# Properties

 Label 405.3.h.b.134.1 Level $405$ Weight $3$ Character 405.134 Analytic conductor $11.035$ Analytic rank $0$ Dimension $2$ CM discriminant -15 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$405 = 3^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 405.h (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$11.0354507066$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 15) Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

## Embedding invariants

 Embedding label 134.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 405.134 Dual form 405.3.h.b.269.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.50000 - 2.59808i) q^{4} +(2.50000 - 4.33013i) q^{5} +7.00000 q^{8} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.50000 - 2.59808i) q^{4} +(2.50000 - 4.33013i) q^{5} +7.00000 q^{8} +5.00000 q^{10} +(-2.50000 - 4.33013i) q^{16} +14.0000 q^{17} -22.0000 q^{19} +(-7.50000 - 12.9904i) q^{20} +(17.0000 - 29.4449i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(-1.00000 + 1.73205i) q^{31} +(16.5000 - 28.5788i) q^{32} +(7.00000 + 12.1244i) q^{34} +(-11.0000 - 19.0526i) q^{38} +(17.5000 - 30.3109i) q^{40} +34.0000 q^{46} +(-7.00000 - 12.1244i) q^{47} +(-24.5000 + 42.4352i) q^{49} +(12.5000 - 21.6506i) q^{50} +86.0000 q^{53} +(59.0000 + 102.191i) q^{61} -2.00000 q^{62} +13.0000 q^{64} +(21.0000 - 36.3731i) q^{68} +(-33.0000 + 57.1577i) q^{76} +(-49.0000 - 84.8705i) q^{79} -25.0000 q^{80} +(77.0000 + 133.368i) q^{83} +(35.0000 - 60.6218i) q^{85} +(-51.0000 - 88.3346i) q^{92} +(7.00000 - 12.1244i) q^{94} +(-55.0000 + 95.2628i) q^{95} -49.0000 q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} + 3 q^{4} + 5 q^{5} + 14 q^{8}+O(q^{10})$$ 2 * q + q^2 + 3 * q^4 + 5 * q^5 + 14 * q^8 $$2 q + q^{2} + 3 q^{4} + 5 q^{5} + 14 q^{8} + 10 q^{10} - 5 q^{16} + 28 q^{17} - 44 q^{19} - 15 q^{20} + 34 q^{23} - 25 q^{25} - 2 q^{31} + 33 q^{32} + 14 q^{34} - 22 q^{38} + 35 q^{40} + 68 q^{46} - 14 q^{47} - 49 q^{49} + 25 q^{50} + 172 q^{53} + 118 q^{61} - 4 q^{62} + 26 q^{64} + 42 q^{68} - 66 q^{76} - 98 q^{79} - 50 q^{80} + 154 q^{83} + 70 q^{85} - 102 q^{92} + 14 q^{94} - 110 q^{95} - 98 q^{98}+O(q^{100})$$ 2 * q + q^2 + 3 * q^4 + 5 * q^5 + 14 * q^8 + 10 * q^10 - 5 * q^16 + 28 * q^17 - 44 * q^19 - 15 * q^20 + 34 * q^23 - 25 * q^25 - 2 * q^31 + 33 * q^32 + 14 * q^34 - 22 * q^38 + 35 * q^40 + 68 * q^46 - 14 * q^47 - 49 * q^49 + 25 * q^50 + 172 * q^53 + 118 * q^61 - 4 * q^62 + 26 * q^64 + 42 * q^68 - 66 * q^76 - 98 * q^79 - 50 * q^80 + 154 * q^83 + 70 * q^85 - 102 * q^92 + 14 * q^94 - 110 * q^95 - 98 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/405\mathbb{Z}\right)^\times$$.

