Properties

Label 405.3.g.h.163.2
Level $405$
Weight $3$
Character 405.163
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(82,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 8 x^{17} + 245 x^{16} - 440 x^{15} + 422 x^{14} + 1724 x^{13} + \cdots + 11449 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.2
Root \(-1.76130 - 1.76130i\) of defining polynomial
Character \(\chi\) \(=\) 405.163
Dual form 405.3.g.h.82.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.76130 + 1.76130i) q^{2} -2.20434i q^{4} +(4.13877 - 2.80545i) q^{5} +(0.0481814 - 0.0481814i) q^{7} +(-3.16269 - 3.16269i) q^{8} +(-2.34837 + 12.2309i) q^{10} -9.24583 q^{11} +(9.25335 + 9.25335i) q^{13} +0.169724i q^{14} +19.9582 q^{16} +(13.6029 - 13.6029i) q^{17} -5.80704i q^{19} +(-6.18418 - 9.12327i) q^{20} +(16.2847 - 16.2847i) q^{22} +(-32.0648 - 32.0648i) q^{23} +(9.25886 - 23.2223i) q^{25} -32.5958 q^{26} +(-0.106208 - 0.106208i) q^{28} -7.35801i q^{29} +16.7073 q^{31} +(-22.5017 + 22.5017i) q^{32} +47.9175i q^{34} +(0.0642412 - 0.334583i) q^{35} +(36.0680 - 36.0680i) q^{37} +(10.2279 + 10.2279i) q^{38} +(-21.9624 - 4.21687i) q^{40} +62.3133 q^{41} +(-7.10279 - 7.10279i) q^{43} +20.3810i q^{44} +112.951 q^{46} +(32.6843 - 32.6843i) q^{47} +48.9954i q^{49} +(24.5937 + 57.2089i) q^{50} +(20.3975 - 20.3975i) q^{52} +(28.0258 + 28.0258i) q^{53} +(-38.2664 + 25.9388i) q^{55} -0.304766 q^{56} +(12.9596 + 12.9596i) q^{58} +18.8804i q^{59} -5.39094 q^{61} +(-29.4265 + 29.4265i) q^{62} +0.568692i q^{64} +(64.2573 + 12.3376i) q^{65} +(35.0738 - 35.0738i) q^{67} +(-29.9854 - 29.9854i) q^{68} +(0.476152 + 0.702448i) q^{70} +56.4200 q^{71} +(-54.7135 - 54.7135i) q^{73} +127.053i q^{74} -12.8007 q^{76} +(-0.445478 + 0.445478i) q^{77} +47.3071i q^{79} +(82.6026 - 55.9919i) q^{80} +(-109.752 + 109.752i) q^{82} +(-43.9426 - 43.9426i) q^{83} +(18.1370 - 94.4615i) q^{85} +25.0203 q^{86} +(29.2417 + 29.2417i) q^{88} +59.1599i q^{89} +0.891679 q^{91} +(-70.6817 + 70.6817i) q^{92} +115.134i q^{94} +(-16.2914 - 24.0340i) q^{95} +(109.991 - 109.991i) q^{97} +(-86.2954 - 86.2954i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + 2 q^{5} + 2 q^{7} - 12 q^{8} - 4 q^{10} - 8 q^{11} + 2 q^{13} - 28 q^{16} + 14 q^{17} + 114 q^{20} - 14 q^{22} - 82 q^{23} + 8 q^{25} - 56 q^{26} - 44 q^{28} + 4 q^{31} + 14 q^{32} + 176 q^{35}+ \cdots - 938 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.76130 + 1.76130i −0.880649 + 0.880649i −0.993601 0.112951i \(-0.963970\pi\)
0.112951 + 0.993601i \(0.463970\pi\)
\(3\) 0 0
\(4\) 2.20434i 0.551086i
\(5\) 4.13877 2.80545i 0.827754 0.561091i
\(6\) 0 0
\(7\) 0.0481814 0.0481814i 0.00688306 0.00688306i −0.703657 0.710540i \(-0.748451\pi\)
0.710540 + 0.703657i \(0.248451\pi\)
\(8\) −3.16269 3.16269i −0.395336 0.395336i
\(9\) 0 0
\(10\) −2.34837 + 12.2309i −0.234837 + 1.22309i
\(11\) −9.24583 −0.840530 −0.420265 0.907401i \(-0.638063\pi\)
−0.420265 + 0.907401i \(0.638063\pi\)
\(12\) 0 0
\(13\) 9.25335 + 9.25335i 0.711796 + 0.711796i 0.966911 0.255115i \(-0.0821133\pi\)
−0.255115 + 0.966911i \(0.582113\pi\)
\(14\) 0.169724i 0.0121231i
\(15\) 0 0
\(16\) 19.9582 1.24739
\(17\) 13.6029 13.6029i 0.800170 0.800170i −0.182952 0.983122i \(-0.558565\pi\)
0.983122 + 0.182952i \(0.0585652\pi\)
\(18\) 0 0
\(19\) 5.80704i 0.305634i −0.988255 0.152817i \(-0.951166\pi\)
0.988255 0.152817i \(-0.0488345\pi\)
\(20\) −6.18418 9.12327i −0.309209 0.456163i
\(21\) 0 0
\(22\) 16.2847 16.2847i 0.740212 0.740212i
\(23\) −32.0648 32.0648i −1.39412 1.39412i −0.815834 0.578286i \(-0.803722\pi\)
−0.578286 0.815834i \(-0.696278\pi\)
\(24\) 0 0
\(25\) 9.25886 23.2223i 0.370354 0.928891i
\(26\) −32.5958 −1.25368
\(27\) 0 0
\(28\) −0.106208 0.106208i −0.00379316 0.00379316i
\(29\) 7.35801i 0.253724i −0.991920 0.126862i \(-0.959509\pi\)
0.991920 0.126862i \(-0.0404906\pi\)
\(30\) 0 0
\(31\) 16.7073 0.538944 0.269472 0.963008i \(-0.413151\pi\)
0.269472 + 0.963008i \(0.413151\pi\)
\(32\) −22.5017 + 22.5017i −0.703177 + 0.703177i
\(33\) 0 0
\(34\) 47.9175i 1.40934i
\(35\) 0.0642412 0.334583i 0.00183546 0.00955951i
\(36\) 0 0
\(37\) 36.0680 36.0680i 0.974810 0.974810i −0.0248806 0.999690i \(-0.507921\pi\)
0.999690 + 0.0248806i \(0.00792055\pi\)
\(38\) 10.2279 + 10.2279i 0.269156 + 0.269156i
\(39\) 0 0
\(40\) −21.9624 4.21687i −0.549061 0.105422i
\(41\) 62.3133 1.51984 0.759919 0.650018i \(-0.225239\pi\)
0.759919 + 0.650018i \(0.225239\pi\)
\(42\) 0 0
\(43\) −7.10279 7.10279i −0.165181 0.165181i 0.619676 0.784857i \(-0.287264\pi\)
−0.784857 + 0.619676i \(0.787264\pi\)
\(44\) 20.3810i 0.463204i
\(45\) 0 0
\(46\) 112.951 2.45546
\(47\) 32.6843 32.6843i 0.695410 0.695410i −0.268007 0.963417i \(-0.586365\pi\)
0.963417 + 0.268007i \(0.0863650\pi\)
\(48\) 0 0
\(49\) 48.9954i 0.999905i
\(50\) 24.5937 + 57.2089i 0.491874 + 1.14418i
\(51\) 0 0
\(52\) 20.3975 20.3975i 0.392260 0.392260i
\(53\) 28.0258 + 28.0258i 0.528789 + 0.528789i 0.920211 0.391423i \(-0.128017\pi\)
−0.391423 + 0.920211i \(0.628017\pi\)
\(54\) 0 0
\(55\) −38.2664 + 25.9388i −0.695753 + 0.471614i
\(56\) −0.304766 −0.00544225
\(57\) 0 0
\(58\) 12.9596 + 12.9596i 0.223442 + 0.223442i
\(59\) 18.8804i 0.320007i 0.987116 + 0.160004i \(0.0511506\pi\)
−0.987116 + 0.160004i \(0.948849\pi\)
\(60\) 0 0
\(61\) −5.39094 −0.0883761 −0.0441881 0.999023i \(-0.514070\pi\)
−0.0441881 + 0.999023i \(0.514070\pi\)
\(62\) −29.4265 + 29.4265i −0.474621 + 0.474621i
\(63\) 0 0
\(64\) 0.568692i 0.00888582i
\(65\) 64.2573 + 12.3376i 0.988574 + 0.189810i
\(66\) 0 0
\(67\) 35.0738 35.0738i 0.523489 0.523489i −0.395134 0.918623i \(-0.629302\pi\)
0.918623 + 0.395134i \(0.129302\pi\)
\(68\) −29.9854 29.9854i −0.440962 0.440962i
\(69\) 0 0
\(70\) 0.476152 + 0.702448i 0.00680217 + 0.0100350i
\(71\) 56.4200 0.794648 0.397324 0.917678i \(-0.369939\pi\)
