
\(660\) 0 0
\(661\) −172.864 + 299.409i −0.261519 + 0.452964i −0.966646 0.256117i \(-0.917557\pi\)
0.705127 + 0.709081i \(0.250890\pi\)
\(662\) −114.223 65.9467i −0.172542 0.0996173i
\(663\) 0 0
\(664\) −84.9075 147.064i −0.127873 0.221482i
\(665\) 11.8472i 0.0178153i
\(666\) 0 0
\(667\) −10.3687 −0.0155452
\(668\) −96.0610 + 55.4608i −0.143804 + 0.0830252i
\(669\) 0 0
\(670\) 71.0263 123.021i 0.106009 0.183614i
\(671\) −601.457 347.251i −0.896359 0.517513i
\(672\) 0 0
\(673\) 602.390 + 1043.37i 0.895082 + 1.55033i 0.833703 + 0.552213i \(0.186216\pi\)
0.0613784 + 0.998115i \(0.480450\pi\)
\(674\) 105.291i 0.156218i
\(675\) 0 0
\(676\) 1019.76 1.50853
\(677\) 497.617 287.299i 0.735032 0.424371i −0.0852280 0.996361i \(-0.527162\pi\)
0.820260 + 0.571990i \(0.193829\pi\)
\(678\) 0 0
\(679\) 48.1359 83.3739i 0.0708924 0.122789i
\(680\) −274.472 158.466i −0.403635 0.233039i
\(681\) 0 0
\(682\) −178.777 309.650i −0.262136 0.454032i
\(683\) 334.387i 0.489585i 0.969575 + 0.244792i \(0.0787198\pi\)
−0.969575 + 0.244792i \(0.921280\pi\)
\(684\) 0 0
\(685\) 154.868 0.226085
\(686\) −58.0137 + 33.4942i −0.0845681 + 0.0488254i
\(687\) 0 0
\(688\) −81.9338 + 141.914i −0.119090 + 0.206270i
\(689\) −925.595 534.393i −1.34339 0.775606i
\(690\) 0 0
\(691\) −450.574 780.418i −0.652061 1.12940i −0.982622 0.185619i \(-0.940571\pi\)
0.330561 0.943785i \(-0.392762\pi\)
\(692\) 99.1057i 0.143216i
\(693\) 0 0
\(694\) 180.510 0.260100
\(695\) −309.533 + 178.709i −0.445371 + 0.257135i
\(696\) 0 0
\(697\) −227.246 + 393.601i −0.326034 + 0.564707i
\(698\) −287.165 165.795i −0.411411 0.237528i
\(699\) 0 0
\(700\) 6.96264 + 12.0596i 0.00994662 + 0.0172281i
\(701\) 887.934i 1.26667i −0.773879 0.633334i \(-0.781686\pi\)
0.773879 0.633334i \(-0.218314\pi\)
\(702\) 0 0
\(703\) −60.3331 −0.0858223
\(704\) −99.2418 + 57.2973i −0.140968 + 0.0813882i
\(705\) 0 0
\(706\) 22.5267 39.0174i 0.0319075 0.0552654i
\(707\) 12.7304 + 7.34989i 0.0180062 + 0.0103959i
\(708\) 0 0
\(709\) 513.175 + 888.845i 0.723801 + 1.25366i 0.959466 + 0.281826i \(0.0909401\pi\)
−0.235664 + 0.971835i \(0.575727\pi\)
\(710\) 191.204i 0.269301i
\(711\) 0 0
\(712\) −323.725 −0.454669
\(713\) 1019.08 588.368i 1.42929 0.825201i
\(714\) 0 0
\(715\) 350.465 607.023i 0.490161 0.848983i
\(716\) 322.006 + 185.910i 0.449729 + 0.259651i
\(717\) 0 0
\(718\) 197.434 + 341.966i 0.274978 + 0.476276i
\(719\) 740.080i 1.02932i −0.857395 0.514659i \(-0.827919\pi\)
0.857395 0.514659i \(-0.172081\pi\)
\(720\) 0 0
\(721\) −59.9302 −0.0831210
\(722\) −228.471 + 131.908i −0.316441 + 0.182698i
\(723\) 0 0
\(724\) 81.5829 141.306i 0.112684 0.195174i
