Properties

Label 405.3.g.h.163.5
Level $405$
Weight $3$
Character 405.163
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(82,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 8 x^{17} + 245 x^{16} - 440 x^{15} + 422 x^{14} + 1724 x^{13} + \cdots + 11449 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.5
Root \(0.134438 + 0.134438i\) of defining polynomial
Character \(\chi\) \(=\) 405.163
Dual form 405.3.g.h.82.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.134438 - 0.134438i) q^{2} +3.96385i q^{4} +(-3.28806 + 3.76678i) q^{5} +(-6.37245 + 6.37245i) q^{7} +(1.07064 + 1.07064i) q^{8} +(0.0643587 + 0.948439i) q^{10} +14.0822 q^{11} +(-9.47597 - 9.47597i) q^{13} +1.71340i q^{14} -15.5675 q^{16} +(-0.740694 + 0.740694i) q^{17} -7.09073i q^{19} +(-14.9310 - 13.0334i) q^{20} +(1.89318 - 1.89318i) q^{22} +(-13.9455 - 13.9455i) q^{23} +(-3.37732 - 24.7708i) q^{25} -2.54786 q^{26} +(-25.2594 - 25.2594i) q^{28} +7.13953i q^{29} -26.1565 q^{31} +(-6.37545 + 6.37545i) q^{32} +0.199155i q^{34} +(-3.05064 - 44.9566i) q^{35} +(-23.0151 + 23.0151i) q^{37} +(-0.953264 - 0.953264i) q^{38} +(-7.55323 + 0.512543i) q^{40} +72.0774 q^{41} +(8.82002 + 8.82002i) q^{43} +55.8198i q^{44} -3.74961 q^{46} +(-37.9887 + 37.9887i) q^{47} -32.2161i q^{49} +(-3.78418 - 2.87610i) q^{50} +(37.5614 - 37.5614i) q^{52} +(17.2907 + 17.2907i) q^{53} +(-46.3031 + 53.0446i) q^{55} -13.6452 q^{56} +(0.959823 + 0.959823i) q^{58} -31.8013i q^{59} -81.4634 q^{61} +(-3.51643 + 3.51643i) q^{62} -60.5560i q^{64} +(66.8515 - 4.53638i) q^{65} +(-46.9540 + 46.9540i) q^{67} +(-2.93600 - 2.93600i) q^{68} +(-6.45400 - 5.63375i) q^{70} -36.3928 q^{71} +(2.90991 + 2.90991i) q^{73} +6.18821i q^{74} +28.1066 q^{76} +(-89.7381 + 89.7381i) q^{77} +83.0025i q^{79} +(51.1870 - 58.6396i) q^{80} +(9.68994 - 9.68994i) q^{82} +(-37.6125 - 37.6125i) q^{83} +(-0.354588 - 5.22548i) q^{85} +2.37149 q^{86} +(15.0770 + 15.0770i) q^{88} -22.5436i q^{89} +120.770 q^{91} +(55.2780 - 55.2780i) q^{92} +10.2142i q^{94} +(26.7093 + 23.3148i) q^{95} +(-24.6841 + 24.6841i) q^{97} +(-4.33107 - 4.33107i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + 2 q^{5} + 2 q^{7} - 12 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 28 q^{16} + 14 q^{17} + 114 q^{20} - 14 q^{22} - 82 q^{23} + 8 q^{25} - 56 q^{26} - 44 q^{28} + 4 q^{31} + 14 q^{32} + 176 q^{35}+ \cdots - 938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.134438 0.134438i 0.0672190 0.0672190i −0.672698 0.739917i \(-0.734865\pi\)
0.739917 + 0.672698i \(0.234865\pi\)
\(3\) 0 0
\(4\) 3.96385i 0.990963i
\(5\) −3.28806 + 3.76678i −0.657612 + 0.753357i
\(6\) 0 0
\(7\) −6.37245 + 6.37245i −0.910349 + 0.910349i −0.996299 0.0859500i \(-0.972607\pi\)
0.0859500 + 0.996299i \(0.472607\pi\)
\(8\) 1.07064 + 1.07064i 0.133831 + 0.133831i
\(9\) 0 0
\(10\) 0.0643587 + 0.948439i 0.00643587 + 0.0948439i
\(11\) 14.0822 1.28020 0.640100 0.768292i \(-0.278893\pi\)
0.640100 + 0.768292i \(0.278893\pi\)
\(12\) 0 0
\(13\) −9.47597 9.47597i −0.728921 0.728921i 0.241484 0.970405i \(-0.422366\pi\)
−0.970405 + 0.241484i \(0.922366\pi\)
\(14\) 1.71340i 0.122386i
\(15\) 0 0
\(16\) −15.5675 −0.972971
\(17\) −0.740694 + 0.740694i −0.0435702 + 0.0435702i −0.728556 0.684986i \(-0.759808\pi\)
0.684986 + 0.728556i \(0.259808\pi\)
\(18\) 0 0
\(19\) 7.09073i 0.373196i −0.982436 0.186598i \(-0.940254\pi\)
0.982436 0.186598i \(-0.0597463\pi\)
\(20\) −14.9310 13.0334i −0.746549 0.651669i
\(21\) 0 0
\(22\) 1.89318 1.89318i 0.0860538 0.0860538i
\(23\) −13.9455 13.9455i −0.606327 0.606327i 0.335658 0.941984i \(-0.391042\pi\)
−0.941984 + 0.335658i \(0.891042\pi\)
\(24\) 0 0
\(25\) −3.37732 24.7708i −0.135093 0.990833i
\(26\) −2.54786 −0.0979947
\(27\) 0 0
\(28\) −25.2594 25.2594i −0.902123 0.902123i
\(29\) 7.13953i 0.246191i 0.992395 + 0.123095i \(0.0392821\pi\)
−0.992395 + 0.123095i \(0.960718\pi\)
\(30\) 0 0
\(31\) −26.1565 −0.843759 −0.421879 0.906652i \(-0.638629\pi\)
−0.421879 + 0.906652i \(0.638629\pi\)
\(32\) −6.37545 + 6.37545i −0.199233 + 0.199233i
\(33\) 0 0
\(34\) 0.199155i 0.00585749i
\(35\) −3.05064 44.9566i −0.0871612 1.28447i
\(36\) 0 0
\(37\) −23.0151 + 23.0151i −0.622031 + 0.622031i −0.946050 0.324020i \(-0.894966\pi\)
0.324020 + 0.946050i \(0.394966\pi\)
\(38\) −0.953264 0.953264i −0.0250859 0.0250859i
\(39\) 0 0
\(40\) −7.55323 + 0.512543i −0.188831 + 0.0128136i
\(41\) 72.0774 1.75799 0.878993 0.476834i \(-0.158216\pi\)
0.878993 + 0.476834i \(0.158216\pi\)
\(42\) 0 0
\(43\) 8.82002 + 8.82002i 0.205117 + 0.205117i 0.802188 0.597071i \(-0.203669\pi\)
−0.597071 + 0.802188i \(0.703669\pi\)
\(44\) 55.8198i 1.26863i
\(45\) 0 0
\(46\) −3.74961 −0.0815133
\(47\) −37.9887 + 37.9887i −0.808270 + 0.808270i −0.984372 0.176102i \(-0.943651\pi\)
0.176102 + 0.984372i \(0.443651\pi\)
\(48\) 0 0
\(49\) 32.2161i 0.657472i
\(50\) −3.78418 2.87610i −0.0756836 0.0575220i
\(51\) 0 0
\(52\) 37.5614 37.5614i 0.722334 0.722334i
\(53\) 17.2907 + 17.2907i 0.326240 + 0.326240i 0.851155 0.524915i \(-0.175903\pi\)
−0.524915 + 0.851155i \(0.675903\pi\)
\(54\) 0 0
\(55\) −46.3031 + 53.0446i −0.841875 + 0.964447i
\(56\) −13.6452 −0.243665
\(57\) 0 0
\(58\) 0.959823 + 0.959823i 0.0165487 + 0.0165487i
\(59\) 31.8013i 0.539005i −0.963000 0.269502i \(-0.913141\pi\)
0.963000 0.269502i \(-0.0868592\pi\)
\(60\) 0 0
\(61\) −81.4634 −1.33547 −0.667733 0.744401i \(-0.732735\pi\)
−0.667733 + 0.744401i \(0.732735\pi\)
\(62\) −3.51643 + 3.51643i −0.0567166 + 0.0567166i
\(63\) 0 0
\(64\) 60.5560i 0.946187i
\(65\) 66.8515 4.53638i 1.02848 0.0697904i
\(66\) 0 0
\(67\) −46.9540 + 46.9540i −0.700806 + 0.700806i −0.964584 0.263777i \(-0.915032\pi\)
0.263777 + 0.964584i \(0.415032\pi\)
\(68\) −2.93600 2.93600i −0.0431765 0.0431765i
\(69\) 0 0
\(70\) −6.45400 5.63375i −0.0922000 0.0804822i
