Properties

Label 405.3.h.k.134.24
Level $405$
Weight $3$
Character 405.134
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 134.24
Character \(\chi\) \(=\) 405.134
Dual form 405.3.h.k.269.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.78706 + 3.09527i) q^{2} +(-4.38714 + 7.59875i) q^{4} +(1.88580 + 4.63074i) q^{5} +(5.21507 - 3.01092i) q^{7} -17.0638 q^{8} +(-10.9634 + 14.1125i) q^{10} +(-13.1642 + 7.60038i) q^{11} +(9.54973 + 5.51354i) q^{13} +(18.6393 + 10.7614i) q^{14} +(-12.9455 - 22.4222i) q^{16} -26.8426 q^{17} +15.8915 q^{19} +(-43.4611 - 5.98598i) q^{20} +(-47.0505 - 27.1646i) q^{22} +(-5.76711 + 9.98892i) q^{23} +(-17.8875 + 17.4653i) q^{25} +39.4120i q^{26} +52.8374i q^{28} +(47.1448 - 27.2191i) q^{29} +(15.7861 - 27.3423i) q^{31} +(12.1409 - 21.0287i) q^{32} +(-47.9692 - 83.0851i) q^{34} +(23.7774 + 18.4716i) q^{35} -38.1480i q^{37} +(28.3990 + 49.1885i) q^{38} +(-32.1790 - 79.0182i) q^{40} +(32.6176 + 18.8318i) q^{41} +(-3.93082 + 2.26946i) q^{43} -133.376i q^{44} -41.2246 q^{46} +(-1.85906 - 3.21998i) q^{47} +(-6.36869 + 11.0309i) q^{49} +(-86.0259 - 24.1552i) q^{50} +(-83.7921 + 48.3774i) q^{52} -56.1230 q^{53} +(-60.0205 - 46.6274i) q^{55} +(-88.9891 + 51.3779i) q^{56} +(168.501 + 97.2841i) q^{58} +(43.3384 + 25.0214i) q^{59} +(24.2209 + 41.9518i) q^{61} +112.842 q^{62} -16.7778 q^{64} +(-7.52288 + 54.6198i) q^{65} +(60.0763 + 34.6851i) q^{67} +(117.762 - 203.970i) q^{68} +(-14.6832 + 106.607i) q^{70} -38.5522i q^{71} -27.2700i q^{73} +(118.078 - 68.1726i) q^{74} +(-69.7183 + 120.756i) q^{76} +(-45.7683 + 79.2730i) q^{77} +(39.4493 + 68.3281i) q^{79} +(79.4189 - 102.231i) q^{80} +134.614i q^{82} +(75.3011 + 130.425i) q^{83} +(-50.6198 - 124.301i) q^{85} +(-14.0492 - 8.11131i) q^{86} +(224.633 - 129.692i) q^{88} +3.50521i q^{89} +66.4034 q^{91} +(-50.6022 - 87.6456i) q^{92} +(6.64448 - 11.5086i) q^{94} +(29.9682 + 73.5894i) q^{95} +(-23.9496 + 13.8273i) q^{97} -45.5248 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78706 + 3.09527i 0.893528 + 1.54764i 0.835616 + 0.549315i \(0.185111\pi\)
0.0579128 + 0.998322i \(0.481555\pi\)
\(3\) 0 0
\(4\) −4.38714 + 7.59875i −1.09679 + 1.89969i
\(5\) 1.88580 + 4.63074i 0.377160 + 0.926148i
\(6\) 0 0
\(7\) 5.21507 3.01092i 0.745010 0.430132i −0.0788780 0.996884i \(-0.525134\pi\)
0.823888 + 0.566752i \(0.191800\pi\)
\(8\) −17.0638 −2.13298
\(9\) 0 0
\(10\) −10.9634 + 14.1125i −1.09634 + 1.41125i
\(11\) −13.1642 + 7.60038i −1.19675 + 0.690944i −0.959829 0.280585i \(-0.909471\pi\)
−0.236920 + 0.971529i \(0.576138\pi\)
\(12\) 0 0
\(13\) 9.54973 + 5.51354i 0.734595 + 0.424119i 0.820101 0.572219i \(-0.193917\pi\)
−0.0855059 + 0.996338i \(0.527251\pi\)
\(14\) 18.6393 + 10.7614i 1.33138 + 0.768670i
\(15\) 0 0
\(16\) −12.9455 22.4222i −0.809092 1.40139i
\(17\) −26.8426 −1.57898 −0.789488 0.613767i \(-0.789654\pi\)
−0.789488 + 0.613767i \(0.789654\pi\)
\(18\) 0 0
\(19\) 15.8915 0.836395 0.418197 0.908356i \(-0.362662\pi\)
0.418197 + 0.908356i \(0.362662\pi\)
\(20\) −43.4611 5.98598i −2.17306 0.299299i
\(21\) 0 0
\(22\) −47.0505 27.1646i −2.13866 1.23476i
\(23\) −5.76711 + 9.98892i −0.250744 + 0.434301i −0.963731 0.266876i \(-0.914008\pi\)
0.712987 + 0.701177i \(0.247342\pi\)
\(24\) 0 0
\(25\) −17.8875 + 17.4653i −0.715500 + 0.698612i
\(26\) 39.4120i 1.51585i
\(27\) 0 0
\(28\) 52.8374i 1.88705i
\(29\) 47.1448 27.2191i 1.62568 0.938589i 0.640324 0.768105i \(-0.278800\pi\)
0.985360 0.170484i \(-0.0545331\pi\)
\(30\) 0 0
\(31\) 15.7861 27.3423i 0.509228 0.882009i −0.490715 0.871320i \(-0.663264\pi\)
0.999943 0.0106889i \(-0.00340244\pi\)
\(32\) 12.1409 21.0287i 0.379403 0.657146i
\(33\) 0 0
\(34\) −47.9692 83.0851i −1.41086 2.44368i
\(35\) 23.7774 + 18.4716i 0.679354 + 0.527761i
\(36\) 0 0
\(37\) 38.1480i 1.03103i −0.856881 0.515514i \(-0.827601\pi\)
0.856881 0.515514i \(-0.172399\pi\)
\(38\) 28.3990 + 49.1885i 0.747342 + 1.29443i
\(39\) 0 0
\(40\) −32.1790 79.0182i −0.804475 1.97545i
\(41\) 32.6176 + 18.8318i 0.795552 + 0.459312i 0.841914 0.539612i \(-0.181429\pi\)
−0.0463612 + 0.998925i \(0.514763\pi\)
\(42\) 0 0
\(43\) −3.93082 + 2.26946i −0.0914145 + 0.0527782i −0.545010 0.838429i \(-0.683474\pi\)
0.453596 + 0.891207i \(0.350141\pi\)
\(44\) 133.376i 3.03127i
\(45\) 0 0
\(46\) −41.2246 −0.896187
\(47\) −1.85906 3.21998i −0.0395544 0.0685102i 0.845570 0.533864i \(-0.179261\pi\)
−0.885125 + 0.465354i \(0.845927\pi\)
\(48\) 0 0
\(49\) −6.36869 + 11.0309i −0.129973 + 0.225120i
\(50\) −86.0259 24.1552i −1.72052 0.483104i
\(51\) 0 0
\(52\) −83.7921 + 48.3774i −1.61139 + 0.930334i
\(53\) −56.1230 −1.05892 −0.529462 0.848333i \(-0.677606\pi\)
−0.529462 + 0.848333i \(0.677606\pi\)
\(54\) 0 0
\(55\) −60.0205 46.6274i −1.09128 0.847771i
\(56\) −88.9891 + 51.3779i −1.58909 + 0.917462i
\(57\) 0 0
\(58\) 168.501 + 97.2841i 2.90519 + 1.67731i
\(59\) 43.3384 + 25.0214i 0.734549 + 0.424092i 0.820084 0.572243i \(-0.193927\pi\)
−0.0855353 + 0.996335i \(0.527260\pi\)
\(60\) 0 0
\(61\) 24.2209 + 41.9518i 0.397063 + 0.687734i 0.993362 0.115029i \(-0.0366960\pi\)
−0.596299 + 0.802762i \(0.703363\pi\)
\(62\) 112.842 1.82004
\(63\) 0 0
\(64\) −16.7778 −0.262153
\(65\) −7.52288 + 54.6198i −0.115737 + 0.840304i
\(66\) 0 0
\(67\) 60.0763 + 34.6851i 0.896662 + 0.517688i 0.876116 0.482101i \(-0.160126\pi\)
0.0205460 + 0.999789i \(0.493460\pi\)
\(68\) 117.762 203.970i 1.73180 2.99956i
\(69\) 0 0
\(70\) −14.6832 + 106.607i −0.209760 + 1.52296i
\(71\) 38.5522i 0.542989i −0.962440 0.271494i \(-0.912482\pi\)
0.962440 0.271494i \(-0.0875179\pi\)
\(72\) 0 0
\(73\) 27.2700i 0.373561i −0.982402 0.186781i \(-0.940195\pi\)
0.982402 0.186781i \(-0.0598054\pi\)
\(74\) 118.078 68.1726i 1.59566 0.921252i
\(75\) 0 0
\(76\) −69.7183 + 120.756i −0.917346 + 1.58889i
\(77\) −45.7683 + 79.2730i −0.594394 + 1.02952i
\(78\) 0 0
\(79\) 39.4493 + 68.3281i 0.499358 + 0.864913i 1.00000 0.000741320i \(-0.000235969\pi\)