\(725\) 1.15501 + 0.666843i 0.00159311 + 0.000919784i
\(726\) 0 0
\(727\) −531.875 921.235i −0.731603 1.26717i −0.956198 0.292721i \(-0.905439\pi\)
0.224595 0.974452i \(-0.427894\pi\)
\(728\) 109.992i 0.151087i
\(729\) 0 0
\(730\) −87.6142 −0.120019
\(731\) −400.126 + 231.013i −0.547368 + 0.316023i
\(732\) 0 0
\(733\) −67.3747 + 116.696i −0.0919164 + 0.159204i −0.908317 0.418281i \(-0.862633\pi\)
0.816401 + 0.577485i \(0.195966\pi\)
\(734\) −371.791 214.653i −0.506527 0.292443i
\(735\) 0 0
\(736\) 601.394 + 1041.65i 0.817112 + 1.41528i
\(737\) 1110.90i 1.50733i
\(738\) 0 0
\(739\) −711.429 −0.962692 −0.481346 0.876531i \(-0.659852\pi\)
−0.481346 + 0.876531i \(0.659852\pi\)
\(740\) 61.4151 35.4580i 0.0829933 0.0479162i
\(741\) 0 0
\(742\) −16.8683 + 29.2168i −0.0227336 + 0.0393757i
\(743\) −403.854 233.165i −0.543545 0.313816i 0.202970 0.979185i \(-0.434941\pi\)
−0.746514 + 0.665369i \(0.768274\pi\)
\(744\) 0 0
\(745\) −10.9779 19.0143i −0.0147355 0.0255226i
\(746\) 191.726i 0.257005i
\(747\) 0 0
\(748\) −1124.98 −1.50399
\(749\) −55.4038 + 31.9874i −0.0739703 + 0.0427068i
\(750\) 0 0
\(751\) −113.680 + 196.899i −0.151371 + 0.262182i −0.931732 0.363147i \(-0.881702\pi\)
0.780361 + 0.625330i \(0.215036\pi\)
\(752\) 160.324 + 92.5630i 0.213197 + 0.123089i
\(753\) 0 0
\(754\) −2.39074 4.14088i −0.00317074 0.00549188i
\(755\) 471.026i 0.623875i
\(756\) 0 0
\(757\) −552.258 −0.729535 −0.364768 0.931099i \(-0.618852\pi\)
−0.364768 + 0.931099i \(0.618852\pi\)
\(758\) 176.938 102.155i 0.233427 0.134769i
\(759\) 0 0
\(760\) −42.5658 + 73.7262i −0.0560077 + 0.0970081i
\(761\) 262.450 + 151.526i 0.344875 + 0.199114i 0.662426 0.749127i \(-0.269527\pi\)
−0.317550 + 0.948241i \(0.602860\pi\)
\(762\) 0 0
\(763\) 53.1623 + 92.0798i 0.0696753 + 0.120681i
\(764\) 927.376i 1.21384i
\(765\) 0 0
\(766\) −384.867 −0.502437
\(767\) −1383.35 + 798.680i −1.80359 + 1.04130i
\(768\) 0 0
\(769\) −369.842 + 640.585i −0.480939 + 0.833011i −0.999761 0.0218718i \(-0.993037\pi\)
0.518822 + 0.854882i \(0.326371\pi\)
\(770\) −19.1609 11.0626i −0.0248843 0.0143670i
\(771\) 0 0
\(772\) −149.430 258.820i −0.193562 0.335259i
\(773\) 603.479i 0.780697i 0.920667 + 0.390348i \(0.127645\pi\)
−0.920667 + 0.390348i \(0.872355\pi\)
\(774\) 0 0
\(775\) −151.359 −0.195302
\(776\) −599.109 + 345.896i −0.772048 + 0.445742i
\(777\) 0 0
\(778\) 198.986 344.655i 0.255767 0.443001i
\(779\) 105.726 + 61.0407i 0.135720 + 0.0783577i
\(780\) 0 0
\(781\) −747.640 1294.95i −0.957285 1.65807i
\(782\) 752.213i 0.961909i
\(783\) 0 0
\(784\) −403.333 −0.514455
\(785\) 409.135 236.214i 0.521190 0.300909i
\(786\) 0 0