\(71\) −36.3928 −0.512574 −0.256287 0.966601i \(-0.582499\pi\)
−0.256287 + 0.966601i \(0.582499\pi\)
\(72\) 0 0
\(73\) 2.90991 + 2.90991i 0.0398617 + 0.0398617i 0.726757 0.686895i \(-0.241027\pi\)
−0.686895 + 0.726757i \(0.741027\pi\)
\(74\) 6.18821i 0.0836245i
\(75\) 0 0
\(76\) 28.1066 0.369824
\(77\) −89.7381 + 89.7381i −1.16543 + 1.16543i
\(78\) 0 0
\(79\) 83.0025i 1.05066i 0.850897 + 0.525332i \(0.176059\pi\)
−0.850897 + 0.525332i \(0.823941\pi\)
\(80\) 51.1870 58.6396i 0.639838 0.732995i
\(81\) 0 0
\(82\) 9.68994 9.68994i 0.118170 0.118170i
\(83\) −37.6125 37.6125i −0.453162 0.453162i 0.443241 0.896403i \(-0.353829\pi\)
−0.896403 + 0.443241i \(0.853829\pi\)
\(84\) 0 0
\(85\) −0.354588 5.22548i −0.00417162 0.0614762i
\(86\) 2.37149 0.0275755
\(87\) 0 0
\(88\) 15.0770 + 15.0770i 0.171330 + 0.171330i
\(89\) 22.5436i 0.253299i −0.991948 0.126650i \(-0.959578\pi\)
0.991948 0.126650i \(-0.0404224\pi\)
\(90\) 0 0
\(91\) 120.770 1.32715
\(92\) 55.2780 55.2780i 0.600847 0.600847i
\(93\) 0 0
\(94\) 10.2142i 0.108662i
\(95\) 26.7093 + 23.3148i 0.281150 + 0.245418i
\(96\) 0 0
\(97\) −24.6841 + 24.6841i −0.254476 + 0.254476i −0.822803 0.568327i \(-0.807591\pi\)
0.568327 + 0.822803i \(0.307591\pi\)
\(98\) −4.33107 4.33107i −0.0441946 0.0441946i
\(99\) 0 0
\(100\) 98.1879 13.3872i 0.981879 0.133872i
\(101\) 59.4566 0.588679 0.294340 0.955701i \(-0.404900\pi\)
0.294340 + 0.955701i \(0.404900\pi\)
\(102\) 0 0
\(103\) 55.6493 + 55.6493i 0.540285 + 0.540285i 0.923612 0.383328i \(-0.125222\pi\)
−0.383328 + 0.923612i \(0.625222\pi\)
\(104\) 20.2908i 0.195104i
\(105\) 0 0
\(106\) 4.64906 0.0438590
\(107\) −50.6865 + 50.6865i −0.473706 + 0.473706i −0.903112 0.429406i \(-0.858723\pi\)
0.429406 + 0.903112i \(0.358723\pi\)
\(108\) 0 0
\(109\) 47.8364i 0.438866i 0.975628 + 0.219433i \(0.0704208\pi\)
−0.975628 + 0.219433i \(0.929579\pi\)
\(110\) 0.906312 + 13.3561i 0.00823920 + 0.121419i
\(111\) 0 0
\(112\) 99.2033 99.2033i 0.885744 0.885744i
\(113\) −123.217 123.217i −1.09042 1.09042i −0.995484 0.0949318i \(-0.969737\pi\)
−0.0949318 0.995484i \(-0.530263\pi\)
\(114\) 0 0
\(115\) 98.3834 6.67605i 0.855508 0.0580526i
\(116\) −28.3000 −0.243966
\(117\) 0 0
\(118\) −4.27530 4.27530i −0.0362313 0.0362313i
\(119\) 9.44007i 0.0793283i
\(120\) 0 0
\(121\) 77.3084 0.638912
\(122\) −10.9518 + 10.9518i −0.0897686 + 0.0897686i
\(123\) 0 0
\(124\) 103.681i 0.836134i
\(125\) 104.411 + 68.7263i 0.835289 + 0.549810i
\(126\) 0 0
\(127\) 16.3333 16.3333i 0.128608 0.128608i −0.639873 0.768481i \(-0.721013\pi\)
0.768481 + 0.639873i \(0.221013\pi\)
\(128\) −33.6428 33.6428i −0.262834 0.262834i
\(129\) 0 0
\(130\) 8.37752 9.59724i 0.0644425 0.0738250i
\(131\) 55.2097 0.421448 0.210724 0.977546i \(-0.432418\pi\)
0.210724 + 0.977546i \(0.432418\pi\)
\(132\) 0 0
\(133\) 45.1853 + 45.1853i 0.339739 + 0.339739i
\(134\) 12.6248i 0.0942150i
\(135\) 0 0
\(136\) −1.58604 −0.0116621
\(137\) −138.629 + 138.629i −1.01189 + 1.01189i −0.0119610 + 0.999928i \(0.503807\pi\)
−0.999928 + 0.0119610i \(0.996193\pi\)
\(138\) 0 0
\(139\) 95.3049i 0.685647i 0.939400 + 0.342823i \(0.111383\pi\)
−0.939400 + 0.342823i \(0.888617\pi\)
\(140\) 178.201 12.0923i 1.27287 0.0863736i
\(141\) 0 0
\(142\) −4.89257 + 4.89257i −0.0344547 + 0.0344547i
\(143\) −133.443 133.443i −0.933165 0.933165i
\(144\) 0 0
\(145\) −26.8931 23.4752i −0.185469 0.161898i
\(146\) 0.782404 0.00535893
\(147\) 0 0
\(148\) −91.2286 91.2286i −0.616409 0.616409i
\(149\) 260.201i 1.74632i 0.487437 + 0.873158i \(0.337932\pi\)
−0.487437 + 0.873158i \(0.662068\pi\)
\(150\) 0 0
\(151\) 257.828 1.70747 0.853735 0.520708i \(-0.174332\pi\)
0.853735 + 0.520708i \(0.174332\pi\)
\(152\) 7.59165 7.59165i 0.0499451 0.0499451i
\(153\) 0 0
\(154\) 24.1284i 0.156678i
\(155\) 86.0042 98.5259i 0.554866 0.635651i
\(156\) 0 0
\(157\) −32.8669 + 32.8669i −0.209344 + 0.209344i −0.803988 0.594645i \(-0.797293\pi\)
0.594645 + 0.803988i \(0.297293\pi\)
\(158\) 11.1587 + 11.1587i 0.0706246 + 0.0706246i
\(159\) 0 0
\(160\) −3.05208 44.9778i −0.0190755 0.281111i
\(161\) 177.734 1.10394
\(162\) 0 0
\(163\) 76.8331 + 76.8331i 0.471369 + 0.471369i 0.902357 0.430989i \(-0.141835\pi\)
−0.430989 + 0.902357i \(0.641835\pi\)
\(164\) 285.704i 1.74210i
\(165\) 0 0
\(166\) −10.1131 −0.0609222
\(167\) 220.534 220.534i 1.32057 1.32057i 0.407248 0.913318i \(-0.366489\pi\)
0.913318 0.407248i \(-0.133511\pi\)
\(168\) 0 0
\(169\) 10.5882i 0.0626520i
\(170\) −0.750173 0.654833i −0.00441278 0.00385196i
\(171\) 0 0
\(172\) −34.9612 + 34.9612i −0.203263 + 0.203263i
\(173\) −141.017 141.017i −0.815127 0.815127i 0.170270 0.985397i \(-0.445536\pi\)
−0.985397 + 0.170270i \(0.945536\pi\)
\(174\) 0 0
\(175\) 179.373 + 136.329i 1.02499 + 0.779022i
\(176\) −219.225 −1.24560
\(177\) 0 0
\(178\) −3.03072 3.03072i −0.0170265 0.0170265i
\(179\) 254.120i 1.41967i 0.704370 + 0.709833i \(0.251230\pi\)
−0.704370 + 0.709833i \(0.748770\pi\)
\(180\) 0 0
\(181\) −236.998 −1.30938 −0.654691 0.755896i \(-0.727201\pi\)
−0.654691 + 0.755896i \(0.727201\pi\)
\(182\) 16.2361 16.2361i 0.0892094 0.0892094i
\(183\) 0 0
\(184\) 29.8614i 0.162290i
\(185\) −11.0179 162.368i −0.0595562 0.877666i
\(186\) 0 0
\(187\) −10.4306 + 10.4306i −0.0557786 + 0.0557786i
\(188\) −150.582 150.582i −0.800966 0.800966i
\(189\) 0 0
\(190\) 6.72513 0.456350i 0.0353954 0.00240184i
\(191\) −54.5924 −0.285824 −0.142912 0.989735i \(-0.545647\pi\)
−0.142912 + 0.989735i \(0.545647\pi\)
\(192\) 0 0
\(193\) 141.584 + 141.584i 0.733597 + 0.733597i 0.971331 0.237733i \(-0.0764044\pi\)
−0.237733 + 0.971331i \(0.576404\pi\)
\(194\) 6.63697i 0.0342112i
\(195\) 0 0
\(196\) 127.700 0.651531
\(197\) 18.5367 18.5367i 0.0940948 0.0940948i −0.658492 0.752587i \(-0.728806\pi\)
0.752587 + 0.658492i \(0.228806\pi\)
\(198\) 0 0