0.397324 + 0.917678i \(0.369939\pi\)
\(72\) 0 0
\(73\) −54.7135 54.7135i −0.749500 0.749500i 0.224885 0.974385i \(-0.427799\pi\)
−0.974385 + 0.224885i \(0.927799\pi\)
\(74\) 127.053i 1.71693i
\(75\) 0 0
\(76\) −12.8007 −0.168430
\(77\) −0.445478 + 0.445478i −0.00578542 + 0.00578542i
\(78\) 0 0
\(79\) 47.3071i 0.598825i 0.954124 + 0.299412i \(0.0967906\pi\)
−0.954124 + 0.299412i \(0.903209\pi\)
\(80\) 82.6026 55.9919i 1.03253 0.699899i
\(81\) 0 0
\(82\) −109.752 + 109.752i −1.33844 + 1.33844i
\(83\) −43.9426 43.9426i −0.529429 0.529429i 0.390973 0.920402i \(-0.372138\pi\)
−0.920402 + 0.390973i \(0.872138\pi\)
\(84\) 0 0
\(85\) 18.1370 94.4615i 0.213376 1.11131i
\(86\) 25.0203 0.290933
\(87\) 0 0
\(88\) 29.2417 + 29.2417i 0.332292 + 0.332292i
\(89\) 59.1599i 0.664718i 0.943153 + 0.332359i \(0.107844\pi\)
−0.943153 + 0.332359i \(0.892156\pi\)
\(90\) 0 0
\(91\) 0.891679 0.00979867
\(92\) −70.6817 + 70.6817i −0.768280 + 0.768280i
\(93\) 0 0
\(94\) 115.134i 1.22482i
\(95\) −16.2914 24.0340i −0.171488 0.252990i
\(96\) 0 0
\(97\) 109.991 109.991i 1.13393 1.13393i 0.144411 0.989518i \(-0.453871\pi\)
0.989518 0.144411i \(-0.0461289\pi\)
\(98\) −86.2954 86.2954i −0.880566 0.880566i
\(99\) 0 0
\(100\) −51.1898 20.4097i −0.511898 0.204097i
\(101\) −55.2105 −0.546639 −0.273319 0.961923i \(-0.588122\pi\)
−0.273319 + 0.961923i \(0.588122\pi\)
\(102\) 0 0
\(103\) −64.6560 64.6560i −0.627729 0.627729i 0.319767 0.947496i \(-0.396395\pi\)
−0.947496 + 0.319767i \(0.896395\pi\)
\(104\) 58.5309i 0.562797i
\(105\) 0 0
\(106\) −98.7236 −0.931354
\(107\) −14.6336 + 14.6336i −0.136762 + 0.136762i −0.772174 0.635411i \(-0.780831\pi\)
0.635411 + 0.772174i \(0.280831\pi\)
\(108\) 0 0
\(109\) 112.055i 1.02803i 0.857781 + 0.514015i \(0.171843\pi\)
−0.857781 + 0.514015i \(0.828157\pi\)
\(110\) 21.7126 113.084i 0.197388 1.02804i
\(111\) 0 0
\(112\) 0.961617 0.961617i 0.00858586 0.00858586i
\(113\) 26.2214 + 26.2214i 0.232048 + 0.232048i 0.813547 0.581499i \(-0.197534\pi\)
−0.581499 + 0.813547i \(0.697534\pi\)
\(114\) 0 0
\(115\) −222.665 42.7525i −1.93622 0.371761i
\(116\) −16.2196 −0.139824
\(117\) 0 0
\(118\) −33.2541 33.2541i −0.281814 0.281814i
\(119\) 1.31081i 0.0110152i
\(120\) 0 0
\(121\) −35.5146 −0.293509
\(122\) 9.49506 9.49506i 0.0778284 0.0778284i
\(123\) 0 0
\(124\) 36.8285i 0.297004i
\(125\) −26.8287 122.087i −0.214629 0.976696i
\(126\) 0 0
\(127\) 151.793 151.793i 1.19522 1.19522i 0.219643 0.975580i \(-0.429511\pi\)
0.975580 0.219643i \(-0.0704892\pi\)
\(128\) −91.0083 91.0083i −0.711002 0.711002i
\(129\) 0 0
\(130\) −134.907 + 91.4460i −1.03774 + 0.703431i
\(131\) 1.50290 0.0114725 0.00573624 0.999984i \(-0.498174\pi\)
0.00573624 + 0.999984i \(0.498174\pi\)
\(132\) 0 0
\(133\) −0.279792 0.279792i −0.00210370 0.00210370i
\(134\) 123.551i 0.922021i
\(135\) 0 0
\(136\) −86.0434 −0.632672
\(137\) −49.3914 + 49.3914i −0.360521 + 0.360521i −0.864005 0.503484i \(-0.832051\pi\)
0.503484 + 0.864005i \(0.332051\pi\)
\(138\) 0 0
\(139\) 122.782i 0.883322i −0.897182 0.441661i \(-0.854389\pi\)
0.897182 0.441661i \(-0.145611\pi\)
\(140\) −0.737535 0.141610i −0.00526811 0.00101150i
\(141\) 0 0
\(142\) −99.3724 + 99.3724i −0.699806 + 0.699806i
\(143\) −85.5549 85.5549i −0.598286 0.598286i
\(144\) 0 0
\(145\) −20.6426 30.4531i −0.142362 0.210021i
\(146\) 192.734 1.32009
\(147\) 0 0
\(148\) −79.5061 79.5061i −0.537204 0.537204i
\(149\) 26.5685i 0.178312i −0.996018 0.0891560i \(-0.971583\pi\)
0.996018 0.0891560i \(-0.0284170\pi\)
\(150\) 0 0
\(151\) 98.4829 0.652204 0.326102 0.945335i \(-0.394265\pi\)
0.326102 + 0.945335i \(0.394265\pi\)
\(152\) −18.3659 + 18.3659i −0.120828 + 0.120828i
\(153\) 0 0
\(154\) 1.56924i 0.0101899i
\(155\) 69.1476 46.8715i 0.446113 0.302397i
\(156\) 0 0
\(157\) −122.114 + 122.114i −0.777796 + 0.777796i −0.979456 0.201659i \(-0.935367\pi\)
0.201659 + 0.979456i \(0.435367\pi\)
\(158\) −83.3220 83.3220i −0.527354 0.527354i
\(159\) 0 0
\(160\) −30.0019 + 156.257i −0.187512 + 0.976604i
\(161\) −3.08985 −0.0191916
\(162\) 0 0
\(163\) −65.0824 65.0824i −0.399278 0.399278i 0.478700 0.877978i \(-0.341108\pi\)
−0.877978 + 0.478700i \(0.841108\pi\)
\(164\) 137.360i 0.837560i
\(165\) 0 0
\(166\) 154.792 0.932482
\(167\) −141.256 + 141.256i −0.845845 + 0.845845i −0.989612 0.143766i \(-0.954079\pi\)
0.143766 + 0.989612i \(0.454079\pi\)
\(168\) 0 0
\(169\) 2.24880i 0.0133065i
\(170\) 134.430 + 198.320i 0.790767 + 1.16659i
\(171\) 0 0
\(172\) −15.6570 + 15.6570i −0.0910290 + 0.0910290i
\(173\) 24.4507 + 24.4507i 0.141334 + 0.141334i 0.774234 0.632900i \(-0.218136\pi\)
−0.632900 + 0.774234i \(0.718136\pi\)
\(174\) 0 0
\(175\) −0.672777 1.56499i −0.00384444 0.00894278i
\(176\) −184.531 −1.04847
\(177\) 0 0
\(178\) −104.198 104.198i −0.585383 0.585383i
\(179\) 185.962i 1.03890i −0.854502 0.519448i \(-0.826138\pi\)
0.854502 0.519448i \(-0.173862\pi\)
\(180\) 0 0
\(181\) −97.7851 −0.540249 −0.270125 0.962825i \(-0.587065\pi\)
−0.270125 + 0.962825i \(0.587065\pi\)
\(182\) −1.57051 + 1.57051i −0.00862919 + 0.00862919i
\(183\) 0 0
\(184\) 202.822i 1.10229i
\(185\) 48.0901 250.464i 0.259946 1.35386i
\(186\) 0 0
\(187\) −125.770 + 125.770i −0.672567 + 0.672567i
\(188\) −72.0473 72.0473i −0.383231 0.383231i
\(189\) 0 0
\(190\) 71.0251 + 13.6371i 0.373816 + 0.0717741i
\(191\) 136.418 0.714231 0.357115 0.934060i \(-0.383760\pi\)
0.357115 + 0.934060i \(0.383760\pi\)
\(192\) 0 0
\(193\) 65.3098 + 65.3098i 0.338393 + 0.338393i 0.855762 0.517369i \(-0.173089\pi\)
−0.517369 + 0.855762i \(0.673089\pi\)
\(194\) 387.454i 1.99719i
\(195\) 0 0
\(196\) 108.003 0.551033
\(197\) −170.623 + 170.623i −0.866107 + 0.866107i −0.992039 0.125932i \(-0.959808\pi\)
0.125932 + 0.992039i \(0.459808\pi\)
\(198\) 0 0
\(199\) 36.4196i 0.183013i 0.995804 + 0.0915066i \(0.0291683\pi\)
