Properties

Label 405.3.g.f.82.2
Level $405$
Weight $3$
Character 405.82
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(82,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 256x^{12} + 15630x^{8} + 235936x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.2
Root \(1.96165 - 1.96165i\) of defining polynomial
Character \(\chi\) \(=\) 405.82
Dual form 405.3.g.f.163.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96165 - 1.96165i) q^{2} +3.69616i q^{4} +(-0.453215 - 4.97942i) q^{5} +(6.04960 + 6.04960i) q^{7} +(-0.596019 + 0.596019i) q^{8} +(-8.87884 + 10.6569i) q^{10} -0.445449 q^{11} +(2.66383 - 2.66383i) q^{13} -23.7344i q^{14} +17.1230 q^{16} +(14.8395 + 14.8395i) q^{17} +29.1331i q^{19} +(18.4047 - 1.67516i) q^{20} +(0.873817 + 0.873817i) q^{22} +(14.5548 - 14.5548i) q^{23} +(-24.5892 + 4.51349i) q^{25} -10.4510 q^{26} +(-22.3603 + 22.3603i) q^{28} +40.1018i q^{29} +15.2931 q^{31} +(-31.2054 - 31.2054i) q^{32} -58.2198i q^{34} +(27.3817 - 32.8653i) q^{35} +(6.61115 + 6.61115i) q^{37} +(57.1490 - 57.1490i) q^{38} +(3.23795 + 2.69770i) q^{40} +42.4361 q^{41} +(25.7093 - 25.7093i) q^{43} -1.64645i q^{44} -57.1029 q^{46} +(-52.9832 - 52.9832i) q^{47} +24.1953i q^{49} +(57.0894 + 39.3816i) q^{50} +(9.84595 + 9.84595i) q^{52} +(44.8558 - 44.8558i) q^{53} +(0.201884 + 2.21808i) q^{55} -7.21135 q^{56} +(78.6658 - 78.6658i) q^{58} +70.7920i q^{59} +107.011 q^{61} +(-29.9998 - 29.9998i) q^{62} +53.9361i q^{64} +(-14.4716 - 12.0570i) q^{65} +(-89.6252 - 89.6252i) q^{67} +(-54.8491 + 54.8491i) q^{68} +(-118.184 + 10.7568i) q^{70} -71.1649 q^{71} +(77.9049 - 77.9049i) q^{73} -25.9376i q^{74} -107.681 q^{76} +(-2.69479 - 2.69479i) q^{77} -67.2537i q^{79} +(-7.76041 - 85.2627i) q^{80} +(-83.2449 - 83.2449i) q^{82} +(-22.7178 + 22.7178i) q^{83} +(67.1665 - 80.6174i) q^{85} -100.865 q^{86} +(0.265496 - 0.265496i) q^{88} +104.971i q^{89} +32.2302 q^{91} +(53.7969 + 53.7969i) q^{92} +207.869i q^{94} +(145.066 - 13.2035i) q^{95} +(105.410 + 105.410i) q^{97} +(47.4628 - 47.4628i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{7} - 56 q^{10} - 44 q^{13} - 32 q^{16} + 32 q^{22} - 92 q^{25} + 176 q^{28} + 320 q^{31} + 4 q^{37} - 528 q^{40} + 256 q^{43} - 16 q^{46} - 308 q^{52} - 364 q^{55} + 492 q^{58} + 8 q^{61} + 88 q^{67}+ \cdots + 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96165 1.96165i −0.980826 0.980826i 0.0189931 0.999820i \(-0.493954\pi\)
−0.999820 + 0.0189931i \(0.993954\pi\)
\(3\) 0 0
\(4\) 3.69616i 0.924041i
\(5\) −0.453215 4.97942i −0.0906430 0.995883i
\(6\) 0 0
\(7\) 6.04960 + 6.04960i 0.864229 + 0.864229i 0.991826 0.127597i \(-0.0407266\pi\)