 $$n$$ $$82$$ $$326$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.250000 + 0.433013i 0.963525 0.267617i $$-0.0862360\pi$$
−0.713525 + 0.700629i $$0.752903\pi$$
$$3$$ 0 0
$$4$$ 1.50000 2.59808i 0.375000 0.649519i
$$5$$ 2.50000 4.33013i 0.500000 0.866025i
$$6$$ 0 0
$$7$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$8$$ 7.00000 0.875000
$$9$$ 0 0
$$10$$ 5.00000 0.500000
$$11$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$12$$ 0 0
$$13$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −2.50000 4.33013i −0.156250 0.270633i
$$17$$ 14.0000 0.823529 0.411765 0.911290i $$-0.364913\pi$$
0.411765 + 0.911290i $$0.364913\pi$$
$$18$$ 0 0
$$19$$ −22.0000 −1.15789 −0.578947 0.815365i $$-0.696536\pi$$
−0.578947 + 0.815365i $$0.696536\pi$$
$$20$$ −7.50000 12.9904i −0.375000 0.649519i
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 17.0000 29.4449i 0.739130 1.28021i −0.213757 0.976887i $$-0.568570\pi$$
0.952887 0.303325i $$-0.0980966\pi$$
$$24$$ 0 0
$$25$$ −12.5000 21.6506i −0.500000 0.866025i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$30$$ 0 0
$$31$$ −1.00000 + 1.73205i −0.0322581 + 0.0558726i −0.881704 0.471803i $$-0.843603\pi$$
0.849446 + 0.527676i $$0.176937\pi$$
$$32$$ 16.5000 28.5788i 0.515625 0.893089i
$$33$$ 0 0
$$34$$ 7.00000 + 12.1244i 0.205882 + 0.356599i
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$38$$ −11.0000 19.0526i −0.289474 0.501383i
$$39$$ 0 0
$$40$$ 17.5000 30.3109i 0.437500 0.757772i
$$41$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$42$$ 0 0
$$43$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 34.0000 0.739130
$$47$$ −7.00000 12.1244i −0.148936 0.257965i 0.781898 0.623406i $$-0.214252\pi$$
−0.930835 + 0.365441i $$0.880918\pi$$
$$48$$ 0 0
$$49$$ −24.5000 + 42.4352i −0.500000 + 0.866025i
$$50$$ 12.5000 21.6506i 0.250000 0.433013i
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 86.0000 1.62264 0.811321 0.584601i $$-0.198749\pi$$
0.811321 + 0.584601i $$0.198749\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$60$$ 0 0
$$61$$ 59.0000 + 102.191i 0.967213 + 1.67526i 0.703548 + 0.710648i $$0.251598\pi$$
0.263665 + 0.964614i $$0.415069\pi$$
$$62$$ −2.00000 −0.0322581
$$63$$ 0 0
$$64$$ 13.0000 0.203125
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$68$$ 21.0000 36.3731i 0.308824 0.534898i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$72$$ 0 0
$$73$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ −33.0000 + 57.1577i −0.434211 + 0.752075i
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −49.0000 84.8705i −0.620253 1.07431i −0.989438 0.144954i $$-0.953697\pi$$
0.369185 0.929356i $$-0.379637\pi$$
$$80$$ −25.0000 −0.312500
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 77.0000 + 133.368i 0.927711 + 1.60684i 0.787142 + 0.616771i $$0.211560\pi$$
0.140568 + 0.990071i $$0.455107\pi$$
$$84$$ 0 0
$$85$$ 35.0000 60.6218i 0.411765 0.713197i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ −51.0000 88.3346i −0.554348 0.960159i
$$93$$ 0 0
$$94$$ 7.00000 12.1244i 0.0744681 0.128983i
$$95$$ −55.0000 + 95.2628i −0.578947 + 1.00277i
$$96$$ 0 0
$$97$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$98$$ −49.0000 −0.500000
$$99$$ 0 0
$$100$$ −75.0000 −0.750000
$$101$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$102$$ 0 0
$$103$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 43.0000 + 74.4782i 0.405660 + 0.702624i
$$107$$ −106.000 −0.990654 −0.495327 0.868707i $$-0.664952\pi$$
−0.495327 + 0.868707i $$0.664952\pi$$
$$108$$ 0 0
$$109$$ −22.0000 −0.201835 −0.100917 0.994895i $$-0.532178\pi$$