−0.995804 + 0.0915066i \(0.970832\pi\)
\(200\) −102.728 + 44.1619i −0.513638 + 0.220809i
\(201\) 0 0
\(202\) 97.2422 97.2422i 0.481397 0.481397i
\(203\) −0.354519 0.354519i −0.00174640 0.00174640i
\(204\) 0 0
\(205\) 257.901 174.817i 1.25805 0.852767i
\(206\) 227.757 1.10562
\(207\) 0 0
\(208\) 184.681 + 184.681i 0.887887 + 0.887887i
\(209\) 53.6910i 0.256895i
\(210\) 0 0
\(211\) −193.607 −0.917567 −0.458784 0.888548i \(-0.651715\pi\)
−0.458784 + 0.888548i \(0.651715\pi\)
\(212\) 61.7784 61.7784i 0.291408 0.291408i
\(213\) 0 0
\(214\) 51.5481i 0.240879i
\(215\) −49.3234 9.47028i −0.229411 0.0440478i
\(216\) 0 0
\(217\) 0.804980 0.804980i 0.00370959 0.00370959i
\(218\) −197.363 197.363i −0.905334 0.905334i
\(219\) 0 0
\(220\) 57.1779 + 84.3522i 0.259900 + 0.383419i
\(221\) 251.745 1.13912
\(222\) 0 0
\(223\) −67.7006 67.7006i −0.303590 0.303590i 0.538826 0.842417i \(-0.318868\pi\)
−0.842417 + 0.538826i \(0.818868\pi\)
\(224\) 2.16833i 0.00968002i
\(225\) 0 0
\(226\) −92.3675 −0.408706
\(227\) −232.952 + 232.952i −1.02622 + 1.02622i −0.0265741 + 0.999647i \(0.508460\pi\)
−0.999647 + 0.0265741i \(0.991540\pi\)
\(228\) 0 0
\(229\) 415.987i 1.81654i −0.418386 0.908269i \(-0.637404\pi\)
0.418386 0.908269i \(-0.362596\pi\)
\(230\) 467.479 316.879i 2.03252 1.37774i
\(231\) 0 0
\(232\) −23.2711 + 23.2711i −0.100306 + 0.100306i
\(233\) −22.0213 22.0213i −0.0945121 0.0945121i 0.658270 0.752782i \(-0.271289\pi\)
−0.752782 + 0.658270i \(0.771289\pi\)
\(234\) 0 0
\(235\) 43.5785 226.967i 0.185441 0.965817i
\(236\) 41.6190 0.176352
\(237\) 0 0
\(238\) 2.30873 + 2.30873i 0.00970056 + 0.00970056i
\(239\) 308.942i 1.29265i 0.763064 + 0.646323i \(0.223694\pi\)
−0.763064 + 0.646323i \(0.776306\pi\)
\(240\) 0 0
\(241\) 25.7138 0.106696 0.0533481 0.998576i \(-0.483011\pi\)
0.0533481 + 0.998576i \(0.483011\pi\)
\(242\) 62.5517 62.5517i 0.258478 0.258478i
\(243\) 0 0
\(244\) 11.8835i 0.0487028i
\(245\) 137.454 + 202.781i 0.561038 + 0.827676i
\(246\) 0 0
\(247\) 53.7346 53.7346i 0.217549 0.217549i
\(248\) −52.8399 52.8399i −0.213064 0.213064i
\(249\) 0 0
\(250\) 262.285 + 167.778i 1.04914 + 0.671113i
\(251\) 275.877 1.09911 0.549556 0.835457i \(-0.314797\pi\)
0.549556 + 0.835457i \(0.314797\pi\)
\(252\) 0 0
\(253\) 296.465 + 296.465i 1.17180 + 1.17180i
\(254\) 534.707i 2.10514i
\(255\) 0 0
\(256\) 318.311 1.24340
\(257\) 4.52408 4.52408i 0.0176034 0.0176034i −0.698250 0.715854i \(-0.746038\pi\)
0.715854 + 0.698250i \(0.246038\pi\)
\(258\) 0 0
\(259\) 3.47561i 0.0134194i
\(260\) 27.1964 141.645i 0.104602 0.544789i
\(261\) 0 0
\(262\) −2.64705 + 2.64705i −0.0101032 + 0.0101032i
\(263\) 150.253 + 150.253i 0.571304 + 0.571304i 0.932493 0.361189i \(-0.117629\pi\)
−0.361189 + 0.932493i \(0.617629\pi\)
\(264\) 0 0
\(265\) 194.617 + 37.3673i 0.734405 + 0.141009i
\(266\) 0.985593 0.00370524
\(267\) 0 0
\(268\) −77.3147 77.3147i −0.288488 0.288488i
\(269\) 349.046i 1.29757i 0.760973 + 0.648784i \(0.224722\pi\)
−0.760973 + 0.648784i \(0.775278\pi\)
\(270\) 0 0
\(271\) −202.277 −0.746409 −0.373205 0.927749i \(-0.621741\pi\)
−0.373205 + 0.927749i \(0.621741\pi\)
\(272\) 271.490 271.490i 0.998124 0.998124i
\(273\) 0 0
\(274\) 173.986i 0.634985i
\(275\) −85.6059 + 214.709i −0.311294 + 0.780761i
\(276\) 0 0
\(277\) 171.573 171.573i 0.619397 0.619397i −0.325980 0.945377i \(-0.605694\pi\)
0.945377 + 0.325980i \(0.105694\pi\)
\(278\) 216.255 + 216.255i 0.777897 + 0.777897i
\(279\) 0 0
\(280\) −1.26136 + 0.855006i −0.00450484 + 0.00305359i
\(281\) −280.320 −0.997579 −0.498789 0.866723i \(-0.666222\pi\)
−0.498789 + 0.866723i \(0.666222\pi\)
\(282\) 0 0
\(283\) 272.825 + 272.825i 0.964047 + 0.964047i 0.999376 0.0353287i \(-0.0112478\pi\)
−0.0353287 + 0.999376i \(0.511248\pi\)
\(284\) 124.369i 0.437919i
\(285\) 0 0
\(286\) 301.375 1.05376
\(287\) 3.00235 3.00235i 0.0104611 0.0104611i
\(288\) 0 0
\(289\) 81.0774i 0.280545i
\(290\) 89.9947 + 17.2793i 0.310327 + 0.0595839i
\(291\) 0 0
\(292\) −120.607 + 120.607i −0.413039 + 0.413039i
\(293\) −29.8714 29.8714i −0.101950 0.101950i 0.654292 0.756242i \(-0.272967\pi\)
−0.756242 + 0.654292i \(0.772967\pi\)
\(294\) 0 0
\(295\) 52.9682 + 78.1418i 0.179553 + 0.264888i
\(296\) −228.143 −0.770755
\(297\) 0 0
\(298\) 46.7950 + 46.7950i 0.157030 + 0.157030i
\(299\) 593.413i 1.98466i
\(300\) 0 0
\(301\) −0.684445 −0.00227390
\(302\) −173.458 + 173.458i −0.574363 + 0.574363i
\(303\) 0 0
\(304\) 115.898i 0.381245i
\(305\) −22.3119 + 15.1240i −0.0731537 + 0.0495870i
\(306\) 0 0
\(307\) −85.1111 + 85.1111i −0.277235 + 0.277235i −0.832004 0.554769i \(-0.812806\pi\)
0.554769 + 0.832004i \(0.312806\pi\)
\(308\) 0.981985 + 0.981985i 0.00318826 + 0.00318826i
\(309\) 0 0
\(310\) −39.2348 + 204.344i −0.126564 + 0.659174i
\(311\) −454.186 −1.46040 −0.730202 0.683231i \(-0.760574\pi\)
−0.730202 + 0.683231i \(0.760574\pi\)
\(312\) 0 0
\(313\) 210.100 + 210.100i 0.671245 + 0.671245i 0.958003 0.286758i \(-0.0925777\pi\)
−0.286758 + 0.958003i \(0.592578\pi\)
\(314\) 430.158i 1.36993i
\(315\) 0 0
\(316\) 104.281 0.330004
\(317\) −62.5145 + 62.5145i −0.197207 + 0.197207i −0.798801 0.601595i \(-0.794532\pi\)
0.601595 + 0.798801i \(0.294532\pi\)
\(318\) 0 0
\(319\) 68.0309i 0.213263i
\(320\) 1.59544 + 2.35369i 0.00498575 + 0.00735527i
\(321\) 0 0
\(322\) 5.44215 5.44215i 0.0169011 0.0169011i
\(323\) −78.9926 78.9926i −0.244559 0.244559i
\(324\) 0 0
\(325\) 300.559 129.208i 0.924797 0.397564i
\(326\) 229.259 0.703248
\(327\) 0 0
\(328\) −197.078 197.078i −0.600846 0.600846i
\(329\) 3.14955i 0.00957310i
\(330\) 0 0
\(331\) −446.304 −1.34835 −0.674175 0.738572i \(-0.735500\pi\)
−0.674175 + 0.738572i \(0.735500\pi\)
\(332\) −96.8645 + 96.8645i −0.291761 + 0.291761i
\(333\) 0 0
\(334\) 497.589i 1.48979i
\(335\) 46.7645 243.560i 0.139596 0.727046i