\(199\) 206.081i 1.03558i 0.855507 + 0.517792i \(0.173246\pi\)
−0.855507 + 0.517792i \(0.826754\pi\)
\(200\) 22.9048 30.1367i 0.114524 0.150683i
\(201\) 0 0
\(202\) 7.99323 7.99323i 0.0395704 0.0395704i
\(203\) −45.4962 45.4962i −0.224119 0.224119i
\(204\) 0 0
\(205\) −236.995 + 271.500i −1.15607 + 1.32439i
\(206\) 14.9628 0.0726348
\(207\) 0 0
\(208\) 147.518 + 147.518i 0.709219 + 0.709219i
\(209\) 99.8531i 0.477766i
\(210\) 0 0
\(211\) −242.747 −1.15046 −0.575230 0.817992i \(-0.695087\pi\)
−0.575230 + 0.817992i \(0.695087\pi\)
\(212\) −68.5378 + 68.5378i −0.323292 + 0.323292i
\(213\) 0 0
\(214\) 13.6284i 0.0636840i
\(215\) −62.2238 + 4.22235i −0.289413 + 0.0196389i
\(216\) 0 0
\(217\) 166.681 166.681i 0.768115 0.768115i
\(218\) 6.43103 + 6.43103i 0.0295002 + 0.0295002i
\(219\) 0 0
\(220\) −210.261 183.539i −0.955732 0.834267i
\(221\) 14.0376 0.0635185
\(222\) 0 0
\(223\) −145.501 145.501i −0.652472 0.652472i 0.301116 0.953588i \(-0.402641\pi\)
−0.953588 + 0.301116i \(0.902641\pi\)
\(224\) 81.2544i 0.362743i
\(225\) 0 0
\(226\) −33.1301 −0.146593
\(227\) 131.638 131.638i 0.579903 0.579903i −0.354973 0.934876i \(-0.615510\pi\)
0.934876 + 0.354973i \(0.115510\pi\)
\(228\) 0 0
\(229\) 180.947i 0.790160i −0.918647 0.395080i \(-0.870717\pi\)
0.918647 0.395080i \(-0.129283\pi\)
\(230\) 12.3289 14.1240i 0.0536041 0.0614086i
\(231\) 0 0
\(232\) −7.64389 + 7.64389i −0.0329478 + 0.0329478i
\(233\) −120.230 120.230i −0.516010 0.516010i 0.400351 0.916362i \(-0.368888\pi\)
−0.916362 + 0.400351i \(0.868888\pi\)
\(234\) 0 0
\(235\) −18.1861 268.004i −0.0773877 1.14044i
\(236\) 126.056 0.534134
\(237\) 0 0
\(238\) −1.26910 1.26910i −0.00533237 0.00533237i
\(239\) 383.502i 1.60461i 0.596914 + 0.802306i \(0.296394\pi\)
−0.596914 + 0.802306i \(0.703606\pi\)
\(240\) 0 0
\(241\) −325.887 −1.35223 −0.676114 0.736797i \(-0.736337\pi\)
−0.676114 + 0.736797i \(0.736337\pi\)
\(242\) 10.3932 10.3932i 0.0429470 0.0429470i
\(243\) 0 0
\(244\) 322.909i 1.32340i
\(245\) 121.351 + 105.929i 0.495311 + 0.432362i
\(246\) 0 0
\(247\) −67.1916 + 67.1916i −0.272031 + 0.272031i
\(248\) −28.0043 28.0043i −0.112921 0.112921i
\(249\) 0 0
\(250\) 23.2763 4.79740i 0.0931050 0.0191896i
\(251\) 428.941 1.70893 0.854465 0.519509i \(-0.173885\pi\)
0.854465 + 0.519509i \(0.173885\pi\)
\(252\) 0 0
\(253\) −196.383 196.383i −0.776219 0.776219i
\(254\) 4.39162i 0.0172898i
\(255\) 0 0
\(256\) 233.178 0.910852
\(257\) −260.509 + 260.509i −1.01365 + 1.01365i −0.0137462 + 0.999906i \(0.504376\pi\)
−0.999906 + 0.0137462i \(0.995624\pi\)
\(258\) 0 0
\(259\) 293.325i 1.13253i
\(260\) 17.9815 + 264.990i 0.0691597 + 1.01919i
\(261\) 0 0
\(262\) 7.42228 7.42228i 0.0283293 0.0283293i
\(263\) 46.6533 + 46.6533i 0.177389 + 0.177389i 0.790217 0.612828i \(-0.209968\pi\)
−0.612828 + 0.790217i \(0.709968\pi\)
\(264\) 0 0
\(265\) −121.983 + 8.27748i −0.460314 + 0.0312358i
\(266\) 12.1492 0.0456738
\(267\) 0 0
\(268\) −186.119 186.119i −0.694473 0.694473i
\(269\) 146.927i 0.546197i −0.961986 0.273099i \(-0.911951\pi\)
0.961986 0.273099i \(-0.0880485\pi\)
\(270\) 0 0
\(271\) −45.0155 −0.166109 −0.0830544 0.996545i \(-0.526468\pi\)
−0.0830544 + 0.996545i \(0.526468\pi\)
\(272\) 11.5308 11.5308i 0.0423926 0.0423926i
\(273\) 0 0
\(274\) 37.2740i 0.136036i
\(275\) −47.5602 348.828i −0.172946 1.26846i
\(276\) 0 0
\(277\) −112.252 + 112.252i −0.405241 + 0.405241i −0.880075 0.474834i \(-0.842508\pi\)
0.474834 + 0.880075i \(0.342508\pi\)
\(278\) 12.8126 + 12.8126i 0.0460885 + 0.0460885i
\(279\) 0 0
\(280\) 44.8664 51.3987i 0.160237 0.183567i
\(281\) 66.1874 0.235542 0.117771 0.993041i \(-0.462425\pi\)
0.117771 + 0.993041i \(0.462425\pi\)
\(282\) 0 0
\(283\) −284.616 284.616i −1.00571 1.00571i −0.999984 0.00572739i \(-0.998177\pi\)
−0.00572739 0.999984i \(-0.501823\pi\)
\(284\) 144.256i 0.507942i
\(285\) 0 0
\(286\) −35.8795 −0.125453
\(287\) −459.310 + 459.310i −1.60038 + 1.60038i
\(288\) 0 0
\(289\) 287.903i 0.996203i
\(290\) −6.77140 + 0.459491i −0.0233497 + 0.00158445i
\(291\) 0 0
\(292\) −11.5344 + 11.5344i −0.0395015 + 0.0395015i
\(293\) 153.537 + 153.537i 0.524017 + 0.524017i 0.918782 0.394765i \(-0.129174\pi\)
−0.394765 + 0.918782i \(0.629174\pi\)
\(294\) 0 0
\(295\) 119.789 + 104.565i 0.406063 + 0.354456i
\(296\) −49.2820 −0.166493
\(297\) 0 0
\(298\) 34.9809 + 34.9809i 0.117386 + 0.117386i
\(299\) 264.295i 0.883928i
\(300\) 0 0
\(301\) −112.410 −0.373456
\(302\) 34.6619 34.6619i 0.114774 0.114774i
\(303\) 0 0
\(304\) 110.385i 0.363109i
\(305\) 267.857 306.855i 0.878218 1.00608i
\(306\) 0 0
\(307\) −219.096 + 219.096i −0.713666 + 0.713666i −0.967300 0.253634i \(-0.918374\pi\)
0.253634 + 0.967300i \(0.418374\pi\)
\(308\) −355.708 355.708i −1.15490 1.15490i
\(309\) 0 0
\(310\) −1.68340 24.8079i −0.00543032 0.0800253i
\(311\) 137.696 0.442751 0.221376 0.975189i \(-0.428945\pi\)
0.221376 + 0.975189i \(0.428945\pi\)
\(312\) 0 0
\(313\) 4.66646 + 4.66646i 0.0149088 + 0.0149088i 0.714522 0.699613i \(-0.246644\pi\)
−0.699613 + 0.714522i \(0.746644\pi\)
\(314\) 8.83713i 0.0281437i
\(315\) 0 0
\(316\) −329.010 −1.04117
\(317\) −312.791 + 312.791i −0.986721 + 0.986721i −0.999913 0.0131919i \(-0.995801\pi\)
0.0131919 + 0.999913i \(0.495801\pi\)
\(318\) 0 0
\(319\) 100.540i 0.315173i
\(320\) 228.101 + 199.112i 0.712816 + 0.622224i
\(321\) 0 0
\(322\) 23.8942 23.8942i 0.0742056 0.0742056i
\(323\) 5.25206 + 5.25206i 0.0162603 + 0.0162603i
\(324\) 0 0
\(325\) −202.724 + 266.731i −0.623767 + 0.820711i
\(326\) 20.6586 0.0633699
\(327\) 0 0
\(328\) 77.1693 + 77.1693i 0.235272 + 0.235272i
\(329\) 484.162i 1.47162i
\(330\) 0 0
\(331\) 261.703 0.790642 0.395321 0.918543i \(-0.370633\pi\)
0.395321 + 0.918543i \(0.370633\pi\)
\(332\) 149.090 149.090i 0.449067 0.449067i
\(333\) 0 0
\(334\) 59.2964i 0.177534i
\(335\) −22.4780 331.253i −0.0670986 0.988816i
