Properties

Label 405.3.i.d.26.1
Level $405$
Weight $3$
Character 405.26
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(26,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 4x^{6} + 7x^{4} + 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.1
Root \(-1.40294 + 1.01575i\) of defining polynomial
Character \(\chi\) \(=\) 405.26
Dual form 405.3.i.d.296.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.16124 - 1.82514i) q^{2} +(4.66228 + 8.07530i) q^{4} +(1.93649 - 1.11803i) q^{5} +(-3.58114 + 6.20271i) q^{7} -19.4361i q^{8} -8.16228 q^{10} +(-4.70023 - 2.71368i) q^{11} +(-4.90569 - 8.49691i) q^{13} +(22.6417 - 13.0722i) q^{14} +(-16.8246 + 29.1410i) q^{16} -12.2317i q^{17} +6.32456 q^{19} +(18.0569 + 10.4252i) q^{20} +(9.90569 + 17.1572i) q^{22} +(-10.4265 + 6.01972i) q^{23} +(2.50000 - 4.33013i) q^{25} +35.8143i q^{26} -66.7851 q^{28} +(38.9608 + 22.4940i) q^{29} +(29.1359 + 50.4649i) q^{31} +(39.0441 - 22.5421i) q^{32} +(-22.3246 + 38.6673i) q^{34} +16.0153i q^{35} +66.4605 q^{37} +(-19.9934 - 11.5432i) q^{38} +(-21.7302 - 37.6379i) q^{40} +(14.2672 - 8.23717i) q^{41} +(21.8114 - 37.7784i) q^{43} -50.6077i q^{44} +43.9473 q^{46} +(-34.6904 - 20.0285i) q^{47} +(-1.14911 - 1.99032i) q^{49} +(-15.8062 + 9.12570i) q^{50} +(45.7434 - 79.2299i) q^{52} +13.2242i q^{53} -12.1359 q^{55} +(120.557 + 69.6035i) q^{56} +(-82.1096 - 142.218i) q^{58} +(21.7822 - 12.5759i) q^{59} +(17.8377 - 30.8958i) q^{61} -212.709i q^{62} -29.9737 q^{64} +(-18.9997 - 10.9695i) q^{65} +(-13.3509 - 23.1244i) q^{67} +(98.7746 - 57.0275i) q^{68} +(29.2302 - 50.6283i) q^{70} +92.7301i q^{71} +60.3246 q^{73} +(-210.097 - 121.300i) q^{74} +(29.4868 + 51.0727i) q^{76} +(33.6644 - 19.4361i) q^{77} +(48.1096 - 83.3283i) q^{79} +75.2417i q^{80} -60.1359 q^{82} +(68.5212 + 39.5607i) q^{83} +(-13.6754 - 23.6866i) q^{85} +(-137.902 + 79.6177i) q^{86} +(-52.7434 + 91.3543i) q^{88} -107.443i q^{89} +70.2719 q^{91} +(-97.2221 - 56.1312i) q^{92} +(73.1096 + 126.630i) q^{94} +(12.2474 - 7.07107i) q^{95} +(0.539501 - 0.934443i) q^{97} +8.38915i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{4} - 16 q^{7} - 40 q^{10} + 24 q^{13} - 84 q^{16} + 16 q^{22} + 20 q^{25} - 256 q^{28} + 56 q^{31} - 128 q^{34} + 304 q^{37} - 60 q^{40} + 48 q^{43} + 48 q^{46} + 92 q^{49} + 328 q^{52} + 80 q^{55}+ \cdots + 232 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.16124 1.82514i −1.58062 0.912570i −0.994769 0.102150i \(-0.967428\pi\)
−0.585849 0.810420i \(-0.699239\pi\)
\(3\) 0 0
\(4\) 4.66228 + 8.07530i 1.16557 + 2.01883i
\(5\) 1.93649 1.11803i 0.387298 0.223607i
\(6\) 0 0
\(7\) −3.58114 + 6.20271i −0.511591 + 0.886102i 0.488318 + 0.872666i \(0.337610\pi\)
−0.999910 + 0.0134366i \(0.995723\pi\)
\(8\) 19.4361i 2.42952i
\(9\) 0 0
\(10\) −8.16228 −0.816228
\(11\) −4.70023 2.71368i −0.427294 0.246698i 0.270899 0.962608i \(-0.412679\pi\)
−0.698193 + 0.715910i \(0.746012\pi\)
\(12\) 0 0
\(13\) −4.90569 8.49691i −0.377361 0.653609i 0.613316 0.789837i \(-0.289835\pi\)
−0.990677 + 0.136229i \(0.956502\pi\)
\(14\) 22.6417 13.0722i 1.61726 0.933726i
\(15\) 0 0
\(16\) −16.8246 + 29.1410i −1.05153 + 1.82131i
\(17\) 12.2317i 0.719511i −0.933047 0.359756i \(-0.882860\pi\)
0.933047 0.359756i \(-0.117140\pi\)
\(18\) 0 0
\(19\) 6.32456 0.332871 0.166436 0.986052i \(-0.446774\pi\)
0.166436 + 0.986052i \(0.446774\pi\)
\(20\) 18.0569 + 10.4252i 0.902846 + 0.521258i
\(21\) 0 0
\(22\) 9.90569 + 17.1572i 0.450259 + 0.779871i
\(23\) −10.4265 + 6.01972i −0.453324 + 0.261727i −0.709233 0.704974i \(-0.750959\pi\)
0.255909 + 0.966701i \(0.417625\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 35.8143i 1.37747i
\(27\) 0 0
\(28\) −66.7851 −2.38518
\(29\) 38.9608 + 22.4940i 1.34348 + 0.775657i 0.987316 0.158768i \(-0.0507521\pi\)
0.356161 + 0.934425i \(0.384085\pi\)
\(30\) 0 0
\(31\) 29.1359 + 50.4649i 0.939869 + 1.62790i 0.765712 + 0.643183i \(0.222387\pi\)
0.174157 + 0.984718i \(0.444280\pi\)
\(32\) 39.0441 22.5421i 1.22013 0.704441i
\(33\) 0 0
\(34\) −22.3246 + 38.6673i −0.656605 + 1.13727i
\(35\) 16.0153i 0.457581i
\(36\) 0 0
\(37\) 66.4605 1.79623 0.898115 0.439761i \(-0.144937\pi\)
0.898115 + 0.439761i \(0.144937\pi\)
\(38\) −19.9934 11.5432i −0.526143 0.303769i
\(39\) 0 0
\(40\) −21.7302 37.6379i −0.543256 0.940947i
\(41\) 14.2672 8.23717i 0.347980 0.200906i −0.315815 0.948821i \(-0.602278\pi\)
0.663795 + 0.747914i \(0.268945\pi\)
\(42\) 0 0
\(43\) 21.8114 37.7784i 0.507242 0.878568i −0.492723 0.870186i \(-0.663999\pi\)
0.999965 0.00838215i \(-0.00266815\pi\)
\(44\) 50.6077i 1.15018i
\(45\) 0 0
\(46\) 43.9473 0.955377
\(47\) −34.6904 20.0285i −0.738093 0.426138i 0.0832828 0.996526i \(-0.473460\pi\)
−0.821375 + 0.570388i \(0.806793\pi\)
\(48\) 0 0
\(49\) −1.14911 1.99032i −0.0234512 0.0406187i
\(50\) −15.8062 + 9.12570i −0.316124 + 0.182514i
\(51\) 0 0
\(52\) 45.7434 79.2299i 0.879681 1.52365i
\(53\) 13.2242i 0.249512i 0.992187 + 0.124756i \(0.0398149\pi\)
−0.992187 + 0.124756i \(0.960185\pi\)
\(54\) 0 0
\(55\) −12.1359 −0.220654
\(56\) 120.557 + 69.6035i 2.15280 + 1.24292i
\(57\) 0 0
\(58\) −82.1096 142.218i −1.41568 2.45203i
\(59\) 21.7822 12.5759i 0.369189 0.213151i −0.303915 0.952699i \(-0.598294\pi\)
0.673104 + 0.739548i \(0.264961\pi\)
\(60\) 0 0
\(61\) 17.8377 30.8958i 0.292422 0.506489i −0.681960 0.731389i \(-0.738872\pi\)
0.974382 + 0.224900i \(0.0722056\pi\)
\(62\) 212.709i 3.43079i
\(63\) 0 0
\(64\) −29.9737 −0.468339
\(65\) −18.9997 10.9695i −0.292303 0.168761i
\(66\) 0 0
\(67\) −13.3509 23.1244i −0.199267 0.345141i 0.749024 0.662543i \(-0.230523\pi\)
−0.948291 + 0.317402i \(0.897189\pi\)
\(68\) 98.7746 57.0275i 1.45257 0.838640i
\(69\) 0 0
\(70\) 29.2302 50.6283i 0.417575 0.723261i
\(71\) 92.7301i 1.30606i 0.757333 + 0.653029i \(0.226502\pi\)
−0.757333 + 0.653029i \(0.773498\pi\)
\(72\) 0 0
\(73\) 60.3246 0.826364 0.413182 0.910649i \(-0.364417\pi\)
0.413182 + 0.910649i \(0.364417\pi\)
