Properties

Label 405.3.h.k.134.2
Level $405$
Weight $3$
Character 405.134
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 134.2
Character \(\chi\) \(=\) 405.134
Dual form 405.3.h.k.269.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.78706 - 3.09527i) q^{2} +(-4.38714 + 7.59875i) q^{4} +(4.95324 - 0.682218i) q^{5} +(-5.21507 + 3.01092i) q^{7} +17.0638 q^{8} +(-10.9634 - 14.1125i) q^{10} +(-13.1642 + 7.60038i) q^{11} +(-9.54973 - 5.51354i) q^{13} +(18.6393 + 10.7614i) q^{14} +(-12.9455 - 22.4222i) q^{16} +26.8426 q^{17} +15.8915 q^{19} +(-16.5466 + 40.6314i) q^{20} +(47.0505 + 27.1646i) q^{22} +(5.76711 - 9.98892i) q^{23} +(24.0692 - 6.75838i) q^{25} +39.4120i q^{26} -52.8374i q^{28} +(47.1448 - 27.2191i) q^{29} +(15.7861 - 27.3423i) q^{31} +(-12.1409 + 21.0287i) q^{32} +(-47.9692 - 83.0851i) q^{34} +(-23.7774 + 18.4716i) q^{35} +38.1480i q^{37} +(-28.3990 - 49.1885i) q^{38} +(84.5213 - 11.6413i) q^{40} +(32.6176 + 18.8318i) q^{41} +(3.93082 - 2.26946i) q^{43} -133.376i q^{44} -41.2246 q^{46} +(1.85906 + 3.21998i) q^{47} +(-6.36869 + 11.0309i) q^{49} +(-63.9320 - 62.4230i) q^{50} +(83.7921 - 48.3774i) q^{52} +56.1230 q^{53} +(-60.0205 + 46.6274i) q^{55} +(-88.9891 + 51.3779i) q^{56} +(-168.501 - 97.2841i) q^{58} +(43.3384 + 25.0214i) q^{59} +(24.2209 + 41.9518i) q^{61} -112.842 q^{62} -16.7778 q^{64} +(-51.0636 - 20.7949i) q^{65} +(-60.0763 - 34.6851i) q^{67} +(-117.762 + 203.970i) q^{68} +(99.6663 + 40.5876i) q^{70} -38.5522i q^{71} +27.2700i q^{73} +(118.078 - 68.1726i) q^{74} +(-69.7183 + 120.756i) q^{76} +(45.7683 - 79.2730i) q^{77} +(39.4493 + 68.3281i) q^{79} +(-79.4189 - 102.231i) q^{80} -134.614i q^{82} +(-75.3011 - 130.425i) q^{83} +(132.958 - 18.3125i) q^{85} +(-14.0492 - 8.11131i) q^{86} +(-224.633 + 129.692i) q^{88} +3.50521i q^{89} +66.4034 q^{91} +(50.6022 + 87.6456i) q^{92} +(6.64448 - 11.5086i) q^{94} +(78.7144 - 10.8415i) q^{95} +(23.9496 - 13.8273i) q^{97} +45.5248 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.78706 3.09527i −0.893528 1.54764i −0.835616 0.549315i \(-0.814889\pi\)
−0.0579128 0.998322i \(-0.518445\pi\)
\(3\) 0 0
\(4\) −4.38714 + 7.59875i −1.09679 + 1.89969i
\(5\) 4.95324 0.682218i 0.990648 0.136444i
\(6\) 0 0
\(7\) −5.21507 + 3.01092i −0.745010 + 0.430132i −0.823888 0.566752i \(-0.808200\pi\)
0.0788780 + 0.996884i \(0.474866\pi\)
\(8\) 17.0638 2.13298
\(9\) 0 0
\(10\) −10.9634 14.1125i −1.09634 1.41125i
\(11\) −13.1642 + 7.60038i −1.19675 + 0.690944i −0.959829 0.280585i \(-0.909471\pi\)
−0.236920 + 0.971529i \(0.576138\pi\)
\(12\) 0 0
\(13\) −9.54973 5.51354i −0.734595 0.424119i 0.0855059 0.996338i \(-0.472749\pi\)
−0.820101 + 0.572219i \(0.806083\pi\)
\(14\) 18.6393 + 10.7614i 1.33138 + 0.768670i
\(15\) 0 0
\(16\) −12.9455 22.4222i −0.809092 1.40139i
\(17\) 26.8426 1.57898 0.789488 0.613767i \(-0.210346\pi\)
0.789488 + 0.613767i \(0.210346\pi\)
\(18\) 0 0
\(19\) 15.8915 0.836395 0.418197 0.908356i \(-0.362662\pi\)
0.418197 + 0.908356i \(0.362662\pi\)
\(20\) −16.5466 + 40.6314i −0.827328 + 2.03157i
\(21\) 0 0
\(22\) 47.0505 + 27.1646i 2.13866 + 1.23476i
\(23\) 5.76711 9.98892i 0.250744 0.434301i −0.712987 0.701177i \(-0.752658\pi\)
0.963731 + 0.266876i \(0.0859915\pi\)
\(24\) 0 0
\(25\) 24.0692 6.75838i 0.962766 0.270335i
\(26\) 39.4120i 1.51585i
\(27\) 0 0
\(28\) 52.8374i 1.88705i
\(29\) 47.1448 27.2191i 1.62568 0.938589i 0.640324 0.768105i \(-0.278800\pi\)
0.985360 0.170484i \(-0.0545331\pi\)
\(30\) 0 0
\(31\) 15.7861 27.3423i 0.509228 0.882009i −0.490715 0.871320i \(-0.663264\pi\)
0.999943 0.0106889i \(-0.00340244\pi\)
\(32\) −12.1409 + 21.0287i −0.379403 + 0.657146i
\(33\) 0 0
\(34\) −47.9692 83.0851i −1.41086 2.44368i
\(35\) −23.7774 + 18.4716i −0.679354 + 0.527761i
\(36\) 0 0
\(37\) 38.1480i 1.03103i 0.856881 + 0.515514i \(0.172399\pi\)
−0.856881 + 0.515514i \(0.827601\pi\)
\(38\) −28.3990 49.1885i −0.747342 1.29443i
\(39\) 0 0
\(40\) 84.5213 11.6413i 2.11303 0.291032i
\(41\) 32.6176 + 18.8318i 0.795552 + 0.459312i 0.841914 0.539612i \(-0.181429\pi\)
−0.0463612 + 0.998925i \(0.514763\pi\)
\(42\) 0 0
\(43\) 3.93082 2.26946i 0.0914145 0.0527782i −0.453596 0.891207i \(-0.649859\pi\)
0.545010 + 0.838429i \(0.316526\pi\)
\(44\) 133.376i 3.03127i
\(45\) 0 0
\(46\) −41.2246 −0.896187
\(47\) 1.85906 + 3.21998i 0.0395544 + 0.0685102i 0.885125 0.465354i \(-0.154073\pi\)
−0.845570 + 0.533864i \(0.820739\pi\)
\(48\) 0 0
\(49\) −6.36869 + 11.0309i −0.129973 + 0.225120i
\(50\) −63.9320 62.4230i −1.27864 1.24846i
\(51\) 0 0
\(52\) 83.7921 48.3774i 1.61139 0.930334i
\(53\) 56.1230 1.05892 0.529462 0.848333i \(-0.322394\pi\)
0.529462 + 0.848333i \(0.322394\pi\)
\(54\) 0 0
\(55\) −60.0205 + 46.6274i −1.09128 + 0.847771i
\(56\) −88.9891 + 51.3779i −1.58909 + 0.917462i
\(57\) 0 0
\(58\) −168.501 97.2841i −2.90519 1.67731i
\(59\) 43.3384 + 25.0214i 0.734549 + 0.424092i 0.820084 0.572243i \(-0.193927\pi\)
−0.0855353 + 0.996335i \(0.527260\pi\)
\(60\) 0 0
\(61\) 24.2209 + 41.9518i 0.397063 + 0.687734i 0.993362 0.115029i \(-0.0366960\pi\)
−0.596299 + 0.802762i \(0.703363\pi\)
\(62\) −112.842 −1.82004
\(63\) 0 0
\(64\) −16.7778 −0.262153
\(65\) −51.0636 20.7949i −0.785593 0.319921i
\(66\) 0 0
\(67\) −60.0763 34.6851i −0.896662 0.517688i −0.0205460 0.999789i \(-0.506540\pi\)
−0.876116 + 0.482101i \(0.839874\pi\)
\(68\) −117.762 + 203.970i −1.73180 + 2.99956i
\(69\) 0 0
\(70\) 99.6663 + 40.5876i 1.42380 + 0.579823i
\(71\) 38.5522i 0.542989i −0.962440 0.271494i \(-0.912482\pi\)
0.962440 0.271494i \(-0.0875179\pi\)
\(72\) 0 0
\(73\) 27.2700i 0.373561i 0.982402 + 0.186781i \(0.0598054\pi\)
−0.982402 + 0.186781i \(0.940195\pi\)
\(74\) 118.078 68.1726i 1.59566 0.921252i
\(75\) 0 0
\(76\) −69.7183 + 120.756i −0.917346 + 1.58889i
\(77\) 45.7683 79.2730i 0.594394 1.02952i
\(78\) 0 0
\(79\) 39.4493 + 68.3281i 0.499358 + 0.864913i 1.00000 0.000741320i \(-0.000235969\pi\)