−0.500642 + 0.865655i \(0.666903\pi\)
\(80\) 79.4189 102.231i 0.992736 1.27789i
\(81\) 0 0
\(82\) 134.614i 1.64163i
\(83\) 75.3011 + 130.425i 0.907242 + 1.57139i 0.817879 + 0.575390i \(0.195150\pi\)
0.0893625 + 0.995999i \(0.471517\pi\)
\(84\) 0 0
\(85\) −50.6198 124.301i −0.595527 1.46236i
\(86\) −14.0492 8.11131i −0.163363 0.0943176i
\(87\) 0 0
\(88\) 224.633 129.692i 2.55264 1.47377i
\(89\) 3.50521i 0.0393843i 0.999806 + 0.0196922i \(0.00626862\pi\)
−0.999806 + 0.0196922i \(0.993731\pi\)
\(90\) 0 0
\(91\) 66.4034 0.729708
\(92\) −50.6022 87.6456i −0.550024 0.952670i
\(93\) 0 0
\(94\) 6.64448 11.5086i 0.0706859 0.122432i
\(95\) 29.9682 + 73.5894i 0.315455 + 0.774625i
\(96\) 0 0
\(97\) −23.9496 + 13.8273i −0.246903 + 0.142550i −0.618345 0.785906i \(-0.712197\pi\)
0.371442 + 0.928456i \(0.378863\pi\)
\(98\) −45.5248 −0.464539
\(99\) 0 0
\(100\) −54.2396 212.546i −0.542396 2.12546i
\(101\) 31.2554 18.0453i 0.309460 0.178667i −0.337225 0.941424i \(-0.609488\pi\)
0.646685 + 0.762757i \(0.276155\pi\)
\(102\) 0 0
\(103\) 24.3017 + 14.0306i 0.235939 + 0.136219i 0.613309 0.789843i \(-0.289838\pi\)
−0.377370 + 0.926063i \(0.623171\pi\)
\(104\) −162.955 94.0822i −1.56688 0.904636i
\(105\) 0 0
\(106\) −100.295 173.716i −0.946179 1.63883i
\(107\) 91.8455 0.858369 0.429184 0.903217i \(-0.358801\pi\)
0.429184 + 0.903217i \(0.358801\pi\)
\(108\) 0 0
\(109\) 78.1779 0.717228 0.358614 0.933486i \(-0.383249\pi\)
0.358614 + 0.933486i \(0.383249\pi\)
\(110\) 37.0644 269.106i 0.336949 2.44642i
\(111\) 0 0
\(112\) −135.023 77.9556i −1.20556 0.696032i
\(113\) −3.28363 + 5.68742i −0.0290587 + 0.0503311i −0.880189 0.474623i \(-0.842584\pi\)
0.851130 + 0.524954i \(0.175918\pi\)
\(114\) 0 0
\(115\) −57.1317 7.86885i −0.496798 0.0684248i
\(116\) 477.656i 4.11772i
\(117\) 0 0
\(118\) 178.859i 1.51575i
\(119\) −139.986 + 80.8209i −1.17635 + 0.679167i
\(120\) 0 0
\(121\) 55.0316 95.3175i 0.454806 0.787748i
\(122\) −86.5681 + 149.940i −0.709574 + 1.22902i
\(123\) 0 0
\(124\) 138.512 + 239.909i 1.11703 + 1.93475i
\(125\) −114.610 49.8963i −0.916877 0.399170i
\(126\) 0 0
\(127\) 247.486i 1.94871i −0.225023 0.974353i \(-0.572246\pi\)
0.225023 0.974353i \(-0.427754\pi\)
\(128\) −78.5465 136.047i −0.613645 1.06286i
\(129\) 0 0
\(130\) −182.507 + 74.3233i −1.40390 + 0.571718i
\(131\) 123.126 + 71.0869i 0.939894 + 0.542648i 0.889927 0.456103i \(-0.150755\pi\)
0.0499669 + 0.998751i \(0.484088\pi\)
\(132\) 0 0
\(133\) 82.8753 47.8481i 0.623122 0.359760i
\(134\) 247.937i 1.85027i
\(135\) 0 0
\(136\) 458.037 3.36792
\(137\) −36.4450 63.1246i −0.266022 0.460763i 0.701809 0.712365i \(-0.252376\pi\)
−0.967831 + 0.251602i \(0.919043\pi\)
\(138\) 0 0
\(139\) 33.4995 58.0228i 0.241003 0.417430i −0.719997 0.693977i \(-0.755857\pi\)
0.961000 + 0.276547i \(0.0891902\pi\)
\(140\) −244.676 + 99.6408i −1.74769 + 0.711720i
\(141\) 0 0
\(142\) 119.330 68.8950i 0.840350 0.485176i
\(143\) −167.620 −1.17217
\(144\) 0 0
\(145\) 214.950 + 166.986i 1.48242 + 1.15163i
\(146\) 84.4080 48.7330i 0.578137 0.333788i
\(147\) 0 0
\(148\) 289.877 + 167.361i 1.95863 + 1.13082i
\(149\) −66.3088 38.2834i −0.445025 0.256936i 0.260702 0.965419i \(-0.416046\pi\)
−0.705727 + 0.708484i \(0.749379\pi\)
\(150\) 0 0
\(151\) 19.9525 + 34.5588i 0.132136 + 0.228866i 0.924500 0.381183i \(-0.124483\pi\)
−0.792364 + 0.610049i \(0.791150\pi\)
\(152\) −271.170 −1.78401
\(153\) 0 0
\(154\) −327.162 −2.12443
\(155\) 156.384 + 21.5391i 1.00893 + 0.138962i
\(156\) 0 0
\(157\) −117.412 67.7877i −0.747846 0.431769i 0.0770693 0.997026i \(-0.475444\pi\)
−0.824915 + 0.565257i \(0.808777\pi\)
\(158\) −140.996 + 244.213i −0.892381 + 1.54565i
\(159\) 0 0
\(160\) 120.274 + 16.5655i 0.751710 + 0.103534i
\(161\) 69.4572i 0.431411i
\(162\) 0 0
\(163\) 85.9303i 0.527180i 0.964635 + 0.263590i \(0.0849066\pi\)
−0.964635 + 0.263590i \(0.915093\pi\)
\(164\) −286.197 + 165.236i −1.74510 + 1.00753i
\(165\) 0 0
\(166\) −269.135 + 466.155i −1.62129 + 2.80816i
\(167\) 55.8590 96.7506i 0.334485 0.579345i −0.648901 0.760873i \(-0.724771\pi\)
0.983386 + 0.181528i \(0.0581044\pi\)
\(168\) 0 0
\(169\) −23.7017 41.0526i −0.140247 0.242915i
\(170\) 294.285 378.815i 1.73109 2.22832i
\(171\) 0 0
\(172\) 39.8258i 0.231545i
\(173\) 4.34493 + 7.52564i 0.0251152 + 0.0435008i 0.878310 0.478092i \(-0.158671\pi\)
−0.853195 + 0.521593i \(0.825338\pi\)
\(174\) 0 0
\(175\) −40.6979 + 144.941i −0.232560 + 0.828233i
\(176\) 340.835 + 196.781i 1.93656 + 1.11807i
\(177\) 0 0
\(178\) −10.8496 + 6.26400i −0.0609526 + 0.0351910i
\(179\) 57.4651i 0.321034i −0.987033 0.160517i \(-0.948684\pi\)
0.987033 0.160517i \(-0.0513162\pi\)
\(180\) 0 0
\(181\) −139.711 −0.771884 −0.385942 0.922523i \(-0.626124\pi\)
−0.385942 + 0.922523i \(0.626124\pi\)
\(182\) 118.667 + 205.537i 0.652014 + 1.12932i
\(183\) 0 0
\(184\) 98.4090 170.449i 0.534831 0.926355i
\(185\) 176.653 71.9395i 0.954884 0.388862i
\(186\) 0 0
\(187\) 353.362 204.014i 1.88964 1.09098i
\(188\) 32.6238 0.173531
\(189\) 0 0
\(190\) −174.224 + 224.268i −0.916970 + 1.18036i
\(191\) −27.2590 + 15.7380i −0.142718 + 0.0823980i −0.569659 0.821881i \(-0.692925\pi\)
0.426941 + 0.904279i \(0.359591\pi\)
\(192\) 0 0
\(193\) −43.3664 25.0376i −0.224696 0.129729i 0.383427 0.923571i \(-0.374744\pi\)
−0.608123 + 0.793843i \(0.708077\pi\)
\(194\) −85.5986 49.4204i −0.441230 0.254744i
\(195\) 0 0
\(196\) −55.8807 96.7882i −0.285106 0.493817i
\(197\) −37.4908 −0.190308 −0.0951542 0.995463i \(-0.530334\pi\)
−0.0951542 + 0.995463i \(0.530334\pi\)
\(198\) 0 0
\(199\) 40.5173 0.203604 0.101802 0.994805i \(-0.467539\pi\)
0.101802 + 0.994805i \(0.467539\pi\)
\(200\) 305.230 298.025i 1.52615 1.49013i
\(201\) 0 0
\(202\) 111.710 + 64.4961i 0.553022 + 0.319287i
\(203\) 163.909 283.899i 0.807434 1.39852i
\(204\) 0 0
\(205\) −25.6948 + 186.557i −0.125341 + 0.910034i
\(206\) 100.294i 0.486864i