−0.100917 + 0.994895i $$0.532178\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −103.000 + 178.401i −0.911504 + 1.57877i −0.0995644 + 0.995031i $$0.531745\pi$$
−0.811940 + 0.583741i $$0.801588\pi$$
$$114$$ 0 0
$$115$$ −85.0000 147.224i −0.739130 1.28021i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −60.5000 + 104.789i −0.500000 + 0.866025i
$$122$$ −59.0000 + 102.191i −0.483607 + 0.837631i
$$123$$ 0 0
$$124$$ 3.00000 + 5.19615i 0.0241935 + 0.0419045i
$$125$$ −125.000 −1.00000
$$126$$ 0 0
$$127$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$128$$ −59.5000 103.057i −0.464844 0.805133i
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 98.0000 0.720588
$$137$$ 113.000 + 195.722i 0.824818 + 1.42863i 0.902059 + 0.431613i $$0.142056\pi$$
−0.0772412 + 0.997012i $$0.524611\pi$$
$$138$$ 0 0
$$139$$ 131.000 226.899i 0.942446 1.63236i 0.181660 0.983361i $$-0.441853\pi$$
0.760786 0.649003i $$-0.224814\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$150$$ 0 0
$$151$$ 119.000 + 206.114i 0.788079 + 1.36499i 0.927142 + 0.374710i $$0.122258\pi$$
−0.139063 + 0.990284i $$0.544409\pi$$
$$152$$ −154.000 −1.01316
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 5.00000 + 8.66025i 0.0322581 + 0.0558726i
$$156$$ 0 0
$$157$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$158$$ 49.0000 84.8705i 0.310127 0.537155i
$$159$$ 0 0
$$160$$ −82.5000 142.894i −0.515625 0.893089i
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ −77.0000 + 133.368i −0.463855 + 0.803421i
$$167$$ −127.000 + 219.970i −0.760479 + 1.31719i 0.182125 + 0.983275i $$0.441702\pi$$
−0.942604 + 0.333913i $$0.891631\pi$$
$$168$$ 0 0
$$169$$ −84.5000 146.358i −0.500000 0.866025i
$$170$$ 70.0000 0.411765
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 77.0000 + 133.368i 0.445087 + 0.770913i 0.998058 0.0622873i $$-0.0198395\pi$$
−0.552972 + 0.833200i $$0.686506\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$180$$ 0 0
$$181$$ 122.000 0.674033 0.337017 0.941499i $$-0.390582\pi$$
0.337017 + 0.941499i $$0.390582\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 119.000 206.114i 0.646739 1.12019i
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ −42.0000 −0.223404
$$189$$ 0 0
$$190$$ −110.000 −0.578947
$$191$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$192$$ 0 0
$$193$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 73.5000 + 127.306i 0.375000 + 0.649519i
$$197$$ 374.000 1.89848 0.949239 0.314557i $$-0.101856\pi$$
0.949239 + 0.314557i $$0.101856\pi$$
$$198$$ 0 0
$$199$$ −142.000 −0.713568 −0.356784 0.934187i $$-0.616127\pi$$
−0.356784 + 0.934187i $$0.616127\pi$$
$$200$$ −87.5000 151.554i −0.437500 0.757772i
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ −181.000 + 313.501i −0.857820 + 1.48579i 0.0161841 + 0.999869i $$0.494848\pi$$
−0.874004 + 0.485919i $$0.838485\pi$$
$$212$$ 129.000 223.435i 0.608491 1.05394i
$$213$$ 0 0
$$214$$ −53.0000 91.7987i −0.247664 0.428966i
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ −11.0000 19.0526i −0.0504587 0.0873971i
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ −206.000 −0.911504
$$227$$ −67.0000 116.047i −0.295154 0.511222i 0.679867 0.733336i $$-0.262038\pi$$
−0.975021 + 0.222114i $$0.928704\pi$$
$$228$$ 0 0
$$229$$ −109.000 + 188.794i −0.475983 + 0.824426i −0.999621 0.0275144i $$-0.991241\pi$$
0.523639 + 0.851940i $$0.324574\pi$$
$$230$$ 85.0000 147.224i 0.369565 0.640106i
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −34.0000 −0.145923 −0.0729614 0.997335i $$-0.523245\pi$$