−0.500642 + 0.865655i \(0.666903\pi\)
\(80\) −79.4189 102.231i −0.992736 1.27789i
\(81\) 0 0
\(82\) 134.614i 1.64163i
\(83\) −75.3011 130.425i −0.907242 1.57139i −0.817879 0.575390i \(-0.804850\pi\)
−0.0893625 0.995999i \(-0.528483\pi\)
\(84\) 0 0
\(85\) 132.958 18.3125i 1.56421 0.215441i
\(86\) −14.0492 8.11131i −0.163363 0.0943176i
\(87\) 0 0
\(88\) −224.633 + 129.692i −2.55264 + 1.47377i
\(89\) 3.50521i 0.0393843i 0.999806 + 0.0196922i \(0.00626862\pi\)
−0.999806 + 0.0196922i \(0.993731\pi\)
\(90\) 0 0
\(91\) 66.4034 0.729708
\(92\) 50.6022 + 87.6456i 0.550024 + 0.952670i
\(93\) 0 0
\(94\) 6.64448 11.5086i 0.0706859 0.122432i
\(95\) 78.7144 10.8415i 0.828573 0.114121i
\(96\) 0 0
\(97\) 23.9496 13.8273i 0.246903 0.142550i −0.371442 0.928456i \(-0.621137\pi\)
0.618345 + 0.785906i \(0.287803\pi\)
\(98\) 45.5248 0.464539
\(99\) 0 0
\(100\) −54.2396 + 212.546i −0.542396 + 2.12546i
\(101\) 31.2554 18.0453i 0.309460 0.178667i −0.337225 0.941424i \(-0.609488\pi\)
0.646685 + 0.762757i \(0.276155\pi\)
\(102\) 0 0
\(103\) −24.3017 14.0306i −0.235939 0.136219i 0.377370 0.926063i \(-0.376829\pi\)
−0.613309 + 0.789843i \(0.710162\pi\)
\(104\) −162.955 94.0822i −1.56688 0.904636i
\(105\) 0 0
\(106\) −100.295 173.716i −0.946179 1.63883i
\(107\) −91.8455 −0.858369 −0.429184 0.903217i \(-0.641199\pi\)
−0.429184 + 0.903217i \(0.641199\pi\)
\(108\) 0 0
\(109\) 78.1779 0.717228 0.358614 0.933486i \(-0.383249\pi\)
0.358614 + 0.933486i \(0.383249\pi\)
\(110\) 251.585 + 102.454i 2.28713 + 0.931401i
\(111\) 0 0
\(112\) 135.023 + 77.9556i 1.20556 + 0.696032i
\(113\) 3.28363 5.68742i 0.0290587 0.0503311i −0.851130 0.524954i \(-0.824082\pi\)
0.880189 + 0.474623i \(0.157416\pi\)
\(114\) 0 0
\(115\) 21.7512 53.4119i 0.189141 0.464452i
\(116\) 477.656i 4.11772i
\(117\) 0 0
\(118\) 178.859i 1.51575i
\(119\) −139.986 + 80.8209i −1.17635 + 0.679167i
\(120\) 0 0
\(121\) 55.0316 95.3175i 0.454806 0.787748i
\(122\) 86.5681 149.940i 0.709574 1.22902i
\(123\) 0 0
\(124\) 138.512 + 239.909i 1.11703 + 1.93475i
\(125\) 114.610 49.8963i 0.916877 0.399170i
\(126\) 0 0
\(127\) 247.486i 1.94871i 0.225023 + 0.974353i \(0.427754\pi\)
−0.225023 + 0.974353i \(0.572246\pi\)
\(128\) 78.5465 + 136.047i 0.613645 + 1.06286i
\(129\) 0 0
\(130\) 26.8876 + 195.217i 0.206828 + 1.50167i
\(131\) 123.126 + 71.0869i 0.939894 + 0.542648i 0.889927 0.456103i \(-0.150755\pi\)
0.0499669 + 0.998751i \(0.484088\pi\)
\(132\) 0 0
\(133\) −82.8753 + 47.8481i −0.623122 + 0.359760i
\(134\) 247.937i 1.85027i
\(135\) 0 0
\(136\) 458.037 3.36792
\(137\) 36.4450 + 63.1246i 0.266022 + 0.460763i 0.967831 0.251602i \(-0.0809573\pi\)
−0.701809 + 0.712365i \(0.747624\pi\)
\(138\) 0 0
\(139\) 33.4995 58.0228i 0.241003 0.417430i −0.719997 0.693977i \(-0.755857\pi\)
0.961000 + 0.276547i \(0.0891902\pi\)
\(140\) −36.0466 261.716i −0.257476 1.86940i
\(141\) 0 0
\(142\) −119.330 + 68.8950i −0.840350 + 0.485176i
\(143\) 167.620 1.17217
\(144\) 0 0
\(145\) 214.950 166.986i 1.48242 1.15163i
\(146\) 84.4080 48.7330i 0.578137 0.333788i
\(147\) 0 0
\(148\) −289.877 167.361i −1.95863 1.13082i
\(149\) −66.3088 38.2834i −0.445025 0.256936i 0.260702 0.965419i \(-0.416046\pi\)
−0.705727 + 0.708484i \(0.749379\pi\)
\(150\) 0 0
\(151\) 19.9525 + 34.5588i 0.132136 + 0.228866i 0.924500 0.381183i \(-0.124483\pi\)
−0.792364 + 0.610049i \(0.791150\pi\)
\(152\) 271.170 1.78401
\(153\) 0 0
\(154\) −327.162 −2.12443
\(155\) 59.5388 146.202i 0.384121 0.943242i
\(156\) 0 0
\(157\) 117.412 + 67.7877i 0.747846 + 0.431769i 0.824915 0.565257i \(-0.191223\pi\)
−0.0770693 + 0.997026i \(0.524556\pi\)
\(158\) 140.996 244.213i 0.892381 1.54565i
\(159\) 0 0
\(160\) −45.7907 + 112.443i −0.286192 + 0.702767i
\(161\) 69.4572i 0.431411i
\(162\) 0 0
\(163\) 85.9303i 0.527180i −0.964635 0.263590i \(-0.915093\pi\)
0.964635 0.263590i \(-0.0849066\pi\)
\(164\) −286.197 + 165.236i −1.74510 + 1.00753i
\(165\) 0 0
\(166\) −269.135 + 466.155i −1.62129 + 2.80816i
\(167\) −55.8590 + 96.7506i −0.334485 + 0.579345i −0.983386 0.181528i \(-0.941896\pi\)
0.648901 + 0.760873i \(0.275229\pi\)
\(168\) 0 0
\(169\) −23.7017 41.0526i −0.140247 0.242915i
\(170\) −294.285 378.815i −1.73109 2.22832i
\(171\) 0 0
\(172\) 39.8258i 0.231545i
\(173\) −4.34493 7.52564i −0.0251152 0.0435008i 0.853195 0.521593i \(-0.174662\pi\)
−0.878310 + 0.478092i \(0.841329\pi\)
\(174\) 0 0
\(175\) −105.173 + 107.716i −0.600991 + 0.615519i
\(176\) 340.835 + 196.781i 1.93656 + 1.11807i
\(177\) 0 0
\(178\) 10.8496 6.26400i 0.0609526 0.0351910i
\(179\) 57.4651i 0.321034i −0.987033 0.160517i \(-0.948684\pi\)
0.987033 0.160517i \(-0.0513162\pi\)
\(180\) 0 0
\(181\) −139.711 −0.771884 −0.385942 0.922523i \(-0.626124\pi\)
−0.385942 + 0.922523i \(0.626124\pi\)
\(182\) −118.667 205.537i −0.652014 1.12932i
\(183\) 0 0
\(184\) 98.4090 170.449i 0.534831 0.926355i
\(185\) 26.0253 + 188.956i 0.140677 + 1.02138i
\(186\) 0 0
\(187\) −353.362 + 204.014i −1.88964 + 1.09098i
\(188\) −32.6238 −0.173531
\(189\) 0 0
\(190\) −174.224 224.268i −0.916970 1.18036i
\(191\) −27.2590 + 15.7380i −0.142718 + 0.0823980i −0.569659 0.821881i \(-0.692925\pi\)
0.426941 + 0.904279i \(0.359591\pi\)
\(192\) 0 0
\(193\) 43.3664 + 25.0376i 0.224696 + 0.129729i 0.608123 0.793843i \(-0.291923\pi\)
−0.383427 + 0.923571i \(0.625256\pi\)
\(194\) −85.5986 49.4204i −0.441230 0.254744i
\(195\) 0 0
\(196\) −55.8807 96.7882i −0.285106 0.493817i
\(197\) 37.4908 0.190308 0.0951542 0.995463i \(-0.469666\pi\)
0.0951542 + 0.995463i \(0.469666\pi\)
\(198\) 0 0
\(199\) 40.5173 0.203604 0.101802 0.994805i \(-0.467539\pi\)
0.101802 + 0.994805i \(0.467539\pi\)
\(200\) 410.712 115.324i 2.05356 0.576620i
\(201\) 0 0
\(202\) −111.710 64.4961i −0.553022 0.319287i
\(203\) −163.909 + 283.899i −0.807434 + 1.39852i
\(204\) 0 0
\(205\) 174.410 + 71.0261i 0.850782 + 0.346469i
\(206\) 100.294i 0.486864i
\(207\) 0 0