\(787\) 330.241 571.995i 0.419620 0.726804i −0.576281 0.817252i \(-0.695497\pi\)
0.995901 + 0.0904479i \(0.0288299\pi\)
\(788\) −612.420 353.581i −0.777183 0.448707i
\(789\) 0 0
\(790\) 62.6840 + 108.572i 0.0793468 + 0.137433i
\(791\) 12.6162i 0.0159497i
\(792\) 0 0
\(793\) 1054.03 1.32916
\(794\) −212.772 + 122.844i −0.267975 + 0.154715i
\(795\) 0 0
\(796\) −160.395 + 277.812i −0.201501 + 0.349010i
\(797\) −549.899 317.484i −0.689961 0.398349i 0.113636 0.993522i \(-0.463750\pi\)
−0.803598 + 0.595173i \(0.797083\pi\)
\(798\) 0 0
\(799\) 260.982 + 452.034i 0.326636 + 0.565750i
\(800\) 154.710i 0.193388i
\(801\) 0 0
\(802\) 384.224 0.479083
\(803\) −593.378 + 342.587i −0.738951 + 0.426634i
\(804\) 0 0
\(805\) 36.4078 63.0602i 0.0452271 0.0783357i
\(806\) 469.946 + 271.324i 0.583060 + 0.336630i
\(807\) 0 0
\(808\) −52.8150 91.4782i −0.0653651 0.113216i
\(809\) 405.048i 0.500677i 0.968158 + 0.250339i \(0.0805419\pi\)
−0.968158 + 0.250339i \(0.919458\pi\)
\(810\) 0 0
\(811\) 406.034 0.500659 0.250329 0.968161i \(-0.419461\pi\)
0.250329 + 0.968161i \(0.419461\pi\)
\(812\) 0.643351 0.371439i 0.000792304 0.000457437i
\(813\) 0 0
\(814\) −56.3374 + 97.5792i −0.0692105 + 0.119876i
\(815\) 431.379 + 249.057i 0.529299 + 0.305591i
\(816\) 0 0
\(817\) 62.0527 + 107.478i 0.0759519 + 0.131552i
\(818\) 151.351i 0.185026i
\(819\) 0 0
\(820\) −143.495 −0.174994
\(821\) 476.377 275.036i 0.580240 0.335002i −0.180989 0.983485i \(-0.557930\pi\)
0.761229 + 0.648483i \(0.224596\pi\)
\(822\) 0 0
\(823\) 736.256 1275.23i 0.894600 1.54949i 0.0603014 0.998180i \(-0.480794\pi\)
0.834299 0.551313i \(-0.185873\pi\)
\(824\) 372.952 + 215.324i 0.452611 + 0.261315i
\(825\) 0 0
\(826\) 25.2107 + 43.6662i 0.0305214 + 0.0528646i
\(827\) 1510.47i 1.82644i 0.407466 + 0.913220i \(0.366413\pi\)
−0.407466 + 0.913220i \(0.633587\pi\)
\(828\) 0 0
\(829\) 712.692 0.859701 0.429850 0.902900i \(-0.358566\pi\)
0.429850 + 0.902900i \(0.358566\pi\)
\(830\) 44.8963 25.9209i 0.0540919 0.0312300i
\(831\) 0 0
\(832\) 86.9584 150.616i 0.104517 0.181029i
\(833\) −984.845 568.600i −1.18229 0.682594i
\(834\) 0 0
\(835\) −37.3025 64.6098i −0.0446736 0.0773770i
\(836\) 302.183i 0.361463i
\(837\) 0 0
\(838\) 353.266 0.421559
\(839\) 459.495 265.289i 0.547669 0.316197i −0.200512 0.979691i \(-0.564261\pi\)
0.748181 + 0.663494i \(0.230927\pi\)
\(840\) 0 0
\(841\) −420.464 + 728.266i −0.499958 + 0.865952i
\(842\) 217.108 + 125.347i 0.257848 + 0.148868i
\(843\) 0 0
\(844\) 109.360 + 189.417i 0.129574 + 0.224428i
\(845\) 685.884i 0.811697i
\(846\) 0 0
\(847\) −71.6619 −0.0846068
\(848\) −354.381 + 204.602i −0.417902 + 0.241276i
\(849\) 0 0
\(850\) 48.3772 83.7918i 0.0569144 0.0985786i