−0.0729614 + 0.997335i $$0.523245\pi$$
$$234$$ 0 0
$$235$$ −70.0000 −0.297872
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$240$$ 0 0
$$241$$ 239.000 + 413.960i 0.991701 + 1.71768i 0.607190 + 0.794557i $$0.292297\pi$$
0.384511 + 0.923120i $$0.374370\pi$$
$$242$$ −121.000 −0.500000
$$243$$ 0 0
$$244$$ 354.000 1.45082
$$245$$ 122.500 + 212.176i 0.500000 + 0.866025i
$$246$$ 0 0
$$247$$ 0 0
$$248$$ −7.00000 + 12.1244i −0.0282258 + 0.0488885i
$$249$$ 0 0
$$250$$ −62.5000 108.253i −0.250000 0.433013i
$$251$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 85.5000 148.090i 0.333984 0.578478i
$$257$$ 233.000 403.568i 0.906615 1.57030i 0.0878799 0.996131i $$-0.471991\pi$$
0.818735 0.574172i $$-0.194676\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −223.000 386.247i −0.847909 1.46862i −0.883071 0.469239i $$-0.844528\pi$$
0.0351622 0.999382i $$-0.488805\pi$$
$$264$$ 0 0
$$265$$ 215.000 372.391i 0.811321 1.40525i
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$270$$ 0 0
$$271$$ 482.000 1.77860 0.889299 0.457326i $$-0.151193\pi$$
0.889299 + 0.457326i $$0.151193\pi$$
$$272$$ −35.0000 60.6218i −0.128676 0.222874i
$$273$$ 0 0
$$274$$ −113.000 + 195.722i −0.412409 + 0.714313i
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$278$$ 262.000 0.942446
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$282$$ 0 0
$$283$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −93.0000 −0.321799
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 197.000 341.214i 0.672355 1.16455i −0.304880 0.952391i $$-0.598616\pi$$
0.977235 0.212162i $$-0.0680505\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ −119.000 + 206.114i −0.394040 + 0.682497i
$$303$$ 0 0
$$304$$ 55.0000 + 95.2628i 0.180921 + 0.313364i
$$305$$ 590.000 1.93443
$$306$$ 0 0
$$307$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ −5.00000 + 8.66025i −0.0161290 + 0.0279363i
$$311$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$312$$ 0 0
$$313$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ −294.000 −0.930380
$$317$$ −67.0000 116.047i −0.211356 0.366080i 0.740783 0.671745i $$-0.234455\pi$$
−0.952139 + 0.305664i $$0.901121\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 32.5000 56.2917i 0.101562 0.175911i
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −308.000 −0.953560
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −61.0000 105.655i −0.184290 0.319200i 0.759047 0.651036i $$-0.225665\pi$$
−0.943337 + 0.331836i $$0.892332\pi$$
$$332$$ 462.000 1.39157
$$333$$ 0 0
$$334$$ −254.000 −0.760479
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$338$$ 84.5000 146.358i 0.250000 0.433013i
$$339$$ 0 0
$$340$$ −105.000 181.865i −0.308824 0.534898i
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ −77.0000 + 133.368i −0.222543 + 0.385456i
$$347$$ 293.000 507.491i 0.844380 1.46251i −0.0417778 0.999127i $$-0.513302\pi$$
0.886158 0.463383i $$-0.153365\pi$$
$$348$$ 0 0
$$349$$ −229.000 396.640i −0.656160 1.13650i −0.981602 0.190941i $$-0.938846\pi$$
0.325441 0.945562i $$-0.394487\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 137.000 + 237.291i 0.388102 + 0.672212i 0.992194 0.124702i $$-0.0397975\pi$$
−0.604092 + 0.796914i $$0.706464\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$360$$ 0 0
$$361$$ 123.000 0.340720
$$362$$ 61.0000 + 105.655i 0.168508 + 0.291865i
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$368$$ −170.000 −0.461957
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ −49.0000 84.8705i −0.130319 0.225719i