\(208\) 285.502i 1.37260i
\(209\) −209.200 + 120.781i −1.00095 + 0.577902i
\(210\) 0 0
\(211\) −86.2363 + 149.366i −0.408703 + 0.707894i −0.994745 0.102387i \(-0.967352\pi\)
0.586042 + 0.810281i \(0.300685\pi\)
\(212\) −246.220 + 426.465i −1.16141 + 2.01163i
\(213\) 0 0
\(214\) 164.133 + 284.287i 0.766977 + 1.32844i
\(215\) 17.9220 13.9229i 0.0833583 0.0647575i
\(216\) 0 0
\(217\) 190.123i 0.876141i
\(218\) −139.708 241.982i −0.640864 1.11001i
\(219\) 0 0
\(220\) −90.9914 660.642i −0.413597 3.00292i
\(221\) −256.339 147.998i −1.15991 0.669673i
\(222\) 0 0
\(223\) 259.250 149.678i 1.16255 0.671201i 0.210639 0.977564i \(-0.432445\pi\)
0.951915 + 0.306363i \(0.0991122\pi\)
\(224\) 146.221i 0.652774i
\(225\) 0 0
\(226\) −23.4721 −0.103859
\(227\) 149.358 + 258.696i 0.657965 + 1.13963i 0.981142 + 0.193290i \(0.0619157\pi\)
−0.323177 + 0.946338i \(0.604751\pi\)
\(228\) 0 0
\(229\) 101.655 176.072i 0.443908 0.768871i −0.554067 0.832472i \(-0.686925\pi\)
0.997975 + 0.0636005i \(0.0202584\pi\)
\(230\) −204.195 + 28.1242i −0.887805 + 0.122279i
\(231\) 0 0
\(232\) 804.472 464.462i 3.46755 2.00199i
\(233\) −436.398 −1.87295 −0.936476 0.350733i \(-0.885933\pi\)
−0.936476 + 0.350733i \(0.885933\pi\)
\(234\) 0 0
\(235\) 11.4051 + 14.6810i 0.0485322 + 0.0624725i
\(236\) −380.263 + 219.545i −1.61128 + 0.930276i
\(237\) 0 0
\(238\) 500.326 + 288.863i 2.10221 + 1.21371i
\(239\) −207.584 119.848i −0.868551 0.501458i −0.00168434 0.999999i \(-0.500536\pi\)
−0.866866 + 0.498541i \(0.833869\pi\)
\(240\) 0 0
\(241\) −102.674 177.837i −0.426034 0.737912i 0.570483 0.821310i \(-0.306756\pi\)
−0.996516 + 0.0833977i \(0.973423\pi\)
\(242\) −393.378 −1.62553
\(243\) 0 0
\(244\) −425.041 −1.74197
\(245\) −24.0202 + 58.9835i −0.0980415 + 0.240749i
\(246\) 0 0
\(247\) −151.760 87.6184i −0.614411 0.354731i
\(248\) 269.371 466.564i 1.08617 1.88131i
\(249\) 0 0
\(250\) −359.256 265.580i −1.43703 1.06232i
\(251\) 357.277i 1.42341i −0.702477 0.711707i \(-0.747923\pi\)
0.702477 0.711707i \(-0.252077\pi\)
\(252\) 0 0
\(253\) 175.329i 0.692999i
\(254\) 766.036 442.271i 3.01589 1.74122i
\(255\) 0 0
\(256\) 247.179 428.126i 0.965541 1.67237i
\(257\) 140.257 242.932i 0.545746 0.945260i −0.452814 0.891605i \(-0.649580\pi\)
0.998560 0.0536544i \(-0.0170869\pi\)
\(258\) 0 0
\(259\) −114.861 198.945i −0.443478 0.768126i
\(260\) 382.038 296.789i 1.46938 1.14150i
\(261\) 0 0
\(262\) 508.145i 1.93949i
\(263\) 60.2472 + 104.351i 0.229077 + 0.396772i 0.957535 0.288318i \(-0.0930960\pi\)
−0.728458 + 0.685090i \(0.759763\pi\)
\(264\) 0 0
\(265\) 277.991 38.2881i 1.04902 0.144484i
\(266\) 296.206 + 171.014i 1.11356 + 0.642911i
\(267\) 0 0
\(268\) 527.127 304.337i 1.96689 1.13559i
\(269\) 308.065i 1.14522i −0.819827 0.572612i \(-0.805930\pi\)
0.819827 0.572612i \(-0.194070\pi\)
\(270\) 0 0
\(271\) 354.684 1.30880 0.654399 0.756149i \(-0.272922\pi\)
0.654399 + 0.756149i \(0.272922\pi\)
\(272\) −347.490 601.870i −1.27754 2.21276i
\(273\) 0 0
\(274\) 130.259 225.614i 0.475396 0.823410i
\(275\) −265.486 + 271.904i −0.965404 + 0.988741i
\(276\) 0 0
\(277\) −415.957 + 240.153i −1.50165 + 0.866978i −0.501652 + 0.865070i \(0.667274\pi\)
−0.999998 + 0.00190830i \(0.999393\pi\)
\(278\) −239.462 −0.861373
\(279\) 0 0
\(280\) −405.733 + 315.197i −1.44905 + 1.12570i
\(281\) 109.335 63.1249i 0.389094 0.224644i −0.292673 0.956212i \(-0.594545\pi\)
0.681768 + 0.731569i \(0.261212\pi\)
\(282\) 0 0
\(283\) 316.137 + 182.522i 1.11709 + 0.644954i 0.940657 0.339358i \(-0.110210\pi\)
0.176436 + 0.984312i \(0.443543\pi\)
\(284\) 292.949 + 169.134i 1.03151 + 0.595543i
\(285\) 0 0
\(286\) −299.547 518.830i −1.04737 1.81409i
\(287\) −226.804 −0.790259
\(288\) 0 0
\(289\) 431.524 1.49316
\(290\) −900.995 366.917i −3.10688 1.26523i
\(291\) 0 0
\(292\) −207.218 119.637i −0.709650 0.409717i
\(293\) −97.0846 + 168.155i −0.331347 + 0.573909i −0.982776 0.184800i \(-0.940836\pi\)
0.651429 + 0.758709i \(0.274170\pi\)
\(294\) 0 0
\(295\) 231.735 + 94.3708i 0.785544 + 0.319901i
\(296\) 650.951i 2.19916i
\(297\) 0 0
\(298\) 273.658i 0.918317i
\(299\) −110.149 + 63.5944i −0.368390 + 0.212690i
\(300\) 0 0
\(301\) −13.6663 + 23.6708i −0.0454031 + 0.0786405i
\(302\) 71.3126 123.517i 0.236134 0.408997i
\(303\) 0 0
\(304\) −205.723 356.323i −0.676720 1.17211i
\(305\) 148.592 + 191.273i 0.487187 + 0.627125i
\(306\) 0 0
\(307\) 492.555i 1.60441i −0.597046 0.802207i \(-0.703659\pi\)
0.597046 0.802207i \(-0.296341\pi\)
\(308\) 401.584 + 695.564i 1.30384 + 2.25833i
\(309\) 0 0
\(310\) −558.936 + 76.9832i −1.80302 + 0.248333i
\(311\) 161.394 + 93.1810i 0.518953 + 0.299617i 0.736506 0.676431i \(-0.236474\pi\)
−0.217553 + 0.976048i \(0.569808\pi\)
\(312\) 0 0
\(313\) 189.353 109.323i 0.604961 0.349274i −0.166030 0.986121i \(-0.553095\pi\)
0.770991 + 0.636847i \(0.219762\pi\)
\(314\) 484.562i 1.54319i
\(315\) 0 0
\(316\) −692.278 −2.19075
\(317\) 102.301 + 177.191i 0.322718 + 0.558963i 0.981048 0.193766i \(-0.0620703\pi\)
−0.658330 + 0.752729i \(0.728737\pi\)
\(318\) 0 0
\(319\) −413.751 + 716.637i −1.29702 + 2.24651i
\(320\) −83.1045 + 11.4461i −0.259702 + 0.0357692i
\(321\) 0 0
\(322\) 214.989 124.124i 0.667668 0.385478i
\(323\) 426.569 1.32065
\(324\) 0 0
\(325\) −267.117 68.1656i −0.821897 0.209740i
\(326\) −265.978 + 153.562i −0.815883 + 0.471050i
\(327\) 0 0
\(328\) 556.582 + 321.343i 1.69690 + 0.979704i
\(329\) −19.3902 11.1949i −0.0589368 0.0340272i
\(330\) 0 0
\(331\) 298.305 + 516.680i 0.901224 + 1.56097i 0.825907 + 0.563807i \(0.190664\pi\)
0.0753174 + 0.997160i \(0.476003\pi\)
\(332\) 1321.43 3.98020
\(333\) 0 0
\(334\) 399.293 1.19549
\(335\) −321.235 130.818i −0.958911 0.390503i
\(336\) 0 0
\(337\) −288.036 166.298i −0.854707 0.493466i 0.00752898 0.999972i \(-0.497603\pi\)
−0.862236 + 0.506506i \(0.830937\pi\)
\(338\) −84.7126 + 146.727i −0.250629 + 0.434102i
\(339\) 0 0
\(340\) −444.152 + 1090.65i −1.30633 + 3.20780i