−0.127597 + 0.991826i \(0.540727\pi\)
\(8\) −0.596019 + 0.596019i −0.0745024 + 0.0745024i
\(9\) 0 0
\(10\) −8.87884 + 10.6569i −0.887884 + 1.06569i
\(11\) −0.445449 −0.0404954 −0.0202477 0.999795i \(-0.506445\pi\)
−0.0202477 + 0.999795i \(0.506445\pi\)
\(12\) 0 0
\(13\) 2.66383 2.66383i 0.204910 0.204910i −0.597190 0.802100i \(-0.703716\pi\)
0.802100 + 0.597190i \(0.203716\pi\)
\(14\) 23.7344i 1.69532i
\(15\) 0 0
\(16\) 17.1230 1.07019
\(17\) 14.8395 + 14.8395i 0.872910 + 0.872910i 0.992789 0.119878i \(-0.0382504\pi\)
−0.119878 + 0.992789i \(0.538250\pi\)
\(18\) 0 0
\(19\) 29.1331i 1.53332i 0.642054 + 0.766660i \(0.278083\pi\)
−0.642054 + 0.766660i \(0.721917\pi\)
\(20\) 18.4047 1.67516i 0.920237 0.0837578i
\(21\) 0 0
\(22\) 0.873817 + 0.873817i 0.0397190 + 0.0397190i
\(23\) 14.5548 14.5548i 0.632817 0.632817i −0.315956 0.948774i \(-0.602325\pi\)
0.948774 + 0.315956i \(0.102325\pi\)
\(24\) 0 0
\(25\) −24.5892 + 4.51349i −0.983568 + 0.180540i
\(26\) −10.4510 −0.401962
\(27\) 0 0
\(28\) −22.3603 + 22.3603i −0.798583 + 0.798583i
\(29\) 40.1018i 1.38282i 0.722463 + 0.691410i \(0.243010\pi\)
−0.722463 + 0.691410i \(0.756990\pi\)
\(30\) 0 0
\(31\) 15.2931 0.493327 0.246663 0.969101i \(-0.420666\pi\)
0.246663 + 0.969101i \(0.420666\pi\)
\(32\) −31.2054 31.2054i −0.975167 0.975167i
\(33\) 0 0
\(34\) 58.2198i 1.71235i
\(35\) 27.3817 32.8653i 0.782335 0.939007i
\(36\) 0 0
\(37\) 6.61115 + 6.61115i 0.178680 + 0.178680i 0.790780 0.612100i \(-0.209675\pi\)
−0.612100 + 0.790780i \(0.709675\pi\)
\(38\) 57.1490 57.1490i 1.50392 1.50392i
\(39\) 0 0
\(40\) 3.23795 + 2.69770i 0.0809488 + 0.0674426i
\(41\) 42.4361 1.03503 0.517513 0.855675i \(-0.326858\pi\)
0.517513 + 0.855675i \(0.326858\pi\)
\(42\) 0 0
\(43\) 25.7093 25.7093i 0.597890 0.597890i −0.341860 0.939751i \(-0.611057\pi\)
0.939751 + 0.341860i \(0.111057\pi\)
\(44\) 1.64645i 0.0374194i
\(45\) 0 0
\(46\) −57.1029 −1.24137
\(47\) −52.9832 52.9832i −1.12730 1.12730i −0.990614 0.136689i \(-0.956354\pi\)
−0.136689 0.990614i \(-0.543646\pi\)
\(48\) 0 0
\(49\) 24.1953i 0.493782i
\(50\) 57.0894 + 39.3816i 1.14179 + 0.787631i
\(51\) 0 0
\(52\) 9.84595 + 9.84595i 0.189345 + 0.189345i
\(53\) 44.8558 44.8558i 0.846336 0.846336i −0.143338 0.989674i \(-0.545784\pi\)
0.989674 + 0.143338i \(0.0457836\pi\)
\(54\) 0 0
\(55\) 0.201884 + 2.21808i 0.00367062 + 0.0403287i
\(56\) −7.21135 −0.128774
\(57\) 0 0
\(58\) 78.6658 78.6658i 1.35631 1.35631i
\(59\) 70.7920i 1.19986i 0.800051 + 0.599932i \(0.204806\pi\)
−0.800051 + 0.599932i \(0.795194\pi\)
\(60\) 0 0
\(61\) 107.011 1.75429 0.877143 0.480230i \(-0.159447\pi\)
0.877143 + 0.480230i \(0.159447\pi\)