\(207\) 0 0
\(208\) 285.502i 1.37260i
\(209\) −209.200 + 120.781i −1.00095 + 0.577902i
\(210\) 0 0
\(211\) −86.2363 + 149.366i −0.408703 + 0.707894i −0.994745 0.102387i \(-0.967352\pi\)
0.586042 + 0.810281i \(0.300685\pi\)
\(212\) 246.220 426.465i 1.16141 2.01163i
\(213\) 0 0
\(214\) 164.133 + 284.287i 0.766977 + 1.32844i
\(215\) −17.9220 13.9229i −0.0833583 0.0647575i
\(216\) 0 0
\(217\) 190.123i 0.876141i
\(218\) 139.708 + 241.982i 0.640864 + 1.11001i
\(219\) 0 0
\(220\) 617.629 251.520i 2.80740 1.14327i
\(221\) −256.339 147.998i −1.15991 0.669673i
\(222\) 0 0
\(223\) −259.250 + 149.678i −1.16255 + 0.671201i −0.951915 0.306363i \(-0.900888\pi\)
−0.210639 + 0.977564i \(0.567555\pi\)
\(224\) 146.221i 0.652774i
\(225\) 0 0
\(226\) −23.4721 −0.103859
\(227\) −149.358 258.696i −0.657965 1.13963i −0.981142 0.193290i \(-0.938084\pi\)
0.323177 0.946338i \(-0.395249\pi\)
\(228\) 0 0
\(229\) 101.655 176.072i 0.443908 0.768871i −0.554067 0.832472i \(-0.686925\pi\)
0.997975 + 0.0636005i \(0.0202584\pi\)
\(230\) −77.7414 190.900i −0.338006 0.830001i
\(231\) 0 0
\(232\) −804.472 + 464.462i −3.46755 + 2.00199i
\(233\) 436.398 1.87295 0.936476 0.350733i \(-0.114067\pi\)
0.936476 + 0.350733i \(0.114067\pi\)
\(234\) 0 0
\(235\) 11.4051 14.6810i 0.0485322 0.0624725i
\(236\) −380.263 + 219.545i −1.61128 + 0.930276i
\(237\) 0 0
\(238\) −500.326 288.863i −2.10221 1.21371i
\(239\) −207.584 119.848i −0.868551 0.501458i −0.00168434 0.999999i \(-0.500536\pi\)
−0.866866 + 0.498541i \(0.833869\pi\)
\(240\) 0 0
\(241\) −102.674 177.837i −0.426034 0.737912i 0.570483 0.821310i \(-0.306756\pi\)
−0.996516 + 0.0833977i \(0.973423\pi\)
\(242\) 393.378 1.62553
\(243\) 0 0
\(244\) −425.041 −1.74197
\(245\) −63.0913 8.68967i −0.257515 0.0354681i
\(246\) 0 0
\(247\) 151.760 + 87.6184i 0.614411 + 0.354731i
\(248\) −269.371 + 466.564i −1.08617 + 1.88131i
\(249\) 0 0
\(250\) −50.3712 443.915i −0.201485 1.77566i
\(251\) 357.277i 1.42341i −0.702477 0.711707i \(-0.747923\pi\)
0.702477 0.711707i \(-0.252077\pi\)
\(252\) 0 0
\(253\) 175.329i 0.692999i
\(254\) 766.036 442.271i 3.01589 1.74122i
\(255\) 0 0
\(256\) 247.179 428.126i 0.965541 1.67237i
\(257\) −140.257 + 242.932i −0.545746 + 0.945260i 0.452814 + 0.891605i \(0.350420\pi\)
−0.998560 + 0.0536544i \(0.982913\pi\)
\(258\) 0 0
\(259\) −114.861 198.945i −0.443478 0.768126i
\(260\) −382.038 296.789i −1.46938 1.14150i
\(261\) 0 0
\(262\) 508.145i 1.93949i
\(263\) −60.2472 104.351i −0.229077 0.396772i 0.728458 0.685090i \(-0.240237\pi\)
−0.957535 + 0.288318i \(0.906904\pi\)
\(264\) 0 0
\(265\) −105.837 259.891i −0.399384 0.980721i
\(266\) 296.206 + 171.014i 1.11356 + 0.642911i
\(267\) 0 0
\(268\) −527.127 + 304.337i −1.96689 + 1.13559i
\(269\) 308.065i 1.14522i −0.819827 0.572612i \(-0.805930\pi\)
0.819827 0.572612i \(-0.194070\pi\)
\(270\) 0 0
\(271\) 354.684 1.30880 0.654399 0.756149i \(-0.272922\pi\)
0.654399 + 0.756149i \(0.272922\pi\)
\(272\) 347.490 + 601.870i 1.27754 + 2.21276i
\(273\) 0 0
\(274\) 130.259 225.614i 0.475396 0.823410i
\(275\) 102.733 365.869i 0.373573 1.33043i
\(276\) 0 0
\(277\) 415.957 240.153i 1.50165 0.866978i 0.501652 0.865070i \(-0.332726\pi\)
0.999998 0.00190830i \(-0.000607433\pi\)
\(278\) 239.462 0.861373
\(279\) 0 0
\(280\) −405.733 315.197i −1.44905 1.12570i
\(281\) 109.335 63.1249i 0.389094 0.224644i −0.292673 0.956212i \(-0.594545\pi\)
0.681768 + 0.731569i \(0.261212\pi\)
\(282\) 0 0
\(283\) −316.137 182.522i −1.11709 0.644954i −0.176436 0.984312i \(-0.556457\pi\)
−0.940657 + 0.339358i \(0.889790\pi\)
\(284\) 292.949 + 169.134i 1.03151 + 0.595543i
\(285\) 0 0
\(286\) −299.547 518.830i −1.04737 1.81409i
\(287\) 226.804 0.790259
\(288\) 0 0
\(289\) 431.524 1.49316
\(290\) −132.738 + 963.743i −0.457717 + 3.32325i
\(291\) 0 0
\(292\) 207.218 + 119.637i 0.709650 + 0.409717i
\(293\) 97.0846 168.155i 0.331347 0.573909i −0.651429 0.758709i \(-0.725830\pi\)
0.982776 + 0.184800i \(0.0591637\pi\)
\(294\) 0 0
\(295\) −34.1401 + 247.874i −0.115729 + 0.840251i
\(296\) 650.951i 2.19916i
\(297\) 0 0
\(298\) 273.658i 0.918317i
\(299\) −110.149 + 63.5944i −0.368390 + 0.212690i
\(300\) 0 0
\(301\) −13.6663 + 23.6708i −0.0454031 + 0.0786405i
\(302\) −71.3126 + 123.517i −0.236134 + 0.408997i
\(303\) 0 0
\(304\) −205.723 356.323i −0.676720 1.17211i
\(305\) −148.592 + 191.273i −0.487187 + 0.627125i
\(306\) 0 0
\(307\) 492.555i 1.60441i 0.597046 + 0.802207i \(0.296341\pi\)
−0.597046 + 0.802207i \(0.703659\pi\)
\(308\) −401.584 695.564i −1.30384 2.25833i
\(309\) 0 0
\(310\) 212.798 + 522.544i 0.686447 + 1.68563i
\(311\) 161.394 + 93.1810i 0.518953 + 0.299617i 0.736506 0.676431i \(-0.236474\pi\)
−0.217553 + 0.976048i \(0.569808\pi\)
\(312\) 0 0
\(313\) −189.353 + 109.323i −0.604961 + 0.349274i −0.770991 0.636847i \(-0.780238\pi\)
0.166030 + 0.986121i \(0.446905\pi\)
\(314\) 484.562i 1.54319i
\(315\) 0 0
\(316\) −692.278 −2.19075
\(317\) −102.301 177.191i −0.322718 0.558963i 0.658330 0.752729i \(-0.271263\pi\)
−0.981048 + 0.193766i \(0.937930\pi\)
\(318\) 0 0
\(319\) −413.751 + 716.637i −1.29702 + 2.24651i
\(320\) −31.6396 77.6937i −0.0988738 0.242793i
\(321\) 0 0
\(322\) −214.989 + 124.124i −0.667668 + 0.385478i
\(323\) −426.569 −1.32065
\(324\) 0 0
\(325\) −267.117 + 68.1656i −0.821897 + 0.209740i
\(326\) −265.978 + 153.562i −0.815883 + 0.471050i
\(327\) 0 0
\(328\) −556.582 321.343i −1.69690 0.979704i
\(329\) −19.3902 11.1949i −0.0589368 0.0340272i
\(330\) 0 0
\(331\) 298.305 + 516.680i 0.901224 + 1.56097i 0.825907 + 0.563807i \(0.190664\pi\)
0.0753174 + 0.997160i \(0.476003\pi\)
\(332\) −1321.43 −3.98020
\(333\) 0 0
\(334\) 399.293 1.19549
\(335\) −47.3256 + 343.607i −0.141270 + 1.02569i
\(336\) 0 0
\(337\) 288.036 + 166.298i 0.854707 + 0.493466i 0.862236 0.506506i \(-0.169063\pi\)
−0.00752898 + 0.999972i \(0.502397\pi\)
\(338\) 84.7126 146.727i 0.250629 0.434102i
\(339\) 0 0