\(341\) 479.921i 1.40739i
\(342\) 0 0
\(343\) 371.773i 1.08389i
\(344\) 67.0749 38.7257i 0.194985 0.112575i
\(345\) 0 0
\(346\) −15.5293 + 26.8975i −0.0448823 + 0.0777384i
\(347\) −34.6029 + 59.9339i −0.0997201 + 0.172720i −0.911569 0.411148i \(-0.865128\pi\)
0.811849 + 0.583868i \(0.198461\pi\)
\(348\) 0 0
\(349\) −277.425 480.515i −0.794915 1.37683i −0.922893 0.385056i \(-0.874182\pi\)
0.127978 0.991777i \(-0.459151\pi\)
\(350\) 521.361 + 133.046i 1.48960 + 0.380132i
\(351\) 0 0
\(352\) 369.102i 1.04859i
\(353\) 88.1341 + 152.653i 0.249672 + 0.432444i 0.963435 0.267943i \(-0.0863440\pi\)
−0.713763 + 0.700387i \(0.753011\pi\)
\(354\) 0 0
\(355\) −26.3010 190.958i −0.0740874 0.537911i
\(356\) −26.6352 15.3778i −0.0748180 0.0431962i
\(357\) 0 0
\(358\) −177.870 + 102.693i −0.496844 + 0.286853i
\(359\) 122.033i 0.339924i −0.985451 0.169962i \(-0.945636\pi\)
0.985451 0.169962i \(-0.0543645\pi\)
\(360\) 0 0
\(361\) −108.460 −0.300444
\(362\) 249.672 + 432.444i 0.689700 + 1.19460i
\(363\) 0 0
\(364\) −291.321 + 504.583i −0.800333 + 1.38622i
\(365\) 18.6041 + 135.075i 0.0509701 + 0.370068i
\(366\) 0 0
\(367\) −582.310 + 336.197i −1.58667 + 0.916067i −0.592825 + 0.805332i \(0.701987\pi\)
−0.993850 + 0.110736i \(0.964679\pi\)
\(368\) −298.632 −0.811499
\(369\) 0 0
\(370\) 538.362 418.231i 1.45503 1.13035i
\(371\) −292.685 + 168.982i −0.788910 + 0.455477i
\(372\) 0 0
\(373\) 444.978 + 256.908i 1.19297 + 0.688762i 0.958979 0.283477i \(-0.0914879\pi\)
0.233991 + 0.972239i \(0.424821\pi\)
\(374\) 1262.96 + 729.168i 3.37689 + 1.94965i
\(375\) 0 0
\(376\) 31.7226 + 54.9452i 0.0843687 + 0.146131i
\(377\) −600.294 −1.59229
\(378\) 0 0
\(379\) −496.340 −1.30960 −0.654802 0.755800i \(-0.727248\pi\)
−0.654802 + 0.755800i \(0.727248\pi\)
\(380\) −262.950 + 645.694i −0.691973 + 1.69920i
\(381\) 0 0
\(382\) 97.4269 + 56.2495i 0.255044 + 0.147250i
\(383\) 297.962 516.085i 0.777968 1.34748i −0.155143 0.987892i \(-0.549584\pi\)
0.933111 0.359588i \(-0.117083\pi\)
\(384\) 0 0
\(385\) 172.620 423.882i 0.448363 1.10099i
\(386\) 178.974i 0.463664i
\(387\) 0 0
\(388\) 242.650i 0.625385i
\(389\) 380.432 219.642i 0.977974 0.564633i 0.0763158 0.997084i \(-0.475684\pi\)
0.901658 + 0.432450i \(0.142351\pi\)
\(390\) 0 0
\(391\) 154.804 268.128i 0.395918 0.685750i
\(392\) −108.674 + 188.229i −0.277230 + 0.480177i
\(393\) 0 0
\(394\) −66.9981 116.044i −0.170046 0.294528i
\(395\) 242.016 + 311.533i 0.612700 + 0.788690i
\(396\) 0 0
\(397\) 405.932i 1.02250i 0.859432 + 0.511250i \(0.170817\pi\)
−0.859432 + 0.511250i \(0.829183\pi\)
\(398\) −72.4067 125.412i −0.181926 0.315106i
\(399\) 0 0
\(400\) −463.124 452.193i −1.15781 1.13048i
\(401\) −284.442 164.223i −0.709332 0.409533i 0.101481 0.994837i \(-0.467642\pi\)
−0.810814 + 0.585304i \(0.800975\pi\)
\(402\) 0 0
\(403\) −301.506 + 174.074i −0.748153 + 0.431946i
\(404\) 316.670i 0.783836i
\(405\) 0 0
\(406\) 1171.66 2.88586
\(407\) −289.939 502.190i −0.712382 1.23388i
\(408\) 0 0
\(409\) 8.15681 14.1280i 0.0199433 0.0345428i −0.855882 0.517172i \(-0.826985\pi\)
0.875825 + 0.482629i \(0.160318\pi\)
\(410\) −91.8361 666.775i −0.223991 1.62628i
\(411\) 0 0
\(412\) 213.230 123.109i 0.517549 0.298807i
\(413\) −301.350 −0.729662
\(414\) 0 0
\(415\) −461.963 594.656i −1.11316 1.43291i
\(416\) 231.885 133.879i 0.557416 0.321824i
\(417\) 0 0
\(418\) 747.703 + 431.686i 1.78876 + 1.03274i
\(419\) −330.431 190.774i −0.788618 0.455309i 0.0508576 0.998706i \(-0.483805\pi\)
−0.839476 + 0.543397i \(0.817138\pi\)
\(420\) 0 0
\(421\) −211.669 366.621i −0.502776 0.870834i −0.999995 0.00320894i \(-0.998979\pi\)
0.497218 0.867625i \(-0.334355\pi\)
\(422\) 616.436 1.46075
\(423\) 0 0
\(424\) 957.674 2.25866
\(425\) 646.078 181.412i 1.52018 0.426853i
\(426\) 0 0
\(427\) −252.627 145.854i −0.591632 0.341579i
\(428\) 402.939 697.911i 0.941447 1.63063i
\(429\) 0 0
\(430\) −75.1227 30.5926i −0.174704 0.0711457i
\(431\) 48.3081i 0.112084i 0.998428 + 0.0560419i \(0.0178480\pi\)
−0.998428 + 0.0560419i \(0.982152\pi\)
\(432\) 0 0
\(433\) 36.0601i 0.0832797i 0.999133 + 0.0416399i \(0.0132582\pi\)
−0.999133 + 0.0416399i \(0.986742\pi\)
\(434\) 588.481 339.760i 1.35595 0.782857i
\(435\) 0 0
\(436\) −342.978 + 594.055i −0.786646 + 1.36251i
\(437\) 91.6480 158.739i 0.209721 0.363247i
\(438\) 0 0
\(439\) 130.043 + 225.242i 0.296226 + 0.513079i 0.975269 0.221020i \(-0.0709385\pi\)
−0.679043 + 0.734098i \(0.737605\pi\)
\(440\) −1024.18 + 795.642i −2.32768 + 1.80828i
\(441\) 0 0
\(442\) 1057.92i 2.39349i
\(443\) −11.2647 19.5110i −0.0254282 0.0440430i 0.853031 0.521860i \(-0.174762\pi\)
−0.878459 + 0.477817i \(0.841428\pi\)
\(444\) 0 0
\(445\) 2.39132 + 17.3621i 0.00537374 + 0.0390160i
\(446\) −926.587 534.965i −2.07755 1.19947i
\(447\) 0 0
\(448\) 87.4975 50.5167i 0.195307 0.112761i
\(449\) 275.640i 0.613898i 0.951726 + 0.306949i \(0.0993080\pi\)
−0.951726 + 0.306949i \(0.900692\pi\)
\(450\) 0 0
\(451\) −572.516 −1.26944
\(452\) 28.8115 + 49.9030i 0.0637423 + 0.110405i
\(453\) 0 0
\(454\) 533.822 924.607i 1.17582 2.03658i
\(455\) 328.912 45.3016i 0.722883 0.0995640i
\(456\) 0 0
\(457\) −103.410 + 59.7038i −0.226280 + 0.130643i −0.608855 0.793282i \(-0.708371\pi\)
0.382575 + 0.923925i \(0.375037\pi\)
\(458\) −726.653 −1.58658
\(459\) 0 0
\(460\) 310.438 + 399.608i 0.674866 + 0.868713i
\(461\) 78.2511 45.1783i 0.169742 0.0980007i −0.412722 0.910857i \(-0.635422\pi\)
0.582464 + 0.812856i \(0.302089\pi\)
\(462\) 0 0
\(463\) −528.653 305.218i −1.14180 0.659219i −0.194924 0.980818i \(-0.562446\pi\)
−0.946876 + 0.321600i \(0.895779\pi\)
\(464\) −1220.62 704.728i −2.63066 1.51881i
\(465\) 0 0
\(466\) 779.867 + 1350.77i 1.67354 + 2.89865i
\(467\) −65.6533 −0.140585 −0.0702926 0.997526i \(-0.522393\pi\)
−0.0702926 + 0.997526i \(0.522393\pi\)
\(468\) 0 0
\(469\) 417.736 0.890696
\(470\) 25.0603 61.5377i 0.0533198 0.130931i