\(62\) −29.9998 29.9998i −0.483868 0.483868i
\(63\) 0 0
\(64\) 53.9361i 0.842751i
\(65\) −14.4716 12.0570i −0.222640 0.185493i
\(66\) 0 0
\(67\) −89.6252 89.6252i −1.33769 1.33769i −0.898293 0.439398i \(-0.855192\pi\)
−0.439398 0.898293i \(-0.644808\pi\)
\(68\) −54.8491 + 54.8491i −0.806605 + 0.806605i
\(69\) 0 0
\(70\) −118.184 + 10.7568i −1.68834 + 0.153669i
\(71\) −71.1649 −1.00232 −0.501161 0.865354i \(-0.667094\pi\)
−0.501161 + 0.865354i \(0.667094\pi\)
\(72\) 0 0
\(73\) 77.9049 77.9049i 1.06719 1.06719i 0.0696171 0.997574i \(-0.477822\pi\)
0.997574 0.0696171i \(-0.0221777\pi\)
\(74\) 25.9376i 0.350508i
\(75\) 0 0
\(76\) −107.681 −1.41685
\(77\) −2.69479 2.69479i −0.0349973 0.0349973i
\(78\) 0 0
\(79\) 67.2537i 0.851313i −0.904885 0.425657i \(-0.860043\pi\)
0.904885 0.425657i \(-0.139957\pi\)
\(80\) −7.76041 85.2627i −0.0970051 1.06578i
\(81\) 0 0
\(82\) −83.2449 83.2449i −1.01518 1.01518i
\(83\) −22.7178 + 22.7178i −0.273708 + 0.273708i −0.830591 0.556883i \(-0.811997\pi\)
0.556883 + 0.830591i \(0.311997\pi\)
\(84\) 0 0
\(85\) 67.1665 80.6174i 0.790194 0.948440i
\(86\) −100.865 −1.17285
\(87\) 0 0
\(88\) 0.265496 0.265496i 0.00301700 0.00301700i
\(89\) 104.971i 1.17945i 0.807603 + 0.589727i \(0.200765\pi\)
−0.807603 + 0.589727i \(0.799235\pi\)
\(90\) 0 0
\(91\) 32.2302 0.354178
\(92\) 53.7969 + 53.7969i 0.584749 + 0.584749i
\(93\) 0 0
\(94\) 207.869i 2.21138i
\(95\) 145.066 13.2035i 1.52701 0.138985i
\(96\) 0 0
\(97\) 105.410 + 105.410i 1.08670 + 1.08670i 0.995866 + 0.0908350i \(0.0289536\pi\)
0.0908350 + 0.995866i \(0.471046\pi\)
\(98\) 47.4628 47.4628i 0.484315 0.484315i
\(99\) 0 0
\(100\) −16.6826 90.8857i −0.166826 0.908857i
\(101\) −6.17204 −0.0611093 −0.0305546 0.999533i \(-0.509727\pi\)
−0.0305546 + 0.999533i \(0.509727\pi\)
\(102\) 0 0
\(103\) 13.8280 13.8280i 0.134253 0.134253i −0.636787 0.771040i \(-0.719737\pi\)
0.771040 + 0.636787i \(0.219737\pi\)
\(104\) 3.17539i 0.0305326i
\(105\) 0 0
\(106\) −175.983 −1.66022
\(107\) 47.8849 + 47.8849i 0.447522 + 0.447522i 0.894530 0.447008i \(-0.147510\pi\)
−0.447008 + 0.894530i \(0.647510\pi\)
\(108\) 0 0
\(109\) 60.2436i 0.552694i 0.961058 + 0.276347i \(0.0891239\pi\)
−0.961058 + 0.276347i \(0.910876\pi\)
\(110\) 3.95507 4.74713i 0.0359552 0.0431557i
\(111\) 0 0
\(112\) 103.587 + 103.587i 0.924888 + 0.924888i
\(113\) −56.8175 + 56.8175i −0.502810 + 0.502810i −0.912310 0.409500i \(-0.865703\pi\)
0.409500 + 0.912310i \(0.365703\pi\)
\(114\) 0 0
\(115\) −79.0709 65.8780i −0.687573 0.572852i
\(116\) −148.223 −1.27778
\(117\) 0 0
\(118\) 138.869 138.869i 1.17686 1.17686i
\(119\) 179.546i 1.50879i
\(120\) 0 0