\(336\) 0 0
\(337\) −103.095 + 103.095i −0.305921 + 0.305921i −0.843325 0.537404i \(-0.819405\pi\)
0.537404 + 0.843325i \(0.319405\pi\)
\(338\) 1.42345 + 1.42345i 0.00421140 + 0.00421140i
\(339\) 0 0
\(340\) 20.7130 1.40553i 0.0609207 0.00413393i
\(341\) −368.341 −1.08018
\(342\) 0 0
\(343\) −106.954 106.954i −0.311820 0.311820i
\(344\) 18.8862i 0.0549017i
\(345\) 0 0
\(346\) −37.9161 −0.109584
\(347\) −7.15939 + 7.15939i −0.0206322 + 0.0206322i −0.717348 0.696715i \(-0.754644\pi\)
0.696715 + 0.717348i \(0.254644\pi\)
\(348\) 0 0
\(349\) 108.665i 0.311362i 0.987807 + 0.155681i \(0.0497572\pi\)
−0.987807 + 0.155681i \(0.950243\pi\)
\(350\) 42.4423 5.78670i 0.121264 0.0165334i
\(351\) 0 0
\(352\) −89.7803 + 89.7803i −0.255058 + 0.255058i
\(353\) 341.965 + 341.965i 0.968739 + 0.968739i 0.999526 0.0307868i \(-0.00980129\pi\)
−0.0307868 + 0.999526i \(0.509801\pi\)
\(354\) 0 0
\(355\) 119.662 137.084i 0.337075 0.386151i
\(356\) 89.3597 0.251010
\(357\) 0 0
\(358\) 34.1634 + 34.1634i 0.0954285 + 0.0954285i
\(359\) 279.063i 0.777333i −0.921378 0.388667i \(-0.872936\pi\)
0.921378 0.388667i \(-0.127064\pi\)
\(360\) 0 0
\(361\) 310.722 0.860724
\(362\) −31.8616 + 31.8616i −0.0880154 + 0.0880154i
\(363\) 0 0
\(364\) 478.716i 1.31515i
\(365\) −20.5289 + 1.39304i −0.0562436 + 0.00381655i
\(366\) 0 0
\(367\) 126.313 126.313i 0.344178 0.344178i −0.513757 0.857935i \(-0.671747\pi\)
0.857935 + 0.513757i \(0.171747\pi\)
\(368\) 217.097 + 217.097i 0.589938 + 0.589938i
\(369\) 0 0
\(370\) −23.3097 20.3472i −0.0629991 0.0549925i
\(371\) −220.368 −0.593984
\(372\) 0 0
\(373\) −62.0733 62.0733i −0.166416 0.166416i 0.618986 0.785402i \(-0.287544\pi\)
−0.785402 + 0.618986i \(0.787544\pi\)
\(374\) 2.80454i 0.00749876i
\(375\) 0 0
\(376\) −81.3448 −0.216342
\(377\) 67.6540 67.6540i 0.179453 0.179453i
\(378\) 0 0
\(379\) 10.3793i 0.0273860i −0.999906 0.0136930i \(-0.995641\pi\)
0.999906 0.0136930i \(-0.00435875\pi\)
\(380\) −92.4163 + 105.872i −0.243201 + 0.278609i
\(381\) 0 0
\(382\) −7.33929 + 7.33929i −0.0192128 + 0.0192128i
\(383\) −91.0926 91.0926i −0.237840 0.237840i 0.578115 0.815955i \(-0.303788\pi\)
−0.815955 + 0.578115i \(0.803788\pi\)
\(384\) 0 0
\(385\) −42.9598 633.088i −0.111584 1.64438i
\(386\) 38.0686 0.0986233
\(387\) 0 0
\(388\) −97.8443 97.8443i −0.252176 0.252176i
\(389\) 733.647i 1.88598i −0.332818 0.942991i \(-0.607999\pi\)
0.332818 0.942991i \(-0.392001\pi\)
\(390\) 0 0
\(391\) 20.6587 0.0528356
\(392\) 34.4920 34.4920i 0.0879898 0.0879898i
\(393\) 0 0
\(394\) 4.98407i 0.0126499i
\(395\) −312.652 272.917i −0.791525 0.690930i
\(396\) 0 0
\(397\) 151.257 151.257i 0.381000 0.381000i −0.490463 0.871462i \(-0.663172\pi\)
0.871462 + 0.490463i \(0.163172\pi\)
\(398\) 27.7051 + 27.7051i 0.0696109 + 0.0696109i
\(399\) 0 0
\(400\) 52.5766 + 385.621i 0.131442 + 0.964052i
\(401\) 6.54509 0.0163219 0.00816096 0.999967i \(-0.497402\pi\)
0.00816096 + 0.999967i \(0.497402\pi\)
\(402\) 0 0
\(403\) 247.858 + 247.858i 0.615033 + 0.615033i
\(404\) 235.677i 0.583360i
\(405\) 0 0
\(406\) −12.2328 −0.0301302
\(407\) −324.104 + 324.104i −0.796324 + 0.796324i
\(408\) 0 0
\(409\) 738.152i 1.80477i −0.430927 0.902387i \(-0.641813\pi\)
0.430927 0.902387i \(-0.358187\pi\)
\(410\) 4.63881 + 68.3610i 0.0113142 + 0.166734i
\(411\) 0 0
\(412\) −220.586 + 220.586i −0.535402 + 0.535402i
\(413\) 202.652 + 202.652i 0.490683 + 0.490683i
\(414\) 0 0
\(415\) 265.350 18.0060i 0.639398 0.0433879i
\(416\) 120.827 0.290450
\(417\) 0 0
\(418\) −13.4241 13.4241i −0.0321150 0.0321150i
\(419\) 271.788i 0.648660i 0.945944 + 0.324330i \(0.105139\pi\)
−0.945944 + 0.324330i \(0.894861\pi\)
\(420\) 0 0
\(421\) −205.993 −0.489293 −0.244647 0.969612i \(-0.578672\pi\)
−0.244647 + 0.969612i \(0.578672\pi\)
\(422\) −32.6344 + 32.6344i −0.0773327 + 0.0773327i
\(423\) 0 0
\(424\) 37.0244i 0.0873217i
\(425\) 20.8492 + 15.8460i 0.0490569 + 0.0372848i
\(426\) 0 0
\(427\) 519.121 519.121i 1.21574 1.21574i
\(428\) −200.914 200.914i −0.469425 0.469425i
\(429\) 0 0
\(430\) −7.79760 + 8.93289i −0.0181340 + 0.0207742i
\(431\) −238.470 −0.553294 −0.276647 0.960972i \(-0.589223\pi\)
−0.276647 + 0.960972i \(0.589223\pi\)
\(432\) 0 0
\(433\) 79.6977 + 79.6977i 0.184059 + 0.184059i 0.793122 0.609063i \(-0.208454\pi\)
−0.609063 + 0.793122i \(0.708454\pi\)
\(434\) 44.8165i 0.103264i
\(435\) 0 0
\(436\) −189.617 −0.434900
\(437\) −98.8839 + 98.8839i −0.226279 + 0.226279i
\(438\) 0 0
\(439\) 323.458i 0.736807i 0.929666 + 0.368404i \(0.120096\pi\)
−0.929666 + 0.368404i \(0.879904\pi\)
\(440\) −106.366 + 7.21774i −0.241741 + 0.0164039i
\(441\) 0 0
\(442\) 1.88719 1.88719i 0.00426965 0.00426965i
\(443\) 534.164 + 534.164i 1.20579 + 1.20579i 0.972379 + 0.233410i \(0.0749883\pi\)
0.233410 + 0.972379i \(0.425012\pi\)
\(444\) 0 0
\(445\) 84.9170 + 74.1248i 0.190825 + 0.166573i
\(446\) −39.1218 −0.0877170
\(447\) 0 0
\(448\) 385.890 + 385.890i 0.861361 + 0.861361i
\(449\) 514.733i 1.14640i 0.819416 + 0.573199i \(0.194298\pi\)
−0.819416 + 0.573199i \(0.805702\pi\)
\(450\) 0 0
\(451\) 1015.01 2.25057
\(452\) 488.414 488.414i 1.08056 1.08056i
\(453\) 0 0
\(454\) 35.3943i 0.0779610i
\(455\) −397.100 + 454.916i −0.872747 + 0.999814i
\(456\) 0 0
\(457\) 402.961 402.961i 0.881754 0.881754i −0.111959 0.993713i \(-0.535713\pi\)
0.993713 + 0.111959i \(0.0357126\pi\)
\(458\) −24.3261 24.3261i −0.0531137 0.0531137i
\(459\) 0 0
\(460\) 26.4629 + 389.977i 0.0575280 + 0.847777i
\(461\) 238.669 0.517720 0.258860 0.965915i \(-0.416653\pi\)
0.258860 + 0.965915i \(0.416653\pi\)
\(462\) 0 0
\(463\) 583.314 + 583.314i 1.25986 + 1.25986i 0.951160 + 0.308698i \(0.0998934\pi\)
0.308698 + 0.951160i \(0.400107\pi\)
\(464\) 111.145i 0.239536i
\(465\) 0 0
\(466\) −32.3271 −0.0693714