\(340\) 1166.61 + 160.679i 3.43120 + 0.472585i
\(341\) 479.921i 1.40739i
\(342\) 0 0
\(343\) 371.773i 1.08389i
\(344\) 67.0749 38.7257i 0.194985 0.112575i
\(345\) 0 0
\(346\) −15.5293 + 26.8975i −0.0448823 + 0.0777384i
\(347\) 34.6029 59.9339i 0.0997201 0.172720i −0.811849 0.583868i \(-0.801539\pi\)
0.911569 + 0.411148i \(0.134872\pi\)
\(348\) 0 0
\(349\) −277.425 480.515i −0.794915 1.37683i −0.922893 0.385056i \(-0.874182\pi\)
0.127978 0.991777i \(-0.459151\pi\)
\(350\) −521.361 + 133.046i −1.48960 + 0.380132i
\(351\) 0 0
\(352\) 369.102i 1.04859i
\(353\) −88.1341 152.653i −0.249672 0.432444i 0.713763 0.700387i \(-0.246989\pi\)
−0.963435 + 0.267943i \(0.913656\pi\)
\(354\) 0 0
\(355\) 178.525 72.7018i 0.502888 0.204794i
\(356\) −26.6352 15.3778i −0.0748180 0.0431962i
\(357\) 0 0
\(358\) 177.870 102.693i 0.496844 0.286853i
\(359\) 122.033i 0.339924i −0.985451 0.169962i \(-0.945636\pi\)
0.985451 0.169962i \(-0.0543645\pi\)
\(360\) 0 0
\(361\) −108.460 −0.300444
\(362\) −249.672 432.444i −0.689700 1.19460i
\(363\) 0 0
\(364\) −291.321 + 504.583i −0.800333 + 1.38622i
\(365\) 126.280 51.4258i 0.345973 0.140892i
\(366\) 0 0
\(367\) 582.310 336.197i 1.58667 0.916067i 0.592825 0.805332i \(-0.298013\pi\)
0.993850 0.110736i \(-0.0353207\pi\)
\(368\) 298.632 0.811499
\(369\) 0 0
\(370\) 538.362 + 418.231i 1.45503 + 1.13035i
\(371\) −292.685 + 168.982i −0.788910 + 0.455477i
\(372\) 0 0
\(373\) −444.978 256.908i −1.19297 0.688762i −0.233991 0.972239i \(-0.575179\pi\)
−0.958979 + 0.283477i \(0.908512\pi\)
\(374\) 1262.96 + 729.168i 3.37689 + 1.94965i
\(375\) 0 0
\(376\) 31.7226 + 54.9452i 0.0843687 + 0.146131i
\(377\) 600.294 1.59229
\(378\) 0 0
\(379\) −496.340 −1.30960 −0.654802 0.755800i \(-0.727248\pi\)
−0.654802 + 0.755800i \(0.727248\pi\)
\(380\) −690.663 95.1262i −1.81753 0.250332i
\(381\) 0 0
\(382\) −97.4269 56.2495i −0.255044 0.147250i
\(383\) −297.962 + 516.085i −0.777968 + 1.34748i 0.155143 + 0.987892i \(0.450416\pi\)
−0.933111 + 0.359588i \(0.882917\pi\)
\(384\) 0 0
\(385\) −453.403 62.4480i −1.17767 0.162202i
\(386\) 178.974i 0.463664i
\(387\) 0 0
\(388\) 242.650i 0.625385i
\(389\) 380.432 219.642i 0.977974 0.564633i 0.0763158 0.997084i \(-0.475684\pi\)
0.901658 + 0.432450i \(0.142351\pi\)
\(390\) 0 0
\(391\) 154.804 268.128i 0.395918 0.685750i
\(392\) 108.674 188.229i 0.277230 0.480177i
\(393\) 0 0
\(394\) −66.9981 116.044i −0.170046 0.294528i
\(395\) −242.016 + 311.533i −0.612700 + 0.788690i
\(396\) 0 0
\(397\) 405.932i 1.02250i −0.859432 0.511250i \(-0.829183\pi\)
0.859432 0.511250i \(-0.170817\pi\)
\(398\) 72.4067 + 125.412i 0.181926 + 0.315106i
\(399\) 0 0
\(400\) 623.173 + 174.981i 1.55793 + 0.437452i
\(401\) −284.442 164.223i −0.709332 0.409533i 0.101481 0.994837i \(-0.467642\pi\)
−0.810814 + 0.585304i \(0.800975\pi\)
\(402\) 0 0
\(403\) 301.506 174.074i 0.748153 0.431946i
\(404\) 316.670i 0.783836i
\(405\) 0 0
\(406\) 1171.66 2.88586
\(407\) 289.939 + 502.190i 0.712382 + 1.23388i
\(408\) 0 0
\(409\) 8.15681 14.1280i 0.0199433 0.0345428i −0.855882 0.517172i \(-0.826985\pi\)
0.875825 + 0.482629i \(0.160318\pi\)
\(410\) −623.363 + 253.855i −1.52040 + 0.619159i
\(411\) 0 0
\(412\) −213.230 + 123.109i −0.517549 + 0.298807i
\(413\) 301.350 0.729662
\(414\) 0 0
\(415\) −461.963 + 594.656i −1.11316 + 1.43291i
\(416\) 231.885 133.879i 0.557416 0.321824i
\(417\) 0 0
\(418\) −747.703 431.686i −1.78876 1.03274i
\(419\) −330.431 190.774i −0.788618 0.455309i 0.0508576 0.998706i \(-0.483805\pi\)
−0.839476 + 0.543397i \(0.817138\pi\)
\(420\) 0 0
\(421\) −211.669 366.621i −0.502776 0.870834i −0.999995 0.00320894i \(-0.998979\pi\)
0.497218 0.867625i \(-0.334355\pi\)
\(422\) −616.436 −1.46075
\(423\) 0 0
\(424\) 957.674 2.25866
\(425\) 480.147 468.814i 1.12976 1.10309i
\(426\) 0 0
\(427\) 252.627 + 145.854i 0.591632 + 0.341579i
\(428\) −402.939 + 697.911i −0.941447 + 1.63063i
\(429\) 0 0
\(430\) 11.0674 80.3545i 0.0257381 0.186871i
\(431\) 48.3081i 0.112084i 0.998428 + 0.0560419i \(0.0178480\pi\)
−0.998428 + 0.0560419i \(0.982152\pi\)
\(432\) 0 0
\(433\) 36.0601i 0.0832797i −0.999133 0.0416399i \(-0.986742\pi\)
0.999133 0.0416399i \(-0.0132582\pi\)
\(434\) 588.481 339.760i 1.35595 0.782857i
\(435\) 0 0
\(436\) −342.978 + 594.055i −0.786646 + 1.36251i
\(437\) −91.6480 + 158.739i −0.209721 + 0.363247i
\(438\) 0 0
\(439\) 130.043 + 225.242i 0.296226 + 0.513079i 0.975269 0.221020i \(-0.0709385\pi\)
−0.679043 + 0.734098i \(0.737605\pi\)
\(440\) 1024.18 + 795.642i 2.32768 + 1.80828i
\(441\) 0 0
\(442\) 1057.92i 2.39349i
\(443\) 11.2647 + 19.5110i 0.0254282 + 0.0440430i 0.878459 0.477817i \(-0.158572\pi\)
−0.853031 + 0.521860i \(0.825238\pi\)
\(444\) 0 0
\(445\) −16.2317 + 6.61012i −0.0364757 + 0.0148542i
\(446\) −926.587 534.965i −2.07755 1.19947i
\(447\) 0 0
\(448\) −87.4975 + 50.5167i −0.195307 + 0.112761i
\(449\) 275.640i 0.613898i 0.951726 + 0.306949i \(0.0993080\pi\)
−0.951726 + 0.306949i \(0.900692\pi\)
\(450\) 0 0
\(451\) −572.516 −1.26944
\(452\) −28.8115 49.9030i −0.0637423 0.110405i
\(453\) 0 0
\(454\) 533.822 924.607i 1.17582 2.03658i
\(455\) 125.224 + 307.497i 0.275217 + 0.675817i
\(456\) 0 0
\(457\) 103.410 59.7038i 0.226280 0.130643i −0.382575 0.923925i \(-0.624963\pi\)
0.608855 + 0.793282i \(0.291629\pi\)
\(458\) 726.653 1.58658
\(459\) 0 0
\(460\) 310.438 399.608i 0.674866 0.868713i
\(461\) 78.2511 45.1783i 0.169742 0.0980007i −0.412722 0.910857i \(-0.635422\pi\)
0.582464 + 0.812856i \(0.302089\pi\)
\(462\) 0 0
\(463\) 528.653 + 305.218i 1.14180 + 0.659219i 0.946876 0.321600i \(-0.104221\pi\)
0.194924 + 0.980818i \(0.437554\pi\)
\(464\) −1220.62 704.728i −2.63066 1.51881i
\(465\) 0 0
\(466\) 779.867 + 1350.77i 1.67354 + 2.89865i
\(467\) 65.6533 0.140585 0.0702926 0.997526i \(-0.477607\pi\)
0.0702926 + 0.997526i \(0.477607\pi\)
\(468\) 0 0
\(469\) 417.736 0.890696
\(470\) 65.8234 + 9.06597i 0.140050 + 0.0192893i