\(471\) 0 0
\(472\) 739.519 + 426.961i 1.56678 + 0.904579i
\(473\) −34.4975 + 59.7515i −0.0729335 + 0.126324i
\(474\) 0 0
\(475\) 382.495 107.401i 0.805253 0.226107i
\(476\) 1418.29i 2.97960i
\(477\) 0 0
\(478\) 856.704i 1.79227i
\(479\) 81.3901 46.9906i 0.169917 0.0981015i −0.412630 0.910899i \(-0.635390\pi\)
0.582547 + 0.812797i \(0.302056\pi\)
\(480\) 0 0
\(481\) 210.331 364.303i 0.437278 0.757387i
\(482\) −366.969 + 635.609i −0.761346 + 1.31869i
\(483\) 0 0
\(484\) 482.863 + 836.343i 0.997650 + 1.72798i
\(485\) 109.195 84.8288i 0.225144 0.174905i
\(486\) 0 0
\(487\) 805.464i 1.65393i 0.562253 + 0.826965i \(0.309935\pi\)
−0.562253 + 0.826965i \(0.690065\pi\)
\(488\) 413.301 + 715.858i 0.846928 + 1.46692i
\(489\) 0 0
\(490\) 225.495 31.0579i 0.460195 0.0633834i
\(491\) 814.742 + 470.391i 1.65935 + 0.958027i 0.973015 + 0.230743i \(0.0741157\pi\)
0.686337 + 0.727284i \(0.259218\pi\)
\(492\) 0 0
\(493\) 1265.49 730.630i 2.56691 1.48201i
\(494\) 626.316i 1.26785i
\(495\) 0 0
\(496\) −817.433 −1.64805
\(497\) 116.078 + 201.053i 0.233557 + 0.404532i
\(498\) 0 0
\(499\) −189.964 + 329.028i −0.380690 + 0.659375i −0.991161 0.132664i \(-0.957647\pi\)
0.610471 + 0.792039i \(0.290980\pi\)
\(500\) −123.659 + 1089.79i −0.247318 + 2.17958i
\(501\) 0 0
\(502\) −1105.87 + 638.474i −2.20293 + 1.27186i
\(503\) 637.608 1.26761 0.633805 0.773493i \(-0.281492\pi\)
0.633805 + 0.773493i \(0.281492\pi\)
\(504\) 0 0
\(505\) 142.505 110.706i 0.282188 0.219220i
\(506\) 542.690 313.323i 1.07251 0.619214i
\(507\) 0 0
\(508\) −1880.58 1085.76i −3.70194 2.13731i
\(509\) −834.081 481.557i −1.63867 0.946084i −0.981294 0.192517i \(-0.938335\pi\)
−0.657372 0.753567i \(-0.728332\pi\)
\(510\) 0 0
\(511\) −82.1078 142.215i −0.160681 0.278307i
\(512\) −1138.52 −2.22366
\(513\) 0 0
\(514\) −1002.59 −1.95056
\(515\) −129.944 52.9179i −0.252319 0.102753i
\(516\) 0 0
\(517\) −48.9461 28.2591i −0.0946734 0.0546597i
\(518\) −410.525 + 711.050i −0.792519 + 1.37268i
\(519\) 0 0
\(520\) −871.340 354.841i −1.67565 0.682386i
\(521\) 36.7876i 0.0706095i 0.999377 + 0.0353048i \(0.0112402\pi\)
−0.999377 + 0.0353048i \(0.988760\pi\)
\(522\) 0 0
\(523\) 441.292i 0.843770i −0.906649 0.421885i \(-0.861369\pi\)
0.906649 0.421885i \(-0.138631\pi\)
\(524\) −1080.34 + 623.737i −2.06172 + 1.19034i
\(525\) 0 0
\(526\) 215.330 372.963i 0.409373 0.709055i
\(527\) 423.739 733.937i 0.804059 1.39267i
\(528\) 0 0
\(529\) 197.981 + 342.913i 0.374255 + 0.648229i
\(530\) −615.297 792.034i −1.16094 1.49440i
\(531\) 0 0
\(532\) 839.665i 1.57832i
\(533\) −207.660 359.677i −0.389606 0.674817i
\(534\) 0 0
\(535\) −454.933 + 62.6587i −0.850341 + 0.117119i
\(536\) −1025.13 591.861i −1.91256 1.10422i
\(537\) 0 0
\(538\) −953.546 + 550.530i −1.77239 + 1.02329i
\(539\) 193.618i 0.359217i
\(540\) 0 0
\(541\) −426.631 −0.788598 −0.394299 0.918982i \(-0.629013\pi\)
−0.394299 + 0.918982i \(0.629013\pi\)
\(542\) −633.841 1097.84i −1.16945 2.02554i
\(543\) 0 0
\(544\) −325.893 + 564.464i −0.599068 + 1.03762i
\(545\) 387.234 53.3344i 0.710521 0.0978612i
\(546\) 0 0
\(547\) 522.151 301.464i 0.954572 0.551122i 0.0600738 0.998194i \(-0.480866\pi\)
0.894498 + 0.447072i \(0.147533\pi\)
\(548\) −639.558 −1.16708
\(549\) 0 0
\(550\) 1316.05 + 335.844i 2.39283 + 0.610626i
\(551\) 749.202 432.552i 1.35971 0.785031i
\(552\) 0 0
\(553\) −411.461 237.557i −0.744053 0.429579i
\(554\) 1486.68 + 858.334i 2.68353 + 1.54934i
\(555\) 0 0
\(556\) 293.934 + 509.108i 0.528658 + 0.915663i
\(557\) −527.490 −0.947020 −0.473510 0.880788i \(-0.657013\pi\)
−0.473510 + 0.880788i \(0.657013\pi\)
\(558\) 0 0
\(559\) −50.0511 −0.0895368
\(560\) 721.984 + 294.018i 1.28926 + 0.525031i
\(561\) 0 0
\(562\) −390.777 225.615i −0.695333 0.401451i
\(563\) 7.14026 12.3673i 0.0126825 0.0219668i −0.859614 0.510943i \(-0.829296\pi\)
0.872297 + 0.488976i \(0.162630\pi\)
\(564\) 0 0
\(565\) 12.3845 30.4113i 0.0219196 0.0538253i
\(566\) 1304.71i 2.30514i
\(567\) 0 0
\(568\) 657.849i 1.15818i
\(569\) −582.646 + 336.391i −1.02398 + 0.591197i −0.915255 0.402875i \(-0.868011\pi\)
−0.108728 + 0.994072i \(0.534678\pi\)
\(570\) 0 0
\(571\) −428.832 + 742.759i −0.751020 + 1.30080i 0.196309 + 0.980542i \(0.437104\pi\)
−0.947329 + 0.320262i \(0.896229\pi\)
\(572\) −735.373 + 1273.70i −1.28562 + 2.22675i
\(573\) 0 0
\(574\) 405.312 + 702.022i 0.706119 + 1.22303i
\(575\) 71.3005 279.401i 0.124001 0.485915i
\(576\) 0 0
\(577\) 134.308i 0.232769i −0.993204 0.116385i \(-0.962869\pi\)
0.993204 0.116385i \(-0.0371305\pi\)
\(578\) −771.158 1335.68i −1.33418 2.31087i
\(579\) 0 0
\(580\) 325.866 + 2365.94i 0.561837 + 4.07921i
\(581\) 785.401 + 453.451i 1.35181 + 0.780467i
\(582\) 0 0
\(583\) −738.817 + 426.556i −1.26727 + 0.731657i
\(584\) 465.330i 0.796799i
\(585\) 0 0
\(586\) 693.983 1.18427
\(587\) 450.137 + 779.660i 0.766843 + 1.32821i 0.939267 + 0.343188i \(0.111507\pi\)
−0.172423 + 0.985023i \(0.555160\pi\)
\(588\) 0 0
\(589\) 250.864 434.510i 0.425916 0.737708i
\(590\) −122.021 885.930i −0.206815 1.50158i
\(591\) 0 0
\(592\) 855.363 493.844i 1.44487 0.834196i
\(593\) 282.338 0.476118 0.238059 0.971251i \(-0.423489\pi\)
0.238059 + 0.971251i \(0.423489\pi\)
\(594\) 0 0
\(595\) −638.246 + 495.826i −1.07268 + 0.833322i
\(596\) 581.812 335.909i 0.976195 0.563607i
\(597\) 0 0
\(598\) 393.684 + 227.293i 0.658334 + 0.380089i
\(599\) −83.3908 48.1457i −0.139217 0.0803768i 0.428774 0.903412i \(-0.358946\pi\)
−0.567991 + 0.823035i \(0.692279\pi\)
\(600\) 0 0
\(601\) 268.904 + 465.756i 0.447428 + 0.774969i 0.998218 0.0596755i \(-0.0190066\pi\)
−0.550789 + 0.834644i \(0.685673\pi\)
\(602\) 97.6901 0.162276
\(603\) 0 0
\(604\) −350.138 −0.579699
\(605\) 207.557 509.674i 0.343070 0.842436i
\(606\) 0 0
\(607\) −409.860 236.633i −0.675222 0.389839i 0.122831 0.992428i \(-0.460803\pi\)
−0.798052 + 0.602588i \(0.794136\pi\)