\(74\) −210.097 121.300i −2.83915 1.63919i
\(75\) 0 0
\(76\) 29.4868 + 51.0727i 0.387985 + 0.672009i
\(77\) 33.6644 19.4361i 0.437199 0.252417i
\(78\) 0 0
\(79\) 48.1096 83.3283i 0.608982 1.05479i −0.382426 0.923986i \(-0.624911\pi\)
0.991408 0.130802i \(-0.0417553\pi\)
\(80\) 75.2417i 0.940521i
\(81\) 0 0
\(82\) −60.1359 −0.733365
\(83\) 68.5212 + 39.5607i 0.825557 + 0.476635i 0.852329 0.523006i \(-0.175190\pi\)
−0.0267722 + 0.999642i \(0.508523\pi\)
\(84\) 0 0
\(85\) −13.6754 23.6866i −0.160888 0.278665i
\(86\) −137.902 + 79.6177i −1.60351 + 0.925787i
\(87\) 0 0
\(88\) −52.7434 + 91.3543i −0.599357 + 1.03812i
\(89\) 107.443i 1.20722i −0.797278 0.603612i \(-0.793728\pi\)
0.797278 0.603612i \(-0.206272\pi\)
\(90\) 0 0
\(91\) 70.2719 0.772219
\(92\) −97.2221 56.1312i −1.05676 0.610122i
\(93\) 0 0
\(94\) 73.1096 + 126.630i 0.777762 + 1.34712i
\(95\) 12.2474 7.07107i 0.128921 0.0744323i
\(96\) 0 0
\(97\) 0.539501 0.934443i 0.00556187 0.00963344i −0.863231 0.504809i \(-0.831563\pi\)
0.868793 + 0.495176i \(0.164896\pi\)
\(98\) 8.38915i 0.0856036i
\(99\) 0 0
\(100\) 46.6228 0.466228
\(101\) 147.469 + 85.1412i 1.46009 + 0.842982i 0.999015 0.0443800i \(-0.0141312\pi\)
0.461073 + 0.887362i \(0.347465\pi\)
\(102\) 0 0
\(103\) 64.2302 + 111.250i 0.623595 + 1.08010i 0.988811 + 0.149175i \(0.0476617\pi\)
−0.365216 + 0.930923i \(0.619005\pi\)
\(104\) −165.147 + 95.3477i −1.58795 + 0.916805i
\(105\) 0 0
\(106\) 24.1359 41.8047i 0.227698 0.394384i
\(107\) 76.3675i 0.713715i 0.934159 + 0.356858i \(0.116152\pi\)
−0.934159 + 0.356858i \(0.883848\pi\)
\(108\) 0 0
\(109\) −13.0790 −0.119991 −0.0599954 0.998199i \(-0.519109\pi\)
−0.0599954 + 0.998199i \(0.519109\pi\)
\(110\) 38.3646 + 22.1498i 0.348769 + 0.201362i
\(111\) 0 0
\(112\) −120.502 208.716i −1.07591 1.86353i
\(113\) −17.9414 + 10.3585i −0.158774 + 0.0916680i −0.577282 0.816545i \(-0.695887\pi\)
0.418508 + 0.908213i \(0.362553\pi\)
\(114\) 0 0
\(115\) −13.4605 + 23.3143i −0.117048 + 0.202733i
\(116\) 419.494i 3.61633i
\(117\) 0 0
\(118\) −91.8114 −0.778063
\(119\) 75.8697 + 43.8034i 0.637560 + 0.368096i
\(120\) 0 0
\(121\) −45.7719 79.2792i −0.378280 0.655200i
\(122\) −112.779 + 65.1127i −0.924414 + 0.533711i
\(123\) 0 0
\(124\) −271.680 + 470.563i −2.19097 + 3.79486i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −38.0306 −0.299454 −0.149727 0.988727i \(-0.547839\pi\)
−0.149727 + 0.988727i \(0.547839\pi\)
\(128\) −61.4225 35.4623i −0.479863 0.277049i
\(129\) 0 0
\(130\) 40.0416 + 69.3542i 0.308013 + 0.533493i
\(131\) −72.6949 + 41.9704i −0.554923 + 0.320385i −0.751105 0.660182i \(-0.770479\pi\)
0.196182 + 0.980567i \(0.437146\pi\)
\(132\) 0 0
\(133\) −22.6491 + 39.2294i −0.170294 + 0.294958i
\(134\) 97.4690i 0.727381i
\(135\) 0 0
\(136\) −237.737 −1.74806
\(137\) −13.5044 7.79680i −0.0985726 0.0569109i 0.449903 0.893077i \(-0.351458\pi\)
−0.548476 + 0.836166i \(0.684792\pi\)
\(138\) 0 0
\(139\) −33.9210 58.7529i −0.244036 0.422683i 0.717824 0.696224i \(-0.245138\pi\)
−0.961860 + 0.273542i \(0.911805\pi\)
\(140\) −129.329 + 74.6680i −0.923776 + 0.533343i
\(141\) 0 0
\(142\) 169.246 293.142i 1.19187 2.06438i
\(143\) 53.2499i 0.372377i
\(144\) 0 0
\(145\) 100.596 0.693769
\(146\) −190.700 110.101i −1.30617 0.754115i
\(147\) 0 0
\(148\) 309.857 + 536.689i 2.09363 + 3.62627i
\(149\) 202.153 116.713i 1.35673 0.783308i 0.367548 0.930005i \(-0.380197\pi\)
0.989182 + 0.146697i \(0.0468642\pi\)
\(150\) 0 0
\(151\) −92.6754 + 160.519i −0.613745 + 1.06304i 0.376859 + 0.926271i \(0.377004\pi\)
−0.990603 + 0.136766i \(0.956329\pi\)
\(152\) 122.925i 0.808716i
\(153\) 0 0
\(154\) −141.895 −0.921394
\(155\) 112.843 + 65.1500i 0.728020 + 0.420322i
\(156\) 0 0
\(157\) 55.6381 + 96.3680i 0.354383 + 0.613809i 0.987012 0.160646i \(-0.0513577\pi\)
−0.632629 + 0.774455i \(0.718024\pi\)
\(158\) −304.172 + 175.614i −1.92514 + 1.11148i
\(159\) 0 0
\(160\) 50.4057 87.3052i 0.315036 0.545658i
\(161\) 86.2298i 0.535589i
\(162\) 0 0
\(163\) 118.763 0.728607 0.364304 0.931280i \(-0.381307\pi\)
0.364304 + 0.931280i \(0.381307\pi\)
\(164\) 133.035 + 76.8079i 0.811190 + 0.468341i
\(165\) 0 0
\(166\) −144.408 250.122i −0.869927 1.50676i
\(167\) 191.560 110.597i 1.14706 0.662258i 0.198894 0.980021i \(-0.436265\pi\)
0.948170 + 0.317763i \(0.102932\pi\)
\(168\) 0 0
\(169\) 36.3683 62.9918i 0.215197 0.372733i
\(170\) 99.8384i 0.587285i
\(171\) 0 0
\(172\) 406.763 2.36490
\(173\) −165.244 95.4036i −0.955166 0.551466i −0.0604844 0.998169i \(-0.519265\pi\)
−0.894682 + 0.446704i \(0.852598\pi\)
\(174\) 0 0
\(175\) 17.9057 + 31.0136i 0.102318 + 0.177220i
\(176\) 158.159 91.3129i 0.898628 0.518823i
\(177\) 0 0
\(178\) −196.099 + 339.653i −1.10168 + 1.90816i
\(179\) 58.1005i 0.324584i −0.986743 0.162292i \(-0.948111\pi\)
0.986743 0.162292i \(-0.0518886\pi\)
\(180\) 0 0
\(181\) −162.921 −0.900116 −0.450058 0.892999i \(-0.648597\pi\)
−0.450058 + 0.892999i \(0.648597\pi\)
\(182\) −222.146 128.256i −1.22058 0.704704i
\(183\) 0 0
\(184\) 117.000 + 202.650i 0.635870 + 1.10136i
\(185\) 128.700 74.3051i 0.695677 0.401649i
\(186\) 0 0
\(187\) −33.1929 + 57.4918i −0.177502 + 0.307443i
\(188\) 373.513i 1.98677i
\(189\) 0 0
\(190\) −51.6228 −0.271699
\(191\) −86.6561 50.0309i −0.453697 0.261942i 0.255693 0.966758i \(-0.417696\pi\)
−0.709390 + 0.704816i \(0.751030\pi\)
\(192\) 0 0
\(193\) 30.9473 + 53.6024i 0.160349 + 0.277732i 0.934994 0.354664i \(-0.115405\pi\)
−0.774645 + 0.632396i \(0.782071\pi\)
\(194\) −3.41098 + 1.96933i −0.0175824 + 0.0101512i
\(195\) 0 0
\(196\) 10.7149 18.5588i 0.0546681 0.0946879i
\(197\) 24.8791i 0.126290i −0.998004 0.0631449i \(-0.979887\pi\)
0.998004 0.0631449i \(-0.0201130\pi\)
\(198\) 0 0
\(199\) −156.491 −0.786387 −0.393194 0.919456i \(-0.628630\pi\)
−0.393194 + 0.919456i \(0.628630\pi\)
\(200\) −84.1609 48.5903i −0.420804 0.242952i
\(201\) 0 0
\(202\) −310.789 538.303i −1.53856 2.66487i