\(851\) −321.141 185.411i −0.377369 0.217874i
\(852\) 0 0
\(853\) −107.616 186.396i −0.126162 0.218519i 0.796025 0.605264i \(-0.206933\pi\)
−0.922186 + 0.386746i \(0.873599\pi\)
\(854\) 33.2708i 0.0389587i
\(855\) 0 0
\(856\) 459.711 0.537046
\(857\) −4.30797 + 2.48721i −0.00502680 + 0.00290222i −0.502511 0.864571i \(-0.667590\pi\)
0.497484 + 0.867473i \(0.334257\pi\)
\(858\) 0 0
\(859\) −826.140 + 1430.92i −0.961746 + 1.66579i −0.243633 + 0.969867i \(0.578339\pi\)
−0.718113 + 0.695926i \(0.754994\pi\)
\(860\) −126.331 72.9372i −0.146896 0.0848107i
\(861\) 0 0
\(862\) −52.9602 91.7297i −0.0614387 0.106415i
\(863\) 379.077i 0.439255i −0.975584 0.219627i \(-0.929516\pi\)
0.975584 0.219627i \(-0.0704841\pi\)
\(864\) 0 0
\(865\) 66.6577 0.0770609
\(866\) 173.585 100.219i 0.200445 0.115727i
\(867\) 0 0
\(868\) −42.1544 + 73.0136i −0.0485650 + 0.0841171i
\(869\) 849.070 + 490.211i 0.977065 + 0.564109i
\(870\) 0 0
\(871\) 842.991 + 1460.10i 0.967842 + 1.67635i
\(872\) 764.029i 0.876180i
\(873\) 0 0
\(874\) 202.053 0.231182
\(875\) −8.11121 + 4.68301i −0.00926996 + 0.00535201i
\(876\) 0 0
\(877\) −550.800 + 954.014i −0.628051 + 1.08782i 0.359892 + 0.932994i \(0.382814\pi\)
−0.987942 + 0.154821i \(0.950520\pi\)
\(878\) 184.780 + 106.683i 0.210455 + 0.121506i
\(879\) 0 0
\(880\) −134.182 232.410i −0.152479 0.264102i
\(881\) 184.877i 0.209850i −0.994480 0.104925i \(-0.966540\pi\)
0.994480 0.104925i \(-0.0334602\pi\)
\(882\) 0 0
\(883\) 978.236 1.10786 0.553928 0.832565i \(-0.313128\pi\)
0.553928 + 0.832565i \(0.313128\pi\)
\(884\) 1478.61 853.676i 1.67264 0.965696i
\(885\) 0 0
\(886\) 222.316 385.063i 0.250921 0.434608i
\(887\) −578.450 333.968i −0.652142 0.376514i 0.137134 0.990552i \(-0.456211\pi\)
−0.789276 + 0.614038i \(0.789544\pi\)
\(888\) 0 0
\(889\) −66.1929 114.649i −0.0744577 0.128964i
\(890\) 98.8279i 0.111043i
\(891\) 0 0
\(892\) 340.110 0.381290
\(893\) 121.421 70.1027i 0.135970 0.0785025i
\(894\) 0 0
\(895\) −125.042 + 216.578i −0.139711 + 0.241987i
\(896\) −94.5468 54.5866i −0.105521 0.0609226i
\(897\) 0 0
\(898\) −325.432 563.665i −0.362397 0.627690i
\(899\) 8.07464i 0.00898180i
\(900\) 0 0
\(901\) −1153.75 −1.28053
\(902\) 197.447 113.996i 0.218899 0.126382i
\(903\) 0 0
\(904\) −45.3288 + 78.5118i −0.0501425 + 0.0868494i
\(905\) 95.0411 + 54.8720i 0.105018 + 0.0606320i
\(906\) 0 0
\(907\) 416.311 + 721.072i 0.458998 + 0.795008i 0.998908 0.0467149i \(-0.0148752\pi\)
−0.539910 + 0.841722i \(0.681542\pi\)
\(908\) 41.6554i 0.0458760i
\(909\) 0 0
\(910\) 33.5787 0.0368996
\(911\) −489.532 + 282.631i −0.537357 + 0.310243i −0.744007 0.668172i \(-0.767077\pi\)