\(121\) −120.802 −0.998360
\(122\) −209.919 209.919i −1.72065 1.72065i
\(123\) 0 0
\(124\) 56.5259i 0.455854i
\(125\) 33.6187 + 120.394i 0.268950 + 0.963154i
\(126\) 0 0
\(127\) 113.537 + 113.537i 0.893994 + 0.893994i 0.994896 0.100902i \(-0.0321730\pi\)
−0.100902 + 0.994896i \(0.532173\pi\)
\(128\) −19.0176 + 19.0176i −0.148575 + 0.148575i
\(129\) 0 0
\(130\) 4.73656 + 52.0400i 0.0364350 + 0.400308i
\(131\) 79.3967 0.606081 0.303041 0.952978i \(-0.401998\pi\)
0.303041 + 0.952978i \(0.401998\pi\)
\(132\) 0 0
\(133\) −176.243 + 176.243i −1.32514 + 1.32514i
\(134\) 351.627i 2.62408i
\(135\) 0 0
\(136\) −17.6892 −0.130068
\(137\) 69.7872 + 69.7872i 0.509396 + 0.509396i 0.914341 0.404945i \(-0.132709\pi\)
−0.404945 + 0.914341i \(0.632709\pi\)
\(138\) 0 0
\(139\) 85.8108i 0.617344i 0.951169 + 0.308672i \(0.0998845\pi\)
−0.951169 + 0.308672i \(0.900116\pi\)
\(140\) 121.475 + 101.207i 0.867681 + 0.722910i
\(141\) 0 0
\(142\) 139.601 + 139.601i 0.983105 + 0.983105i
\(143\) −1.18660 + 1.18660i −0.00829791 + 0.00829791i
\(144\) 0 0
\(145\) 199.683 18.1747i 1.37713 0.125343i
\(146\) −305.645 −2.09346
\(147\) 0 0
\(148\) −24.4359 + 24.4359i −0.165108 + 0.165108i
\(149\) 135.293i 0.908006i −0.891000 0.454003i \(-0.849996\pi\)
0.891000 0.454003i \(-0.150004\pi\)
\(150\) 0 0
\(151\) 144.205 0.954999 0.477500 0.878632i \(-0.341543\pi\)
0.477500 + 0.878632i \(0.341543\pi\)
\(152\) −17.3639 17.3639i −0.114236 0.114236i
\(153\) 0 0
\(154\) 10.5725i 0.0686525i
\(155\) −6.93107 76.1509i −0.0447166 0.491296i
\(156\) 0 0
\(157\) 45.4271 + 45.4271i 0.289345 + 0.289345i 0.836821 0.547477i \(-0.184411\pi\)
−0.547477 + 0.836821i \(0.684411\pi\)
\(158\) −131.929 + 131.929i −0.834991 + 0.834991i
\(159\) 0 0
\(160\) −141.242 + 169.527i −0.882761 + 1.05955i
\(161\) 176.101 1.09380
\(162\) 0 0
\(163\) −18.1117 + 18.1117i −0.111115 + 0.111115i −0.760478 0.649364i \(-0.775035\pi\)
0.649364 + 0.760478i \(0.275035\pi\)
\(164\) 156.851i 0.956408i
\(165\) 0 0
\(166\) 89.1287 0.536920
\(167\) −31.0302 31.0302i −0.185810 0.185810i 0.608072 0.793882i \(-0.291943\pi\)
−0.793882 + 0.608072i \(0.791943\pi\)
\(168\) 0 0
\(169\) 154.808i 0.916024i
\(170\) −289.901 + 26.3861i −1.70530 + 0.155212i
\(171\) 0 0
\(172\) 95.0258 + 95.0258i 0.552475 + 0.552475i
\(173\) 57.0256 57.0256i 0.329628 0.329628i −0.522817 0.852445i \(-0.675119\pi\)
0.852445 + 0.522817i \(0.175119\pi\)
\(174\) 0 0
\(175\) −176.060 121.450i −1.00605 0.694000i
\(176\) −7.62744 −0.0433377
\(177\) 0 0
\(178\) 205.917 205.917i 1.15684 1.15684i
\(179\) 55.1405i 0.308047i 0.988067 + 0.154024i \(0.0492232\pi\)
−0.988067 + 0.154024i \(0.950777\pi\)