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −742.000 −1.95778 −0.978892 0.204379i $$-0.934482\pi$$
−0.978892 + 0.204379i $$0.934482\pi$$
$$380$$ 165.000 + 285.788i 0.434211 + 0.752075i
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −343.000 + 594.093i −0.895561 + 1.55116i −0.0624530 + 0.998048i $$0.519892\pi$$
−0.833108 + 0.553110i $$0.813441\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$390$$ 0 0
$$391$$ 238.000 412.228i 0.608696 1.05429i
$$392$$ −171.500 + 297.047i −0.437500 + 0.757772i
$$393$$ 0 0
$$394$$ 187.000 + 323.894i 0.474619 + 0.822065i
$$395$$ −490.000 −1.24051
$$396$$ 0 0
$$397$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$398$$ −71.0000 122.976i −0.178392 0.308984i
$$399$$ 0 0
$$400$$ −62.5000 + 108.253i −0.156250 + 0.270633i
$$401$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 71.0000 122.976i 0.173594 0.300674i −0.766080 0.642746i $$-0.777795\pi$$
0.939674 + 0.342072i $$0.111129\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 770.000 1.85542
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$420$$ 0 0
$$421$$ −301.000 521.347i −0.714964 1.23835i −0.962973 0.269597i $$-0.913110\pi$$
0.248009 0.968758i $$-0.420224\pi$$
$$422$$ −362.000 −0.857820
$$423$$ 0 0
$$424$$ 602.000 1.41981
$$425$$ −175.000 303.109i −0.411765 0.713197i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ −159.000 + 275.396i −0.371495 + 0.643449i
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$432$$ 0 0
$$433$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ −33.0000 + 57.1577i −0.0756881 + 0.131096i
$$437$$ −374.000 + 647.787i −0.855835 + 1.48235i
$$438$$ 0 0
$$439$$ 311.000 + 538.668i 0.708428 + 1.22703i 0.965440 + 0.260625i $$0.0839288\pi$$
−0.257012 + 0.966408i $$0.582738\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −283.000 490.170i −0.638826 1.10648i −0.985691 0.168564i $$-0.946087\pi$$
0.346864 0.937915i $$-0.387246\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 309.000 + 535.204i 0.683628 + 1.18408i
$$453$$ 0 0
$$454$$ 67.0000 116.047i 0.147577 0.255611i
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$458$$ −218.000 −0.475983
$$459$$ 0 0
$$460$$ −510.000 −1.10870
$$461$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$462$$ 0 0
$$463$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ −17.0000 29.4449i −0.0364807 0.0631864i
$$467$$ −346.000 −0.740899 −0.370450 0.928853i $$-0.620796\pi$$
−0.370450 + 0.928853i $$0.620796\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ −35.0000 60.6218i −0.0744681 0.128983i
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 275.000 + 476.314i 0.578947 + 1.00277i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ −239.000 + 413.960i −0.495851 + 0.858838i
$$483$$ 0 0
$$484$$ 181.500 + 314.367i 0.375000 + 0.649519i
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$488$$ 413.000 + 715.337i 0.846311 + 1.46585i
$$489$$ 0 0
$$490$$ −122.500 + 212.176i −0.250000 + 0.433013i
$$491$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 10.0000 0.0201613
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −469.000 + 812.332i −0.939880 + 1.62792i −0.174187 + 0.984713i $$0.555730\pi$$
−0.765692 + 0.643207i $$0.777603\pi$$
$$500$$ −187.500 + 324.760i −0.375000 + 0.649519i
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −994.000 −1.97614 −0.988072 0.153995i $$-0.950786\pi$$
−0.988072 + 0.153995i $$0.950786\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ −305.000 −0.595703
$$513$$ 0 0
$$514$$ 466.000 0.906615
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$522$$ 0 0