\(471\) 0 0
\(472\) −739.519 426.961i −1.56678 0.904579i
\(473\) 34.4975 59.7515i 0.0729335 0.126324i
\(474\) 0 0
\(475\) −284.259 + 277.550i −0.598441 + 0.584316i
\(476\) 1418.29i 2.97960i
\(477\) 0 0
\(478\) 856.704i 1.79227i
\(479\) 81.3901 46.9906i 0.169917 0.0981015i −0.412630 0.910899i \(-0.635390\pi\)
0.582547 + 0.812797i \(0.302056\pi\)
\(480\) 0 0
\(481\) 210.331 364.303i 0.437278 0.757387i
\(482\) 366.969 635.609i 0.761346 1.31869i
\(483\) 0 0
\(484\) 482.863 + 836.343i 0.997650 + 1.72798i
\(485\) −109.195 84.8288i −0.225144 0.174905i
\(486\) 0 0
\(487\) 805.464i 1.65393i −0.562253 0.826965i \(-0.690065\pi\)
0.562253 0.826965i \(-0.309935\pi\)
\(488\) −413.301 715.858i −0.846928 1.46692i
\(489\) 0 0
\(490\) −85.8508 210.814i −0.175206 0.430232i
\(491\) 814.742 + 470.391i 1.65935 + 0.958027i 0.973015 + 0.230743i \(0.0741157\pi\)
0.686337 + 0.727284i \(0.259218\pi\)
\(492\) 0 0
\(493\) −1265.49 + 730.630i −2.56691 + 1.48201i
\(494\) 626.316i 1.26785i
\(495\) 0 0
\(496\) −817.433 −1.64805
\(497\) −116.078 201.053i −0.233557 0.404532i
\(498\) 0 0
\(499\) −189.964 + 329.028i −0.380690 + 0.659375i −0.991161 0.132664i \(-0.957647\pi\)
0.610471 + 0.792039i \(0.290980\pi\)
\(500\) 881.958 651.988i 1.76392 1.30398i
\(501\) 0 0
\(502\) 1105.87 638.474i 2.20293 1.27186i
\(503\) −637.608 −1.26761 −0.633805 0.773493i \(-0.718508\pi\)
−0.633805 + 0.773493i \(0.718508\pi\)
\(504\) 0 0
\(505\) 142.505 + 110.706i 0.282188 + 0.219220i
\(506\) 542.690 313.323i 1.07251 0.619214i
\(507\) 0 0
\(508\) 1880.58 + 1085.76i 3.70194 + 2.13731i
\(509\) −834.081 481.557i −1.63867 0.946084i −0.981294 0.192517i \(-0.938335\pi\)
−0.657372 0.753567i \(-0.728332\pi\)
\(510\) 0 0
\(511\) −82.1078 142.215i −0.160681 0.278307i
\(512\) 1138.52 2.22366
\(513\) 0 0
\(514\) −1002.59 −1.95056
\(515\) −19.1439 + 138.994i −0.0371726 + 0.269891i
\(516\) 0 0
\(517\) 48.9461 + 28.2591i 0.0946734 + 0.0546597i
\(518\) 410.525 711.050i 0.792519 1.37268i
\(519\) 0 0
\(520\) 128.369 932.023i 0.246864 1.79235i
\(521\) 36.7876i 0.0706095i 0.999377 + 0.0353048i \(0.0112402\pi\)
−0.999377 + 0.0353048i \(0.988760\pi\)
\(522\) 0 0
\(523\) 441.292i 0.843770i 0.906649 + 0.421885i \(0.138631\pi\)
−0.906649 + 0.421885i \(0.861369\pi\)
\(524\) −1080.34 + 623.737i −2.06172 + 1.19034i
\(525\) 0 0
\(526\) 215.330 372.963i 0.409373 0.709055i
\(527\) −423.739 + 733.937i −0.804059 + 1.39267i
\(528\) 0 0
\(529\) 197.981 + 342.913i 0.374255 + 0.648229i
\(530\) 615.297 792.034i 1.16094 1.49440i
\(531\) 0 0
\(532\) 839.665i 1.57832i
\(533\) 207.660 + 359.677i 0.389606 + 0.674817i
\(534\) 0 0
\(535\) 173.202 + 425.312i 0.323743 + 0.794977i
\(536\) −1025.13 591.861i −1.91256 1.10422i
\(537\) 0 0
\(538\) 953.546 550.530i 1.77239 1.02329i
\(539\) 193.618i 0.359217i
\(540\) 0 0
\(541\) −426.631 −0.788598 −0.394299 0.918982i \(-0.629013\pi\)
−0.394299 + 0.918982i \(0.629013\pi\)
\(542\) 633.841 + 1097.84i 1.16945 + 2.02554i
\(543\) 0 0
\(544\) −325.893 + 564.464i −0.599068 + 1.03762i
\(545\) 147.428 + 362.021i 0.270510 + 0.664260i
\(546\) 0 0
\(547\) −522.151 + 301.464i −0.954572 + 0.551122i −0.894498 0.447072i \(-0.852467\pi\)
−0.0600738 + 0.998194i \(0.519134\pi\)
\(548\) 639.558 1.16708
\(549\) 0 0
\(550\) 1316.05 335.844i 2.39283 0.610626i
\(551\) 749.202 432.552i 1.35971 0.785031i
\(552\) 0 0
\(553\) 411.461 + 237.557i 0.744053 + 0.429579i
\(554\) 1486.68 + 858.334i 2.68353 + 1.54934i
\(555\) 0 0
\(556\) 293.934 + 509.108i 0.528658 + 0.915663i
\(557\) 527.490 0.947020 0.473510 0.880788i \(-0.342987\pi\)
0.473510 + 0.880788i \(0.342987\pi\)
\(558\) 0 0
\(559\) −50.0511 −0.0895368
\(560\) 106.366 772.266i 0.189938 1.37905i
\(561\) 0 0
\(562\) 390.777 + 225.615i 0.695333 + 0.401451i
\(563\) −7.14026 + 12.3673i −0.0126825 + 0.0219668i −0.872297 0.488976i \(-0.837370\pi\)
0.859614 + 0.510943i \(0.170704\pi\)
\(564\) 0 0
\(565\) −32.5292 4.48031i −0.0575738 0.00792974i
\(566\) 1304.71i 2.30514i
\(567\) 0 0
\(568\) 657.849i 1.15818i
\(569\) −582.646 + 336.391i −1.02398 + 0.591197i −0.915255 0.402875i \(-0.868011\pi\)
−0.108728 + 0.994072i \(0.534678\pi\)
\(570\) 0 0
\(571\) −428.832 + 742.759i −0.751020 + 1.30080i 0.196309 + 0.980542i \(0.437104\pi\)
−0.947329 + 0.320262i \(0.896229\pi\)
\(572\) 735.373 1273.70i 1.28562 2.22675i
\(573\) 0 0
\(574\) 405.312 + 702.022i 0.706119 + 1.22303i
\(575\) −71.3005 279.401i −0.124001 0.485915i
\(576\) 0 0
\(577\) 134.308i 0.232769i 0.993204 + 0.116385i \(0.0371305\pi\)
−0.993204 + 0.116385i \(0.962869\pi\)
\(578\) 771.158 + 1335.68i 1.33418 + 2.31087i
\(579\) 0 0
\(580\) −2211.90 + 900.764i −3.81362 + 1.55304i
\(581\) 785.401 + 453.451i 1.35181 + 0.780467i
\(582\) 0 0
\(583\) 738.817 426.556i 1.26727 0.731657i
\(584\) 465.330i 0.796799i
\(585\) 0 0
\(586\) 693.983 1.18427
\(587\) −450.137 779.660i −0.766843 1.32821i −0.939267 0.343188i \(-0.888493\pi\)
0.172423 0.985023i \(-0.444840\pi\)
\(588\) 0 0
\(589\) 250.864 434.510i 0.425916 0.737708i
\(590\) −828.248 + 337.292i −1.40381 + 0.571681i
\(591\) 0 0
\(592\) −855.363 + 493.844i −1.44487 + 0.834196i
\(593\) −282.338 −0.476118 −0.238059 0.971251i \(-0.576511\pi\)
−0.238059 + 0.971251i \(0.576511\pi\)
\(594\) 0 0
\(595\) −638.246 495.826i −1.07268 0.833322i
\(596\) 581.812 335.909i 0.976195 0.563607i
\(597\) 0 0
\(598\) −393.684 227.293i −0.658334 0.380089i
\(599\) −83.3908 48.1457i −0.139217 0.0803768i 0.428774 0.903412i \(-0.358946\pi\)
−0.567991 + 0.823035i \(0.692279\pi\)
\(600\) 0 0
\(601\) 268.904 + 465.756i 0.447428 + 0.774969i 0.998218 0.0596755i \(-0.0190066\pi\)
−0.550789 + 0.834644i \(0.685673\pi\)
\(602\) −97.6901 −0.162276
\(603\) 0 0
\(604\) −350.138 −0.579699
\(605\) 545.169 + 75.0871i 0.901106 + 0.124111i
\(606\) 0 0
\(607\) 409.860 + 236.633i 0.675222 + 0.389839i 0.798052 0.602588i \(-0.205864\pi\)
−0.122831 + 0.992428i \(0.539197\pi\)