\(336\) 0 0
\(337\) 20.7140 20.7140i 0.0614658 0.0614658i −0.675706 0.737171i \(-0.736161\pi\)
0.737171 + 0.675706i \(0.236161\pi\)
\(338\) −3.96080 3.96080i −0.0117184 0.0117184i
\(339\) 0 0
\(340\) −208.226 39.9801i −0.612428 0.117589i
\(341\) −154.473 −0.452999
\(342\) 0 0
\(343\) 4.72156 + 4.72156i 0.0137655 + 0.0137655i
\(344\) 44.9278i 0.130604i
\(345\) 0 0
\(346\) −86.1300 −0.248931
\(347\) 238.766 238.766i 0.688085 0.688085i −0.273723 0.961809i \(-0.588255\pi\)
0.961809 + 0.273723i \(0.0882552\pi\)
\(348\) 0 0
\(349\) 59.4572i 0.170365i 0.996365 + 0.0851823i \(0.0271473\pi\)
−0.996365 + 0.0851823i \(0.972853\pi\)
\(350\) 3.94137 + 1.57145i 0.0112611 + 0.00448985i
\(351\) 0 0
\(352\) 208.047 208.047i 0.591042 0.591042i
\(353\) −376.586 376.586i −1.06682 1.06682i −0.997602 0.0692134i \(-0.977951\pi\)
−0.0692134 0.997602i \(-0.522049\pi\)
\(354\) 0 0
\(355\) 233.509 158.284i 0.657773 0.445870i
\(356\) 130.409 0.366316
\(357\) 0 0
\(358\) 327.535 + 327.535i 0.914902 + 0.914902i
\(359\) 342.196i 0.953192i 0.879122 + 0.476596i \(0.158130\pi\)
−0.879122 + 0.476596i \(0.841870\pi\)
\(360\) 0 0
\(361\) 327.278 0.906588
\(362\) 172.229 172.229i 0.475770 0.475770i
\(363\) 0 0
\(364\) 1.96557i 0.00539991i
\(365\) −379.943 72.9505i −1.04094 0.199864i
\(366\) 0 0
\(367\) −260.251 + 260.251i −0.709131 + 0.709131i −0.966352 0.257222i \(-0.917193\pi\)
0.257222 + 0.966352i \(0.417193\pi\)
\(368\) −639.956 639.956i −1.73901 1.73901i
\(369\) 0 0
\(370\) 356.441 + 525.843i 0.963354 + 1.42120i
\(371\) 2.70065 0.00727937
\(372\) 0 0
\(373\) 235.355 + 235.355i 0.630978 + 0.630978i 0.948313 0.317335i \(-0.102788\pi\)
−0.317335 + 0.948313i \(0.602788\pi\)
\(374\) 443.037i 1.18459i
\(375\) 0 0
\(376\) −206.740 −0.549841
\(377\) 68.0862 68.0862i 0.180600 0.180600i
\(378\) 0 0
\(379\) 203.700i 0.537466i 0.963215 + 0.268733i \(0.0866049\pi\)
−0.963215 + 0.268733i \(0.913395\pi\)
\(380\) −52.9792 + 35.9118i −0.139419 + 0.0945047i
\(381\) 0 0
\(382\) −240.273 + 240.273i −0.628986 + 0.628986i
\(383\) −14.6312 14.6312i −0.0382015 0.0382015i 0.687748 0.725949i \(-0.258599\pi\)
−0.725949 + 0.687748i \(0.758599\pi\)
\(384\) 0 0
\(385\) −0.593963 + 3.09350i −0.00154276 + 0.00803505i
\(386\) −230.060 −0.596010
\(387\) 0 0
\(388\) −242.458 242.458i −0.624892 0.624892i
\(389\) 185.259i 0.476245i 0.971235 + 0.238123i \(0.0765320\pi\)
−0.971235 + 0.238123i \(0.923468\pi\)
\(390\) 0 0
\(391\) −872.347 −2.23107
\(392\) 154.957 154.957i 0.395299 0.395299i
\(393\) 0 0
\(394\) 601.036i 1.52547i
\(395\) 132.718 + 195.793i 0.335995 + 0.495680i
\(396\) 0 0
\(397\) −236.474 + 236.474i −0.595652 + 0.595652i −0.939152 0.343501i \(-0.888387\pi\)
0.343501 + 0.939152i \(0.388387\pi\)
\(398\) −64.1458 64.1458i −0.161170 0.161170i
\(399\) 0 0
\(400\) 184.791 463.476i 0.461976 1.15869i
\(401\) 68.0750 0.169763 0.0848816 0.996391i \(-0.472949\pi\)
0.0848816 + 0.996391i \(0.472949\pi\)
\(402\) 0 0
\(403\) 154.598 + 154.598i 0.383618 + 0.383618i
\(404\) 121.703i 0.301245i
\(405\) 0 0
\(406\) 1.24883 0.00307593
\(407\) −333.478 + 333.478i −0.819357 + 0.819357i
\(408\) 0 0
\(409\) 377.022i 0.921814i 0.887448 + 0.460907i \(0.152476\pi\)
−0.887448 + 0.460907i \(0.847524\pi\)
\(410\) −146.335 + 762.145i −0.356914 + 1.85889i
\(411\) 0 0
\(412\) −142.524 + 142.524i −0.345932 + 0.345932i
\(413\) 0.909687 + 0.909687i 0.00220263 + 0.00220263i
\(414\) 0 0
\(415\) −305.147 58.5894i −0.735295 0.141179i
\(416\) −416.431 −1.00104
\(417\) 0 0
\(418\) −94.5658 94.5658i −0.226234 0.226234i
\(419\) 228.659i 0.545726i −0.962053 0.272863i \(-0.912029\pi\)
0.962053 0.272863i \(-0.0879706\pi\)
\(420\) 0 0
\(421\) −409.788 −0.973368 −0.486684 0.873578i \(-0.661794\pi\)
−0.486684 + 0.873578i \(0.661794\pi\)
\(422\) 340.999 340.999i 0.808055 0.808055i
\(423\) 0 0
\(424\) 177.274i 0.418098i
\(425\) −189.943 441.837i −0.446924 1.03962i
\(426\) 0 0
\(427\) −0.259743 + 0.259743i −0.000608298 + 0.000608298i
\(428\) 32.2574 + 32.2574i 0.0753677 + 0.0753677i
\(429\) 0 0
\(430\) 103.553 70.1932i 0.240821 0.163240i
\(431\) 46.4787 0.107839 0.0539196 0.998545i \(-0.482829\pi\)
0.0539196 + 0.998545i \(0.482829\pi\)
\(432\) 0 0
\(433\) −430.638 430.638i −0.994544 0.994544i 0.00544093 0.999985i \(-0.498268\pi\)
−0.999985 + 0.00544093i \(0.998268\pi\)
\(434\) 2.83562i 0.00653369i
\(435\) 0 0
\(436\) 247.008 0.566533
\(437\) −186.201 + 186.201i −0.426090 + 0.426090i
\(438\) 0 0
\(439\) 387.208i 0.882024i −0.897501 0.441012i \(-0.854620\pi\)
0.897501 0.441012i \(-0.145380\pi\)
\(440\) 203.061 + 38.9885i 0.461502 + 0.0886101i
\(441\) 0 0
\(442\) −443.397 + 443.397i −1.00316 + 1.00316i
\(443\) 518.766 + 518.766i 1.17103 + 1.17103i 0.981965 + 0.189065i \(0.0605456\pi\)
0.189065 + 0.981965i \(0.439454\pi\)
\(444\) 0 0
\(445\) 165.970 + 244.849i 0.372967 + 0.550223i
\(446\) 238.482 0.534713
\(447\) 0 0
\(448\) 0.0274004 + 0.0274004i 6.11616e−5 + 6.11616e-5i
\(449\) 141.098i 0.314250i −0.987579 0.157125i \(-0.949777\pi\)
0.987579 0.157125i \(-0.0502226\pi\)
\(450\) 0 0
\(451\) −576.139 −1.27747
\(452\) 57.8010 57.8010i 0.127878 0.127878i
\(453\) 0 0
\(454\) 820.596i 1.80748i
\(455\) 3.69046 2.50156i 0.00811089 0.00549794i
\(456\) 0 0
\(457\) 519.210 519.210i 1.13613 1.13613i 0.146989 0.989138i \(-0.453042\pi\)
0.989138 0.146989i \(-0.0469581\pi\)
\(458\) 732.678 + 732.678i 1.59973 + 1.59973i
\(459\) 0 0
\(460\) −94.2412 + 490.830i −0.204872 + 1.06702i
\(461\) 642.082 1.39280 0.696402 0.717652i \(-0.254783\pi\)
0.696402 + 0.717652i \(0.254783\pi\)
\(462\) 0 0
\(463\) −196.256 196.256i −0.423879 0.423879i 0.462658 0.886537i \(-0.346896\pi\)
−0.886537 + 0.462658i \(0.846896\pi\)
\(464\) 146.853i 0.316493i
\(465\) 0 0
\(466\) 77.5722 0.166464
\(467\) −57.4439 + 57.4439i −0.123006 + 0.123006i −0.765930 0.642924i \(-0.777721\pi\)