\(467\) 489.265 489.265i 1.04768 1.04768i 0.0488707 0.998805i \(-0.484438\pi\)
0.998805 0.0488707i \(-0.0155622\pi\)
\(468\) 0 0
\(469\) 598.424i 1.27596i
\(470\) −38.4749 33.5851i −0.0818614 0.0714576i
\(471\) 0 0
\(472\) 34.0479 34.0479i 0.0721353 0.0721353i
\(473\) 124.205 + 124.205i 0.262590 + 0.262590i
\(474\) 0 0
\(475\) −175.643 + 23.9477i −0.369775 + 0.0504162i
\(476\) 37.4190 0.0786114
\(477\) 0 0
\(478\) 51.5572 + 51.5572i 0.107860 + 0.107860i
\(479\) 164.885i 0.344228i 0.985077 + 0.172114i \(0.0550597\pi\)
−0.985077 + 0.172114i \(0.944940\pi\)
\(480\) 0 0
\(481\) 436.182 0.906822
\(482\) −43.8116 + 43.8116i −0.0908954 + 0.0908954i
\(483\) 0 0
\(484\) 306.439i 0.633139i
\(485\) −11.8169 174.143i −0.0243647 0.359057i
\(486\) 0 0
\(487\) 326.960 326.960i 0.671376 0.671376i −0.286657 0.958033i \(-0.592544\pi\)
0.958033 + 0.286657i \(0.0925441\pi\)
\(488\) −87.2183 87.2183i −0.178726 0.178726i
\(489\) 0 0
\(490\) 30.5550 2.07339i 0.0623572 0.00423140i
\(491\) 364.023 0.741391 0.370695 0.928755i \(-0.379119\pi\)
0.370695 + 0.928755i \(0.379119\pi\)
\(492\) 0 0
\(493\) −5.28820 5.28820i −0.0107266 0.0107266i
\(494\) 18.0662i 0.0365713i
\(495\) 0 0
\(496\) 407.193 0.820953
\(497\) 231.911 231.911i 0.466622 0.466622i
\(498\) 0 0
\(499\) 408.276i 0.818189i 0.912492 + 0.409095i \(0.134155\pi\)
−0.912492 + 0.409095i \(0.865845\pi\)
\(500\) −272.421 + 413.871i −0.544842 + 0.827741i
\(501\) 0 0
\(502\) 57.6660 57.6660i 0.114873 0.114873i
\(503\) 555.921 + 555.921i 1.10521 + 1.10521i 0.993771 + 0.111440i \(0.0355462\pi\)
0.111440 + 0.993771i \(0.464454\pi\)
\(504\) 0 0
\(505\) −195.497 + 223.960i −0.387123 + 0.443486i
\(506\) −52.8028 −0.104353
\(507\) 0 0
\(508\) 64.7426 + 64.7426i 0.127446 + 0.127446i
\(509\) 524.197i 1.02986i −0.857233 0.514928i \(-0.827819\pi\)
0.857233 0.514928i \(-0.172181\pi\)
\(510\) 0 0
\(511\) −37.0864 −0.0725762
\(512\) 165.919 165.919i 0.324061 0.324061i
\(513\) 0 0
\(514\) 70.0445i 0.136273i
\(515\) −392.597 + 26.6407i −0.762325 + 0.0517295i
\(516\) 0 0
\(517\) −534.965 + 534.965i −1.03475 + 1.03475i
\(518\) −39.4341 39.4341i −0.0761275 0.0761275i
\(519\) 0 0
\(520\) 76.4310 + 66.7173i 0.146983 + 0.128303i
\(521\) −694.042 −1.33213 −0.666067 0.745892i \(-0.732023\pi\)
−0.666067 + 0.745892i \(0.732023\pi\)
\(522\) 0 0
\(523\) 244.233 + 244.233i 0.466985 + 0.466985i 0.900936 0.433951i \(-0.142881\pi\)
−0.433951 + 0.900936i \(0.642881\pi\)
\(524\) 218.843i 0.417640i
\(525\) 0 0
\(526\) 12.5440 0.0238478
\(527\) 19.3740 19.3740i 0.0367628 0.0367628i
\(528\) 0 0
\(529\) 140.045i 0.264736i
\(530\) −15.2864 + 17.5120i −0.0288422 + 0.0330415i
\(531\) 0 0
\(532\) −179.108 + 179.108i −0.336669 + 0.336669i
\(533\) −683.004 683.004i −1.28143 1.28143i
\(534\) 0 0
\(535\) −24.2648 357.585i −0.0453549 0.668384i
\(536\) −100.542 −0.187579
\(537\) 0 0
\(538\) −19.7526 19.7526i −0.0367148 0.0367148i
\(539\) 453.674i 0.841696i
\(540\) 0 0
\(541\) −682.588 −1.26172 −0.630858 0.775899i \(-0.717297\pi\)
−0.630858 + 0.775899i \(0.717297\pi\)
\(542\) −6.05179 + 6.05179i −0.0111657 + 0.0111657i
\(543\) 0 0
\(544\) 9.44451i 0.0173612i
\(545\) −180.190 157.289i −0.330623 0.288604i
\(546\) 0 0
\(547\) −45.7308 + 45.7308i −0.0836029 + 0.0836029i −0.747672 0.664069i \(-0.768828\pi\)
0.664069 + 0.747672i \(0.268828\pi\)
\(548\) −549.504 549.504i −1.00275 1.00275i
\(549\) 0 0
\(550\) −53.2896 40.5018i −0.0968901 0.0736396i
\(551\) 50.6245 0.0918774
\(552\) 0 0
\(553\) −528.929 528.929i −0.956472 0.956472i
\(554\) 30.1818i 0.0544798i
\(555\) 0 0
\(556\) −377.775 −0.679451
\(557\) −66.9124 + 66.9124i −0.120130 + 0.120130i −0.764616 0.644486i \(-0.777071\pi\)
0.644486 + 0.764616i \(0.277071\pi\)
\(558\) 0 0
\(559\) 167.156i 0.299028i
\(560\) 47.4910 + 699.864i 0.0848054 + 1.24976i
\(561\) 0 0
\(562\) 8.89809 8.89809i 0.0158329 0.0158329i
\(563\) 100.610 + 100.610i 0.178703 + 0.178703i 0.790790 0.612087i \(-0.209670\pi\)
−0.612087 + 0.790790i \(0.709670\pi\)
\(564\) 0 0
\(565\) 869.276 58.9869i 1.53854 0.104402i
\(566\) −76.5264 −0.135206
\(567\) 0 0
\(568\) −38.9637 38.9637i −0.0685981 0.0685981i
\(569\) 319.654i 0.561782i 0.959740 + 0.280891i \(0.0906299\pi\)
−0.959740 + 0.280891i \(0.909370\pi\)
\(570\) 0 0
\(571\) 648.618 1.13593 0.567967 0.823051i \(-0.307730\pi\)
0.567967 + 0.823051i \(0.307730\pi\)
\(572\) 528.947 528.947i 0.924732 0.924732i
\(573\) 0 0
\(574\) 123.497i 0.215152i
\(575\) −298.343 + 392.540i −0.518858 + 0.682679i
\(576\) 0 0
\(577\) −519.616 + 519.616i −0.900548 + 0.900548i −0.995483 0.0949353i \(-0.969736\pi\)
0.0949353 + 0.995483i \(0.469736\pi\)
\(578\) 38.7051 + 38.7051i 0.0669638 + 0.0669638i
\(579\) 0 0
\(580\) 93.0522 106.600i 0.160435 0.183793i
\(581\) 479.367 0.825072
\(582\) 0 0
\(583\) 243.491 + 243.491i 0.417652 + 0.417652i
\(584\) 6.23095i 0.0106694i
\(585\) 0 0
\(586\) 41.2824 0.0704478
\(587\) 583.945 583.945i 0.994796 0.994796i −0.00519094 0.999987i \(-0.501652\pi\)
0.999987 + 0.00519094i \(0.00165233\pi\)
\(588\) 0 0
\(589\) 185.469i 0.314888i
\(590\) 30.1616 2.04669i 0.0511213 0.00346896i
\(591\) 0 0
\(592\) 358.289 358.289i 0.605218 0.605218i
\(593\) 329.014 + 329.014i 0.554829 + 0.554829i 0.927831 0.373002i \(-0.121671\pi\)
−0.373002 + 0.927831i \(0.621671\pi\)
\(594\) 0 0
\(595\) 35.5587 + 31.0395i 0.0597625 + 0.0521672i
\(596\) −1031.40 −1.73053
\(597\) 0 0
\(598\) 35.5312 + 35.5312i 0.0594168 + 0.0594168i
\(599\) 514.520i 0.858964i −0.903075 0.429482i \(-0.858696\pi\)
0.903075 0.429482i \(-0.141304\pi\)
\(600\) 0 0
\(601\) 39.4955 0.0657164 0.0328582 0.999460i \(-0.489539\pi\)
0.0328582 + 0.999460i \(0.489539\pi\)
\(602\) −15.1122 + 15.1122i −0.0251033 + 0.0251033i
\(603\) 0 0
\(604\) 1021.99i 1.69204i
\(605\) −254.195 + 291.204i −0.420156 + 0.481329i
\(606\) 0 0
\(607\) 285.935 285.935i 0.471062 0.471062i −0.431196 0.902258i \(-0.641908\pi\)
