Properties

Label 405.3.h.j
Level $405$
Weight $3$
Character orbit 405.h
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(134,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.134");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} + (3 \beta_{2} - 3) q^{4} + ( - \beta_{6} - \beta_{5} + \cdots - \beta_1) q^{5} - \beta_{3} q^{7} + \beta_1 q^{8} + ( - \beta_{7} - \beta_{3} - 7) q^{10} - \beta_{4} q^{11} + \beta_{7} q^{13}+ \cdots + 77 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} - 56 q^{10} + 76 q^{16} + 160 q^{19} + 44 q^{25} - 104 q^{31} - 112 q^{34} - 28 q^{40} - 112 q^{46} + 308 q^{49} - 144 q^{55} + 88 q^{61} - 232 q^{64} - 504 q^{70} - 240 q^{76} - 56 q^{79}+ \cdots + 224 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} - 148 ) / 55 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -8\nu^{6} + 55\nu^{4} - 440\nu^{2} + 576 ) / 495 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} + 533\nu ) / 55 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - 203\nu ) / 55 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -23\nu^{6} + 220\nu^{4} - 1265\nu^{2} + 1656 ) / 495 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -8\nu^{7} + 55\nu^{5} - 341\nu^{3} + 81\nu ) / 99 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 79\nu^{7} - 605\nu^{5} + 4345\nu^{3} - 5688\nu ) / 495 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{3} ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - 4\beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{7} + 11\beta_{6} + 5\beta_{3} ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{5} - 23\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 31\beta_{7} + 79\beta_{6} - 79\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -55\beta _1 - 148 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -533\beta_{4} - 203\beta_{3} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
134.1
1.00781 0.581861i
−1.00781 + 0.581861i
−2.23256 + 1.28897i
2.23256 1.28897i
1.00781 + 0.581861i
−1.00781 0.581861i
−2.23256 1.28897i
2.23256 + 1.28897i
−1.32288 2.29129i 0 −1.50000 + 2.59808i −2.35136 4.41261i 0 −9.72111 + 5.61249i −2.64575 0 −7.00000 + 11.2250i
134.2 −1.32288 2.29129i 0 −1.50000 + 2.59808i 4.99711 0.169968i 0 9.72111 5.61249i −2.64575 0 −7.00000 11.2250i
134.3 1.32288 + 2.29129i 0 −1.50000 + 2.59808i −4.99711 + 0.169968i 0 9.72111 5.61249i 2.64575 0 −7.00000 11.2250i
134.4 1.32288 + 2.29129i 0 −1.50000 + 2.59808i 2.35136 + 4.41261i 0 −9.72111 + 5.61249i 2.64575 0 −7.00000 + 11.2250i
269.1 −1.32288 + 2.29129i 0 −1.50000 2.59808i −2.35136 + 4.41261i 0 −9.72111 5.61249i −2.64575 0 −7.00000 11.2250i
269.2 −1.32288 + 2.29129i 0 −1.50000 2.59808i 4.99711 + 0.169968i 0 9.72111 + 5.61249i −2.64575 0 −7.00000 + 11.2250i
269.3 1.32288 2.29129i 0 −1.50000 2.59808i −4.99711 0.169968i 0 9.72111 + 5.61249i 2.64575 0 −7.00000 + 11.2250i
269.4 1.32288 2.29129i 0 −1.50000 2.59808i 2.35136 4.41261i 0 −9.72111 5.61249i 2.64575 0 −7.00000 11.2250i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 134.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner
15.d odd 2 1 inner
45.h odd 6 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.3.h.j 8
3.b odd 2 1 inner 405.3.h.j 8
5.b even 2 1 inner 405.3.h.j 8
9.c even 3 1 45.3.d.a 4
9.c even 3 1 inner 405.3.h.j 8
9.d odd 6 1 45.3.d.a 4
9.d odd 6 1 inner 405.3.h.j 8
15.d odd 2 1 inner 405.3.h.j 8
36.f odd 6 1 720.3.c.a 4
36.h even 6 1 720.3.c.a 4
45.h odd 6 1 45.3.d.a 4
45.h odd 6 1 inner 405.3.h.j 8
45.j even 6 1 45.3.d.a 4
45.j even 6 1 inner 405.3.h.j 8
45.k odd 12 2 225.3.c.d 4
45.l even 12 2 225.3.c.d 4
72.j odd 6 1 2880.3.c.b 4
72.l even 6 1 2880.3.c.g 4
72.n even 6 1 2880.3.c.b 4
72.p odd 6 1 2880.3.c.g 4
180.n even 6 1 720.3.c.a 4
180.p odd 6 1 720.3.c.a 4
180.v odd 12 2 3600.3.l.s 4
180.x even 12 2 3600.3.l.s 4
360.z odd 6 1 2880.3.c.g 4
360.bd even 6 1 2880.3.c.g 4
360.bh odd 6 1 2880.3.c.b 4
360.bk even 6 1 2880.3.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.3.d.a 4 9.c even 3 1
45.3.d.a 4 9.d odd 6 1
45.3.d.a 4 45.h odd 6 1
45.3.d.a 4 45.j even 6 1
225.3.c.d 4 45.k odd 12 2
225.3.c.d 4 45.l even 12 2
405.3.h.j 8 1.a even 1 1 trivial
405.3.h.j 8 3.b odd 2 1 inner
405.3.h.j 8 5.b even 2 1 inner
405.3.h.j 8 9.c even 3 1 inner
405.3.h.j 8 9.d odd 6 1 inner
405.3.h.j 8 15.d odd 2 1 inner
405.3.h.j 8 45.h odd 6 1 inner
405.3.h.j 8 45.j even 6 1 inner
720.3.c.a 4 36.f odd 6 1
720.3.c.a 4 36.h even 6 1
720.3.c.a 4 180.n even 6 1
720.3.c.a 4 180.p odd 6 1
2880.3.c.b 4 72.j odd 6 1
2880.3.c.b 4 72.n even 6 1
2880.3.c.b 4 360.bh odd 6 1
2880.3.c.b 4 360.bk even 6 1
2880.3.c.g 4 72.l even 6 1
2880.3.c.g 4 72.p odd 6 1
2880.3.c.g 4 360.z odd 6 1
2880.3.c.g 4 360.bd even 6 1
3600.3.l.s 4 180.v odd 12 2
3600.3.l.s 4 180.x even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{4} + 7T_{2}^{2} + 49 \) Copy content Toggle raw display
\( T_{7}^{4} - 126T_{7}^{2} + 15876 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 7 T^{2} + 49)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 22 T^{6} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( (T^{4} - 126 T^{2} + 15876)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 18 T^{2} + 324)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 126 T^{2} + 15876)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 112)^{4} \) Copy content Toggle raw display
$19$ \( (T - 20)^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 28 T^{2} + 784)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 72 T^{2} + 5184)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 26 T + 676)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1134)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 3042 T^{2} + 9253764)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 504 T^{2} + 254016)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 448 T^{2} + 200704)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 7168)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} - 2178 T^{2} + 4743684)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 22 T + 484)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 8064 T^{2} + 65028096)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2592)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4536)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 14 T + 196)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 5488 T^{2} + 30118144)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 7938)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} - 504 T^{2} + 254016)^{2} \) Copy content Toggle raw display
show more
show less