\(608\) −192.937 + 334.177i −0.317331 + 0.549633i
\(609\) 0 0
\(610\) 326.500 801.749i 0.535247 1.31434i
\(611\) 40.9999i 0.0671030i
\(612\) 0 0
\(613\) 109.517i 0.178658i −0.996002 0.0893288i \(-0.971528\pi\)
0.996002 0.0893288i \(-0.0284722\pi\)
\(614\) −1524.59 + 880.224i −2.48305 + 1.43359i
\(615\) 0 0
\(616\) 780.983 1352.70i 1.26783 2.19595i
\(617\) 566.446 981.113i 0.918064 1.59013i 0.115712 0.993283i \(-0.463085\pi\)
0.802352 0.596851i \(-0.203582\pi\)
\(618\) 0 0
\(619\) −76.7644 132.960i −0.124014 0.214798i 0.797333 0.603539i \(-0.206243\pi\)
−0.921347 + 0.388741i \(0.872910\pi\)
\(620\) 849.751 + 1093.83i 1.37057 + 1.76424i
\(621\) 0 0
\(622\) 666.079i 1.07087i
\(623\) −10.5539 18.2799i −0.0169405 0.0293417i
\(624\) 0 0
\(625\) 533.649 325.337i 0.853838 0.520539i
\(626\) −676.768 390.732i −1.08110 0.624173i
\(627\) 0 0
\(628\) −1030.20 + 594.789i −1.64045 + 0.947116i
\(629\) 1023.99i 1.62797i
\(630\) 0 0
\(631\) −289.486 −0.458774 −0.229387 0.973335i \(-0.573672\pi\)
−0.229387 + 0.973335i \(0.573672\pi\)
\(632\) 673.156 + 1165.94i 1.06512 + 1.84484i
\(633\) 0 0
\(634\) 365.637 633.302i 0.576715 0.998899i
\(635\) 168.839 + 1225.86i 0.265889 + 1.93048i
\(636\) 0 0
\(637\) 121.639 70.2281i 0.190955 0.110248i
\(638\) 2957.58 4.63571
\(639\) 0 0
\(640\) 481.873 + 620.285i 0.752927 + 0.969196i
\(641\) 673.293 388.726i 1.05038 0.606436i 0.127623 0.991823i \(-0.459265\pi\)
0.922755 + 0.385386i \(0.125932\pi\)
\(642\) 0 0
\(643\) −253.513 146.366i −0.394265 0.227629i 0.289741 0.957105i \(-0.406431\pi\)
−0.684007 + 0.729476i \(0.739764\pi\)
\(644\) −527.789 304.719i −0.819547 0.473166i
\(645\) 0 0
\(646\) −762.302 1320.35i −1.18003 2.04388i
\(647\) 504.594 0.779899 0.389949 0.920836i \(-0.372493\pi\)
0.389949 + 0.920836i \(0.372493\pi\)
\(648\) 0 0
\(649\) −760.689 −1.17209
\(650\) 266.362 + 948.615i 0.409787 + 1.45941i
\(651\) 0 0
\(652\) 652.963 + 376.989i 1.00148 + 0.578203i
\(653\) 110.675 191.695i 0.169487 0.293560i −0.768753 0.639546i \(-0.779122\pi\)
0.938240 + 0.345986i \(0.112456\pi\)
\(654\) 0 0
\(655\) 658.370 + 268.112i 1.00514 + 0.409331i
\(656\) 975.146i 1.48650i
\(657\) 0 0
\(658\) 80.0240i 0.121617i
\(659\) −665.570 + 384.267i −1.00997 + 0.583106i −0.911183 0.412002i \(-0.864830\pi\)
−0.0987870 + 0.995109i \(0.531496\pi\)
\(660\) 0 0
\(661\) 191.918 332.411i 0.290345 0.502891i −0.683547 0.729907i \(-0.739563\pi\)
0.973891 + 0.227015i \(0.0728968\pi\)
\(662\) 1066.18 1846.67i 1.61054 2.78953i
\(663\) 0 0
\(664\) −1284.93 2225.56i −1.93513 3.35174i
\(665\) −377.858 + 293.542i −0.568208 + 0.441416i
\(666\) 0 0
\(667\) 627.901i 0.941381i
\(668\) −490.123 848.917i −0.733716 1.27083i
\(669\) 0 0
\(670\) 169.147 + 1228.09i 0.252458 + 1.83297i
\(671\) −637.699 368.175i −0.950370 0.548697i
\(672\) 0 0
\(673\) 341.950 197.425i 0.508098 0.293351i −0.223953 0.974600i \(-0.571896\pi\)
0.732052 + 0.681249i \(0.238563\pi\)
\(674\) 1188.73i 1.76370i
\(675\) 0 0
\(676\) 415.931 0.615283
\(677\) 303.489 + 525.659i 0.448285 + 0.776453i 0.998275 0.0587187i \(-0.0187015\pi\)
−0.549989 + 0.835172i \(0.685368\pi\)
\(678\) 0 0
\(679\) −83.2659 + 144.221i −0.122630 + 0.212402i
\(680\) 2268.77 312.481i 3.33642 0.459532i
\(681\) 0 0
\(682\) 1485.49 857.646i 2.17813 1.25754i
\(683\) −711.162 −1.04123 −0.520616 0.853791i \(-0.674298\pi\)
−0.520616 + 0.853791i \(0.674298\pi\)
\(684\) 0 0
\(685\) 223.586 + 287.808i 0.326402 + 0.420157i
\(686\) −1150.74 + 664.379i −1.67746 + 0.968483i
\(687\) 0 0
\(688\) −101.773 58.7585i −0.147925 0.0854048i
\(689\) −535.960 309.437i −0.777881 0.449110i
\(690\) 0 0
\(691\) −425.440 736.883i −0.615687 1.06640i −0.990264 0.139205i \(-0.955545\pi\)
0.374577 0.927196i \(-0.377788\pi\)
\(692\) 76.2473 0.110184
\(693\) 0 0
\(694\) 247.349 0.356411
\(695\) 126.347 310.255i 0.181794 0.446410i
\(696\) 0 0
\(697\) 875.542 + 505.494i 1.25616 + 0.725243i
\(698\) −991.550 + 1717.41i −1.42056 + 2.46048i
\(699\) 0 0
\(700\) −357.095 1271.75i −0.510136 1.81679i
\(701\) 1073.69i 1.53166i 0.643043 + 0.765830i \(0.277672\pi\)
−0.643043 + 0.765830i \(0.722328\pi\)
\(702\) 0 0
\(703\) 606.229i 0.862345i
\(704\) 220.867 127.518i 0.313732 0.181133i
\(705\) 0 0
\(706\) 315.001 545.598i 0.446177 0.772802i
\(707\) −108.666 + 188.215i −0.153700 + 0.266217i
\(708\) 0 0
\(709\) −416.804 721.926i −0.587876 1.01823i −0.994510 0.104640i \(-0.966631\pi\)
0.406634 0.913591i \(-0.366702\pi\)
\(710\) −544.067 + 422.662i −0.766291 + 0.595299i
\(711\) 0 0
\(712\) 59.8123i 0.0840060i
\(713\) −182.080 315.372i −0.255372 0.442317i
\(714\) 0 0
\(715\) 830.262 114.353i 1.16121 0.159935i
\(716\) 436.663 + 252.108i 0.609865 + 0.352106i
\(717\) 0 0
\(718\) −377.724 + 218.079i −0.526079 + 0.303732i
\(719\) 433.030i 0.602267i −0.953582 0.301134i \(-0.902635\pi\)
0.953582 0.301134i \(-0.0973650\pi\)
\(720\) 0 0
\(721\) 168.980 0.234369
\(722\) 193.825 + 335.714i 0.268455 + 0.464978i
\(723\) 0 0
\(724\) 612.932 1061.63i 0.846592 1.46634i
\(725\) 950.780 973.763i 1.31142 1.34312i
\(726\) 0 0
\(727\) −587.649 + 339.280i −0.808321 + 0.466684i −0.846372 0.532591i \(-0.821218\pi\)
0.0380515 + 0.999276i \(0.487885\pi\)
\(728\) 1133.10 1.55645
\(729\) 0 0
\(730\) 384.847 298.971i 0.527187 0.409549i
\(731\) 105.513 60.9182i 0.144341 0.0833354i
\(732\) 0 0
\(733\) −157.665 91.0280i −0.215096 0.124186i 0.388582 0.921414i \(-0.372965\pi\)
−0.603677 + 0.797229i \(0.706298\pi\)
\(734\) 2081.24 + 1201.60i 2.83548 + 1.63706i
\(735\) 0 0
\(736\) 140.036 + 242.549i 0.190266 + 0.329550i
\(737\) 1054.48 1.43077
\(738\) 0 0
\(739\) 727.990 0.985101 0.492551 0.870284i \(-0.336065\pi\)
0.492551 + 0.870284i \(0.336065\pi\)
\(740\) −1550.01 631.218i −2.09461 0.852997i
\(741\) 0 0
\(742\) 1046.09 + 603.961i 1.40983 + 0.813964i
\(743\) −197.141 + 341.459i −0.265331 + 0.459567i −0.967650 0.252295i \(-0.918815\pi\)
0.702319 + 0.711862i \(0.252148\pi\)
\(744\) 0 0