\(203\) −279.048 + 161.109i −1.37462 + 0.793639i
\(204\) 0 0
\(205\) 18.4189 31.9024i 0.0898481 0.155621i
\(206\) 468.917i 2.27630i
\(207\) 0 0
\(208\) 330.144 1.58723
\(209\) −29.7269 17.1628i −0.142234 0.0821187i
\(210\) 0 0
\(211\) −118.895 205.932i −0.563482 0.975979i −0.997189 0.0749253i \(-0.976128\pi\)
0.433707 0.901054i \(-0.357205\pi\)
\(212\) −106.789 + 61.6547i −0.503722 + 0.290824i
\(213\) 0 0
\(214\) 139.381 241.416i 0.651315 1.12811i
\(215\) 97.5435i 0.453691i
\(216\) 0 0
\(217\) −417.359 −1.92332
\(218\) 41.3458 + 23.8710i 0.189660 + 0.109500i
\(219\) 0 0
\(220\) −56.5811 98.0014i −0.257187 0.445461i
\(221\) −103.932 + 60.0049i −0.470279 + 0.271516i
\(222\) 0 0
\(223\) 91.1512 157.879i 0.408750 0.707976i −0.586000 0.810311i \(-0.699298\pi\)
0.994750 + 0.102335i \(0.0326315\pi\)
\(224\) 322.906i 1.44154i
\(225\) 0 0
\(226\) 75.6228 0.334614
\(227\) 351.674 + 203.039i 1.54922 + 0.894444i 0.998201 + 0.0599528i \(0.0190950\pi\)
0.551021 + 0.834491i \(0.314238\pi\)
\(228\) 0 0
\(229\) 13.6491 + 23.6410i 0.0596031 + 0.103236i 0.894287 0.447493i \(-0.147683\pi\)
−0.834684 + 0.550729i \(0.814350\pi\)
\(230\) 85.1036 49.1346i 0.370016 0.213629i
\(231\) 0 0
\(232\) 437.197 757.248i 1.88447 3.26400i
\(233\) 356.382i 1.52954i 0.644306 + 0.764768i \(0.277146\pi\)
−0.644306 + 0.764768i \(0.722854\pi\)
\(234\) 0 0
\(235\) −89.5701 −0.381149
\(236\) 203.109 + 117.265i 0.860631 + 0.496886i
\(237\) 0 0
\(238\) −159.895 276.946i −0.671826 1.16364i
\(239\) 235.290 135.845i 0.984479 0.568389i 0.0808596 0.996725i \(-0.474233\pi\)
0.903619 + 0.428336i \(0.140900\pi\)
\(240\) 0 0
\(241\) 112.219 194.369i 0.465640 0.806512i −0.533590 0.845743i \(-0.679158\pi\)
0.999230 + 0.0392311i \(0.0124909\pi\)
\(242\) 334.161i 1.38083i
\(243\) 0 0
\(244\) 332.658 1.36335
\(245\) −4.45049 2.56949i −0.0181653 0.0104877i
\(246\) 0 0
\(247\) −31.0263 53.7392i −0.125613 0.217568i
\(248\) 980.843 566.290i 3.95501 2.28343i
\(249\) 0 0
\(250\) −20.4057 + 35.3437i −0.0816228 + 0.141375i
\(251\) 318.775i 1.27002i 0.772504 + 0.635010i \(0.219004\pi\)
−0.772504 + 0.635010i \(0.780996\pi\)
\(252\) 0 0
\(253\) 65.3423 0.258270
\(254\) 120.224 + 69.4112i 0.473322 + 0.273272i
\(255\) 0 0
\(256\) 189.395 + 328.041i 0.739823 + 1.28141i
\(257\) −322.140 + 185.988i −1.25346 + 0.723688i −0.971796 0.235824i \(-0.924221\pi\)
−0.281668 + 0.959512i \(0.590888\pi\)
\(258\) 0 0
\(259\) −238.004 + 412.235i −0.918935 + 1.59164i
\(260\) 204.571i 0.786811i
\(261\) 0 0
\(262\) 306.408 1.16950
\(263\) 206.590 + 119.275i 0.785512 + 0.453515i 0.838380 0.545086i \(-0.183503\pi\)
−0.0528683 + 0.998601i \(0.516836\pi\)
\(264\) 0 0
\(265\) 14.7851 + 25.6085i 0.0557927 + 0.0966357i
\(266\) 143.198 82.6756i 0.538340 0.310811i
\(267\) 0 0
\(268\) 124.491 215.625i 0.464519 0.804571i
\(269\) 125.871i 0.467922i −0.972246 0.233961i \(-0.924831\pi\)
0.972246 0.233961i \(-0.0751688\pi\)
\(270\) 0 0
\(271\) −258.649 −0.954425 −0.477212 0.878788i \(-0.658353\pi\)
−0.477212 + 0.878788i \(0.658353\pi\)
\(272\) 356.443 + 205.793i 1.31045 + 0.756591i
\(273\) 0 0
\(274\) 28.4605 + 49.2950i 0.103870 + 0.179909i
\(275\) −23.5012 + 13.5684i −0.0854587 + 0.0493396i
\(276\) 0 0
\(277\) −113.857 + 197.207i −0.411037 + 0.711937i −0.995003 0.0998406i \(-0.968167\pi\)
0.583966 + 0.811778i \(0.301500\pi\)
\(278\) 247.642i 0.890800i
\(279\) 0 0
\(280\) 311.276 1.11170
\(281\) −209.044 120.692i −0.743930 0.429508i 0.0795665 0.996830i \(-0.474646\pi\)
−0.823496 + 0.567321i \(0.807980\pi\)
\(282\) 0 0
\(283\) −104.167 180.422i −0.368080 0.637533i 0.621186 0.783663i \(-0.286651\pi\)
−0.989265 + 0.146131i \(0.953318\pi\)
\(284\) −748.824 + 432.334i −2.63670 + 1.52230i
\(285\) 0 0
\(286\) 97.1886 168.336i 0.339820 0.588586i
\(287\) 117.994i 0.411128i
\(288\) 0 0
\(289\) 139.386 0.482304
\(290\) −318.009 183.603i −1.09658 0.633113i
\(291\) 0 0
\(292\) 281.250 + 487.139i 0.963184 + 1.66828i
\(293\) 174.671 100.847i 0.596148 0.344186i −0.171377 0.985206i \(-0.554822\pi\)
0.767525 + 0.641020i \(0.221488\pi\)
\(294\) 0 0
\(295\) 28.1206 48.7064i 0.0953242 0.165106i
\(296\) 1291.73i 4.36397i
\(297\) 0 0
\(298\) −852.070 −2.85929
\(299\) 102.298 + 59.0618i 0.342134 + 0.197531i
\(300\) 0 0
\(301\) 156.219 + 270.580i 0.519001 + 0.898936i
\(302\) 585.938 338.291i 1.94019 1.12017i
\(303\) 0 0
\(304\) −106.408 + 184.304i −0.350026 + 0.606262i
\(305\) 79.7727i 0.261550i
\(306\) 0 0
\(307\) 342.824 1.11669 0.558346 0.829608i \(-0.311436\pi\)
0.558346 + 0.829608i \(0.311436\pi\)
\(308\) 313.905 + 181.233i 1.01917 + 0.588420i
\(309\) 0 0
\(310\) −237.816 411.909i −0.767147 1.32874i
\(311\) 188.482 108.820i 0.606050 0.349903i −0.165368 0.986232i \(-0.552881\pi\)
0.771418 + 0.636329i \(0.219548\pi\)
\(312\) 0 0
\(313\) −140.947 + 244.128i −0.450311 + 0.779961i −0.998405 0.0564552i \(-0.982020\pi\)
0.548094 + 0.836417i \(0.315354\pi\)
\(314\) 406.189i 1.29360i
\(315\) 0 0
\(316\) 897.201 2.83925
\(317\) 13.3379 + 7.70067i 0.0420756 + 0.0242923i 0.520890 0.853624i \(-0.325600\pi\)
−0.478815 + 0.877916i \(0.658933\pi\)
\(318\) 0 0
\(319\) −122.083 211.454i −0.382706 0.662867i
\(320\) −58.0438 + 33.5116i −0.181387 + 0.104724i
\(321\) 0 0
\(322\) −157.381 + 272.593i −0.488762 + 0.846561i
\(323\) 77.3600i 0.239505i
\(324\) 0 0
\(325\) −49.0569 −0.150944
\(326\) −375.438 216.759i −1.15165 0.664905i
\(327\) 0 0
\(328\) −160.099 277.299i −0.488105 0.845423i
\(329\) 248.462 143.450i 0.755203 0.436017i
\(330\) 0 0
\(331\) −187.759 + 325.208i −0.567247 + 0.982500i 0.429590 + 0.903024i \(0.358658\pi\)
−0.996837 + 0.0794763i \(0.974675\pi\)
\(332\) 737.773i 2.22221i
\(333\) 0 0
\(334\) −807.421 −2.41743
\(335\) −51.7078 29.8535i −0.154352 0.0891149i
\(336\) 0 0
\(337\) −94.0569 162.911i −0.279101 0.483417i 0.692061 0.721839i \(-0.256703\pi\)
−0.971162 + 0.238423i \(0.923370\pi\)
\(338\) −229.938 + 132.755i −0.680289 + 0.392765i
\(339\) 0 0
\(340\) 127.517 220.867i 0.375051 0.649608i