\(608\) 192.937 334.177i 0.317331 0.549633i
\(609\) 0 0
\(610\) −857.585 118.117i −1.40588 0.193634i
\(611\) 40.9999i 0.0671030i
\(612\) 0 0
\(613\) 109.517i 0.178658i 0.996002 + 0.0893288i \(0.0284722\pi\)
−0.996002 + 0.0893288i \(0.971528\pi\)
\(614\) −1524.59 + 880.224i −2.48305 + 1.43359i
\(615\) 0 0
\(616\) 780.983 1352.70i 1.26783 2.19595i
\(617\) −566.446 + 981.113i −0.918064 + 1.59013i −0.115712 + 0.993283i \(0.536915\pi\)
−0.802352 + 0.596851i \(0.796418\pi\)
\(618\) 0 0
\(619\) −76.7644 132.960i −0.124014 0.214798i 0.797333 0.603539i \(-0.206243\pi\)
−0.921347 + 0.388741i \(0.872910\pi\)
\(620\) −849.751 + 1093.83i −1.37057 + 1.76424i
\(621\) 0 0
\(622\) 666.079i 1.07087i
\(623\) 10.5539 + 18.2799i 0.0169405 + 0.0293417i
\(624\) 0 0
\(625\) 14.9258 624.822i 0.0238814 0.999715i
\(626\) −676.768 390.732i −1.08110 0.624173i
\(627\) 0 0
\(628\) 1030.20 594.789i 1.64045 0.947116i
\(629\) 1023.99i 1.62797i
\(630\) 0 0
\(631\) −289.486 −0.458774 −0.229387 0.973335i \(-0.573672\pi\)
−0.229387 + 0.973335i \(0.573672\pi\)
\(632\) −673.156 1165.94i −1.06512 1.84484i
\(633\) 0 0
\(634\) 365.637 633.302i 0.576715 0.998899i
\(635\) 1146.04 466.709i 1.80479 0.734975i
\(636\) 0 0
\(637\) −121.639 + 70.2281i −0.190955 + 0.110248i
\(638\) −2957.58 −4.63571
\(639\) 0 0
\(640\) 481.873 620.285i 0.752927 0.969196i
\(641\) 673.293 388.726i 1.05038 0.606436i 0.127623 0.991823i \(-0.459265\pi\)
0.922755 + 0.385386i \(0.125932\pi\)
\(642\) 0 0
\(643\) 253.513 + 146.366i 0.394265 + 0.227629i 0.684007 0.729476i \(-0.260236\pi\)
−0.289741 + 0.957105i \(0.593569\pi\)
\(644\) −527.789 304.719i −0.819547 0.473166i
\(645\) 0 0
\(646\) −762.302 1320.35i −1.18003 2.04388i
\(647\) −504.594 −0.779899 −0.389949 0.920836i \(-0.627507\pi\)
−0.389949 + 0.920836i \(0.627507\pi\)
\(648\) 0 0
\(649\) −760.689 −1.17209
\(650\) −688.344 704.983i −1.05899 1.08459i
\(651\) 0 0
\(652\) −652.963 376.989i −1.00148 0.578203i
\(653\) −110.675 + 191.695i −0.169487 + 0.293560i −0.938240 0.345986i \(-0.887544\pi\)
0.768753 + 0.639546i \(0.220878\pi\)
\(654\) 0 0
\(655\) −96.9936 + 704.221i −0.148082 + 1.07515i
\(656\) 975.146i 1.48650i
\(657\) 0 0
\(658\) 80.0240i 0.121617i
\(659\) −665.570 + 384.267i −1.00997 + 0.583106i −0.911183 0.412002i \(-0.864830\pi\)
−0.0987870 + 0.995109i \(0.531496\pi\)
\(660\) 0 0
\(661\) 191.918 332.411i 0.290345 0.502891i −0.683547 0.729907i \(-0.739563\pi\)
0.973891 + 0.227015i \(0.0728968\pi\)
\(662\) −1066.18 + 1846.67i −1.61054 + 2.78953i
\(663\) 0 0
\(664\) −1284.93 2225.56i −1.93513 3.35174i
\(665\) 377.858 + 293.542i 0.568208 + 0.441416i
\(666\) 0 0
\(667\) 627.901i 0.941381i
\(668\) 490.123 + 848.917i 0.733716 + 1.27083i
\(669\) 0 0
\(670\) −1148.13 + 467.560i −1.71363 + 0.697850i
\(671\) −637.699 368.175i −0.950370 0.548697i
\(672\) 0 0
\(673\) −341.950 + 197.425i −0.508098 + 0.293351i −0.732052 0.681249i \(-0.761437\pi\)
0.223953 + 0.974600i \(0.428104\pi\)
\(674\) 1188.73i 1.76370i
\(675\) 0 0
\(676\) 415.931 0.615283
\(677\) −303.489 525.659i −0.448285 0.776453i 0.549989 0.835172i \(-0.314632\pi\)
−0.998275 + 0.0587187i \(0.981299\pi\)
\(678\) 0 0
\(679\) −83.2659 + 144.221i −0.122630 + 0.212402i
\(680\) 863.767 + 2121.05i 1.27025 + 3.11919i
\(681\) 0 0
\(682\) −1485.49 + 857.646i −2.17813 + 1.25754i
\(683\) 711.162 1.04123 0.520616 0.853791i \(-0.325702\pi\)
0.520616 + 0.853791i \(0.325702\pi\)
\(684\) 0 0
\(685\) 223.586 287.808i 0.326402 0.420157i
\(686\) −1150.74 + 664.379i −1.67746 + 0.968483i
\(687\) 0 0
\(688\) 101.773 + 58.7585i 0.147925 + 0.0854048i
\(689\) −535.960 309.437i −0.777881 0.449110i
\(690\) 0 0
\(691\) −425.440 736.883i −0.615687 1.06640i −0.990264 0.139205i \(-0.955545\pi\)
0.374577 0.927196i \(-0.377788\pi\)
\(692\) −76.2473 −0.110184
\(693\) 0 0
\(694\) 247.349 0.356411
\(695\) 331.862 + 45.7079i 0.477499 + 0.0657668i
\(696\) 0 0
\(697\) −875.542 505.494i −1.25616 0.725243i
\(698\) 991.550 1717.41i 1.42056 2.46048i
\(699\) 0 0
\(700\) −922.821 945.129i −1.31832 1.35018i
\(701\) 1073.69i 1.53166i 0.643043 + 0.765830i \(0.277672\pi\)
−0.643043 + 0.765830i \(0.722328\pi\)
\(702\) 0 0
\(703\) 606.229i 0.862345i
\(704\) 220.867 127.518i 0.313732 0.181133i
\(705\) 0 0
\(706\) 315.001 545.598i 0.446177 0.772802i
\(707\) 108.666 188.215i 0.153700 0.266217i
\(708\) 0 0
\(709\) −416.804 721.926i −0.587876 1.01823i −0.994510 0.104640i \(-0.966631\pi\)
0.406634 0.913591i \(-0.366702\pi\)
\(710\) 544.067 + 422.662i 0.766291 + 0.595299i
\(711\) 0 0
\(712\) 59.8123i 0.0840060i
\(713\) 182.080 + 315.372i 0.255372 + 0.442317i
\(714\) 0 0
\(715\) −316.098 776.205i −0.442095 1.08560i
\(716\) 436.663 + 252.108i 0.609865 + 0.352106i
\(717\) 0 0
\(718\) 377.724 218.079i 0.526079 0.303732i
\(719\) 433.030i 0.602267i −0.953582 0.301134i \(-0.902635\pi\)
0.953582 0.301134i \(-0.0973650\pi\)
\(720\) 0 0
\(721\) 168.980 0.234369
\(722\) −193.825 335.714i −0.268455 0.464978i
\(723\) 0 0
\(724\) 612.932 1061.63i 0.846592 1.46634i
\(725\) −367.914 + 1310.28i −0.507467 + 1.80728i
\(726\) 0 0
\(727\) 587.649 339.280i 0.808321 0.466684i −0.0380515 0.999276i \(-0.512115\pi\)
0.846372 + 0.532591i \(0.178782\pi\)
\(728\) −1133.10 −1.55645
\(729\) 0 0
\(730\) 384.847 + 298.971i 0.527187 + 0.409549i
\(731\) 105.513 60.9182i 0.144341 0.0833354i
\(732\) 0 0
\(733\) 157.665 + 91.0280i 0.215096 + 0.124186i 0.603677 0.797229i \(-0.293702\pi\)
−0.388582 + 0.921414i \(0.627035\pi\)
\(734\) 2081.24 + 1201.60i 2.83548 + 1.63706i
\(735\) 0 0
\(736\) 140.036 + 242.549i 0.190266 + 0.329550i
\(737\) −1054.48 −1.43077
\(738\) 0 0
\(739\) 727.990 0.985101 0.492551 0.870284i \(-0.336065\pi\)
0.492551 + 0.870284i \(0.336065\pi\)
\(740\) −228.353 + 1657.96i −0.308585 + 2.24048i
\(741\) 0 0
\(742\) −1046.09 603.961i −1.40983 0.813964i
\(743\) 197.141 341.459i 0.265331 0.459567i −0.702319 0.711862i \(-0.747852\pi\)
0.967650 + 0.252295i \(0.0811853\pi\)