\(180\) 0 0
\(181\) −180.687 −0.998270 −0.499135 0.866524i \(-0.666349\pi\)
−0.499135 + 0.866524i \(0.666349\pi\)
\(182\) −63.2245 63.2245i −0.347387 0.347387i
\(183\) 0 0
\(184\) 17.3499i 0.0942928i
\(185\) 29.9234 35.9160i 0.161748 0.194140i
\(186\) 0 0
\(187\) −6.61024 6.61024i −0.0353489 0.0353489i
\(188\) 195.835 195.835i 1.04167 1.04167i
\(189\) 0 0
\(190\) −310.469 258.668i −1.63405 1.36141i
\(191\) 190.289 0.996278 0.498139 0.867097i \(-0.334017\pi\)
0.498139 + 0.867097i \(0.334017\pi\)
\(192\) 0 0
\(193\) 6.44405 6.44405i 0.0333889 0.0333889i −0.690215 0.723604i \(-0.742484\pi\)
0.723604 + 0.690215i \(0.242484\pi\)
\(194\) 413.556i 2.13173i
\(195\) 0 0
\(196\) −89.4299 −0.456275
\(197\) −116.112 116.112i −0.589403 0.589403i 0.348067 0.937470i \(-0.386838\pi\)
−0.937470 + 0.348067i \(0.886838\pi\)
\(198\) 0 0
\(199\) 281.684i 1.41550i −0.706465 0.707748i \(-0.749711\pi\)
0.706465 0.707748i \(-0.250289\pi\)
\(200\) 11.9655 17.3458i 0.0598275 0.0867288i
\(201\) 0 0
\(202\) 12.1074 + 12.1074i 0.0599376 + 0.0599376i
\(203\) −242.600 + 242.600i −1.19507 + 1.19507i
\(204\) 0 0
\(205\) −19.2327 211.307i −0.0938179 1.03077i
\(206\) −54.2516 −0.263357
\(207\) 0 0
\(208\) 45.6128 45.6128i 0.219292 0.219292i
\(209\) 12.9773i 0.0620924i
\(210\) 0 0
\(211\) −240.852 −1.14148 −0.570739 0.821132i \(-0.693343\pi\)
−0.570739 + 0.821132i \(0.693343\pi\)
\(212\) 165.794 + 165.794i 0.782049 + 0.782049i
\(213\) 0 0
\(214\) 187.867i 0.877883i
\(215\) −139.669 116.365i −0.649624 0.541235i
\(216\) 0 0
\(217\) 92.5173 + 92.5173i 0.426347 + 0.426347i
\(218\) 118.177 118.177i 0.542097 0.542097i
\(219\) 0 0
\(220\) −8.19838 + 0.746198i −0.0372654 + 0.00339181i
\(221\) 79.0597 0.357736
\(222\) 0 0
\(223\) 53.9338 53.9338i 0.241856 0.241856i −0.575762 0.817618i \(-0.695294\pi\)
0.817618 + 0.575762i \(0.195294\pi\)
\(224\) 377.560i 1.68554i
\(225\) 0 0
\(226\) 222.913 0.986339
\(227\) 5.95126 + 5.95126i 0.0262170 + 0.0262170i 0.720094 0.693877i \(-0.244099\pi\)
−0.693877 + 0.720094i \(0.744099\pi\)
\(228\) 0 0
\(229\) 216.480i 0.945328i −0.881243 0.472664i \(-0.843292\pi\)
0.881243 0.472664i \(-0.156708\pi\)
\(230\) 25.8799 + 284.339i 0.112521 + 1.23626i
\(231\) 0 0
\(232\) −23.9014 23.9014i −0.103023 0.103023i
\(233\) 85.0860 85.0860i 0.365176 0.365176i −0.500538 0.865714i \(-0.666865\pi\)
0.865714 + 0.500538i \(0.166865\pi\)
\(234\) 0 0
\(235\) −239.813 + 287.838i −1.02048 + 1.22484i
\(236\) −261.659 −1.10872
\(237\) 0 0
\(238\) 352.207 352.207i 1.47986 1.47986i
\(239\) 267.134i 1.11772i 0.829263 + 0.558858i \(0.188760\pi\)
−0.829263 + 0.558858i \(0.811240\pi\)
\(240\) 0 0