0.206650 + 0.978415i \(0.433744\pi\)
\(912\) 0 0
\(913\) 202.710 351.105i 0.222027 0.384561i
\(914\) −435.133 251.224i −0.476076 0.274862i
\(915\) 0 0
\(916\) −38.7281 67.0791i −0.0422796 0.0732304i
\(917\) 176.944i 0.192959i
\(918\) 0 0
\(919\) −1185.75 −1.29026 −0.645128 0.764075i \(-0.723196\pi\)
−0.645128 + 0.764075i \(0.723196\pi\)
\(920\) −453.139 + 261.620i −0.492542 + 0.284370i
\(921\) 0 0
\(922\) 241.211 417.789i 0.261617 0.453134i
\(923\) 1965.31 + 1134.67i 2.12926 + 1.22933i
\(924\) 0 0
\(925\) 23.8488 + 41.3073i 0.0257824 + 0.0446565i
\(926\) 160.496i 0.173321i
\(927\) 0 0
\(928\) −8.25341 −0.00889376
\(929\) −816.657 + 471.497i −0.879071 + 0.507532i −0.870352 0.492430i \(-0.836109\pi\)
−0.00871924 + 0.999962i \(0.502775\pi\)
\(930\) 0 0
\(931\) −152.732 + 264.540i −0.164052 + 0.284146i
\(932\) 1026.08 + 592.406i 1.10094 + 0.635628i
\(933\) 0 0
\(934\) 309.742 + 536.488i 0.331629 + 0.574399i
\(935\) 756.654i 0.809255i
\(936\) 0 0
\(937\) −531.281 −0.567002 −0.283501 0.958972i \(-0.591496\pi\)
−0.283501 + 0.958972i \(0.591496\pi\)
\(938\) 46.0888 26.6094i 0.0491351 0.0283682i
\(939\) 0 0
\(940\) −82.3993 + 142.720i −0.0876588 + 0.151830i
\(941\) −515.848 297.825i −0.548191 0.316498i 0.200201 0.979755i \(-0.435840\pi\)
−0.748392 + 0.663257i \(0.769174\pi\)
\(942\) 0 0
\(943\) 375.171 + 649.815i 0.397848 + 0.689093i
\(944\) 611.578i 0.647859i
\(945\) 0 0
\(946\) 231.772 0.245002
\(947\) 677.445 391.123i 0.715359 0.413013i −0.0976830 0.995218i \(-0.531143\pi\)
0.813042 + 0.582205i \(0.197810\pi\)
\(948\) 0 0
\(949\) 519.934 900.552i 0.547875 0.948948i
\(950\) −22.5074 12.9947i −0.0236920 0.0136786i
\(951\) 0 0
\(952\) −59.3680 102.828i −0.0623613 0.108013i
\(953\) 426.708i 0.447752i −0.974618 0.223876i \(-0.928129\pi\)
0.974618 0.223876i \(-0.0718711\pi\)
\(954\) 0 0
\(955\) 623.745 0.653136
\(956\) 505.358 291.769i 0.528618 0.305198i
\(957\) 0 0
\(958\) 252.658 437.616i 0.263735 0.456802i
\(959\) 50.2468 + 29.0100i 0.0523950 + 0.0302503i
\(960\) 0 0
\(961\) 22.3064 + 38.6359i 0.0232117 + 0.0402038i
\(962\) 171.003i 0.177758i
\(963\) 0 0
\(964\) 347.211 0.360178
\(965\) 174.080 100.505i 0.180394 0.104151i
\(966\) 0 0
\(967\) 605.454 1048.68i 0.626116 1.08446i −0.362208 0.932097i \(-0.617977\pi\)
0.988324 0.152367i \(-0.0486895\pi\)
\(968\) 445.959 + 257.475i 0.460702 + 0.265986i
\(969\) 0 0
\(970\) −105.596 182.898i −0.108862 0.188555i
\(971\) 1193.69i 1.22934i 0.788784 + 0.614670i \(0.210711\pi\)
−0.788784 + 0.614670i \(0.789289\pi\)
\(972\) 0 0
\(973\) −133.903 −0.137619
\(974\) 340.355 196.504i 0.349441 0.201750i
\(975\) 0 0
\(976\) 201.777 349.487i 0.206738 0.358081i