\(744\) 0 0
\(745\) 52.2353 379.254i 0.0701145 0.509065i
\(746\) 1836.44i 2.46171i
\(747\) 0 0
\(748\) 3580.15i 4.78630i
\(749\) 478.981 276.540i 0.639493 0.369212i
\(750\) 0 0
\(751\) −669.591 + 1159.77i −0.891600 + 1.54430i −0.0536427 + 0.998560i \(0.517083\pi\)
−0.837957 + 0.545736i \(0.816250\pi\)
\(752\) −48.1327 + 83.3683i −0.0640063 + 0.110862i
\(753\) 0 0
\(754\) 1072.76 + 1858.07i 1.42276 + 2.46429i
\(755\) −122.406 + 157.566i −0.162128 + 0.208697i
\(756\) 0 0
\(757\) 185.595i 0.245171i 0.992458 + 0.122586i \(0.0391186\pi\)
−0.992458 + 0.122586i \(0.960881\pi\)
\(758\) −886.988 1536.31i −1.17017 2.02679i
\(759\) 0 0
\(760\) −511.373 1255.72i −0.672859 1.65226i
\(761\) −808.635 466.866i −1.06260 0.613490i −0.136446 0.990647i \(-0.543568\pi\)
−0.926149 + 0.377158i \(0.876902\pi\)
\(762\) 0 0
\(763\) 407.703 235.388i 0.534342 0.308503i
\(764\) 276.180i 0.361492i
\(765\) 0 0
\(766\) −2129.90 −2.78054
\(767\) 275.913 + 477.896i 0.359730 + 0.623071i
\(768\) 0 0
\(769\) −529.465 + 917.060i −0.688511 + 1.19254i 0.283809 + 0.958881i \(0.408402\pi\)
−0.972320 + 0.233655i \(0.924931\pi\)
\(770\) −616.963 1515.00i −0.801251 1.96754i
\(771\) 0 0
\(772\) 380.509 219.687i 0.492888 0.284569i
\(773\) −79.0622 −0.102280 −0.0511399 0.998692i \(-0.516285\pi\)
−0.0511399 + 0.998692i \(0.516285\pi\)
\(774\) 0 0
\(775\) 195.168 + 764.794i 0.251830 + 0.986831i
\(776\) 408.672 235.947i 0.526639 0.304055i
\(777\) 0 0
\(778\) 1359.71 + 785.027i 1.74769 + 1.00903i
\(779\) 518.343 + 299.266i 0.665396 + 0.384166i
\(780\) 0 0
\(781\) 293.012 + 507.511i 0.375175 + 0.649822i
\(782\) 1106.57 1.41506
\(783\) 0 0
\(784\) 329.783 0.420641
\(785\) 92.4920 671.538i 0.117824 0.855462i
\(786\) 0 0
\(787\) 836.792 + 483.122i 1.06327 + 0.613878i 0.926335 0.376702i \(-0.122942\pi\)
0.136934 + 0.990580i \(0.456275\pi\)
\(788\) 164.477 284.883i 0.208728 0.361527i
\(789\) 0 0
\(790\) −1396.78 192.380i −1.76807 0.243519i
\(791\) 39.5470i 0.0499962i
\(792\) 0 0
\(793\) 534.171i 0.673608i
\(794\) 1256.47 725.424i 1.58246 0.913632i
\(795\) 0 0
\(796\) −177.755 + 307.881i −0.223310 + 0.386785i
\(797\) 637.906 1104.89i 0.800384 1.38630i −0.118980 0.992897i \(-0.537963\pi\)
0.919364 0.393408i \(-0.128704\pi\)
\(798\) 0 0
\(799\) 49.9019 + 86.4325i 0.0624554 + 0.108176i
\(800\) 150.102 + 588.195i 0.187627 + 0.735244i
\(801\) 0 0
\(802\) 1173.90i 1.46372i
\(803\) 207.262 + 358.989i 0.258110 + 0.447059i
\(804\) 0 0
\(805\) −321.638 + 130.983i −0.399551 + 0.162711i
\(806\) 1077.62 + 622.162i 1.33699 + 0.771913i
\(807\) 0 0
\(808\) −533.338 + 307.923i −0.660071 + 0.381092i
\(809\) 1533.89i 1.89603i −0.318220 0.948017i \(-0.603085\pi\)
0.318220 0.948017i \(-0.396915\pi\)
\(810\) 0 0
\(811\) −753.037 −0.928530 −0.464265 0.885696i \(-0.653681\pi\)
−0.464265 + 0.885696i \(0.653681\pi\)
\(812\) 1438.19 + 2491.01i 1.77116 + 3.06775i
\(813\) 0 0
\(814\) −1036.28 + 1794.88i −1.27307 + 2.20502i
\(815\) −397.921 + 162.047i −0.488247 + 0.198831i
\(816\) 0 0
\(817\) −62.4666 + 36.0651i −0.0764586 + 0.0441434i
\(818\) 58.3067 0.0712796
\(819\) 0 0
\(820\) −1304.87 1013.70i −1.59131 1.23622i
\(821\) −1336.50 + 771.628i −1.62789 + 0.939863i −0.643170 + 0.765723i \(0.722381\pi\)
−0.984721 + 0.174140i \(0.944285\pi\)
\(822\) 0 0
\(823\) 1011.48 + 583.978i 1.22902 + 0.709573i 0.966824 0.255443i \(-0.0822213\pi\)
0.262192 + 0.965016i \(0.415555\pi\)
\(824\) −414.681 239.416i −0.503253 0.290553i
\(825\) 0 0
\(826\) 538.530 + 932.761i 0.651973 + 1.12925i
\(827\) 432.942 0.523509 0.261755 0.965134i \(-0.415699\pi\)
0.261755 + 0.965134i \(0.415699\pi\)
\(828\) 0 0
\(829\) 470.069 0.567031 0.283515 0.958968i \(-0.408499\pi\)
0.283515 + 0.958968i \(0.408499\pi\)
\(830\) −2666.18 367.217i −3.21226 0.442430i
\(831\) 0 0
\(832\) −160.224 92.5052i −0.192577 0.111184i
\(833\) 170.952 296.098i 0.205225 0.355459i
\(834\) 0 0
\(835\) 553.366 + 76.2160i 0.662713 + 0.0912767i
\(836\) 2119.54i 2.53534i
\(837\) 0 0
\(838\) 1363.70i 1.62733i
\(839\) −874.006 + 504.607i −1.04172 + 0.601439i −0.920321 0.391164i \(-0.872072\pi\)
−0.121402 + 0.992603i \(0.538739\pi\)
\(840\) 0 0
\(841\) 1061.26 1838.15i 1.26190 2.18567i
\(842\) 756.529 1310.35i 0.898490 1.55623i
\(843\) 0 0
\(844\) −756.662 1310.58i −0.896519 1.55282i
\(845\) 145.407 187.173i 0.172079 0.221507i
\(846\) 0 0
\(847\) 662.783i 0.782507i
\(848\) 726.539 + 1258.40i 0.856767 + 1.48396i
\(849\) 0 0
\(850\) 2309.16 + 648.388i 2.71665 + 0.762810i
\(851\) 381.057 + 220.004i 0.447776 + 0.258524i
\(852\) 0 0
\(853\) 780.076 450.377i 0.914509 0.527992i 0.0326300 0.999467i \(-0.489612\pi\)
0.881879 + 0.471475i \(0.156278\pi\)
\(854\) 1042.60i 1.22084i
\(855\) 0 0
\(856\) −1567.24 −1.83088
\(857\) 55.9121 + 96.8427i 0.0652417 + 0.113002i 0.896801 0.442434i \(-0.145885\pi\)
−0.831559 + 0.555436i \(0.812551\pi\)
\(858\) 0 0
\(859\) −90.2278 + 156.279i −0.105038 + 0.181931i −0.913754 0.406268i \(-0.866830\pi\)
0.808716 + 0.588200i \(0.200163\pi\)
\(860\) 184.423 75.1035i 0.214445 0.0873297i
\(861\) 0 0
\(862\) −149.527 + 86.3293i −0.173465 + 0.100150i
\(863\) 451.735 0.523447 0.261724 0.965143i \(-0.415709\pi\)
0.261724 + 0.965143i \(0.415709\pi\)
\(864\) 0 0
\(865\) −26.6556 + 34.3121i −0.0308157 + 0.0396672i
\(866\) 111.616 64.4415i 0.128887 0.0744128i
\(867\) 0 0
\(868\) 1444.70 + 834.095i 1.66440 + 0.960939i
\(869\) −1038.64 599.659i −1.19521 0.690056i
\(870\) 0 0
\(871\) 382.475 + 662.467i 0.439122 + 0.760582i
\(872\) −1334.01 −1.52983
\(873\) 0 0
\(874\) −655.120 −0.749566
\(875\) −747.931 + 84.8679i −0.854778 + 0.0969919i
\(876\) 0 0
\(877\) −637.590 368.112i −0.727012 0.419741i 0.0903161 0.995913i \(-0.471212\pi\)
−0.817328 + 0.576173i \(0.804546\pi\)
\(878\) −464.789 + 805.039i −0.529373 + 0.916901i
\(879\) 0 0
\(880\) −268.495 + 1949.41i −0.305108 + 2.21523i
\(881\) 52.0576i 0.0590892i −0.999563 0.0295446i \(-0.990594\pi\)