\(341\) 316.262i 0.927456i
\(342\) 0 0
\(343\) −334.491 −0.975193
\(344\) −734.266 423.929i −2.13450 1.23235i
\(345\) 0 0
\(346\) 348.250 + 603.186i 1.00650 + 1.74331i
\(347\) −444.958 + 256.897i −1.28230 + 0.740336i −0.977268 0.212006i \(-0.932000\pi\)
−0.305032 + 0.952342i \(0.598667\pi\)
\(348\) 0 0
\(349\) −56.2676 + 97.4584i −0.161225 + 0.279250i −0.935308 0.353834i \(-0.884878\pi\)
0.774083 + 0.633084i \(0.218211\pi\)
\(350\) 130.722i 0.373490i
\(351\) 0 0
\(352\) −244.688 −0.695137
\(353\) −370.807 214.086i −1.05045 0.606475i −0.127672 0.991816i \(-0.540750\pi\)
−0.922774 + 0.385341i \(0.874084\pi\)
\(354\) 0 0
\(355\) 103.675 + 179.571i 0.292044 + 0.505834i
\(356\) 867.635 500.929i 2.43718 1.40710i
\(357\) 0 0
\(358\) −106.042 + 183.670i −0.296206 + 0.513043i
\(359\) 56.1961i 0.156535i 0.996932 + 0.0782676i \(0.0249389\pi\)
−0.996932 + 0.0782676i \(0.975061\pi\)
\(360\) 0 0
\(361\) −321.000 −0.889197
\(362\) 515.032 + 297.354i 1.42274 + 0.821419i
\(363\) 0 0
\(364\) 327.627 + 567.467i 0.900074 + 1.55897i
\(365\) 116.818 67.4449i 0.320049 0.184781i
\(366\) 0 0
\(367\) 77.1819 133.683i 0.210305 0.364259i −0.741505 0.670947i \(-0.765888\pi\)
0.951810 + 0.306689i \(0.0992210\pi\)
\(368\) 405.116i 1.10086i
\(369\) 0 0
\(370\) −542.469 −1.46613
\(371\) −82.0257 47.3575i −0.221093 0.127648i
\(372\) 0 0
\(373\) −278.642 482.623i −0.747030 1.29389i −0.949240 0.314552i \(-0.898146\pi\)
0.202210 0.979342i \(-0.435188\pi\)
\(374\) 209.861 121.163i 0.561126 0.323966i
\(375\) 0 0
\(376\) −389.276 + 674.246i −1.03531 + 1.79321i
\(377\) 441.396i 1.17081i
\(378\) 0 0
\(379\) 147.404 0.388928 0.194464 0.980910i \(-0.437703\pi\)
0.194464 + 0.980910i \(0.437703\pi\)
\(380\) 114.202 + 65.9346i 0.300532 + 0.173512i
\(381\) 0 0
\(382\) 182.627 + 316.319i 0.478081 + 0.828061i
\(383\) −637.931 + 368.310i −1.66562 + 0.961644i −0.695657 + 0.718374i \(0.744887\pi\)
−0.969959 + 0.243270i \(0.921780\pi\)
\(384\) 0 0
\(385\) 43.4605 75.2758i 0.112884 0.195522i
\(386\) 225.933i 0.585319i
\(387\) 0 0
\(388\) 10.0612 0.0259310
\(389\) 256.697 + 148.204i 0.659889 + 0.380987i 0.792235 0.610216i \(-0.208918\pi\)
−0.132345 + 0.991204i \(0.542251\pi\)
\(390\) 0 0
\(391\) 73.6313 + 127.533i 0.188315 + 0.326172i
\(392\) −38.6841 + 22.3343i −0.0986839 + 0.0569752i
\(393\) 0 0
\(394\) −45.4078 + 78.6487i −0.115248 + 0.199616i
\(395\) 215.153i 0.544690i
\(396\) 0 0
\(397\) −457.057 −1.15128 −0.575638 0.817704i \(-0.695246\pi\)
−0.575638 + 0.817704i \(0.695246\pi\)
\(398\) 494.705 + 285.618i 1.24298 + 0.717634i
\(399\) 0 0
\(400\) 84.1228 + 145.705i 0.210307 + 0.364262i
\(401\) −338.738 + 195.571i −0.844734 + 0.487707i −0.858871 0.512193i \(-0.828833\pi\)
0.0141366 + 0.999900i \(0.495500\pi\)
\(402\) 0 0
\(403\) 285.864 495.131i 0.709340 1.22861i
\(404\) 1587.81i 3.93022i
\(405\) 0 0
\(406\) 1176.18 2.89700
\(407\) −312.380 180.352i −0.767518 0.443127i
\(408\) 0 0
\(409\) 205.921 + 356.666i 0.503474 + 0.872043i 0.999992 + 0.00401646i \(0.00127848\pi\)
−0.496518 + 0.868027i \(0.665388\pi\)
\(410\) −116.453 + 67.2340i −0.284031 + 0.163985i
\(411\) 0 0
\(412\) −598.919 + 1037.36i −1.45369 + 2.51786i
\(413\) 180.145i 0.436186i
\(414\) 0 0
\(415\) 176.921 0.426316
\(416\) −383.077 221.169i −0.920857 0.531657i
\(417\) 0 0
\(418\) 62.6491 + 108.511i 0.149878 + 0.259597i
\(419\) 565.902 326.724i 1.35060 0.779770i 0.362267 0.932074i \(-0.382003\pi\)
0.988334 + 0.152304i \(0.0486694\pi\)
\(420\) 0 0
\(421\) −62.5174 + 108.283i −0.148497 + 0.257205i −0.930672 0.365854i \(-0.880777\pi\)
0.782175 + 0.623059i \(0.214110\pi\)
\(422\) 867.998i 2.05687i
\(423\) 0 0
\(424\) 257.026 0.606194
\(425\) −52.9648 30.5792i −0.124623 0.0719511i
\(426\) 0 0
\(427\) 127.759 + 221.285i 0.299201 + 0.518231i
\(428\) −616.691 + 356.047i −1.44087 + 0.831885i
\(429\) 0 0
\(430\) −178.031 + 308.358i −0.414025 + 0.717112i
\(431\) 397.208i 0.921596i 0.887505 + 0.460798i \(0.152437\pi\)
−0.887505 + 0.460798i \(0.847563\pi\)
\(432\) 0 0
\(433\) 560.114 1.29357 0.646783 0.762674i \(-0.276114\pi\)
0.646783 + 0.762674i \(0.276114\pi\)
\(434\) 1319.37 + 761.740i 3.04003 + 1.75516i
\(435\) 0 0
\(436\) −60.9779 105.617i −0.139858 0.242241i
\(437\) −65.9427 + 38.0720i −0.150899 + 0.0871214i
\(438\) 0 0
\(439\) 332.193 575.375i 0.756704 1.31065i −0.187819 0.982204i \(-0.560142\pi\)
0.944523 0.328446i \(-0.106525\pi\)
\(440\) 235.876i 0.536081i
\(441\) 0 0
\(442\) 438.070 0.991108
\(443\) −321.560 185.653i −0.725868 0.419080i 0.0910405 0.995847i \(-0.470981\pi\)
−0.816909 + 0.576767i \(0.804314\pi\)
\(444\) 0 0
\(445\) −120.125 208.062i −0.269944 0.467556i
\(446\) −576.301 + 332.728i −1.29216 + 0.746026i
\(447\) 0 0
\(448\) 107.340 185.918i 0.239598 0.414996i
\(449\) 585.471i 1.30395i −0.758243 0.651973i \(-0.773942\pi\)
0.758243 0.651973i \(-0.226058\pi\)
\(450\) 0 0
\(451\) −89.4121 −0.198253
\(452\) −167.296 96.5883i −0.370123 0.213691i
\(453\) 0 0
\(454\) −741.149 1283.71i −1.63249 2.82755i
\(455\) 136.081 78.5664i 0.299079 0.172673i
\(456\) 0 0
\(457\) −84.3203 + 146.047i −0.184508 + 0.319578i −0.943411 0.331627i \(-0.892403\pi\)
0.758902 + 0.651204i \(0.225736\pi\)
\(458\) 99.6462i 0.217568i
\(459\) 0 0
\(460\) −251.026 −0.545709
\(461\) −258.501 149.246i −0.560741 0.323744i 0.192702 0.981257i \(-0.438275\pi\)
−0.753443 + 0.657514i \(0.771608\pi\)
\(462\) 0 0
\(463\) 297.642 + 515.532i 0.642856 + 1.11346i 0.984792 + 0.173736i \(0.0555840\pi\)
−0.341936 + 0.939723i \(0.611083\pi\)
\(464\) −1311.00 + 756.905i −2.82543 + 1.63126i
\(465\) 0 0
\(466\) 650.447 1126.61i 1.39581 2.41761i
\(467\) 623.655i 1.33545i 0.744408 + 0.667725i \(0.232732\pi\)
−0.744408 + 0.667725i \(0.767268\pi\)
\(468\) 0 0
\(469\) 191.246 0.407773
\(470\) 283.152 + 163.478i 0.602452 + 0.347826i
\(471\) 0 0
\(472\) −244.427 423.361i −0.517855 0.896951i
\(473\) −205.037 + 118.378i −0.433482 + 0.250271i
\(474\) 0 0