0.642924 + 0.765930i \(0.277721\pi\)
\(468\) 0 0
\(469\) 3.37981i 0.00720642i
\(470\) 323.002 + 476.511i 0.687238 + 1.01385i
\(471\) 0 0
\(472\) 59.7130 59.7130i 0.126510 0.126510i
\(473\) 65.6712 + 65.6712i 0.138840 + 0.138840i
\(474\) 0 0
\(475\) −134.853 53.7666i −0.283900 0.113193i
\(476\) −2.88948 −0.00607034
\(477\) 0 0
\(478\) −544.139 544.139i −1.13837 1.13837i
\(479\) 484.198i 1.01085i 0.862870 + 0.505426i \(0.168665\pi\)
−0.862870 + 0.505426i \(0.831335\pi\)
\(480\) 0 0
\(481\) 667.499 1.38773
\(482\) −45.2896 + 45.2896i −0.0939618 + 0.0939618i
\(483\) 0 0
\(484\) 78.2863i 0.161748i
\(485\) 146.653 763.803i 0.302378 1.57485i
\(486\) 0 0
\(487\) −162.179 + 162.179i −0.333017 + 0.333017i −0.853731 0.520714i \(-0.825666\pi\)
0.520714 + 0.853731i \(0.325666\pi\)
\(488\) 17.0499 + 17.0499i 0.0349383 + 0.0349383i
\(489\) 0 0
\(490\) −599.255 115.059i −1.22297 0.234815i
\(491\) 790.045 1.60905 0.804527 0.593916i \(-0.202419\pi\)
0.804527 + 0.593916i \(0.202419\pi\)
\(492\) 0 0
\(493\) −100.090 100.090i −0.203023 0.203023i
\(494\) 189.285i 0.383168i
\(495\) 0 0
\(496\) 333.448 0.672274
\(497\) 2.71840 2.71840i 0.00546961 0.00546961i
\(498\) 0 0
\(499\) 487.702i 0.977359i 0.872463 + 0.488680i \(0.162521\pi\)
−0.872463 + 0.488680i \(0.837479\pi\)
\(500\) −269.121 + 59.1396i −0.538243 + 0.118279i
\(501\) 0 0
\(502\) −485.902 + 485.902i −0.967931 + 0.967931i
\(503\) 346.274 + 346.274i 0.688418 + 0.688418i 0.961882 0.273465i \(-0.0881696\pi\)
−0.273465 + 0.961882i \(0.588170\pi\)
\(504\) 0 0
\(505\) −228.504 + 154.891i −0.452483 + 0.306714i
\(506\) −1044.33 −2.06389
\(507\) 0 0
\(508\) −334.605 334.605i −0.658670 0.658670i
\(509\) 418.212i 0.821635i −0.911718 0.410818i \(-0.865243\pi\)
0.911718 0.410818i \(-0.134757\pi\)
\(510\) 0 0
\(511\) −5.27235 −0.0103177
\(512\) −196.607 + 196.607i −0.383998 + 0.383998i
\(513\) 0 0
\(514\) 15.9365i 0.0310049i
\(515\) −448.986 86.2070i −0.871818 0.167392i
\(516\) 0 0
\(517\) −302.193 + 302.193i −0.584513 + 0.584513i
\(518\) 6.12159 + 6.12159i 0.0118177 + 0.0118177i
\(519\) 0 0
\(520\) −164.206 242.246i −0.315780 0.465858i
\(521\) −17.3149 −0.0332341 −0.0166170 0.999862i \(-0.505290\pi\)
−0.0166170 + 0.999862i \(0.505290\pi\)
\(522\) 0 0
\(523\) 577.571 + 577.571i 1.10434 + 1.10434i 0.993880 + 0.110462i \(0.0352329\pi\)
0.110462 + 0.993880i \(0.464767\pi\)
\(524\) 3.31290i 0.00632232i
\(525\) 0 0
\(526\) −529.280 −1.00624
\(527\) 227.267 227.267i 0.431247 0.431247i
\(528\) 0 0
\(529\) 1527.30i 2.88714i
\(530\) −408.594 + 276.964i −0.770932 + 0.522574i
\(531\) 0 0
\(532\) −0.616757 + 0.616757i −0.00115932 + 0.00115932i
\(533\) 576.607 + 576.607i 1.08181 + 1.08181i
\(534\) 0 0
\(535\) −19.5112 + 101.619i −0.0364695 + 0.189942i
\(536\) −221.855 −0.413909
\(537\) 0 0
\(538\) −614.774 614.774i −1.14270 1.14270i
\(539\) 453.003i 0.840451i
\(540\) 0 0
\(541\) 846.162 1.56407 0.782035 0.623234i \(-0.214182\pi\)
0.782035 + 0.623234i \(0.214182\pi\)
\(542\) 356.270 356.270i 0.657325 0.657325i
\(543\) 0 0
\(544\) 612.175i 1.12532i
\(545\) 314.366 + 463.771i 0.576819 + 0.850957i
\(546\) 0 0
\(547\) −48.3435 + 48.3435i −0.0883794 + 0.0883794i −0.749914 0.661535i \(-0.769905\pi\)
0.661535 + 0.749914i \(0.269905\pi\)
\(548\) 108.876 + 108.876i 0.198678 + 0.198678i
\(549\) 0 0
\(550\) −227.389 528.944i −0.413435 0.961717i
\(551\) −42.7283 −0.0775468
\(552\) 0 0
\(553\) 2.27933 + 2.27933i 0.00412175 + 0.00412175i
\(554\) 604.382i 1.09094i
\(555\) 0 0
\(556\) −270.653 −0.486786
\(557\) 367.003 367.003i 0.658893 0.658893i −0.296225 0.955118i \(-0.595728\pi\)
0.955118 + 0.296225i \(0.0957279\pi\)
\(558\) 0 0
\(559\) 131.449i 0.235151i
\(560\) 1.28214 6.67768i 0.00228954 0.0119244i
\(561\) 0 0
\(562\) 493.726 493.726i 0.878517 0.878517i
\(563\) 222.509 + 222.509i 0.395221 + 0.395221i 0.876543 0.481323i \(-0.159843\pi\)
−0.481323 + 0.876543i \(0.659843\pi\)
\(564\) 0 0
\(565\) 182.088 + 34.9615i 0.322279 + 0.0618788i
\(566\) −961.053 −1.69797
\(567\) 0 0
\(568\) −178.439 178.439i −0.314153 0.314153i
\(569\) 1019.36i 1.79149i −0.444569 0.895745i \(-0.646643\pi\)
0.444569 0.895745i \(-0.353357\pi\)
\(570\) 0 0
\(571\) −886.192 −1.55200 −0.776000 0.630733i \(-0.782754\pi\)
−0.776000 + 0.630733i \(0.782754\pi\)
\(572\) −188.592 + 188.592i −0.329707 + 0.329707i
\(573\) 0 0
\(574\) 10.5761i 0.0184252i
\(575\) −1041.50 + 447.733i −1.81130 + 0.778667i
\(576\) 0 0
\(577\) 194.509 194.509i 0.337105 0.337105i −0.518172 0.855277i \(-0.673387\pi\)
0.855277 + 0.518172i \(0.173387\pi\)
\(578\) 142.801 + 142.801i 0.247061 + 0.247061i
\(579\) 0 0
\(580\) −67.1291 + 45.5033i −0.115740 + 0.0784539i
\(581\) −4.23443 −0.00728818
\(582\) 0 0
\(583\) −259.122 259.122i −0.444463 0.444463i
\(584\) 346.084i 0.592609i
\(585\) 0 0
\(586\) 105.225 0.179565
\(587\) 567.866 567.866i 0.967404 0.967404i −0.0320810 0.999485i \(-0.510213\pi\)
0.999485 + 0.0320810i \(0.0102135\pi\)
\(588\) 0 0
\(589\) 97.0198i 0.164720i
\(590\) −230.924 44.3383i −0.391396 0.0751496i
\(591\) 0 0
\(592\) 719.853 719.853i 1.21597 1.21597i
\(593\) 572.308 + 572.308i 0.965106 + 0.965106i 0.999411 0.0343049i \(-0.0109217\pi\)
−0.0343049 + 0.999411i \(0.510922\pi\)
\(594\) 0 0
\(595\) −3.67743 5.42516i −0.00618055 0.00911791i
\(596\) −58.5660 −0.0982652
\(597\) 0 0
\(598\) 1045.18 + 1045.18i 1.74779 + 1.74779i
\(599\) 303.915i 0.507371i −0.967287 0.253685i \(-0.918357\pi\)
0.967287 0.253685i \(-0.0816428\pi\)
\(600\) 0 0
\(601\) 104.190 0.173360 0.0866801 0.996236i \(-0.472374\pi\)
0.0866801 + 0.996236i \(0.472374\pi\)
\(602\) 1.20551 1.20551i 0.00200251 0.00200251i
\(603\) 0 0
\(604\) 217.090i 0.359420i
\(605\) −146.987 + 99.6345i −0.242953 + 0.164685i
\(606\) 0 0
\(607\) 207.492 207.492i 0.341831 0.341831i −0.515224 0.857055i \(-0.672291\pi\)