$$523$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 223.000 386.247i 0.423954 0.734311i
$$527$$ −14.0000 + 24.2487i −0.0265655 + 0.0460127i
$$528$$ 0 0
$$529$$ −313.500 542.998i −0.592628 1.02646i
$$530$$ 430.000 0.811321
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ −265.000 + 458.993i −0.495327 + 0.857932i
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −1078.00 −1.99261 −0.996303 0.0859072i $$-0.972621\pi$$
−0.996303 + 0.0859072i $$0.972621\pi$$
$$542$$ 241.000 + 417.424i 0.444649 + 0.770155i
$$543$$ 0 0
$$544$$ 231.000 400.104i 0.424632 0.735485i
$$545$$ −55.0000 + 95.2628i −0.100917 + 0.174794i
$$546$$ 0 0
$$547$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$548$$ 678.000 1.23723
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ −393.000 680.696i −0.706835 1.22427i
$$557$$ 614.000 1.10233 0.551167 0.834395i $$-0.314183\pi$$
0.551167 + 0.834395i $$0.314183\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 77.0000 133.368i 0.136767 0.236888i −0.789504 0.613746i $$-0.789662\pi$$
0.926271 + 0.376858i $$0.122995\pi$$
$$564$$ 0 0
$$565$$ 515.000 + 892.006i 0.911504 + 1.57877i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$570$$ 0 0
$$571$$ 179.000 310.037i 0.313485 0.542972i −0.665629 0.746283i $$-0.731837\pi$$
0.979114 + 0.203310i $$0.0651701\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −850.000 −1.47826
$$576$$ 0 0
$$577$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$578$$ −46.5000 80.5404i −0.0804498 0.139343i
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 394.000 0.672355
$$587$$ −427.000 739.586i −0.727428 1.25994i −0.957967 0.286879i $$-0.907382\pi$$
0.230539 0.973063i $$-0.425951\pi$$
$$588$$ 0 0
$$589$$ 22.0000 38.1051i 0.0373514 0.0646946i
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 1166.00 1.96627 0.983137 0.182873i $$-0.0585396\pi$$
0.983137 + 0.182873i $$0.0585396\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$600$$ 0 0
$$601$$ −121.000 209.578i −0.201331 0.348716i 0.747626 0.664119i $$-0.231193\pi$$
−0.948958 + 0.315404i $$0.897860\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 714.000 1.18212
$$605$$ 302.500 + 523.945i 0.500000 + 0.866025i
$$606$$ 0 0
$$607$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$608$$ −363.000 + 628.734i −0.597039 + 1.03410i
$$609$$ 0 0
$$610$$ 295.000 + 510.955i 0.483607 + 0.837631i
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 593.000 1027.11i 0.961102 1.66468i 0.241361 0.970435i $$-0.422406\pi$$
0.719741 0.694242i $$-0.244260\pi$$
$$618$$ 0 0
$$619$$ −349.000 604.486i −0.563813 0.976552i −0.997159 0.0753247i $$-0.976001\pi$$
0.433346 0.901227i $$-0.357333\pi$$
$$620$$ 30.0000 0.0483871
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −312.500 + 541.266i −0.500000 + 0.866025i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −238.000 −0.377179 −0.188590 0.982056i $$-0.560392\pi$$
−0.188590 + 0.982056i $$0.560392\pi$$
$$632$$ −343.000 594.093i −0.542722 0.940021i
$$633$$ 0 0
$$634$$ 67.0000 116.047i 0.105678 0.183040i
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ −595.000 −0.929688
$$641$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$642$$ 0 0
$$643$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ −154.000 266.736i −0.238390 0.412904i
$$647$$ −706.000 −1.09119 −0.545595 0.838049i $$-0.683696\pi$$
−0.545595 + 0.838049i $$0.683696\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 557.000 964.752i 0.852986 1.47742i −0.0255145 0.999674i $$-0.508122\pi$$