\(475\) 15.8114 27.3861i 0.0332871 0.0576550i
\(476\) 816.894i 1.71616i
\(477\) 0 0
\(478\) −991.745 −2.07478
\(479\) 114.192 + 65.9285i 0.238396 + 0.137638i 0.614439 0.788964i \(-0.289382\pi\)
−0.376043 + 0.926602i \(0.622716\pi\)
\(480\) 0 0
\(481\) −326.035 564.709i −0.677827 1.17403i
\(482\) −709.503 + 409.632i −1.47200 + 0.849858i
\(483\) 0 0
\(484\) 426.802 739.244i 0.881823 1.52736i
\(485\) 2.41272i 0.00497468i
\(486\) 0 0
\(487\) 41.8028 0.0858375 0.0429187 0.999079i \(-0.486334\pi\)
0.0429187 + 0.999079i \(0.486334\pi\)
\(488\) −600.495 346.696i −1.23052 0.710443i
\(489\) 0 0
\(490\) 9.37936 + 16.2455i 0.0191416 + 0.0331541i
\(491\) −154.860 + 89.4085i −0.315397 + 0.182095i −0.649339 0.760499i \(-0.724954\pi\)
0.333942 + 0.942594i \(0.391621\pi\)
\(492\) 0 0
\(493\) 275.140 476.557i 0.558094 0.966647i
\(494\) 226.510i 0.458522i
\(495\) 0 0
\(496\) −1960.80 −3.95322
\(497\) −575.179 332.079i −1.15730 0.668168i
\(498\) 0 0
\(499\) 19.5480 + 33.8582i 0.0391744 + 0.0678521i 0.884948 0.465690i \(-0.154194\pi\)
−0.845773 + 0.533542i \(0.820861\pi\)
\(500\) 90.2846 52.1258i 0.180569 0.104252i
\(501\) 0 0
\(502\) 581.809 1007.72i 1.15898 2.00742i
\(503\) 578.698i 1.15049i 0.817980 + 0.575247i \(0.195094\pi\)
−0.817980 + 0.575247i \(0.804906\pi\)
\(504\) 0 0
\(505\) 380.763 0.753986
\(506\) −206.563 119.259i −0.408226 0.235690i
\(507\) 0 0
\(508\) −177.309 307.109i −0.349034 0.604545i
\(509\) 308.082 177.871i 0.605270 0.349453i −0.165842 0.986152i \(-0.553034\pi\)
0.771112 + 0.636700i \(0.219701\pi\)
\(510\) 0 0
\(511\) −216.031 + 374.176i −0.422760 + 0.732243i
\(512\) 1098.99i 2.14646i
\(513\) 0 0
\(514\) 1357.81 2.64166
\(515\) 248.763 + 143.623i 0.483034 + 0.278880i
\(516\) 0 0
\(517\) 108.702 + 188.277i 0.210255 + 0.364172i
\(518\) 1504.78 868.783i 2.90497 1.67719i
\(519\) 0 0
\(520\) −213.204 + 369.280i −0.410008 + 0.710154i
\(521\) 810.952i 1.55653i −0.627936 0.778265i \(-0.716100\pi\)
0.627936 0.778265i \(-0.283900\pi\)
\(522\) 0 0
\(523\) 720.483 1.37760 0.688798 0.724953i \(-0.258139\pi\)
0.688798 + 0.724953i \(0.258139\pi\)
\(524\) −677.848 391.356i −1.29360 0.746862i
\(525\) 0 0
\(526\) −435.386 754.110i −0.827730 1.43367i
\(527\) 617.271 356.382i 1.17129 0.676246i
\(528\) 0 0
\(529\) −192.026 + 332.599i −0.362998 + 0.628731i
\(530\) 107.939i 0.203659i
\(531\) 0 0
\(532\) −422.386 −0.793958
\(533\) −139.981 80.8180i −0.262628 0.151629i
\(534\) 0 0
\(535\) 85.3815 + 147.885i 0.159592 + 0.276421i
\(536\) −449.449 + 259.490i −0.838524 + 0.484122i
\(537\) 0 0
\(538\) −229.732 + 397.908i −0.427012 + 0.739606i
\(539\) 12.4733i 0.0231415i
\(540\) 0 0
\(541\) 347.149 0.641680 0.320840 0.947133i \(-0.396035\pi\)
0.320840 + 0.947133i \(0.396035\pi\)
\(542\) 817.651 + 472.071i 1.50858 + 0.870980i
\(543\) 0 0
\(544\) −275.728 477.575i −0.506853 0.877895i
\(545\) −25.3274 + 14.6228i −0.0464723 + 0.0268308i
\(546\) 0 0
\(547\) 360.416 624.259i 0.658896 1.14124i −0.322005 0.946738i \(-0.604357\pi\)
0.980902 0.194504i \(-0.0623098\pi\)
\(548\) 145.403i 0.265334i
\(549\) 0 0
\(550\) 99.0569 0.180104
\(551\) 246.410 + 142.265i 0.447205 + 0.258194i
\(552\) 0 0
\(553\) 344.574 + 596.820i 0.623100 + 1.07924i
\(554\) 719.860 415.611i 1.29939 0.750201i
\(555\) 0 0
\(556\) 316.298 547.845i 0.568882 0.985332i
\(557\) 429.102i 0.770380i −0.922837 0.385190i \(-0.874136\pi\)
0.922837 0.385190i \(-0.125864\pi\)
\(558\) 0 0
\(559\) −428.000 −0.765653
\(560\) −466.703 269.451i −0.833398 0.481162i
\(561\) 0 0
\(562\) 440.559 + 763.071i 0.783913 + 1.35778i
\(563\) −580.948 + 335.410i −1.03188 + 0.595755i −0.917522 0.397685i \(-0.869814\pi\)
−0.114356 + 0.993440i \(0.536480\pi\)
\(564\) 0 0
\(565\) −23.1623 + 40.1182i −0.0409952 + 0.0710057i
\(566\) 760.474i 1.34359i
\(567\) 0 0
\(568\) 1802.31 3.17309
\(569\) −319.271 184.331i −0.561110 0.323957i 0.192481 0.981301i \(-0.438347\pi\)
−0.753591 + 0.657344i \(0.771680\pi\)
\(570\) 0 0
\(571\) −62.1445 107.637i −0.108834 0.188507i 0.806464 0.591283i \(-0.201379\pi\)
−0.915298 + 0.402777i \(0.868045\pi\)
\(572\) −430.009 + 248.266i −0.751764 + 0.434031i
\(573\) 0 0
\(574\) 215.355 373.006i 0.375183 0.649836i
\(575\) 60.1972i 0.104691i
\(576\) 0 0
\(577\) 504.236 0.873893 0.436947 0.899487i \(-0.356060\pi\)
0.436947 + 0.899487i \(0.356060\pi\)
\(578\) −440.631 254.399i −0.762338 0.440136i
\(579\) 0 0
\(580\) 469.009 + 812.347i 0.808635 + 1.40060i
\(581\) −490.768 + 283.345i −0.844695 + 0.487685i
\(582\) 0 0
\(583\) 35.8861 62.1566i 0.0615542 0.106615i
\(584\) 1172.48i 2.00766i
\(585\) 0 0
\(586\) −736.236 −1.25638
\(587\) −33.9703 19.6128i −0.0578711 0.0334119i 0.470785 0.882248i \(-0.343971\pi\)
−0.528656 + 0.848836i \(0.677304\pi\)
\(588\) 0 0
\(589\) 184.272 + 319.168i 0.312855 + 0.541882i
\(590\) −177.792 + 102.648i −0.301342 + 0.173980i
\(591\) 0 0
\(592\) −1118.17 + 1936.72i −1.88880 + 3.27149i
\(593\) 621.670i 1.04835i −0.851611 0.524174i \(-0.824374\pi\)
0.851611 0.524174i \(-0.175626\pi\)
\(594\) 0 0
\(595\) 195.895 0.329235
\(596\) 1884.98 + 1088.30i 3.16272 + 1.82600i
\(597\) 0 0
\(598\) −215.592 373.417i −0.360522 0.624442i
\(599\) −969.750 + 559.886i −1.61895 + 0.934701i −0.631756 + 0.775167i \(0.717666\pi\)
−0.987193 + 0.159534i \(0.949001\pi\)
\(600\) 0 0
\(601\) 161.895 280.410i 0.269375 0.466572i −0.699325 0.714804i \(-0.746516\pi\)
0.968701 + 0.248232i \(0.0798494\pi\)
\(602\) 1140.49i 1.89450i
\(603\) 0 0
\(604\) −1728.31 −2.86145
\(605\) −177.274 102.349i −0.293014 0.169172i
\(606\) 0 0
\(607\) −512.813 888.218i −0.844832 1.46329i −0.885767 0.464131i \(-0.846367\pi\)
0.0409345 0.999162i \(-0.486966\pi\)
\(608\) 246.936 142.569i 0.406145 0.234488i
\(609\) 0 0
\(610\) −145.596 + 252.180i −0.238683 + 0.413411i
\(611\) 393.014i 0.643232i
\(612\) 0 0
\(613\) 904.153 1.47496 0.737482 0.675367i \(-0.236015\pi\)
0.737482 + 0.675367i \(0.236015\pi\)
\(614\) −1083.75 625.702i −1.76506 1.01906i
\(615\) 0 0