\(241\) −282.000 −1.17013 −0.585063 0.810988i \(-0.698930\pi\)
−0.585063 + 0.810988i \(0.698930\pi\)
\(242\) 236.971 + 236.971i 0.979218 + 0.979218i
\(243\) 0 0
\(244\) 395.532i 1.62103i
\(245\) 120.479 10.9657i 0.491749 0.0447579i
\(246\) 0 0
\(247\) 77.6055 + 77.6055i 0.314192 + 0.314192i
\(248\) −9.11500 + 9.11500i −0.0367540 + 0.0367540i
\(249\) 0 0
\(250\) 170.223 302.120i 0.680894 1.20848i
\(251\) 29.8384 0.118878 0.0594390 0.998232i \(-0.481069\pi\)
0.0594390 + 0.998232i \(0.481069\pi\)
\(252\) 0 0
\(253\) −6.48343 + 6.48343i −0.0256262 + 0.0256262i
\(254\) 445.441i 1.75371i
\(255\) 0 0
\(256\) 290.356 1.13420
\(257\) 110.717 + 110.717i 0.430806 + 0.430806i 0.888902 0.458096i \(-0.151469\pi\)
−0.458096 + 0.888902i \(0.651469\pi\)
\(258\) 0 0
\(259\) 79.9897i 0.308840i
\(260\) 44.5648 53.4894i 0.171403 0.205729i
\(261\) 0 0
\(262\) −155.749 155.749i −0.594461 0.594461i
\(263\) −19.7336 + 19.7336i −0.0750328 + 0.0750328i −0.743627 0.668594i \(-0.766896\pi\)
0.668594 + 0.743627i \(0.266896\pi\)
\(264\) 0 0
\(265\) −243.685 203.026i −0.919566 0.766138i
\(266\) 691.457 2.59946
\(267\) 0 0
\(268\) 331.270 331.270i 1.23608 1.23608i
\(269\) 100.763i 0.374584i −0.982304 0.187292i \(-0.940029\pi\)
0.982304 0.187292i \(-0.0599711\pi\)
\(270\) 0 0
\(271\) −342.248 −1.26291 −0.631453 0.775414i \(-0.717541\pi\)
−0.631453 + 0.775414i \(0.717541\pi\)
\(272\) 254.097 + 254.097i 0.934179 + 0.934179i
\(273\) 0 0
\(274\) 273.797i 0.999258i
\(275\) 10.9532 2.01053i 0.0398300 0.00731103i
\(276\) 0 0
\(277\) −161.049 161.049i −0.581405 0.581405i 0.353884 0.935289i \(-0.384861\pi\)
−0.935289 + 0.353884i \(0.884861\pi\)
\(278\) 168.331 168.331i 0.605507 0.605507i
\(279\) 0 0
\(280\) 3.26829 + 35.9083i 0.0116725 + 0.128244i
\(281\) 509.668 1.81376 0.906882 0.421384i \(-0.138456\pi\)
0.906882 + 0.421384i \(0.138456\pi\)
\(282\) 0 0
\(283\) −254.961 + 254.961i −0.900923 + 0.900923i −0.995516 0.0945934i \(-0.969845\pi\)
0.0945934 + 0.995516i \(0.469845\pi\)
\(284\) 263.037i 0.926187i
\(285\) 0 0
\(286\) 4.65540 0.0162776
\(287\) 256.721 + 256.721i 0.894500 + 0.894500i
\(288\) 0 0
\(289\) 151.420i 0.523945i
\(290\) −427.362 356.057i −1.47366 1.22778i
\(291\) 0 0
\(292\) 287.949 + 287.949i 0.986128 + 0.986128i
\(293\) −140.223 + 140.223i −0.478576 + 0.478576i −0.904676 0.426100i \(-0.859887\pi\)
0.426100 + 0.904676i \(0.359887\pi\)
\(294\) 0 0
\(295\) 352.503 32.0840i 1.19493 0.108759i
\(296\) −7.88075 −0.0266241
\(297\) 0 0
\(298\) −265.398 + 265.398i −0.890596 + 0.890596i
\(299\) 77.5430i 0.259341i
\(300\) 0 0
\(301\) 311.062 1.03343
\(302\) −282.880 282.880i −0.936689 0.936689i
\(303\) 0 0