\(745\) −354.561 144.390i −0.475921 0.193812i
\(746\) 1836.44i 2.46171i
\(747\) 0 0
\(748\) 3580.15i 4.78630i
\(749\) 478.981 276.540i 0.639493 0.369212i
\(750\) 0 0
\(751\) −669.591 + 1159.77i −0.891600 + 1.54430i −0.0536427 + 0.998560i \(0.517083\pi\)
−0.837957 + 0.545736i \(0.816250\pi\)
\(752\) 48.1327 83.3683i 0.0640063 0.110862i
\(753\) 0 0
\(754\) 1072.76 + 1858.07i 1.42276 + 2.46429i
\(755\) 122.406 + 157.566i 0.162128 + 0.208697i
\(756\) 0 0
\(757\) 185.595i 0.245171i −0.992458 0.122586i \(-0.960881\pi\)
0.992458 0.122586i \(-0.0391186\pi\)
\(758\) 886.988 + 1536.31i 1.17017 + 2.02679i
\(759\) 0 0
\(760\) 1343.17 184.997i 1.76733 0.243417i
\(761\) −808.635 466.866i −1.06260 0.613490i −0.136446 0.990647i \(-0.543568\pi\)
−0.926149 + 0.377158i \(0.876902\pi\)
\(762\) 0 0
\(763\) −407.703 + 235.388i −0.534342 + 0.308503i
\(764\) 276.180i 0.361492i
\(765\) 0 0
\(766\) −2129.90 −2.78054
\(767\) −275.913 477.896i −0.359730 0.623071i
\(768\) 0 0
\(769\) −529.465 + 917.060i −0.688511 + 1.19254i 0.283809 + 0.958881i \(0.408402\pi\)
−0.972320 + 0.233655i \(0.924931\pi\)
\(770\) −1620.51 + 223.196i −2.10456 + 0.289865i
\(771\) 0 0
\(772\) −380.509 + 219.687i −0.492888 + 0.284569i
\(773\) 79.0622 0.102280 0.0511399 0.998692i \(-0.483715\pi\)
0.0511399 + 0.998692i \(0.483715\pi\)
\(774\) 0 0
\(775\) 195.168 764.794i 0.251830 0.986831i
\(776\) 408.672 235.947i 0.526639 0.304055i
\(777\) 0 0
\(778\) −1359.71 785.027i −1.74769 1.00903i
\(779\) 518.343 + 299.266i 0.665396 + 0.384166i
\(780\) 0 0
\(781\) 293.012 + 507.511i 0.375175 + 0.649822i
\(782\) −1106.57 −1.41506
\(783\) 0 0
\(784\) 329.783 0.420641
\(785\) 627.815 + 255.668i 0.799764 + 0.325692i
\(786\) 0 0
\(787\) −836.792 483.122i −1.06327 0.613878i −0.136934 0.990580i \(-0.543725\pi\)
−0.926335 + 0.376702i \(0.877058\pi\)
\(788\) −164.477 + 284.883i −0.208728 + 0.361527i
\(789\) 0 0
\(790\) 531.781 1305.83i 0.673141 1.65295i
\(791\) 39.5470i 0.0499962i
\(792\) 0 0
\(793\) 534.171i 0.673608i
\(794\) 1256.47 725.424i 1.58246 0.913632i
\(795\) 0 0
\(796\) −177.755 + 307.881i −0.223310 + 0.386785i
\(797\) −637.906 + 1104.89i −0.800384 + 1.38630i 0.118980 + 0.992897i \(0.462037\pi\)
−0.919364 + 0.393408i \(0.871296\pi\)
\(798\) 0 0
\(799\) 49.9019 + 86.4325i 0.0624554 + 0.108176i
\(800\) −150.102 + 588.195i −0.187627 + 0.735244i
\(801\) 0 0
\(802\) 1173.90i 1.46372i
\(803\) −207.262 358.989i −0.258110 0.447059i
\(804\) 0 0
\(805\) 47.3850 + 344.038i 0.0588634 + 0.427377i
\(806\) 1077.62 + 622.162i 1.33699 + 0.771913i
\(807\) 0 0
\(808\) 533.338 307.923i 0.660071 0.381092i
\(809\) 1533.89i 1.89603i −0.318220 0.948017i \(-0.603085\pi\)
0.318220 0.948017i \(-0.396915\pi\)
\(810\) 0 0
\(811\) −753.037 −0.928530 −0.464265 0.885696i \(-0.653681\pi\)
−0.464265 + 0.885696i \(0.653681\pi\)
\(812\) −1438.19 2491.01i −1.77116 3.06775i
\(813\) 0 0
\(814\) −1036.28 + 1794.88i −1.27307 + 2.20502i
\(815\) −58.6232 425.633i −0.0719303 0.522250i
\(816\) 0 0
\(817\) 62.4666 36.0651i 0.0764586 0.0441434i
\(818\) −58.3067 −0.0712796
\(819\) 0 0
\(820\) −1304.87 + 1013.70i −1.59131 + 1.23622i
\(821\) −1336.50 + 771.628i −1.62789 + 0.939863i −0.643170 + 0.765723i \(0.722381\pi\)
−0.984721 + 0.174140i \(0.944285\pi\)
\(822\) 0 0
\(823\) −1011.48 583.978i −1.22902 0.709573i −0.262192 0.965016i \(-0.584445\pi\)
−0.966824 + 0.255443i \(0.917779\pi\)
\(824\) −414.681 239.416i −0.503253 0.290553i
\(825\) 0 0
\(826\) 538.530 + 932.761i 0.651973 + 1.12925i
\(827\) −432.942 −0.523509 −0.261755 0.965134i \(-0.584301\pi\)
−0.261755 + 0.965134i \(0.584301\pi\)
\(828\) 0 0
\(829\) 470.069 0.567031 0.283515 0.958968i \(-0.408499\pi\)
0.283515 + 0.958968i \(0.408499\pi\)
\(830\) −1015.07 + 2492.58i −1.22297 + 3.00311i
\(831\) 0 0
\(832\) 160.224 + 92.5052i 0.192577 + 0.111184i
\(833\) −170.952 + 296.098i −0.205225 + 0.355459i
\(834\) 0 0
\(835\) −210.678 + 517.337i −0.252309 + 0.619565i
\(836\) 2119.54i 2.53534i
\(837\) 0 0
\(838\) 1363.70i 1.62733i
\(839\) −874.006 + 504.607i −1.04172 + 0.601439i −0.920321 0.391164i \(-0.872072\pi\)
−0.121402 + 0.992603i \(0.538739\pi\)
\(840\) 0 0
\(841\) 1061.26 1838.15i 1.26190 2.18567i
\(842\) −756.529 + 1310.35i −0.898490 + 1.55623i
\(843\) 0 0
\(844\) −756.662 1310.58i −0.896519 1.55282i
\(845\) −145.407 187.173i −0.172079 0.221507i
\(846\) 0 0
\(847\) 662.783i 0.782507i
\(848\) −726.539 1258.40i −0.856767 1.48396i
\(849\) 0 0
\(850\) −1716.10 1675.59i −2.01894 1.97129i
\(851\) 381.057 + 220.004i 0.447776 + 0.258524i
\(852\) 0 0
\(853\) −780.076 + 450.377i −0.914509 + 0.527992i −0.881879 0.471475i \(-0.843722\pi\)
−0.0326300 + 0.999467i \(0.510388\pi\)
\(854\) 1042.60i 1.22084i
\(855\) 0 0
\(856\) −1567.24 −1.83088
\(857\) −55.9121 96.8427i −0.0652417 0.113002i 0.831559 0.555436i \(-0.187449\pi\)
−0.896801 + 0.442434i \(0.854115\pi\)
\(858\) 0 0
\(859\) −90.2278 + 156.279i −0.105038 + 0.181931i −0.913754 0.406268i \(-0.866830\pi\)
0.808716 + 0.588200i \(0.200163\pi\)
\(860\) 27.1699 + 197.267i 0.0315929 + 0.229380i
\(861\) 0 0
\(862\) 149.527 86.3293i 0.173465 0.100150i
\(863\) −451.735 −0.523447 −0.261724 0.965143i \(-0.584291\pi\)
−0.261724 + 0.965143i \(0.584291\pi\)
\(864\) 0 0
\(865\) −26.6556 34.3121i −0.0308157 0.0396672i
\(866\) 111.616 64.4415i 0.128887 0.0744128i
\(867\) 0 0
\(868\) −1444.70 834.095i −1.66440 0.960939i
\(869\) −1038.64 599.659i −1.19521 0.690056i
\(870\) 0 0
\(871\) 382.475 + 662.467i 0.439122 + 0.760582i
\(872\) 1334.01 1.52983
\(873\) 0 0
\(874\) −655.120 −0.749566
\(875\) −447.463 + 605.293i −0.511387 + 0.691764i
\(876\) 0 0
\(877\) 637.590 + 368.112i 0.727012 + 0.419741i 0.817328 0.576173i \(-0.195454\pi\)
−0.0903161 + 0.995913i \(0.528788\pi\)
\(878\) 464.789 805.039i 0.529373 0.916901i
\(879\) 0 0
\(880\) 1822.48 + 742.180i 2.07100 + 0.843386i
\(881\) 52.0576i 0.0590892i −0.999563 0.0295446i \(-0.990594\pi\)