0.857055 + 0.515224i \(0.172291\pi\)
\(608\) 130.668 + 130.668i 0.214915 + 0.214915i
\(609\) 0 0
\(610\) 12.6599 65.9358i 0.0207540 0.108092i
\(611\) 604.878 0.989980
\(612\) 0 0
\(613\) 610.767 + 610.767i 0.996357 + 0.996357i 0.999993 0.00363596i \(-0.00115736\pi\)
−0.00363596 + 0.999993i \(0.501157\pi\)
\(614\) 299.812i 0.488293i
\(615\) 0 0
\(616\) 2.81781 0.00457437
\(617\) −712.152 + 712.152i −1.15422 + 1.15422i −0.168519 + 0.985698i \(0.553898\pi\)
−0.985698 + 0.168519i \(0.946102\pi\)
\(618\) 0 0
\(619\) 218.751i 0.353395i 0.984265 + 0.176697i \(0.0565414\pi\)
−0.984265 + 0.176697i \(0.943459\pi\)
\(620\) −103.321 152.425i −0.166646 0.245847i
\(621\) 0 0
\(622\) 799.956 799.956i 1.28610 1.28610i
\(623\) 2.85041 + 2.85041i 0.00457529 + 0.00457529i
\(624\) 0 0
\(625\) −453.547 430.023i −0.725675 0.688037i
\(626\) −740.096 −1.18226
\(627\) 0 0
\(628\) 269.181 + 269.181i 0.428632 + 0.428632i
\(629\) 981.257i 1.56003i
\(630\) 0 0
\(631\) −427.714 −0.677835 −0.338917 0.940816i \(-0.610061\pi\)
−0.338917 + 0.940816i \(0.610061\pi\)
\(632\) 149.618 149.618i 0.236737 0.236737i
\(633\) 0 0
\(634\) 220.214i 0.347340i
\(635\) 202.389 1054.09i 0.318722 1.65998i
\(636\) 0 0
\(637\) −453.371 + 453.371i −0.711728 + 0.711728i
\(638\) −119.823 119.823i −0.187810 0.187810i
\(639\) 0 0
\(640\) −631.982 121.343i −0.987472 0.189598i
\(641\) 513.823 0.801596 0.400798 0.916166i \(-0.368733\pi\)
0.400798 + 0.916166i \(0.368733\pi\)
\(642\) 0 0
\(643\) −137.617 137.617i −0.214023 0.214023i 0.591951 0.805974i \(-0.298358\pi\)
−0.805974 + 0.591951i \(0.798358\pi\)
\(644\) 6.81109i 0.0105762i
\(645\) 0 0
\(646\) 278.259 0.430741
\(647\) −139.726 + 139.726i −0.215960 + 0.215960i −0.806794 0.590833i \(-0.798799\pi\)
0.590833 + 0.806794i \(0.298799\pi\)
\(648\) 0 0
\(649\) 174.565i 0.268976i
\(650\) −301.800 + 756.948i −0.464308 + 1.16454i
\(651\) 0 0
\(652\) −143.464 + 143.464i −0.220037 + 0.220037i
\(653\) −455.677 455.677i −0.697820 0.697820i 0.266120 0.963940i \(-0.414258\pi\)
−0.963940 + 0.266120i \(0.914258\pi\)
\(654\) 0 0
\(655\) 6.22014 4.21631i 0.00949640 0.00643711i
\(656\) 1243.66 1.89583
\(657\) 0 0
\(658\) 5.54730 + 5.54730i 0.00843054 + 0.00843054i
\(659\) 242.718i 0.368312i −0.982897 0.184156i \(-0.941045\pi\)
0.982897 0.184156i \(-0.0589552\pi\)
\(660\) 0 0
\(661\) 662.727 1.00261 0.501307 0.865270i \(-0.332853\pi\)
0.501307 + 0.865270i \(0.332853\pi\)
\(662\) 786.074 786.074i 1.18742 1.18742i
\(663\) 0 0
\(664\) 277.953i 0.418605i
\(665\) −1.94294 0.373051i −0.00292171 0.000560979i
\(666\) 0 0
\(667\) −235.933 + 235.933i −0.353722 + 0.353722i
\(668\) 311.377 + 311.377i 0.466133 + 0.466133i
\(669\) 0 0
\(670\) 346.616 + 511.349i 0.517337 + 0.763207i
\(671\) 49.8438 0.0742828
\(672\) 0 0
\(673\) 342.339 + 342.339i 0.508676 + 0.508676i 0.914120 0.405444i \(-0.132883\pi\)
−0.405444 + 0.914120i \(0.632883\pi\)
\(674\) 72.9670i 0.108260i
\(675\) 0 0
\(676\) 4.95712 0.00733302
\(677\) −311.125 + 311.125i −0.459564 + 0.459564i −0.898512 0.438948i \(-0.855351\pi\)
0.438948 + 0.898512i \(0.355351\pi\)
\(678\) 0 0
\(679\) 10.5991i 0.0156098i
\(680\) −356.114 + 241.391i −0.523697 + 0.354987i
\(681\) 0 0
\(682\) 272.072 272.072i 0.398933 0.398933i
\(683\) −336.034 336.034i −0.491998 0.491998i 0.416938 0.908935i \(-0.363103\pi\)
−0.908935 + 0.416938i \(0.863103\pi\)
\(684\) 0 0
\(685\) −65.8544 + 342.985i −0.0961379 + 0.500708i
\(686\) −16.6321 −0.0242451
\(687\) 0 0
\(688\) −141.759 141.759i −0.206045 0.206045i
\(689\) 518.665i 0.752779i
\(690\) 0 0
\(691\) 930.107 1.34603 0.673015 0.739629i \(-0.264999\pi\)
0.673015 + 0.739629i \(0.264999\pi\)
\(692\) 53.8977 53.8977i 0.0778869 0.0778869i
\(693\) 0 0
\(694\) 841.075i 1.21192i
\(695\) −344.459 508.166i −0.495624 0.731174i
\(696\) 0 0
\(697\) 847.641 847.641i 1.21613 1.21613i
\(698\) −104.722 104.722i −0.150031 0.150031i
\(699\) 0 0
\(700\) −3.44977 + 1.48303i −0.00492824 + 0.00211862i
\(701\) −1057.58 −1.50868 −0.754338 0.656486i \(-0.772042\pi\)
−0.754338 + 0.656486i \(0.772042\pi\)
\(702\) 0 0
\(703\) −209.448 209.448i −0.297935 0.297935i
\(704\) 5.25803i 0.00746880i
\(705\) 0 0
\(706\) 1326.56 1.87898
\(707\) −2.66012 + 2.66012i −0.00376255 + 0.00376255i
\(708\) 0 0
\(709\) 520.480i 0.734105i −0.930200 0.367053i \(-0.880367\pi\)
0.930200 0.367053i \(-0.119633\pi\)
\(710\) −132.495 + 690.065i −0.186613 + 0.971922i
\(711\) 0 0
\(712\) 187.104 187.104i 0.262787 0.262787i
\(713\) −535.715 535.715i −0.751353 0.751353i
\(714\) 0 0
\(715\) −594.112 114.072i −0.830926 0.159541i
\(716\) −409.925 −0.572520
\(717\) 0 0
\(718\) −602.709 602.709i −0.839428 0.839428i
\(719\) 1211.89i 1.68553i −0.538285 0.842763i \(-0.680928\pi\)
0.538285 0.842763i \(-0.319072\pi\)
\(720\) 0 0
\(721\) −6.23044 −0.00864139
\(722\) −576.435 + 576.435i −0.798386 + 0.798386i
\(723\) 0 0
\(724\) 215.552i 0.297724i
\(725\) −170.870 68.1268i −0.235682 0.0939680i
\(726\) 0 0
\(727\) 147.356 147.356i 0.202691 0.202691i −0.598461 0.801152i \(-0.704221\pi\)
0.801152 + 0.598461i \(0.204221\pi\)
\(728\) −2.82010 2.82010i −0.00387377 0.00387377i
\(729\) 0 0
\(730\) 797.680 540.705i 1.09271 0.740692i
\(731\) −193.237 −0.264346
\(732\) 0 0
\(733\) −518.014 518.014i −0.706704 0.706704i 0.259136 0.965841i \(-0.416562\pi\)
−0.965841 + 0.259136i \(0.916562\pi\)
\(734\) 916.759i 1.24899i
\(735\) 0 0
\(736\) 1443.02 1.96063
\(737\) −324.286 + 324.286i −0.440009 + 0.440009i
\(738\) 0 0
\(739\) 1243.93i 1.68326i 0.540056 + 0.841629i \(0.318403\pi\)
−0.540056 + 0.841629i \(0.681597\pi\)
\(740\) −552.109 106.007i −0.746093 0.143253i
\(741\) 0 0
\(742\) −4.75664 + 4.75664i −0.00641057 + 0.00641057i
\(743\) 907.482 + 907.482i 1.22138 + 1.22138i 0.967143 + 0.254232i \(0.0818227\pi\)
0.254232 + 0.967143i \(0.418177\pi\)