\(616\) −377.763 654.305i −0.613252 1.06218i
\(617\) 615.498 355.358i 0.997566 0.575945i 0.0900390 0.995938i \(-0.471301\pi\)
0.907527 + 0.419993i \(0.137968\pi\)
\(618\) 0 0
\(619\) 291.868 505.531i 0.471516 0.816689i −0.527953 0.849274i \(-0.677040\pi\)
0.999469 + 0.0325841i \(0.0103737\pi\)
\(620\) 1214.99i 1.95966i
\(621\) 0 0
\(622\) −794.447 −1.27725
\(623\) 666.438 + 384.768i 1.06972 + 0.617606i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) 891.136 514.497i 1.42354 0.821881i
\(627\) 0 0
\(628\) −518.800 + 898.589i −0.826115 + 1.43087i
\(629\) 812.924i 1.29241i
\(630\) 0 0
\(631\) −20.0968 −0.0318491 −0.0159246 0.999873i \(-0.505069\pi\)
−0.0159246 + 0.999873i \(0.505069\pi\)
\(632\) −1619.58 935.064i −2.56263 1.47953i
\(633\) 0 0
\(634\) −28.1096 48.6873i −0.0443369 0.0767938i
\(635\) −73.6460 + 42.5195i −0.115978 + 0.0669599i
\(636\) 0 0
\(637\) −11.2744 + 19.5278i −0.0176992 + 0.0306559i
\(638\) 891.277i 1.39699i
\(639\) 0 0
\(640\) −158.592 −0.247800
\(641\) 295.840 + 170.803i 0.461529 + 0.266464i 0.712687 0.701482i \(-0.247478\pi\)
−0.251158 + 0.967946i \(0.580811\pi\)
\(642\) 0 0
\(643\) 234.846 + 406.766i 0.365235 + 0.632606i 0.988814 0.149155i \(-0.0476552\pi\)
−0.623579 + 0.781761i \(0.714322\pi\)
\(644\) 696.332 402.027i 1.08126 0.624266i
\(645\) 0 0
\(646\) −141.193 + 244.553i −0.218565 + 0.378565i
\(647\) 572.099i 0.884234i 0.896957 + 0.442117i \(0.145772\pi\)
−0.896957 + 0.442117i \(0.854228\pi\)
\(648\) 0 0
\(649\) −136.508 −0.210336
\(650\) 155.081 + 89.5358i 0.238586 + 0.137747i
\(651\) 0 0
\(652\) 553.706 + 959.047i 0.849242 + 1.47093i
\(653\) −184.931 + 106.770i −0.283203 + 0.163507i −0.634872 0.772617i \(-0.718947\pi\)
0.351670 + 0.936124i \(0.385614\pi\)
\(654\) 0 0
\(655\) −93.8488 + 162.551i −0.143281 + 0.248169i
\(656\) 554.347i 0.845040i
\(657\) 0 0
\(658\) −1047.26 −1.59158
\(659\) −364.582 210.491i −0.553235 0.319410i 0.197191 0.980365i \(-0.436818\pi\)
−0.750426 + 0.660955i \(0.770151\pi\)
\(660\) 0 0
\(661\) −217.136 376.090i −0.328496 0.568972i 0.653718 0.756739i \(-0.273208\pi\)
−0.982214 + 0.187767i \(0.939875\pi\)
\(662\) 1187.10 685.372i 1.79320 1.03531i
\(663\) 0 0
\(664\) 768.907 1331.79i 1.15799 2.00570i
\(665\) 101.290i 0.152316i
\(666\) 0 0
\(667\) −541.631 −0.812041
\(668\) 1786.21 + 1031.27i 2.67397 + 1.54381i
\(669\) 0 0
\(670\) 108.974 + 188.748i 0.162647 + 0.281713i
\(671\) −167.683 + 96.8117i −0.249900 + 0.144280i
\(672\) 0 0
\(673\) −36.3900 + 63.0294i −0.0540714 + 0.0936544i −0.891794 0.452441i \(-0.850553\pi\)
0.837723 + 0.546096i \(0.183887\pi\)
\(674\) 686.669i 1.01880i
\(675\) 0 0
\(676\) 678.237 1.00331
\(677\) 149.048 + 86.0531i 0.220160 + 0.127109i 0.606024 0.795446i \(-0.292763\pi\)
−0.385864 + 0.922556i \(0.626097\pi\)
\(678\) 0 0
\(679\) 3.86406 + 6.69274i 0.00569080 + 0.00985676i
\(680\) −460.375 + 265.798i −0.677022 + 0.390879i
\(681\) 0 0
\(682\) −577.223 + 999.780i −0.846369 + 1.46595i
\(683\) 792.592i 1.16046i 0.814454 + 0.580228i \(0.197037\pi\)
−0.814454 + 0.580228i \(0.802963\pi\)
\(684\) 0 0
\(685\) −34.8683 −0.0509027
\(686\) 1057.41 + 610.493i 1.54141 + 0.889932i
\(687\) 0 0
\(688\) 733.934 + 1271.21i 1.06676 + 1.84769i
\(689\) 112.364 64.8737i 0.163083 0.0941563i
\(690\) 0 0
\(691\) −77.4256 + 134.105i −0.112049 + 0.194074i −0.916596 0.399814i \(-0.869075\pi\)
0.804547 + 0.593888i \(0.202408\pi\)
\(692\) 1779.19i 2.57109i
\(693\) 0 0
\(694\) 1875.49 2.70244
\(695\) −131.375 75.8497i −0.189029 0.109136i
\(696\) 0 0
\(697\) −100.754 174.512i −0.144554 0.250376i
\(698\) 355.750 205.393i 0.509671 0.294259i
\(699\) 0 0
\(700\) −166.963 + 289.188i −0.238518 + 0.413125i
\(701\) 950.544i 1.35598i 0.735070 + 0.677991i \(0.237149\pi\)
−0.735070 + 0.677991i \(0.762851\pi\)
\(702\) 0 0
\(703\) 420.333 0.597913
\(704\) 140.883 + 81.3389i 0.200118 + 0.115538i
\(705\) 0 0
\(706\) 781.473 + 1353.55i 1.10690 + 1.91721i
\(707\) −1056.21 + 609.805i −1.49394 + 0.862525i
\(708\) 0 0
\(709\) −195.175 + 338.053i −0.275282 + 0.476803i −0.970206 0.242280i \(-0.922105\pi\)
0.694924 + 0.719083i \(0.255438\pi\)
\(710\) 756.889i 1.06604i
\(711\) 0 0
\(712\) −2088.28 −2.93297
\(713\) −607.569 350.780i −0.852131 0.491978i
\(714\) 0 0
\(715\) 59.5352 + 103.118i 0.0832661 + 0.144221i
\(716\) 469.179 270.881i 0.655278 0.378325i
\(717\) 0 0
\(718\) 102.566 177.649i 0.142849 0.247422i
\(719\) 655.227i 0.911303i −0.890158 0.455651i \(-0.849406\pi\)
0.890158 0.455651i \(-0.150594\pi\)
\(720\) 0 0
\(721\) −920.070 −1.27610
\(722\) 1014.76 + 585.870i 1.40548 + 0.811455i
\(723\) 0 0
\(724\) −759.583 1315.64i −1.04915 1.81718i
\(725\) 194.804 112.470i 0.268695 0.155131i
\(726\) 0 0
\(727\) −712.125 + 1233.44i −0.979539 + 1.69661i −0.315478 + 0.948933i \(0.602165\pi\)
−0.664061 + 0.747679i \(0.731168\pi\)
\(728\) 1365.81i 1.87612i
\(729\) 0 0
\(730\) −492.386 −0.674501
\(731\) −462.094 266.790i −0.632140 0.364966i
\(732\) 0 0
\(733\) 473.375 + 819.909i 0.645805 + 1.11857i 0.984115 + 0.177532i \(0.0568113\pi\)
−0.338311 + 0.941035i \(0.609855\pi\)
\(734\) −487.980 + 281.735i −0.664823 + 0.383836i
\(735\) 0 0
\(736\) −271.394 + 470.069i −0.368742 + 0.638680i
\(737\) 144.920i 0.196635i
\(738\) 0 0
\(739\) 591.429 0.800310 0.400155 0.916447i \(-0.368956\pi\)
0.400155 + 0.916447i \(0.368956\pi\)
\(740\) 1200.07 + 692.862i 1.62172 + 0.936300i
\(741\) 0 0
\(742\) 172.868 + 299.417i 0.232976 + 0.403527i
\(743\) 634.106 366.101i 0.853440 0.492734i −0.00837016 0.999965i \(-0.502664\pi\)
0.861810 + 0.507231i \(0.169331\pi\)
\(744\) 0 0
\(745\) 260.978 452.027i 0.350306 0.606748i
\(746\) 2034.25i 2.72687i
\(747\) 0 0
\(748\) −619.018 −0.827564
\(749\) −473.686 273.483i −0.632425 0.365130i
\(750\) 0 0
\(751\) 107.680 + 186.507i 0.143382 + 0.248345i 0.928768 0.370661i \(-0.120869\pi\)
−0.785386 + 0.619006i \(0.787536\pi\)
\(752\) 1167.30 673.941i 1.55226 0.896198i
\(753\) 0 0
\(754\) −805.609 + 1395.36i −1.06845 + 1.85061i