0.878501 0.477741i $$-0.158544\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$660$$ 0 0
$$661$$ 419.000 725.729i 0.633888 1.09793i −0.352862 0.935676i $$-0.614791\pi$$
0.986750 0.162251i $$-0.0518753\pi$$
$$662$$ 61.0000 105.655i 0.0921450 0.159600i
$$663$$ 0 0
$$664$$ 539.000 + 933.575i 0.811747 + 1.40599i
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 381.000 + 659.911i 0.570359 + 0.987891i
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ −507.000 −0.750000
$$677$$ −187.000 323.894i −0.276219 0.478425i 0.694223 0.719760i $$-0.255748\pi$$
−0.970442 + 0.241335i $$0.922415\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 245.000 424.352i 0.360294 0.624048i
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 86.0000 0.125915 0.0629575 0.998016i $$-0.479947\pi$$
0.0629575 + 0.998016i $$0.479947\pi$$
$$684$$ 0 0
$$685$$ 1130.00 1.64964
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −661.000 1144.89i −0.956585 1.65685i −0.730699 0.682699i $$-0.760806\pi$$
−0.225885 0.974154i $$-0.572527\pi$$
$$692$$ 462.000 0.667630
$$693$$ 0 0
$$694$$ 586.000 0.844380
$$695$$ −655.000 1134.49i −0.942446 1.63236i
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 229.000 396.640i 0.328080 0.568252i
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ −137.000 + 237.291i −0.194051 + 0.336106i
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 371.000 + 642.591i 0.523272 + 0.906334i 0.999633 + 0.0270842i $$0.00862223\pi$$
−0.476361 + 0.879250i $$0.658044\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 34.0000 + 58.8897i 0.0476858 + 0.0825943i
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 61.5000 + 106.521i 0.0851801 + 0.147536i
$$723$$ 0 0
$$724$$ 183.000 316.965i 0.252762 0.437797i
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ −561.000 971.681i −0.762228 1.32022i
$$737$$ 0 0
$$738$$ 0 0
$$739$$ −1462.00 −1.97835 −0.989175 0.146744i $$-0.953121\pi$$
−0.989175 + 0.146744i $$0.953121\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 257.000 445.137i 0.345895 0.599108i −0.639621 0.768690i $$-0.720909\pi$$
0.985516 + 0.169583i $$0.0542420\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 719.000 1245.34i 0.957390 1.65825i 0.228589 0.973523i $$-0.426589\pi$$
0.728801 0.684725i $$-0.240078\pi$$
$$752$$ −35.0000 + 60.6218i −0.0465426 + 0.0806141i
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 1190.00 1.57616
$$756$$ 0 0
$$757$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$758$$ −371.000 642.591i −0.489446 0.847745i
$$759$$ 0 0
$$760$$ −385.000 + 666.840i −0.506579 + 0.877420i
$$761$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ −686.000 −0.895561
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −289.000 + 500.563i −0.375813 + 0.650927i −0.990448 0.137884i $$-0.955970\pi$$
0.614636 + 0.788811i $$0.289303\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 1526.00 1.97413 0.987063 0.160330i $$-0.0512560\pi$$
0.987063 + 0.160330i $$0.0512560\pi$$
$$774$$ 0 0
$$775$$ 50.0000 0.0645161
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 476.000 0.608696
$$783$$ 0 0
$$784$$ 245.000 0.312500
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$788$$ 561.000 971.681i 0.711929 1.23310i
$$789$$ 0 0
$$790$$ −245.000 424.352i −0.310127 0.537155i
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ −213.000 + 368.927i −0.267588 + 0.463476i
$$797$$ 413.000 715.337i 0.518193 0.897537i −0.481583 0.876400i $$-0.659938\pi$$
0.999777 0.0211367i $$-0.00672852\pi$$
$$798$$ 0 0
$$799$$ −98.0000 169.741i −0.122653 0.212442i
$$800$$ −825.000 −1.03125
$$801$$ 0 0