\(744\) 0 0
\(745\) −74.5367 109.961i −0.100049 0.147599i
\(746\) −829.060 −1.11134
\(747\) 0 0
\(748\) 277.240 + 277.240i 0.370642 + 0.370642i
\(749\) 1.41013i 0.00188269i
\(750\) 0 0
\(751\) 940.549 1.25240 0.626198 0.779664i \(-0.284610\pi\)
0.626198 + 0.779664i \(0.284610\pi\)
\(752\) 652.321 652.321i 0.867448 0.867448i
\(753\) 0 0
\(754\) 239.840i 0.318090i
\(755\) 407.598 276.289i 0.539865 0.365946i
\(756\) 0 0
\(757\) 872.169 872.169i 1.15214 1.15214i 0.166015 0.986123i \(-0.446910\pi\)
0.986123 0.166015i \(-0.0530901\pi\)
\(758\) −358.776 358.776i −0.473319 0.473319i
\(759\) 0 0
\(760\) −24.4875 + 127.537i −0.0322204 + 0.167811i
\(761\) 459.612 0.603958 0.301979 0.953315i \(-0.402353\pi\)
0.301979 + 0.953315i \(0.402353\pi\)
\(762\) 0 0
\(763\) 5.39899 + 5.39899i 0.00707600 + 0.00707600i
\(764\) 300.712i 0.393602i
\(765\) 0 0
\(766\) 51.5397 0.0672842
\(767\) −174.707 + 174.707i −0.227780 + 0.227780i
\(768\) 0 0
\(769\) 895.323i 1.16427i 0.813093 + 0.582134i \(0.197782\pi\)
−0.813093 + 0.582134i \(0.802218\pi\)
\(770\) −4.40242 6.49472i −0.00571743 0.00843469i
\(771\) 0 0
\(772\) 143.965 143.965i 0.186483 0.186483i
\(773\) 94.0446 + 94.0446i 0.121662 + 0.121662i 0.765316 0.643654i \(-0.222583\pi\)
−0.643654 + 0.765316i \(0.722583\pi\)
\(774\) 0 0
\(775\) 154.690 387.981i 0.199600 0.500620i
\(776\) −695.735 −0.896566
\(777\) 0 0
\(778\) −326.297 326.297i −0.419405 0.419405i
\(779\) 361.856i 0.464514i
\(780\) 0 0
\(781\) −521.650 −0.667926
\(782\) 1536.46 1536.46i 1.96479 1.96479i
\(783\) 0 0
\(784\) 977.861i 1.24727i
\(785\) −162.817 + 847.987i −0.207410 + 1.08024i
\(786\) 0 0
\(787\) −658.819 + 658.819i −0.837127 + 0.837127i −0.988480 0.151353i \(-0.951637\pi\)
0.151353 + 0.988480i \(0.451637\pi\)
\(788\) 376.112 + 376.112i 0.477299 + 0.477299i
\(789\) 0 0
\(790\) −578.607 111.095i −0.732413 0.140626i
\(791\) 2.52677 0.00319440
\(792\) 0 0
\(793\) −49.8843 49.8843i −0.0629058 0.0629058i
\(794\) 833.001i 1.04912i
\(795\) 0 0
\(796\) 80.2813 0.100856
\(797\) −119.799 + 119.799i −0.150313 + 0.150313i −0.778258 0.627945i \(-0.783896\pi\)
0.627945 + 0.778258i \(0.283896\pi\)
\(798\) 0 0
\(799\) 889.201i 1.11289i
\(800\) 314.200 + 730.879i 0.392750 + 0.913599i
\(801\) 0 0
\(802\) −119.900 + 119.900i −0.149502 + 0.149502i
\(803\) 505.872 + 505.872i 0.629978 + 0.629978i
\(804\) 0 0
\(805\) −12.7882 + 8.66844i −0.0158860 + 0.0107682i
\(806\) −544.587 −0.675666
\(807\) 0 0
\(808\) 174.614 + 174.614i 0.216106 + 0.216106i
\(809\) 1540.82i 1.90459i 0.305175 + 0.952296i \(0.401285\pi\)
−0.305175 + 0.952296i \(0.598715\pi\)
\(810\) 0 0
\(811\) −895.419 −1.10409 −0.552046 0.833813i \(-0.686153\pi\)
−0.552046 + 0.833813i \(0.686153\pi\)
\(812\) −0.781482 + 0.781482i −0.000962417 + 0.000962417i
\(813\) 0 0
\(814\) 1174.71i 1.44313i
\(815\) −451.947 86.7755i −0.554536 0.106473i
\(816\) 0 0
\(817\) −41.2462 + 41.2462i −0.0504850 + 0.0504850i
\(818\) −664.048 664.048i −0.811795 0.811795i
\(819\) 0 0
\(820\) −385.357 568.501i −0.469947 0.693294i
\(821\) 644.536 0.785063 0.392531 0.919739i \(-0.371599\pi\)
0.392531 + 0.919739i \(0.371599\pi\)
\(822\) 0 0
\(823\) −154.651 154.651i −0.187911 0.187911i 0.606881 0.794792i \(-0.292420\pi\)
−0.794792 + 0.606881i \(0.792420\pi\)
\(824\) 408.974i 0.496327i
\(825\) 0 0
\(826\) −3.20446 −0.00387949
\(827\) −982.768 + 982.768i −1.18835 + 1.18835i −0.210831 + 0.977522i \(0.567617\pi\)
−0.977522 + 0.210831i \(0.932383\pi\)
\(828\) 0 0
\(829\) 763.031i 0.920424i 0.887809 + 0.460212i \(0.152227\pi\)
−0.887809 + 0.460212i \(0.847773\pi\)
\(830\) 640.649 434.262i 0.771866 0.523207i
\(831\) 0 0
\(832\) −5.26231 + 5.26231i −0.00632489 + 0.00632489i
\(833\) 666.479 + 666.479i 0.800094 + 0.800094i
\(834\) 0 0
\(835\) −188.339 + 980.915i −0.225556 + 1.17475i
\(836\) 118.353 0.141571
\(837\) 0 0
\(838\) 402.737 + 402.737i 0.480593 + 0.480593i
\(839\) 1092.90i 1.30262i 0.758812 + 0.651309i \(0.225780\pi\)
−0.758812 + 0.651309i \(0.774220\pi\)
\(840\) 0 0
\(841\) 786.860 0.935624
\(842\) 721.758 721.758i 0.857195 0.857195i
\(843\) 0 0
\(844\) 426.775i 0.505658i
\(845\) 6.30890 + 9.30726i 0.00746615 + 0.0110145i
\(846\) 0 0
\(847\) −1.71114 + 1.71114i −0.00202024 + 0.00202024i
\(848\) 559.346 + 559.346i 0.659606 + 0.659606i
\(849\) 0 0
\(850\) 1112.75 + 443.661i 1.30912 + 0.521955i
\(851\) −2313.02 −2.71800
\(852\) 0 0
\(853\) 1162.51 + 1162.51i 1.36285 + 1.36285i 0.870259 + 0.492594i \(0.163951\pi\)
0.492594 + 0.870259i \(0.336049\pi\)
\(854\) 0.914971i 0.00107140i
\(855\) 0 0
\(856\) 92.5628 0.108134
\(857\) 232.961 232.961i 0.271833 0.271833i −0.558005 0.829838i \(-0.688433\pi\)
0.829838 + 0.558005i \(0.188433\pi\)
\(858\) 0 0
\(859\) 1572.39i 1.83049i 0.402894 + 0.915247i \(0.368004\pi\)
−0.402894 + 0.915247i \(0.631996\pi\)
\(860\) −20.8757 + 108.726i −0.0242741 + 0.126425i
\(861\) 0 0
\(862\) −81.8629 + 81.8629i −0.0949686 + 0.0949686i
\(863\) 458.505 + 458.505i 0.531292 + 0.531292i 0.920957 0.389665i \(-0.127409\pi\)
−0.389665 + 0.920957i \(0.627409\pi\)
\(864\) 0 0
\(865\) 169.791 + 32.6006i 0.196290 + 0.0376885i
\(866\) 1516.96 1.75169
\(867\) 0 0
\(868\) −1.77445 1.77445i −0.00204430 0.00204430i
\(869\) 437.394i 0.503330i
\(870\) 0 0
\(871\) 649.100 0.745235
\(872\) 354.396 354.396i 0.406418 0.406418i
\(873\) 0 0
\(874\) 655.913i 0.750472i
\(875\) −7.17497 4.58968i −0.00819996 0.00524535i
\(876\) 0 0
\(877\) 762.595 762.595i 0.869549 0.869549i −0.122873 0.992422i \(-0.539211\pi\)
0.992422 + 0.122873i \(0.0392109\pi\)
\(878\) 681.989 + 681.989i 0.776753 + 0.776753i
\(879\) 0 0
\(880\) −763.730 + 517.692i −0.867875 + 0.588286i
\(881\) 1585.15 1.79927 0.899633 0.436647i \(-0.143834\pi\)
0.899633 + 0.436647i \(0.143834\pi\)
\(882\) 0 0
\(883\) −1004.45 1004.45i −1.13755 1.13755i −0.988889 0.148657i \(-0.952505\pi\)