\(755\) 414.457i 0.548950i
\(756\) 0 0
\(757\) 276.258 0.364938 0.182469 0.983212i \(-0.441591\pi\)
0.182469 + 0.983212i \(0.441591\pi\)
\(758\) −465.978 269.032i −0.614746 0.354924i
\(759\) 0 0
\(760\) −137.434 238.043i −0.180834 0.313214i
\(761\) 773.684 446.687i 1.01667 0.586973i 0.103531 0.994626i \(-0.466986\pi\)
0.913137 + 0.407653i \(0.133653\pi\)
\(762\) 0 0
\(763\) 46.8377 81.1253i 0.0613863 0.106324i
\(764\) 933.033i 1.22125i
\(765\) 0 0
\(766\) 2688.87 3.51027
\(767\) −213.713 123.387i −0.278635 0.160870i
\(768\) 0 0
\(769\) −142.158 246.225i −0.184861 0.320188i 0.758669 0.651477i \(-0.225850\pi\)
−0.943530 + 0.331288i \(0.892517\pi\)
\(770\) −274.778 + 158.643i −0.356854 + 0.206030i
\(771\) 0 0
\(772\) −288.570 + 499.818i −0.373795 + 0.647433i
\(773\) 1059.64i 1.37081i −0.728162 0.685405i \(-0.759625\pi\)
0.728162 0.685405i \(-0.240375\pi\)
\(774\) 0 0
\(775\) 291.359 0.375948
\(776\) −18.1620 10.4858i −0.0234046 0.0135126i
\(777\) 0 0
\(778\) −540.986 937.016i −0.695355 1.20439i
\(779\) 90.2336 52.0964i 0.115833 0.0668760i
\(780\) 0 0
\(781\) 251.640 435.853i 0.322202 0.558070i
\(782\) 537.550i 0.687404i
\(783\) 0 0
\(784\) 77.3331 0.0986392
\(785\) 215.485 + 124.411i 0.274504 + 0.158485i
\(786\) 0 0
\(787\) 437.759 + 758.220i 0.556237 + 0.963431i 0.997806 + 0.0662038i \(0.0210888\pi\)
−0.441569 + 0.897227i \(0.645578\pi\)
\(788\) 200.906 115.993i 0.254957 0.147199i
\(789\) 0 0
\(790\) −392.684 + 680.149i −0.497068 + 0.860948i
\(791\) 148.381i 0.187586i
\(792\) 0 0
\(793\) −350.026 −0.441394
\(794\) 1444.87 + 834.193i 1.81973 + 1.05062i
\(795\) 0 0
\(796\) −729.605 1263.71i −0.916589 1.58758i
\(797\) 642.980 371.225i 0.806750 0.465777i −0.0390760 0.999236i \(-0.512441\pi\)
0.845826 + 0.533459i \(0.179108\pi\)
\(798\) 0 0
\(799\) −244.982 + 424.322i −0.306611 + 0.531066i
\(800\) 225.421i 0.281776i
\(801\) 0 0
\(802\) 1427.78 1.78027
\(803\) −283.539 163.702i −0.353100 0.203862i
\(804\) 0 0
\(805\) −96.4078 166.983i −0.119761 0.207433i
\(806\) −1807.37 + 1043.48i −2.24239 + 1.29465i
\(807\) 0 0
\(808\) 1654.81 2866.22i 2.04804 3.54731i
\(809\) 113.720i 0.140568i 0.997527 + 0.0702842i \(0.0223906\pi\)
−0.997527 + 0.0702842i \(0.977609\pi\)
\(810\) 0 0
\(811\) −1466.03 −1.80769 −0.903844 0.427863i \(-0.859267\pi\)
−0.903844 + 0.427863i \(0.859267\pi\)
\(812\) −2602.00 1502.27i −3.20444 1.85008i
\(813\) 0 0
\(814\) 658.337 + 1140.27i 0.808768 + 1.40083i
\(815\) 229.984 132.781i 0.282188 0.162922i
\(816\) 0 0
\(817\) 137.947 238.932i 0.168846 0.292450i
\(818\) 1503.34i 1.83782i
\(819\) 0 0
\(820\) 343.495 0.418897
\(821\) −476.377 275.036i −0.580240 0.335002i 0.180989 0.983485i \(-0.442070\pi\)
−0.761229 + 0.648483i \(0.775404\pi\)
\(822\) 0 0
\(823\) −696.256 1205.95i −0.845997 1.46531i −0.884752 0.466062i \(-0.845672\pi\)
0.0387547 0.999249i \(-0.487661\pi\)
\(824\) 2162.27 1248.39i 2.62411 1.51503i
\(825\) 0 0
\(826\) 328.789 569.480i 0.398050 0.689443i
\(827\) 955.922i 1.15589i −0.816075 0.577945i \(-0.803855\pi\)
0.816075 0.577945i \(-0.196145\pi\)
\(828\) 0 0
\(829\) −1652.69 −1.99360 −0.996798 0.0799552i \(-0.974522\pi\)
−0.996798 + 0.0799552i \(0.974522\pi\)
\(830\) −559.289 322.906i −0.673842 0.389043i
\(831\) 0 0
\(832\) 147.042 + 254.684i 0.176733 + 0.306110i
\(833\) −24.3450 + 14.0556i −0.0292256 + 0.0168734i
\(834\) 0 0
\(835\) 247.302 428.340i 0.296171 0.512983i
\(836\) 320.071i 0.382860i
\(837\) 0 0
\(838\) −2385.27 −2.84638
\(839\) 1358.03 + 784.057i 1.61863 + 0.934514i 0.987276 + 0.159015i \(0.0508319\pi\)
0.631349 + 0.775499i \(0.282501\pi\)
\(840\) 0 0
\(841\) 591.464 + 1024.45i 0.703287 + 1.21813i
\(842\) 395.265 228.206i 0.469436 0.271029i
\(843\) 0 0
\(844\) 1108.64 1920.22i 1.31355 2.27514i
\(845\) 162.644i 0.192478i
\(846\) 0 0
\(847\) 655.662 0.774099
\(848\) −385.365 222.491i −0.454440 0.262371i
\(849\) 0 0
\(850\) 111.623 + 193.336i 0.131321 + 0.227454i
\(851\) −692.948 + 400.073i −0.814274 + 0.470122i
\(852\) 0 0
\(853\) 325.616 563.983i 0.381730 0.661176i −0.609579 0.792725i \(-0.708662\pi\)
0.991310 + 0.131549i \(0.0419950\pi\)
\(854\) 932.711i 1.09217i
\(855\) 0 0
\(856\) 1484.29 1.73398
\(857\) 259.055 + 149.565i 0.302281 + 0.174522i 0.643467 0.765474i \(-0.277495\pi\)
−0.341186 + 0.939996i \(0.610829\pi\)
\(858\) 0 0
\(859\) −547.860 948.921i −0.637788 1.10468i −0.985917 0.167234i \(-0.946516\pi\)
0.348129 0.937447i \(-0.386817\pi\)
\(860\) 787.693 454.775i 0.915922 0.528808i
\(861\) 0 0
\(862\) 724.960 1255.67i 0.841021 1.45669i
\(863\) 1221.95i 1.41593i −0.706247 0.707965i \(-0.749613\pi\)
0.706247 0.707965i \(-0.250387\pi\)
\(864\) 0 0
\(865\) −426.658 −0.493246
\(866\) −1770.65 1022.29i −2.04463 1.18047i
\(867\) 0 0
\(868\) −1945.85 3370.30i −2.24176 3.88284i
\(869\) −452.253 + 261.108i −0.520429 + 0.300470i
\(870\) 0 0
\(871\) −130.991 + 226.883i −0.150391 + 0.260485i
\(872\) 254.205i 0.291520i
\(873\) 0 0
\(874\) 277.947 0.318018
\(875\) 69.3485 + 40.0383i 0.0792554 + 0.0457581i
\(876\) 0 0
\(877\) −383.200 663.721i −0.436944 0.756809i 0.560508 0.828149i \(-0.310606\pi\)
−0.997452 + 0.0713401i \(0.977272\pi\)
\(878\) −2100.28 + 1212.60i −2.39212 + 1.38109i
\(879\) 0 0
\(880\) 204.182 353.653i 0.232025 0.401879i
\(881\) 310.097i 0.351983i 0.984392 + 0.175992i \(0.0563132\pi\)
−0.984392 + 0.175992i \(0.943687\pi\)
\(882\) 0 0
\(883\) −122.236 −0.138433 −0.0692165 0.997602i \(-0.522050\pi\)
−0.0692165 + 0.997602i \(0.522050\pi\)
\(884\) −969.116 559.519i −1.09628 0.632940i
\(885\) 0 0
\(886\) 677.684 + 1173.78i 0.764880 + 1.32481i
\(887\) −229.882 + 132.722i −0.259167 + 0.149630i −0.623955 0.781460i \(-0.714475\pi\)
0.364787 + 0.931091i \(0.381142\pi\)
\(888\) 0 0
\(889\) 136.193 235.893i 0.153198 0.265346i
\(890\) 876.980i 0.985370i
\(891\) 0 0
\(892\) 1699.89 1.90571
\(893\) −219.401 126.671i −0.245690 0.141849i
\(894\) 0 0
\(895\) −64.9584 112.511i −0.0725792 0.125711i