0.902258 + 0.431196i \(0.141908\pi\)
\(608\) 45.2066 + 45.2066i 0.0743529 + 0.0743529i
\(609\) 0 0
\(610\) −5.24288 77.2631i −0.00859488 0.126661i
\(611\) 719.960 1.17833
\(612\) 0 0
\(613\) −559.593 559.593i −0.912876 0.912876i 0.0836213 0.996498i \(-0.473351\pi\)
−0.996498 + 0.0836213i \(0.973351\pi\)
\(614\) 58.9095i 0.0959439i
\(615\) 0 0
\(616\) −192.155 −0.311940
\(617\) 247.055 247.055i 0.400414 0.400414i −0.477965 0.878379i \(-0.658625\pi\)
0.878379 + 0.477965i \(0.158625\pi\)
\(618\) 0 0
\(619\) 444.088i 0.717428i −0.933448 0.358714i \(-0.883215\pi\)
0.933448 0.358714i \(-0.116785\pi\)
\(620\) 390.542 + 340.908i 0.629907 + 0.549852i
\(621\) 0 0
\(622\) 18.5115 18.5115i 0.0297613 0.0297613i
\(623\) 143.658 + 143.658i 0.230591 + 0.230591i
\(624\) 0 0
\(625\) −602.187 + 167.318i −0.963500 + 0.267709i
\(626\) 1.25470 0.00200431
\(627\) 0 0
\(628\) −130.280 130.280i −0.207452 0.207452i
\(629\) 34.0943i 0.0542040i
\(630\) 0 0
\(631\) −181.428 −0.287524 −0.143762 0.989612i \(-0.545920\pi\)
−0.143762 + 0.989612i \(0.545920\pi\)
\(632\) −88.8661 + 88.8661i −0.140611 + 0.140611i
\(633\) 0 0
\(634\) 84.1019i 0.132653i
\(635\) 7.81912 + 115.229i 0.0123136 + 0.181462i
\(636\) 0 0
\(637\) −305.279 + 305.279i −0.479245 + 0.479245i
\(638\) 13.5164 + 13.5164i 0.0211856 + 0.0211856i
\(639\) 0 0
\(640\) 237.345 16.1056i 0.370851 0.0251650i
\(641\) −88.7291 −0.138423 −0.0692114 0.997602i \(-0.522048\pi\)
−0.0692114 + 0.997602i \(0.522048\pi\)
\(642\) 0 0
\(643\) 303.712 + 303.712i 0.472337 + 0.472337i 0.902670 0.430333i \(-0.141604\pi\)
−0.430333 + 0.902670i \(0.641604\pi\)
\(644\) 704.512i 1.09396i
\(645\) 0 0
\(646\) 1.41215 0.00218600
\(647\) 237.290 237.290i 0.366755 0.366755i −0.499537 0.866292i \(-0.666497\pi\)
0.866292 + 0.499537i \(0.166497\pi\)
\(648\) 0 0
\(649\) 447.832i 0.690034i
\(650\) 8.60495 + 63.1126i 0.0132384 + 0.0970964i
\(651\) 0 0
\(652\) −304.555 + 304.555i −0.467109 + 0.467109i
\(653\) 569.017 + 569.017i 0.871388 + 0.871388i 0.992624 0.121235i \(-0.0386856\pi\)
−0.121235 + 0.992624i \(0.538686\pi\)
\(654\) 0 0
\(655\) −181.533 + 207.963i −0.277149 + 0.317501i
\(656\) −1122.07 −1.71047
\(657\) 0 0
\(658\) −65.0897 65.0897i −0.0989206 0.0989206i
\(659\) 470.246i 0.713575i −0.934186 0.356787i \(-0.883872\pi\)
0.934186 0.356787i \(-0.116128\pi\)
\(660\) 0 0
\(661\) −759.159 −1.14850 −0.574251 0.818679i \(-0.694707\pi\)
−0.574251 + 0.818679i \(0.694707\pi\)
\(662\) 35.1828 35.1828i 0.0531462 0.0531462i
\(663\) 0 0
\(664\) 80.5391i 0.121294i
\(665\) −318.775 + 21.6313i −0.479361 + 0.0325283i
\(666\) 0 0
\(667\) 99.5643 99.5643i 0.149272 0.149272i
\(668\) 874.166 + 874.166i 1.30863 + 1.30863i
\(669\) 0 0
\(670\) −47.5549 41.5111i −0.0709775 0.0619569i
\(671\) −1147.18 −1.70966
\(672\) 0 0
\(673\) −891.570 891.570i −1.32477 1.32477i −0.909865 0.414904i \(-0.863815\pi\)
−0.414904 0.909865i \(-0.636185\pi\)
\(674\) 27.7198i 0.0411273i
\(675\) 0 0
\(676\) −41.9700 −0.0620858
\(677\) 70.5673 70.5673i 0.104235 0.104235i −0.653066 0.757301i \(-0.726518\pi\)
0.757301 + 0.653066i \(0.226518\pi\)
\(678\) 0 0
\(679\) 314.597i 0.463324i
\(680\) 5.21499 5.97427i 0.00766911 0.00878569i
\(681\) 0 0
\(682\) −49.5191 + 49.5191i −0.0726086 + 0.0726086i
\(683\) 366.381 + 366.381i 0.536430 + 0.536430i 0.922478 0.386049i \(-0.126160\pi\)
−0.386049 + 0.922478i \(0.626160\pi\)
\(684\) 0 0
\(685\) −66.3650 978.005i −0.0968832 1.42774i
\(686\) −28.7574 −0.0419205
\(687\) 0 0
\(688\) −137.306 137.306i −0.199573 0.199573i
\(689\) 327.693i 0.475606i
\(690\) 0 0
\(691\) 596.266 0.862903 0.431451 0.902136i \(-0.358002\pi\)
0.431451 + 0.902136i \(0.358002\pi\)
\(692\) 558.971 558.971i 0.807761 0.807761i
\(693\) 0 0
\(694\) 1.92499i 0.00277376i
\(695\) −358.993 313.368i −0.516537 0.450889i
\(696\) 0 0
\(697\) −53.3873 + 53.3873i −0.0765959 + 0.0765959i
\(698\) 14.6088 + 14.6088i 0.0209294 + 0.0209294i
\(699\) 0 0
\(700\) −540.388 + 711.006i −0.771983 + 1.01572i
\(701\) 147.235 0.210036 0.105018 0.994470i \(-0.466510\pi\)
0.105018 + 0.994470i \(0.466510\pi\)
\(702\) 0 0
\(703\) 163.194 + 163.194i 0.232140 + 0.232140i
\(704\) 852.761i 1.21131i
\(705\) 0 0
\(706\) 91.9461 0.130235
\(707\) −378.884 + 378.884i −0.535904 + 0.535904i
\(708\) 0 0
\(709\) 142.296i 0.200700i −0.994952 0.100350i \(-0.968004\pi\)
0.994952 0.100350i \(-0.0319962\pi\)
\(710\) −2.34219 34.5163i −0.00329886 0.0486145i
\(711\) 0 0
\(712\) 24.1362 24.1362i 0.0338992 0.0338992i
\(713\) 364.766 + 364.766i 0.511593 + 0.511593i
\(714\) 0 0
\(715\) 941.417 63.8822i 1.31667 0.0893457i
\(716\) −1007.30 −1.40684
\(717\) 0 0
\(718\) −37.5166 37.5166i −0.0522515 0.0522515i
\(719\) 1075.81i 1.49626i −0.663555 0.748128i \(-0.730953\pi\)
0.663555 0.748128i \(-0.269047\pi\)
\(720\) 0 0
\(721\) −709.245 −0.983696
\(722\) 41.7728 41.7728i 0.0578570 0.0578570i
\(723\) 0 0
\(724\) 939.426i 1.29755i
\(725\) 176.852 24.1125i 0.243934 0.0332586i
\(726\) 0 0
\(727\) −509.682 + 509.682i −0.701075 + 0.701075i −0.964641 0.263566i \(-0.915101\pi\)
0.263566 + 0.964641i \(0.415101\pi\)
\(728\) 129.302 + 129.302i 0.177613 + 0.177613i
\(729\) 0 0
\(730\) −2.57259 + 2.94715i −0.00352410 + 0.00403718i
\(731\) −13.0659 −0.0178740
\(732\) 0 0
\(733\) −863.447 863.447i −1.17796 1.17796i −0.980263 0.197700i \(-0.936653\pi\)
−0.197700 0.980263i \(-0.563347\pi\)
\(734\) 33.9626i 0.0462706i
\(735\) 0 0
\(736\) 177.818 0.241600
\(737\) −661.216 + 661.216i −0.897173 + 0.897173i
\(738\) 0 0
\(739\) 683.603i 0.925038i −0.886609 0.462519i \(-0.846946\pi\)
0.886609 0.462519i \(-0.153054\pi\)
\(740\) 643.603 43.6733i 0.869734 0.0590180i
\(741\) 0 0
\(742\) −29.6259 + 29.6259i −0.0399270 + 0.0399270i
\(743\) 559.077 + 559.077i 0.752459 + 0.752459i 0.974938 0.222479i \(-0.0714148\pi\)