\(977\) 787.629 + 454.738i 0.806171 + 0.465443i 0.845624 0.533779i \(-0.179228\pi\)
−0.0394537 + 0.999221i \(0.512562\pi\)
\(978\) 0 0
\(979\) −386.434 669.324i −0.394723 0.683681i
\(980\) 359.046i 0.366373i
\(981\) 0 0
\(982\) 507.268 0.516566
\(983\) −1351.76 + 780.441i −1.37514 + 0.793938i −0.991570 0.129574i \(-0.958639\pi\)
−0.383570 + 0.923512i \(0.625306\pi\)
\(984\) 0 0
\(985\) 237.816 411.909i 0.241437 0.418182i
\(986\) −4.47008 2.58080i −0.00453355 0.00261745i
\(987\) 0 0
\(988\) −229.307 397.171i −0.232092 0.401995i
\(989\) 762.782i 0.771265i
\(990\) 0 0
\(991\) −1692.63 −1.70800 −0.854001 0.520271i \(-0.825831\pi\)
−0.854001 + 0.520271i \(0.825831\pi\)
\(992\) 811.185 468.338i 0.817726 0.472115i
\(993\) 0 0
\(994\) 35.8164 62.0357i 0.0360326 0.0624102i
\(995\) −186.854 107.880i −0.187793 0.108422i
\(996\) 0 0
\(997\) −8.28719 14.3538i −0.00831213 0.0143970i 0.861839 0.507181i \(-0.169313\pi\)
−0.870152 + 0.492784i \(0.835979\pi\)
\(998\) 643.591i 0.644881i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.i.d.296.3 8
3.2 odd 2 inner 405.3.i.d.296.2 8
9.2 odd 6 inner 405.3.i.d.26.3 8
9.4 even 3 45.3.c.a.26.3 yes 4
9.5 odd 6 45.3.c.a.26.2 4
9.7 even 3 inner 405.3.i.d.26.2 8
36.23 even 6 720.3.l.a.161.2 4
36.31 odd 6 720.3.l.a.161.4 4
45.4 even 6 225.3.c.c.26.2 4
45.13 odd 12 225.3.d.b.224.5 8
45.14 odd 6 225.3.c.c.26.3 4
45.22 odd 12 225.3.d.b.224.4 8
45.23 even 12 225.3.d.b.224.3 8
45.32 even 12 225.3.d.b.224.6 8
72.5 odd 6 2880.3.l.g.1601.3 4
72.13 even 6 2880.3.l.g.1601.1 4
72.59 even 6 2880.3.l.c.1601.4 4
72.67 odd 6 2880.3.l.c.1601.2 4
180.23 odd 12 3600.3.c.i.449.5 8
180.59 even 6 3600.3.l.v.1601.1 4
180.67 even 12 3600.3.c.i.449.4 8
180.103 even 12 3600.3.c.i.449.6 8
180.139 odd 6 3600.3.l.v.1601.2 4
180.167 odd 12 3600.3.c.i.449.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.c.a.26.2 4 9.5 odd 6
45.3.c.a.26.3 yes 4 9.4 even 3
225.3.c.c.26.2 4 45.4 even 6
225.3.c.c.26.3 4 45.14 odd 6
225.3.d.b.224.3 8 45.23 even 12
225.3.d.b.224.4 8 45.22 odd 12
225.3.d.b.224.5 8 45.13 odd 12
225.3.d.b.224.6 8 45.32 even 12
405.3.i.d.26.2 8 9.7 even 3 inner
405.3.i.d.26.3 8 9.2 odd 6 inner
405.3.i.d.296.2 8 3.2 odd 2 inner
405.3.i.d.296.3 8 1.1 even 1 trivial
720.3.l.a.161.2 4 36.23 even 6
720.3.l.a.161.4 4 36.31 odd 6
2880.3.l.c.1601.2 4 72.67 odd 6
2880.3.l.c.1601.4 4 72.59 even 6
2880.3.l.g.1601.1 4 72.13 even 6
2880.3.l.g.1601.3 4 72.5 odd 6
3600.3.c.i.449.3 8 180.167 odd 12
3600.3.c.i.449.4 8 180.67 even 12
3600.3.c.i.449.5 8 180.23 odd 12
3600.3.c.i.449.6 8 180.103 even 12
3600.3.l.v.1601.1 4 180.59 even 6
3600.3.l.v.1601.2 4 180.139 odd 6