0.999563 0.0295446i \(-0.00940571\pi\)
\(882\) 0 0
\(883\) 637.785i 0.722294i −0.932509 0.361147i \(-0.882385\pi\)
0.932509 0.361147i \(-0.117615\pi\)
\(884\) 2249.20 1298.57i 2.54434 1.46897i
\(885\) 0 0
\(886\) −40.2613 + 69.7347i −0.0454417 + 0.0787073i
\(887\) −673.271 + 1166.14i −0.759043 + 1.31470i 0.184297 + 0.982871i \(0.440999\pi\)
−0.943339 + 0.331830i \(0.892334\pi\)
\(888\) 0 0
\(889\) −745.160 1290.66i −0.838201 1.45181i
\(890\) 49.4671 38.4289i 0.0555810 0.0431785i
\(891\) 0 0
\(892\) 2626.63i 2.94465i
\(893\) 29.5432 + 51.1703i 0.0330831 + 0.0573016i
\(894\) 0 0
\(895\) −39.2038 284.639i −0.0438031 0.318032i
\(896\) −819.252 472.995i −0.914343 0.527896i
\(897\) 0 0
\(898\) 853.181 492.584i 0.950090 0.548535i
\(899\) 1718.73i 1.91182i
\(900\) 0 0
\(901\) 1506.49 1.67202
\(902\) 1023.12 + 1772.09i 1.13428 + 1.96463i
\(903\) 0 0
\(904\) 56.0313 97.0491i 0.0619816 0.107355i
\(905\) −692.022 + 95.3134i −0.764665 + 0.105319i
\(906\) 0 0
\(907\) 929.536 536.668i 1.02485 0.591696i 0.109343 0.994004i \(-0.465125\pi\)
0.915504 + 0.402308i \(0.131792\pi\)
\(908\) −2621.02 −2.88658
\(909\) 0 0
\(910\) −728.005 937.115i −0.800005 1.02980i
\(911\) 72.5021 41.8591i 0.0795851 0.0459485i −0.459679 0.888085i \(-0.652036\pi\)
0.539264 + 0.842136i \(0.318702\pi\)
\(912\) 0 0
\(913\) 1982.56 + 1144.63i 2.17148 + 1.25371i
\(914\) 369.599 + 213.388i 0.404375 + 0.233466i
\(915\) 0 0
\(916\) 891.949 + 1544.90i 0.973744 + 1.68657i
\(917\) −856.149 −0.933641
\(918\) 0 0
\(919\) 1235.72 1.34463 0.672317 0.740264i \(-0.265299\pi\)
0.672317 + 0.740264i \(0.265299\pi\)
\(920\) 371.159 911.413i 0.403434 0.990666i
\(921\) 0 0
\(922\) −279.678 161.472i −0.303339 0.175133i
\(923\) −212.559 + 368.163i −0.230292 + 0.398877i
\(924\) 0 0
\(925\) 257.819 + 918.190i 0.278723 + 0.992638i
\(926\) 2181.77i 2.35612i
\(927\) 0 0
\(928\) 1321.86i 1.42442i
\(929\) 645.248 372.534i 0.694562 0.401006i −0.110757 0.993848i \(-0.535327\pi\)
0.805319 + 0.592842i \(0.201994\pi\)
\(930\) 0 0
\(931\) −101.208 + 175.297i −0.108709 + 0.188289i
\(932\) 1914.54 3316.08i 2.05423 3.55802i
\(933\) 0 0
\(934\) 117.326 + 203.215i 0.125617 + 0.217575i
\(935\) −1611.11 + 1251.60i −1.72311 + 1.33861i
\(936\) 0 0
\(937\) 353.460i 0.377225i 0.982052 + 0.188613i \(0.0603991\pi\)
−0.982052 + 0.188613i \(0.939601\pi\)
\(938\) −746.519 1293.01i −0.795862 1.37847i
\(939\) 0 0
\(940\) −161.593 + 22.2565i −0.171908 + 0.0236772i
\(941\) 219.779 + 126.889i 0.233559 + 0.134845i 0.612213 0.790693i \(-0.290280\pi\)
−0.378654 + 0.925538i \(0.623613\pi\)
\(942\) 0 0
\(943\) 376.219 217.210i 0.398960 0.230339i
\(944\) 1295.66i 1.37252i
\(945\) 0 0
\(946\) 246.596 0.260673
\(947\) −787.358 1363.74i −0.831424 1.44007i −0.896909 0.442215i \(-0.854193\pi\)
0.0654856 0.997854i \(-0.479140\pi\)
\(948\) 0 0
\(949\) 150.354 260.421i 0.158434 0.274416i
\(950\) −1015.97 991.995i −1.06945 1.04421i
\(951\) 0 0
\(952\) −2388.70 + 1379.11i −2.50914 + 1.44865i
\(953\) −137.098 −0.143860 −0.0719300 0.997410i \(-0.522916\pi\)
−0.0719300 + 0.997410i \(0.522916\pi\)
\(954\) 0 0
\(955\) −124.284 + 96.5508i −0.130140 + 0.101100i
\(956\) 1821.40 1051.58i 1.90523 1.09998i
\(957\) 0 0
\(958\) −290.898 167.950i −0.303651 0.175313i
\(959\) −380.126 219.466i −0.396378 0.228849i
\(960\) 0 0
\(961\) −17.9004 31.0045i −0.0186269 0.0322627i
\(962\) −1503.49 −1.56288
\(963\) 0 0
\(964\) 1801.78 1.86907
\(965\) 231.885 + 94.4319i 0.240296 + 0.0978569i
\(966\) 0 0
\(967\) 326.711 + 188.627i 0.337860 + 0.195064i 0.659325 0.751858i \(-0.270842\pi\)
−0.321465 + 0.946921i \(0.604175\pi\)
\(968\) 939.050 1626.48i 0.970093 1.68025i
\(969\) 0 0
\(970\) −457.706 186.394i −0.471862 0.192159i
\(971\) 855.490i 0.881040i −0.897743 0.440520i \(-0.854794\pi\)
0.897743 0.440520i \(-0.145206\pi\)
\(972\) 0 0
\(973\) 403.457i 0.414653i
\(974\) 2493.13 1439.41i 2.55968 1.47783i
\(975\) 0 0
\(976\) 627.101 1086.17i 0.642521 1.11288i
\(977\) −537.354 + 930.724i −0.550004 + 0.952635i 0.448270 + 0.893898i \(0.352040\pi\)
−0.998274 + 0.0587364i \(0.981293\pi\)
\(978\) 0 0
\(979\) −26.6409 46.1434i −0.0272124 0.0471332i
\(980\) −342.821 441.292i −0.349818 0.450298i
\(981\) 0 0
\(982\) 3362.46i 3.42410i
\(983\) 580.777 + 1005.94i 0.590821 + 1.02333i 0.994122 + 0.108264i \(0.0345293\pi\)
−0.403301 + 0.915067i \(0.632137\pi\)
\(984\) 0 0
\(985\) 185.701 25.5769i 0.188529 0.0259664i
\(986\) −4523.00 2611.36i −4.58722 2.64843i
\(987\) 0 0
\(988\) 1331.58 768.789i 1.34775 0.778127i
\(989\) 52.3529i 0.0529352i
\(990\) 0 0
\(991\) 463.882 0.468095 0.234047 0.972225i \(-0.424803\pi\)
0.234047 + 0.972225i \(0.424803\pi\)
\(992\) 383.315 + 663.920i 0.386406 + 0.669275i
\(993\) 0 0
\(994\) 414.875 718.585i 0.417379 0.722922i
\(995\) 200.692 27.6416i 0.201700 0.0277805i
\(996\) 0 0
\(997\) 161.504 93.2442i 0.161990 0.0935248i −0.416814 0.908992i \(-0.636853\pi\)
0.578803 + 0.815467i \(0.303520\pi\)
\(998\) 1357.91 1.36063
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.134.2 48
3.2 odd 2 inner 405.3.h.k.134.23 48
5.4 even 2 inner 405.3.h.k.134.24 48
9.2 odd 6 inner 405.3.h.k.269.24 48
9.4 even 3 405.3.d.b.404.23 yes 24
9.5 odd 6 405.3.d.b.404.2 yes 24
9.7 even 3 inner 405.3.h.k.269.1 48
15.14 odd 2 inner 405.3.h.k.134.1 48
45.4 even 6 405.3.d.b.404.1 24
45.14 odd 6 405.3.d.b.404.24 yes 24
45.29 odd 6 inner 405.3.h.k.269.2 48
45.34 even 6 inner 405.3.h.k.269.23 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.1 24 45.4 even 6
405.3.d.b.404.2 yes 24 9.5 odd 6
405.3.d.b.404.23 yes 24 9.4 even 3
405.3.d.b.404.24 yes 24 45.14 odd 6
405.3.h.k.134.1 48 15.14 odd 2 inner
405.3.h.k.134.2 48 1.1 even 1 trivial
405.3.h.k.134.23 48 3.2 odd 2 inner
405.3.h.k.134.24 48 5.4 even 2 inner
405.3.h.k.269.1 48 9.7 even 3 inner
405.3.h.k.269.2 48 45.29 odd 6 inner
405.3.h.k.269.23 48 45.34 even 6 inner
405.3.h.k.269.24 48 9.2 odd 6 inner