−0.222479 + 0.974938i \(0.571415\pi\)
\(744\) 0 0
\(745\) −980.121 855.557i −1.31560 1.14840i
\(746\) −16.6900 −0.0223727
\(747\) 0 0
\(748\) −41.3454 41.3454i −0.0552746 0.0552746i
\(749\) 645.994i 0.862475i
\(750\) 0 0
\(751\) −653.724 −0.870472 −0.435236 0.900316i \(-0.643335\pi\)
−0.435236 + 0.900316i \(0.643335\pi\)
\(752\) 591.391 591.391i 0.786424 0.786424i
\(753\) 0 0
\(754\) 18.1905i 0.0241254i
\(755\) −847.754 + 971.182i −1.12285 + 1.28633i
\(756\) 0 0
\(757\) 668.868 668.868i 0.883577 0.883577i −0.110319 0.993896i \(-0.535187\pi\)
0.993896 + 0.110319i \(0.0351874\pi\)
\(758\) −1.39537 1.39537i −0.00184086 0.00184086i
\(759\) 0 0
\(760\) 3.63431 + 53.5579i 0.00478198 + 0.0704710i
\(761\) −957.410 −1.25809 −0.629047 0.777367i \(-0.716555\pi\)
−0.629047 + 0.777367i \(0.716555\pi\)
\(762\) 0 0
\(763\) −304.835 304.835i −0.399522 0.399522i
\(764\) 216.396i 0.283241i
\(765\) 0 0
\(766\) −24.4926 −0.0319747
\(767\) −301.348 + 301.348i −0.392892 + 0.392892i
\(768\) 0 0
\(769\) 503.415i 0.654636i 0.944914 + 0.327318i \(0.106145\pi\)
−0.944914 + 0.327318i \(0.893855\pi\)
\(770\) −90.8865 79.3356i −0.118034 0.103033i
\(771\) 0 0
\(772\) −561.219 + 561.219i −0.726968 + 0.726968i
\(773\) −362.267 362.267i −0.468651 0.468651i 0.432827 0.901477i \(-0.357516\pi\)
−0.901477 + 0.432827i \(0.857516\pi\)
\(774\) 0 0
\(775\) 88.3390 + 647.918i 0.113986 + 0.836024i
\(776\) −52.8559 −0.0681132
\(777\) 0 0
\(778\) −98.6300 98.6300i −0.126774 0.126774i
\(779\) 511.082i 0.656074i
\(780\) 0 0
\(781\) −512.490 −0.656198
\(782\) 2.77732 2.77732i 0.00355155 0.00355155i
\(783\) 0 0
\(784\) 501.526i 0.639701i
\(785\) −15.7342 231.871i −0.0200436 0.295377i
\(786\) 0 0
\(787\) 367.640 367.640i 0.467141 0.467141i −0.433846 0.900987i \(-0.642844\pi\)
0.900987 + 0.433846i \(0.142844\pi\)
\(788\) 73.4767 + 73.4767i 0.0932445 + 0.0932445i
\(789\) 0 0
\(790\) −78.7228 + 5.34193i −0.0996491 + 0.00676194i
\(791\) 1570.39 1.98532
\(792\) 0 0
\(793\) 771.945 + 771.945i 0.973449 + 0.973449i
\(794\) 40.6693i 0.0512208i
\(795\) 0 0
\(796\) −816.876 −1.02623
\(797\) 197.182 197.182i 0.247405 0.247405i −0.572500 0.819905i \(-0.694026\pi\)
0.819905 + 0.572500i \(0.194026\pi\)
\(798\) 0 0
\(799\) 56.2760i 0.0704331i
\(800\) 179.457 + 136.393i 0.224321 + 0.170491i
\(801\) 0 0
\(802\) 0.879908 0.879908i 0.00109714 0.00109714i
\(803\) 40.9779 + 40.9779i 0.0510310 + 0.0510310i
\(804\) 0 0
\(805\) −584.400 + 669.486i −0.725963 + 0.831659i
\(806\) 66.6432 0.0826838
\(807\) 0 0
\(808\) 63.6569 + 63.6569i 0.0787833 + 0.0787833i
\(809\) 423.966i 0.524062i −0.965060 0.262031i \(-0.915608\pi\)
0.965060 0.262031i \(-0.0843922\pi\)
\(810\) 0 0
\(811\) −1163.79 −1.43501 −0.717506 0.696552i \(-0.754716\pi\)
−0.717506 + 0.696552i \(0.754716\pi\)
\(812\) 180.340 180.340i 0.222094 0.222094i
\(813\) 0 0
\(814\) 87.1437i 0.107056i
\(815\) −542.046 + 36.7819i −0.665087 + 0.0451311i
\(816\) 0 0
\(817\) 62.5404 62.5404i 0.0765488 0.0765488i
\(818\) −99.2357 99.2357i −0.121315 0.121315i
\(819\) 0 0
\(820\) −1076.19 939.413i −1.31242 1.14563i
\(821\) 765.830 0.932801 0.466400 0.884574i \(-0.345551\pi\)
0.466400 + 0.884574i \(0.345551\pi\)
\(822\) 0 0
\(823\) 699.482 + 699.482i 0.849917 + 0.849917i 0.990122 0.140205i \(-0.0447762\pi\)
−0.140205 + 0.990122i \(0.544776\pi\)
\(824\) 119.161i 0.144613i
\(825\) 0 0
\(826\) 54.4882 0.0659664
\(827\) −260.100 + 260.100i −0.314510 + 0.314510i −0.846654 0.532144i \(-0.821387\pi\)
0.532144 + 0.846654i \(0.321387\pi\)
\(828\) 0 0
\(829\) 325.275i 0.392370i 0.980567 + 0.196185i \(0.0628553\pi\)
−0.980567 + 0.196185i \(0.937145\pi\)
\(830\) 33.2524 38.0938i 0.0400632 0.0458962i
\(831\) 0 0
\(832\) −573.827 + 573.827i −0.689696 + 0.689696i
\(833\) 23.8623 + 23.8623i 0.0286462 + 0.0286462i
\(834\) 0 0
\(835\) 105.575 + 1555.84i 0.126437 + 1.86328i
\(836\) 395.803 0.473449
\(837\) 0 0
\(838\) 36.5387 + 36.5387i 0.0436022 + 0.0436022i
\(839\) 94.0811i 0.112135i −0.998427 0.0560674i \(-0.982144\pi\)
0.998427 0.0560674i \(-0.0178562\pi\)
\(840\) 0 0
\(841\) 790.027 0.939390
\(842\) −27.6932 + 27.6932i −0.0328898 + 0.0328898i
\(843\) 0 0
\(844\) 962.213i 1.14006i
\(845\) −39.8834 34.8146i −0.0471993 0.0412007i
\(846\) 0 0
\(847\) −492.644 + 492.644i −0.581633 + 0.581633i
\(848\) −269.174 269.174i −0.317422 0.317422i
\(849\) 0 0
\(850\) 4.93323 0.672610i 0.00580380 0.000791306i
\(851\) 641.915 0.754307
\(852\) 0 0
\(853\) 721.055 + 721.055i 0.845316 + 0.845316i 0.989544 0.144228i \(-0.0460700\pi\)
−0.144228 + 0.989544i \(0.546070\pi\)
\(854\) 139.579i 0.163442i
\(855\) 0 0
\(856\) −108.534 −0.126793
\(857\) −1114.88 + 1114.88i −1.30091 + 1.30091i −0.373124 + 0.927781i \(0.621713\pi\)
−0.927781 + 0.373124i \(0.878287\pi\)
\(858\) 0 0
\(859\) 585.510i 0.681618i 0.940132 + 0.340809i \(0.110701\pi\)
−0.940132 + 0.340809i \(0.889299\pi\)
\(860\) −16.7368 246.646i −0.0194614 0.286798i
\(861\) 0 0
\(862\) −32.0594 + 32.0594i −0.0371919 + 0.0371919i
\(863\) −550.423 550.423i −0.637802 0.637802i 0.312211 0.950013i \(-0.398930\pi\)
−0.950013 + 0.312211i \(0.898930\pi\)
\(864\) 0 0
\(865\) 994.853 67.5082i 1.15012 0.0780442i
\(866\) 21.4288 0.0247446
\(867\) 0 0
\(868\) 660.699 + 660.699i 0.761174 + 0.761174i
\(869\) 1168.86i 1.34506i
\(870\) 0 0
\(871\) 889.870 1.02167
\(872\) −51.2158 + 51.2158i −0.0587337 + 0.0587337i
\(873\) 0 0
\(874\) 26.5875i 0.0304205i
\(875\) −1103.31 + 227.400i −1.26092 + 0.259886i
\(876\) 0 0
\(877\) 646.130 646.130i 0.736750 0.736750i −0.235197 0.971948i \(-0.575574\pi\)
0.971948 + 0.235197i \(0.0755737\pi\)
\(878\) 43.4851 + 43.4851i 0.0495274 + 0.0495274i
\(879\) 0 0
\(880\) 720.826 825.774i 0.819120 0.938380i
\(881\) −459.689 −0.521781 −0.260891 0.965368i \(-0.584016\pi\)
−0.260891 + 0.965368i \(0.584016\pi\)
\(882\) 0 0
