Properties

Label 405.3.h.b
Level $405$
Weight $3$
Character orbit 405.h
Analytic conductor $11.035$
Analytic rank $0$
Dimension $2$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{2} + 3 \zeta_{6} q^{4} + 5 \zeta_{6} q^{5} + 7 q^{8} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{2} + 3 \zeta_{6} q^{4} + 5 \zeta_{6} q^{5} + 7 q^{8} + 5 q^{10} + ( -5 + 5 \zeta_{6} ) q^{16} + 14 q^{17} -22 q^{19} + ( -15 + 15 \zeta_{6} ) q^{20} + 34 \zeta_{6} q^{23} + ( -25 + 25 \zeta_{6} ) q^{25} -2 \zeta_{6} q^{31} + 33 \zeta_{6} q^{32} + ( 14 - 14 \zeta_{6} ) q^{34} + ( -22 + 22 \zeta_{6} ) q^{38} + 35 \zeta_{6} q^{40} + 34 q^{46} + ( -14 + 14 \zeta_{6} ) q^{47} -49 \zeta_{6} q^{49} + 25 \zeta_{6} q^{50} + 86 q^{53} + ( 118 - 118 \zeta_{6} ) q^{61} -2 q^{62} + 13 q^{64} + 42 \zeta_{6} q^{68} -66 \zeta_{6} q^{76} + ( -98 + 98 \zeta_{6} ) q^{79} -25 q^{80} + ( 154 - 154 \zeta_{6} ) q^{83} + 70 \zeta_{6} q^{85} + ( -102 + 102 \zeta_{6} ) q^{92} + 14 \zeta_{6} q^{94} -110 \zeta_{6} q^{95} -49 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{4} + 5 q^{5} + 14 q^{8} + O(q^{10}) \) \( 2 q + q^{2} + 3 q^{4} + 5 q^{5} + 14 q^{8} + 10 q^{10} - 5 q^{16} + 28 q^{17} - 44 q^{19} - 15 q^{20} + 34 q^{23} - 25 q^{25} - 2 q^{31} + 33 q^{32} + 14 q^{34} - 22 q^{38} + 35 q^{40} + 68 q^{46} - 14 q^{47} - 49 q^{49} + 25 q^{50} + 172 q^{53} + 118 q^{61} - 4 q^{62} + 26 q^{64} + 42 q^{68} - 66 q^{76} - 98 q^{79} - 50 q^{80} + 154 q^{83} + 70 q^{85} - 102 q^{92} + 14 q^{94} - 110 q^{95} - 98 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
134.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 0 1.50000 2.59808i 2.50000 4.33013i 0 0 7.00000 0 5.00000
269.1 0.500000 0.866025i 0 1.50000 + 2.59808i 2.50000 + 4.33013i 0 0 7.00000 0 5.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
9.c even 3 1 inner
45.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.3.h.b 2
3.b odd 2 1 405.3.h.a 2
5.b even 2 1 405.3.h.a 2
9.c even 3 1 15.3.d.a 1
9.c even 3 1 inner 405.3.h.b 2
9.d odd 6 1 15.3.d.b yes 1
9.d odd 6 1 405.3.h.a 2
15.d odd 2 1 CM 405.3.h.b 2
36.f odd 6 1 240.3.c.a 1
36.h even 6 1 240.3.c.b 1
45.h odd 6 1 15.3.d.a 1
45.h odd 6 1 inner 405.3.h.b 2
45.j even 6 1 15.3.d.b yes 1
45.j even 6 1 405.3.h.a 2
45.k odd 12 2 75.3.c.d 2
45.l even 12 2 75.3.c.d 2
72.j odd 6 1 960.3.c.c 1
72.l even 6 1 960.3.c.a 1
72.n even 6 1 960.3.c.b 1
72.p odd 6 1 960.3.c.d 1
180.n even 6 1 240.3.c.a 1
180.p odd 6 1 240.3.c.b 1
180.v odd 12 2 1200.3.l.l 2
180.x even 12 2 1200.3.l.l 2
360.z odd 6 1 960.3.c.a 1
360.bd even 6 1 960.3.c.d 1
360.bh odd 6 1 960.3.c.b 1
360.bk even 6 1 960.3.c.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.3.d.a 1 9.c even 3 1
15.3.d.a 1 45.h odd 6 1
15.3.d.b yes 1 9.d odd 6 1
15.3.d.b yes 1 45.j even 6 1
75.3.c.d 2 45.k odd 12 2
75.3.c.d 2 45.l even 12 2
240.3.c.a 1 36.f odd 6 1
240.3.c.a 1 180.n even 6 1
240.3.c.b 1 36.h even 6 1
240.3.c.b 1 180.p odd 6 1
405.3.h.a 2 3.b odd 2 1
405.3.h.a 2 5.b even 2 1
405.3.h.a 2 9.d odd 6 1
405.3.h.a 2 45.j even 6 1
405.3.h.b 2 1.a even 1 1 trivial
405.3.h.b 2 9.c even 3 1 inner
405.3.h.b 2 15.d odd 2 1 CM
405.3.h.b 2 45.h odd 6 1 inner
960.3.c.a 1 72.l even 6 1
960.3.c.a 1 360.z odd 6 1
960.3.c.b 1 72.n even 6 1
960.3.c.b 1 360.bh odd 6 1
960.3.c.c 1 72.j odd 6 1
960.3.c.c 1 360.bk even 6 1
960.3.c.d 1 72.p odd 6 1
960.3.c.d 1 360.bd even 6 1
1200.3.l.l 2 180.v odd 12 2
1200.3.l.l 2 180.x even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{2} - T_{2} + 1 \)
\( T_{7} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 25 - 5 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( T^{2} \)
$13$ \( T^{2} \)
$17$ \( ( -14 + T )^{2} \)
$19$ \( ( 22 + T )^{2} \)
$23$ \( 1156 - 34 T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( 4 + 2 T + T^{2} \)
$37$ \( T^{2} \)
$41$ \( T^{2} \)
$43$ \( T^{2} \)
$47$ \( 196 + 14 T + T^{2} \)
$53$ \( ( -86 + T )^{2} \)
$59$ \( T^{2} \)
$61$ \( 13924 - 118 T + T^{2} \)
$67$ \( T^{2} \)
$71$ \( T^{2} \)
$73$ \( T^{2} \)
$79$ \( 9604 + 98 T + T^{2} \)
$83$ \( 23716 - 154 T + T^{2} \)
$89$ \( T^{2} \)
$97$ \( T^{2} \)
show more
show less