0.999563 0.0295446i \(-0.00940571\pi\)
\(882\) 0 0
\(883\) 637.785i 0.722294i 0.932509 + 0.361147i \(0.117615\pi\)
−0.932509 + 0.361147i \(0.882385\pi\)
\(884\) 2249.20 1298.57i 2.54434 1.46897i
\(885\) 0 0
\(886\) −40.2613 + 69.7347i −0.0454417 + 0.0787073i
\(887\) 673.271 1166.14i 0.759043 1.31470i −0.184297 0.982871i \(-0.559001\pi\)
0.943339 0.331830i \(-0.107666\pi\)
\(888\) 0 0
\(889\) −745.160 1290.66i −0.838201 1.45181i
\(890\) −49.4671 38.4289i −0.0555810 0.0431785i
\(891\) 0 0
\(892\) 2626.63i 2.94465i
\(893\) −29.5432 51.1703i −0.0330831 0.0573016i
\(894\) 0 0
\(895\) 266.106 108.368i 0.297325 0.121081i
\(896\) −819.252 472.995i −0.914343 0.527896i
\(897\) 0 0
\(898\) −853.181 + 492.584i −0.950090 + 0.548535i
\(899\) 1718.73i 1.91182i
\(900\) 0 0
\(901\) 1506.49 1.67202
\(902\) −1023.12 1772.09i −1.13428 1.96463i
\(903\) 0 0
\(904\) 56.0313 97.0491i 0.0619816 0.107355i
\(905\) −263.467 646.966i −0.291124 0.714879i
\(906\) 0 0
\(907\) −929.536 + 536.668i −1.02485 + 0.591696i −0.915504 0.402308i \(-0.868208\pi\)
−0.109343 + 0.994004i \(0.534875\pi\)
\(908\) 2621.02 2.88658
\(909\) 0 0
\(910\) −728.005 + 937.115i −0.800005 + 1.02980i
\(911\) 72.5021 41.8591i 0.0795851 0.0459485i −0.459679 0.888085i \(-0.652036\pi\)
0.539264 + 0.842136i \(0.318702\pi\)
\(912\) 0 0
\(913\) −1982.56 1144.63i −2.17148 1.25371i
\(914\) 369.599 + 213.388i 0.404375 + 0.233466i
\(915\) 0 0
\(916\) 891.949 + 1544.90i 0.973744 + 1.68657i
\(917\) 856.149 0.933641
\(918\) 0 0
\(919\) 1235.72 1.34463 0.672317 0.740264i \(-0.265299\pi\)
0.672317 + 0.740264i \(0.265299\pi\)
\(920\) 974.886 + 134.273i 1.05966 + 0.145949i
\(921\) 0 0
\(922\) 279.678 + 161.472i 0.303339 + 0.175133i
\(923\) 212.559 368.163i 0.230292 0.398877i
\(924\) 0 0
\(925\) 666.267 + 682.373i 0.720288 + 0.737700i
\(926\) 2181.77i 2.35612i
\(927\) 0 0
\(928\) 1321.86i 1.42442i
\(929\) 645.248 372.534i 0.694562 0.401006i −0.110757 0.993848i \(-0.535327\pi\)
0.805319 + 0.592842i \(0.201994\pi\)
\(930\) 0 0
\(931\) −101.208 + 175.297i −0.108709 + 0.188289i
\(932\) −1914.54 + 3316.08i −2.05423 + 3.55802i
\(933\) 0 0
\(934\) 117.326 + 203.215i 0.125617 + 0.217575i
\(935\) 1611.11 + 1251.60i 1.72311 + 1.33861i
\(936\) 0 0
\(937\) 353.460i 0.377225i −0.982052 0.188613i \(-0.939601\pi\)
0.982052 0.188613i \(-0.0603991\pi\)
\(938\) 746.519 + 1293.01i 0.795862 + 1.37847i
\(939\) 0 0
\(940\) 61.5220 + 151.072i 0.0654489 + 0.160715i
\(941\) 219.779 + 126.889i 0.233559 + 0.134845i 0.612213 0.790693i \(-0.290280\pi\)
−0.378654 + 0.925538i \(0.623613\pi\)
\(942\) 0 0
\(943\) −376.219 + 217.210i −0.398960 + 0.230339i
\(944\) 1295.66i 1.37252i
\(945\) 0 0
\(946\) 246.596 0.260673
\(947\) 787.358 + 1363.74i 0.831424 + 1.44007i 0.896909 + 0.442215i \(0.145807\pi\)
−0.0654856 + 0.997854i \(0.520860\pi\)
\(948\) 0 0
\(949\) 150.354 260.421i 0.158434 0.274416i
\(950\) −1367.08 383.863i −1.43903 0.404066i
\(951\) 0 0
\(952\) 2388.70 1379.11i 2.50914 1.44865i
\(953\) 137.098 0.143860 0.0719300 0.997410i \(-0.477084\pi\)
0.0719300 + 0.997410i \(0.477084\pi\)
\(954\) 0 0
\(955\) −124.284 96.5508i −0.130140 0.101100i
\(956\) 1821.40 1051.58i 1.90523 1.09998i
\(957\) 0 0
\(958\) 290.898 + 167.950i 0.303651 + 0.175313i
\(959\) −380.126 219.466i −0.396378 0.228849i
\(960\) 0 0
\(961\) −17.9004 31.0045i −0.0186269 0.0322627i
\(962\) 1503.49 1.56288
\(963\) 0 0
\(964\) 1801.78 1.86907
\(965\) 34.1622 248.034i 0.0354013 0.257031i
\(966\) 0 0
\(967\) −326.711 188.627i −0.337860 0.195064i 0.321465 0.946921i \(-0.395825\pi\)
−0.659325 + 0.751858i \(0.729158\pi\)
\(968\) −939.050 + 1626.48i −0.970093 + 1.68025i
\(969\) 0 0
\(970\) 67.4310 489.582i 0.0695165 0.504724i
\(971\) 855.490i 0.881040i −0.897743 0.440520i \(-0.854794\pi\)
0.897743 0.440520i \(-0.145206\pi\)
\(972\) 0 0
\(973\) 403.457i 0.414653i
\(974\) 2493.13 1439.41i 2.55968 1.47783i
\(975\) 0 0
\(976\) 627.101 1086.17i 0.642521 1.11288i
\(977\) 537.354 930.724i 0.550004 0.952635i −0.448270 0.893898i \(-0.647960\pi\)
0.998274 0.0587364i \(-0.0187072\pi\)
\(978\) 0 0
\(979\) −26.6409 46.1434i −0.0272124 0.0471332i
\(980\) 342.821 441.292i 0.349818 0.450298i
\(981\) 0 0
\(982\) 3362.46i 3.42410i
\(983\) −580.777 1005.94i −0.590821 1.02333i −0.994122 0.108264i \(-0.965471\pi\)
0.403301 0.915067i \(-0.367863\pi\)
\(984\) 0 0
\(985\) −70.7001 173.610i −0.0717768 0.176254i
\(986\) −4523.00 2611.36i −4.58722 2.64843i
\(987\) 0 0
\(988\) −1331.58 + 768.789i −1.34775 + 0.778127i
\(989\) 52.3529i 0.0529352i
\(990\) 0 0
\(991\) 463.882 0.468095 0.234047 0.972225i \(-0.424803\pi\)
0.234047 + 0.972225i \(0.424803\pi\)
\(992\) −383.315 663.920i −0.386406 0.669275i
\(993\) 0 0
\(994\) 414.875 718.585i 0.417379 0.722922i
\(995\) 76.4075 + 187.625i 0.0767915 + 0.188568i
\(996\) 0 0
\(997\) −161.504 + 93.2442i −0.161990 + 0.0935248i −0.578803 0.815467i \(-0.696480\pi\)
0.416814 + 0.908992i \(0.363147\pi\)
\(998\) −1357.91 −1.36063
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.134.24 48
3.2 odd 2 inner 405.3.h.k.134.1 48
5.4 even 2 inner 405.3.h.k.134.2 48
9.2 odd 6 inner 405.3.h.k.269.2 48
9.4 even 3 405.3.d.b.404.1 24
9.5 odd 6 405.3.d.b.404.24 yes 24
9.7 even 3 inner 405.3.h.k.269.23 48
15.14 odd 2 inner 405.3.h.k.134.23 48
45.4 even 6 405.3.d.b.404.23 yes 24
45.14 odd 6 405.3.d.b.404.2 yes 24
45.29 odd 6 inner 405.3.h.k.269.24 48
45.34 even 6 inner 405.3.h.k.269.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.1 24 9.4 even 3
405.3.d.b.404.2 yes 24 45.14 odd 6
405.3.d.b.404.23 yes 24 45.4 even 6
405.3.d.b.404.24 yes 24 9.5 odd 6
405.3.h.k.134.1 48 3.2 odd 2 inner
405.3.h.k.134.2 48 5.4 even 2 inner
405.3.h.k.134.23 48 15.14 odd 2 inner
405.3.h.k.134.24 48 1.1 even 1 trivial
405.3.h.k.269.1 48 45.34 even 6 inner
405.3.h.k.269.2 48 9.2 odd 6 inner
405.3.h.k.269.23 48 9.7 even 3 inner
405.3.h.k.269.24 48 45.29 odd 6 inner