−0.148657 0.988889i \(-0.547495\pi\)
\(884\) 554.931i 0.627750i
\(885\) 0 0
\(886\) −1827.40 −2.06253
\(887\) 221.378 221.378i 0.249580 0.249580i −0.571218 0.820798i \(-0.693529\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(888\) 0 0
\(889\) 14.6272i 0.0164536i
\(890\) −723.576 138.929i −0.813006 0.156100i
\(891\) 0 0
\(892\) −149.235 + 149.235i −0.167304 + 0.167304i
\(893\) −189.799 189.799i −0.212541 0.212541i
\(894\) 0 0
\(895\) −521.709 769.655i −0.582915 0.859950i
\(896\) −8.76982 −0.00978775
\(897\) 0 0
\(898\) 248.516 + 248.516i 0.276744 + 0.276744i
\(899\) 122.932i 0.136743i
\(900\) 0 0
\(901\) 762.464 0.846242
\(902\) 1014.75 1014.75i 1.12500 1.12500i
\(903\) 0 0
\(904\) 165.860i 0.183474i
\(905\) −404.710 + 274.332i −0.447194 + 0.303129i
\(906\) 0 0
\(907\) 262.068 262.068i 0.288940 0.288940i −0.547721 0.836661i \(-0.684505\pi\)
0.836661 + 0.547721i \(0.184505\pi\)
\(908\) 513.506 + 513.506i 0.565536 + 0.565536i
\(909\) 0 0
\(910\) −2.09399 + 10.9060i −0.00230109 + 0.0119846i
\(911\) −980.168 −1.07593 −0.537963 0.842969i \(-0.680806\pi\)
−0.537963 + 0.842969i \(0.680806\pi\)
\(912\) 0 0
\(913\) 406.286 + 406.286i 0.445001 + 0.445001i
\(914\) 1828.97i 2.00106i
\(915\) 0 0
\(916\) −916.979 −1.00107
\(917\) 0.0724117 0.0724117i 7.89659e−5 7.89659e-5i
\(918\) 0 0
\(919\) 1321.17i 1.43762i −0.695205 0.718811i \(-0.744687\pi\)
0.695205 0.718811i \(-0.255313\pi\)
\(920\) 569.007 + 839.433i 0.618486 + 0.912427i
\(921\) 0 0
\(922\) −1130.90 + 1130.90i −1.22657 + 1.22657i
\(923\) 522.074 + 522.074i 0.565627 + 0.565627i
\(924\) 0 0
\(925\) −503.632 1171.53i −0.544467 1.26652i
\(926\) 691.330 0.746577
\(927\) 0 0
\(928\) 165.567 + 165.567i 0.178413 + 0.178413i
\(929\) 776.302i 0.835632i 0.908532 + 0.417816i \(0.137204\pi\)
−0.908532 + 0.417816i \(0.862796\pi\)
\(930\) 0 0
\(931\) 284.518 0.305605
\(932\) −48.5425 + 48.5425i −0.0520842 + 0.0520842i
\(933\) 0 0
\(934\) 202.352i 0.216651i
\(935\) −167.691 + 873.376i −0.179349 + 0.934092i
\(936\) 0 0
\(937\) 295.586 295.586i 0.315459 0.315459i −0.531561 0.847020i \(-0.678394\pi\)
0.847020 + 0.531561i \(0.178394\pi\)
\(938\) 5.95286 + 5.95286i 0.00634633 + 0.00634633i
\(939\) 0 0
\(940\) −500.313 96.0620i −0.532248 0.102194i
\(941\) 97.6040 0.103724 0.0518618 0.998654i \(-0.483484\pi\)
0.0518618 + 0.998654i \(0.483484\pi\)
\(942\) 0 0
\(943\) −1998.06 1998.06i −2.11884 2.11884i
\(944\) 376.820i 0.399174i
\(945\) 0 0
\(946\) −231.333 −0.244538
\(947\) 129.645 129.645i 0.136900 0.136900i −0.635336 0.772236i \(-0.719138\pi\)
0.772236 + 0.635336i \(0.219138\pi\)
\(948\) 0 0
\(949\) 1012.57i 1.06698i
\(950\) 332.215 142.817i 0.349700 0.150333i
\(951\) 0 0
\(952\) −4.14570 + 4.14570i −0.00435472 + 0.00435472i
\(953\) −16.8810 16.8810i −0.0177135 0.0177135i 0.698195 0.715908i \(-0.253987\pi\)
−0.715908 + 0.698195i \(0.753987\pi\)
\(954\) 0 0
\(955\) 564.603 382.714i 0.591207 0.400748i
\(956\) 681.014 0.712358
\(957\) 0 0
\(958\) −852.817 852.817i −0.890206 0.890206i
\(959\) 4.75950i 0.00496298i
\(960\) 0 0
\(961\) −681.867 −0.709539
\(962\) −1175.66 + 1175.66i −1.22210 + 1.22210i
\(963\) 0 0
\(964\) 56.6819i 0.0587987i
\(965\) 453.526 + 87.0787i 0.469975 + 0.0902370i
\(966\) 0 0
\(967\) −850.051 + 850.051i −0.879060 + 0.879060i −0.993437 0.114377i \(-0.963513\pi\)
0.114377 + 0.993437i \(0.463513\pi\)
\(968\) 112.322 + 112.322i 0.116035 + 0.116035i
\(969\) 0 0
\(970\) 1086.99 + 1603.58i 1.12060 + 1.65318i
\(971\) −608.975 −0.627163 −0.313582 0.949561i \(-0.601529\pi\)
−0.313582 + 0.949561i \(0.601529\pi\)
\(972\) 0 0
\(973\) −5.91580 5.91580i −0.00607996 0.00607996i
\(974\) 571.291i 0.586541i
\(975\) 0 0
\(976\) −107.594 −0.110240
\(977\) −62.4068 + 62.4068i −0.0638760 + 0.0638760i −0.738323 0.674447i \(-0.764382\pi\)
0.674447 + 0.738323i \(0.264382\pi\)
\(978\) 0 0
\(979\) 546.982i 0.558715i
\(980\) 446.998 302.996i 0.456120 0.309180i
\(981\) 0 0
\(982\) −1391.51 + 1391.51i −1.41701 + 1.41701i
\(983\) −1009.48 1009.48i −1.02693 1.02693i −0.999627 0.0273061i \(-0.991307\pi\)
−0.0273061 0.999627i \(-0.508693\pi\)
\(984\) 0 0
\(985\) −227.495 + 1184.85i −0.230959 + 1.20289i
\(986\) 352.577 0.357584
\(987\) 0 0
\(988\) −118.449 118.449i −0.119888 0.119888i
\(989\) 455.499i 0.460565i
\(990\) 0 0
\(991\) 14.7275 0.0148613 0.00743063 0.999972i \(-0.497635\pi\)
0.00743063 + 0.999972i \(0.497635\pi\)
\(992\) −375.941 + 375.941i −0.378973 + 0.378973i
\(993\) 0 0
\(994\) 9.57581i 0.00963361i
\(995\) 102.174 + 150.732i 0.102687 + 0.151490i
\(996\) 0 0
\(997\) −163.070 + 163.070i −0.163561 + 0.163561i −0.784142 0.620581i \(-0.786897\pi\)
0.620581 + 0.784142i \(0.286897\pi\)
\(998\) −858.989 858.989i −0.860710 0.860710i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.h.163.2 20
3.2 odd 2 405.3.g.g.163.9 20
5.2 odd 4 inner 405.3.g.h.82.2 20
9.2 odd 6 135.3.l.a.118.2 40
9.4 even 3 45.3.k.a.43.2 yes 40
9.5 odd 6 135.3.l.a.73.9 40
9.7 even 3 45.3.k.a.13.9 yes 40
15.2 even 4 405.3.g.g.82.9 20
45.2 even 12 135.3.l.a.37.9 40
45.4 even 6 225.3.o.b.43.9 40
45.7 odd 12 45.3.k.a.22.2 yes 40
45.13 odd 12 225.3.o.b.7.2 40
45.22 odd 12 45.3.k.a.7.9 40
45.32 even 12 135.3.l.a.127.2 40
45.34 even 6 225.3.o.b.193.2 40
45.43 odd 12 225.3.o.b.157.9 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.9 40 45.22 odd 12
45.3.k.a.13.9 yes 40 9.7 even 3
45.3.k.a.22.2 yes 40 45.7 odd 12
45.3.k.a.43.2 yes 40 9.4 even 3
135.3.l.a.37.9 40 45.2 even 12
135.3.l.a.73.9 40 9.5 odd 6
135.3.l.a.118.2 40 9.2 odd 6
135.3.l.a.127.2 40 45.32 even 12
225.3.o.b.7.2 40 45.13 odd 12
225.3.o.b.43.9 40 45.4 even 6
225.3.o.b.157.9 40 45.43 odd 12
225.3.o.b.193.2 40 45.34 even 6
405.3.g.g.82.9 20 15.2 even 4
405.3.g.g.163.9 20 3.2 odd 2
405.3.g.h.82.2 20 5.2 odd 4 inner
405.3.g.h.163.2 20 1.1 even 1 trivial