\(896\) 439.925 253.991i 0.490988 0.283472i
\(897\) 0 0
\(898\) −1068.57 + 1850.81i −1.18994 + 2.06104i
\(899\) 2621.54i 2.91606i
\(900\) 0 0
\(901\) 161.754 0.179527
\(902\) 282.653 + 163.190i 0.313362 + 0.180920i
\(903\) 0 0
\(904\) 201.329 + 348.712i 0.222709 + 0.385743i
\(905\) −315.495 + 182.151i −0.348613 + 0.201272i
\(906\) 0 0
\(907\) −336.311 + 582.508i −0.370795 + 0.642236i −0.989688 0.143240i \(-0.954248\pi\)
0.618893 + 0.785475i \(0.287581\pi\)
\(908\) 3786.49i 4.17015i
\(909\) 0 0
\(910\) −573.579 −0.630306
\(911\) 1214.58 + 701.239i 1.33324 + 0.769746i 0.985795 0.167955i \(-0.0537162\pi\)
0.347444 + 0.937701i \(0.387050\pi\)
\(912\) 0 0
\(913\) −214.710 371.889i −0.235170 0.407327i
\(914\) 533.113 307.793i 0.583274 0.336754i
\(915\) 0 0
\(916\) −127.272 + 220.441i −0.138943 + 0.240657i
\(917\) 601.208i 0.655625i
\(918\) 0 0
\(919\) −338.255 −0.368068 −0.184034 0.982920i \(-0.558916\pi\)
−0.184034 + 0.982920i \(0.558916\pi\)
\(920\) 453.139 + 261.620i 0.492542 + 0.284370i
\(921\) 0 0
\(922\) 544.789 + 943.603i 0.590878 + 1.02343i
\(923\) 787.920 454.906i 0.853651 0.492856i
\(924\) 0 0
\(925\) 166.151 287.782i 0.179623 0.311116i
\(926\) 2172.96i 2.34661i
\(927\) 0 0
\(928\) 2028.25 2.18562
\(929\) 128.351 + 74.1033i 0.138160 + 0.0797667i 0.567487 0.823383i \(-0.307916\pi\)
−0.429327 + 0.903149i \(0.641249\pi\)
\(930\) 0 0
\(931\) −7.26761 12.5879i −0.00780624 0.0135208i
\(932\) −2877.89 + 1661.55i −3.08787 + 1.78278i
\(933\) 0 0
\(934\) 1138.26 1971.52i 1.21869 2.11084i
\(935\) 148.443i 0.158763i
\(936\) 0 0
\(937\) −1416.72 −1.51197 −0.755987 0.654587i \(-0.772843\pi\)
−0.755987 + 0.654587i \(0.772843\pi\)
\(938\) −604.572 349.050i −0.644534 0.372122i
\(939\) 0 0
\(940\) −417.601 723.306i −0.444256 0.769474i
\(941\) 1211.50 699.461i 1.28746 0.743317i 0.309262 0.950977i \(-0.399918\pi\)
0.978201 + 0.207660i \(0.0665847\pi\)
\(942\) 0 0
\(943\) −99.1708 + 171.769i −0.105165 + 0.182152i
\(944\) 846.338i 0.896544i
\(945\) 0 0
\(946\) 864.228 0.913560
\(947\) 909.824 + 525.287i 0.960744 + 0.554686i 0.896402 0.443242i \(-0.146172\pi\)
0.0643418 + 0.997928i \(0.479505\pi\)
\(948\) 0 0
\(949\) −295.934 512.572i −0.311838 0.540118i
\(950\) −99.9671 + 57.7160i −0.105229 + 0.0607537i
\(951\) 0 0
\(952\) 851.368 1474.61i 0.894294 1.54896i
\(953\) 551.928i 0.579148i 0.957156 + 0.289574i \(0.0935136\pi\)
−0.957156 + 0.289574i \(0.906486\pi\)
\(954\) 0 0
\(955\) −223.745 −0.234288
\(956\) 2193.98 + 1266.69i 2.29496 + 1.32499i
\(957\) 0 0
\(958\) −240.658 416.831i −0.251208 0.435106i
\(959\) 96.7226 55.8428i 0.100858 0.0582303i
\(960\) 0 0
\(961\) −1217.31 + 2108.44i −1.26671 + 2.19400i
\(962\) 2380.24i 2.47426i
\(963\) 0 0
\(964\) 2092.79 2.17094
\(965\) 119.859 + 69.2003i 0.124206 + 0.0717102i
\(966\) 0 0
\(967\) 178.546 + 309.251i 0.184639 + 0.319805i 0.943455 0.331501i \(-0.107555\pi\)
−0.758816 + 0.651306i \(0.774222\pi\)
\(968\) −1540.88 + 889.628i −1.59182 + 0.919037i
\(969\) 0 0
\(970\) −4.40356 + 7.62719i −0.00453975 + 0.00786308i
\(971\) 308.206i 0.317411i −0.987326 0.158705i \(-0.949268\pi\)
0.987326 0.158705i \(-0.0507320\pi\)
\(972\) 0 0
\(973\) 485.903 0.499387
\(974\) −132.149 76.2961i −0.135676 0.0783327i
\(975\) 0 0
\(976\) 600.223 + 1039.62i 0.614983 + 1.06518i
\(977\) −219.347 + 126.640i −0.224511 + 0.129621i −0.608037 0.793909i \(-0.708043\pi\)
0.383526 + 0.923530i \(0.374710\pi\)
\(978\) 0 0
\(979\) −291.566 + 505.007i −0.297820 + 0.515839i
\(980\) 47.9187i 0.0488966i
\(981\) 0 0
\(982\) 652.732 0.664697
\(983\) 925.551 + 534.367i 0.941558 + 0.543609i 0.890448 0.455084i \(-0.150391\pi\)
0.0511096 + 0.998693i \(0.483724\pi\)
\(984\) 0 0
\(985\) −27.8157 48.1781i −0.0282393 0.0489118i
\(986\) −1739.57 + 1004.34i −1.76427 + 1.01860i
\(987\) 0 0
\(988\) 289.307 501.094i 0.292821 0.507180i
\(989\) 525.194i 0.531035i
\(990\) 0 0
\(991\) 280.631 0.283179 0.141590 0.989925i \(-0.454779\pi\)
0.141590 + 0.989925i \(0.454779\pi\)
\(992\) 2275.17 + 1313.57i 2.29352 + 1.32416i
\(993\) 0 0
\(994\) 1212.18 + 2099.56i 1.21950 + 2.11224i
\(995\) −303.044 + 174.962i −0.304567 + 0.175842i
\(996\) 0 0
\(997\) 178.287 308.802i 0.178824 0.309732i −0.762654 0.646806i \(-0.776104\pi\)
0.941478 + 0.337075i \(0.109438\pi\)
\(998\) 142.712i 0.142998i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.i.d.26.1 8
3.2 odd 2 inner 405.3.i.d.26.4 8
9.2 odd 6 45.3.c.a.26.1 4
9.4 even 3 inner 405.3.i.d.296.4 8
9.5 odd 6 inner 405.3.i.d.296.1 8
9.7 even 3 45.3.c.a.26.4 yes 4
36.7 odd 6 720.3.l.a.161.3 4
36.11 even 6 720.3.l.a.161.1 4
45.2 even 12 225.3.d.b.224.8 8
45.7 odd 12 225.3.d.b.224.2 8
45.29 odd 6 225.3.c.c.26.4 4
45.34 even 6 225.3.c.c.26.1 4
45.38 even 12 225.3.d.b.224.1 8
45.43 odd 12 225.3.d.b.224.7 8
72.11 even 6 2880.3.l.c.1601.3 4
72.29 odd 6 2880.3.l.g.1601.4 4
72.43 odd 6 2880.3.l.c.1601.1 4
72.61 even 6 2880.3.l.g.1601.2 4
180.7 even 12 3600.3.c.i.449.1 8
180.43 even 12 3600.3.c.i.449.7 8
180.47 odd 12 3600.3.c.i.449.2 8
180.79 odd 6 3600.3.l.v.1601.3 4
180.83 odd 12 3600.3.c.i.449.8 8
180.119 even 6 3600.3.l.v.1601.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.c.a.26.1 4 9.2 odd 6
45.3.c.a.26.4 yes 4 9.7 even 3
225.3.c.c.26.1 4 45.34 even 6
225.3.c.c.26.4 4 45.29 odd 6
225.3.d.b.224.1 8 45.38 even 12
225.3.d.b.224.2 8 45.7 odd 12
225.3.d.b.224.7 8 45.43 odd 12
225.3.d.b.224.8 8 45.2 even 12
405.3.i.d.26.1 8 1.1 even 1 trivial
405.3.i.d.26.4 8 3.2 odd 2 inner
405.3.i.d.296.1 8 9.5 odd 6 inner
405.3.i.d.296.4 8 9.4 even 3 inner
720.3.l.a.161.1 4 36.11 even 6
720.3.l.a.161.3 4 36.7 odd 6
2880.3.l.c.1601.1 4 72.43 odd 6
2880.3.l.c.1601.3 4 72.11 even 6
2880.3.l.g.1601.2 4 72.61 even 6
2880.3.l.g.1601.4 4 72.29 odd 6
3600.3.c.i.449.1 8 180.7 even 12
3600.3.c.i.449.2 8 180.47 odd 12
3600.3.c.i.449.7 8 180.43 even 12
3600.3.c.i.449.8 8 180.83 odd 12
3600.3.l.v.1601.3 4 180.79 odd 6
3600.3.l.v.1601.4 4 180.119 even 6