\(883\) 107.163 + 107.163i 0.121362 + 0.121362i 0.765179 0.643817i \(-0.222650\pi\)
−0.643817 + 0.765179i \(0.722650\pi\)
\(884\) 55.6430i 0.0629445i
\(885\) 0 0
\(886\) 143.624 0.162104
\(887\) −470.348 + 470.348i −0.530268 + 0.530268i −0.920652 0.390384i \(-0.872342\pi\)
0.390384 + 0.920652i \(0.372342\pi\)
\(888\) 0 0
\(889\) 208.166i 0.234157i
\(890\) 21.3813 1.45088i 0.0240239 0.00163020i
\(891\) 0 0
\(892\) 576.746 576.746i 0.646576 0.646576i
\(893\) 269.368 + 269.368i 0.301644 + 0.301644i
\(894\) 0 0
\(895\) −957.216 835.563i −1.06952 0.933589i
\(896\) 428.774 0.478542
\(897\) 0 0
\(898\) 69.1996 + 69.1996i 0.0770597 + 0.0770597i
\(899\) 186.745i 0.207725i
\(900\) 0 0
\(901\) −25.6142 −0.0284287
\(902\) 136.456 136.456i 0.151281 0.151281i
\(903\) 0 0
\(904\) 263.843i 0.291862i
\(905\) 779.264 892.721i 0.861066 0.986432i
\(906\) 0 0
\(907\) 589.037 589.037i 0.649435 0.649435i −0.303422 0.952856i \(-0.598129\pi\)
0.952856 + 0.303422i \(0.0981291\pi\)
\(908\) 521.794 + 521.794i 0.574663 + 0.574663i
\(909\) 0 0
\(910\) 7.77262 + 114.543i 0.00854134 + 0.125872i
\(911\) 77.5907 0.0851710 0.0425855 0.999093i \(-0.486441\pi\)
0.0425855 + 0.999093i \(0.486441\pi\)
\(912\) 0 0
\(913\) −529.666 529.666i −0.580138 0.580138i
\(914\) 108.347i 0.118541i
\(915\) 0 0
\(916\) 717.246 0.783019
\(917\) −351.821 + 351.821i −0.383665 + 0.383665i
\(918\) 0 0
\(919\) 1478.95i 1.60930i 0.593750 + 0.804650i \(0.297647\pi\)
−0.593750 + 0.804650i \(0.702353\pi\)
\(920\) 112.481 + 98.1859i 0.122262 + 0.106724i
\(921\) 0 0
\(922\) 32.0861 32.0861i 0.0348006 0.0348006i
\(923\) 344.857 + 344.857i 0.373626 + 0.373626i
\(924\) 0 0
\(925\) 647.833 + 492.374i 0.700360 + 0.532296i
\(926\) 156.839 0.169373
\(927\) 0 0
\(928\) −45.5177 45.5177i −0.0490492 0.0490492i
\(929\) 1595.29i 1.71721i 0.512640 + 0.858604i \(0.328668\pi\)
−0.512640 + 0.858604i \(0.671332\pi\)
\(930\) 0 0
\(931\) −228.436 −0.245366
\(932\) 476.576 476.576i 0.511347 0.511347i
\(933\) 0 0
\(934\) 131.551i 0.140847i
\(935\) −4.99338 73.5863i −0.00534051 0.0787019i
\(936\) 0 0
\(937\) −921.265 + 921.265i −0.983207 + 0.983207i −0.999861 0.0166542i \(-0.994699\pi\)
0.0166542 + 0.999861i \(0.494699\pi\)
\(938\) −80.4509 80.4509i −0.0857686 0.0857686i
\(939\) 0 0
\(940\) 1062.33 72.0871i 1.13014 0.0766884i
\(941\) 1236.37 1.31389 0.656945 0.753939i \(-0.271848\pi\)
0.656945 + 0.753939i \(0.271848\pi\)
\(942\) 0 0
\(943\) −1005.16 1005.16i −1.06591 1.06591i
\(944\) 495.068i 0.524436i
\(945\) 0 0
\(946\) 33.3958 0.0353021
\(947\) 1142.74 1142.74i 1.20670 1.20670i 0.234605 0.972091i \(-0.424620\pi\)
0.972091 0.234605i \(-0.0753795\pi\)
\(948\) 0 0
\(949\) 55.1484i 0.0581121i
\(950\) −20.3936 + 26.8326i −0.0214670 + 0.0282449i
\(951\) 0 0
\(952\) 10.1070 10.1070i 0.0106165 0.0106165i
\(953\) 1074.57 + 1074.57i 1.12756 + 1.12756i 0.990573 + 0.136988i \(0.0437421\pi\)
0.136988 + 0.990573i \(0.456258\pi\)
\(954\) 0 0
\(955\) 179.503 205.638i 0.187961 0.215328i
\(956\) −1520.15 −1.59011
\(957\) 0 0
\(958\) 22.1668 + 22.1668i 0.0231387 + 0.0231387i
\(959\) 1766.81i 1.84235i
\(960\) 0 0
\(961\) −276.837 −0.288072
\(962\) 58.6394 58.6394i 0.0609557 0.0609557i
\(963\) 0 0
\(964\) 1291.77i 1.34001i
\(965\) −998.855 + 67.7798i −1.03508 + 0.0702381i
\(966\) 0 0
\(967\) −127.404 + 127.404i −0.131752 + 0.131752i −0.769907 0.638156i \(-0.779698\pi\)
0.638156 + 0.769907i \(0.279698\pi\)
\(968\) 82.7698 + 82.7698i 0.0855060 + 0.0855060i
\(969\) 0 0
\(970\) −25.0000 21.8228i −0.0257732 0.0224977i
\(971\) −40.8568 −0.0420770 −0.0210385 0.999779i \(-0.506697\pi\)
−0.0210385 + 0.999779i \(0.506697\pi\)
\(972\) 0 0
\(973\) −607.325 607.325i −0.624178 0.624178i
\(974\) 87.9117i 0.0902584i
\(975\) 0 0
\(976\) 1268.18 1.29937
\(977\) −552.078 + 552.078i −0.565074 + 0.565074i −0.930745 0.365670i \(-0.880840\pi\)
0.365670 + 0.930745i \(0.380840\pi\)
\(978\) 0 0
\(979\) 317.464i 0.324274i
\(980\) −419.885 + 481.018i −0.428454 + 0.490835i
\(981\) 0 0
\(982\) 48.9385 48.9385i 0.0498355 0.0498355i
\(983\) 363.474 + 363.474i 0.369760 + 0.369760i 0.867390 0.497630i \(-0.165796\pi\)
−0.497630 + 0.867390i \(0.665796\pi\)
\(984\) 0 0
\(985\) 8.87396 + 130.773i 0.00900909 + 0.132765i
\(986\) −1.42187 −0.00144206
\(987\) 0 0
\(988\) −266.338 266.338i −0.269573 0.269573i
\(989\) 245.999i 0.248735i
\(990\) 0 0
\(991\) 941.294 0.949843 0.474922 0.880028i \(-0.342476\pi\)
0.474922 + 0.880028i \(0.342476\pi\)
\(992\) 166.759 166.759i 0.168104 0.168104i
\(993\) 0 0
\(994\) 62.3553i 0.0627317i
\(995\) −776.263 677.607i −0.780164 0.681012i
\(996\) 0 0
\(997\) 942.532 942.532i 0.945368 0.945368i −0.0532154 0.998583i \(-0.516947\pi\)
0.998583 + 0.0532154i \(0.0169470\pi\)
\(998\) 54.8879 + 54.8879i 0.0549979 + 0.0549979i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.h.163.5 20
3.2 odd 2 405.3.g.g.163.6 20
5.2 odd 4 inner 405.3.g.h.82.5 20
9.2 odd 6 135.3.l.a.118.5 40
9.4 even 3 45.3.k.a.43.5 yes 40
9.5 odd 6 135.3.l.a.73.6 40
9.7 even 3 45.3.k.a.13.6 yes 40
15.2 even 4 405.3.g.g.82.6 20
45.2 even 12 135.3.l.a.37.6 40
45.4 even 6 225.3.o.b.43.6 40
45.7 odd 12 45.3.k.a.22.5 yes 40
45.13 odd 12 225.3.o.b.7.5 40
45.22 odd 12 45.3.k.a.7.6 40
45.32 even 12 135.3.l.a.127.5 40
45.34 even 6 225.3.o.b.193.5 40
45.43 odd 12 225.3.o.b.157.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.6 40 45.22 odd 12
45.3.k.a.13.6 yes 40 9.7 even 3
45.3.k.a.22.5 yes 40 45.7 odd 12
45.3.k.a.43.5 yes 40 9.4 even 3
135.3.l.a.37.6 40 45.2 even 12
135.3.l.a.73.6 40 9.5 odd 6
135.3.l.a.118.5 40 9.2 odd 6
135.3.l.a.127.5 40 45.32 even 12
225.3.o.b.7.5 40 45.13 odd 12
225.3.o.b.43.6 40 45.4 even 6
225.3.o.b.157.6 40 45.43 odd 12
225.3.o.b.193.5 40 45.34 even 6
405.3.g.g.82.6 20 15.2 even 4
405.3.g.g.163.6 20 3.2 odd 2
405.3.g.h.82.5 20 5.2 odd 4 inner
405.3.g.h.163.5 20 1.1 even 1 trivial