\(304\) 498.846i 1.64094i
\(305\) −48.4992 532.855i −0.159014 1.74706i
\(306\) 0 0
\(307\) 123.104 + 123.104i 0.400990 + 0.400990i 0.878582 0.477592i \(-0.158490\pi\)
−0.477592 + 0.878582i \(0.658490\pi\)
\(308\) 9.96039 9.96039i 0.0323389 0.0323389i
\(309\) 0 0
\(310\) −135.785 + 162.978i −0.438017 + 0.525735i
\(311\) −248.018 −0.797485 −0.398742 0.917063i \(-0.630553\pi\)
−0.398742 + 0.917063i \(0.630553\pi\)
\(312\) 0 0
\(313\) 127.568 127.568i 0.407567 0.407567i −0.473322 0.880889i \(-0.656945\pi\)
0.880889 + 0.473322i \(0.156945\pi\)
\(314\) 178.224i 0.567594i
\(315\) 0 0
\(316\) 248.581 0.786649
\(317\) −235.473 235.473i −0.742817 0.742817i 0.230302 0.973119i \(-0.426028\pi\)
−0.973119 + 0.230302i \(0.926028\pi\)
\(318\) 0 0
\(319\) 17.8633i 0.0559978i
\(320\) 268.570 24.4446i 0.839282 0.0763894i
\(321\) 0 0
\(322\) −345.450 345.450i −1.07283 1.07283i
\(323\) −432.319 + 432.319i −1.33845 + 1.33845i
\(324\) 0 0
\(325\) −53.4782 + 77.5246i −0.164548 + 0.238537i
\(326\) 71.0576 0.217968
\(327\) 0 0
\(328\) −25.2927 + 25.2927i −0.0771120 + 0.0771120i
\(329\) 641.055i 1.94849i
\(330\) 0 0
\(331\) 17.7617 0.0536608 0.0268304 0.999640i \(-0.491459\pi\)
0.0268304 + 0.999640i \(0.491459\pi\)
\(332\) −83.9686 83.9686i −0.252918 0.252918i
\(333\) 0 0
\(334\) 121.741i 0.364494i
\(335\) −405.662 + 486.901i −1.21093 + 1.45344i
\(336\) 0 0
\(337\) −195.549 195.549i −0.580265 0.580265i 0.354711 0.934976i \(-0.384579\pi\)
−0.934976 + 0.354711i \(0.884579\pi\)
\(338\) 303.680 303.680i 0.898460 0.898460i
\(339\) 0 0
\(340\) 297.975 + 248.258i 0.876398 + 0.730172i
\(341\) −6.81232 −0.0199775
\(342\) 0 0
\(343\) 150.058 150.058i 0.437488 0.437488i
\(344\) 30.6464i 0.0890885i
\(345\) 0 0
\(346\) −223.729 −0.646616
\(347\) −223.633 223.633i −0.644475 0.644475i 0.307177 0.951652i \(-0.400615\pi\)
−0.951652 + 0.307177i \(0.900615\pi\)
\(348\) 0 0
\(349\) 675.814i 1.93643i 0.250120 + 0.968215i \(0.419530\pi\)
−0.250120 + 0.968215i \(0.580470\pi\)
\(350\) 107.125 + 583.611i 0.306072 + 1.66746i
\(351\) 0 0
\(352\) 13.9004 + 13.9004i 0.0394898 + 0.0394898i
\(353\) 293.602 293.602i 0.831735 0.831735i −0.156019 0.987754i \(-0.549866\pi\)
0.987754 + 0.156019i \(0.0498661\pi\)
\(354\) 0 0
\(355\) 32.2530 + 354.360i 0.0908535 + 0.998196i
\(356\) −387.991 −1.08986
\(357\) 0 0
\(358\) 108.167 108.167i 0.302141 0.302141i
\(359\) 206.110i 0.574122i 0.957912 + 0.287061i \(0.0926783\pi\)
−0.957912 + 0.287061i \(0.907322\pi\)
\(360\) 0 0
\(361\) −487.736 −1.35107
\(362\) 354.445 + 354.445i 0.979130 + 0.979130i
\(363\) 0 0
\(364\) 119.128i 0.327275i
\(365\) −423.229 352.614i −1.15953 0.966064i
\(366\) 0 0
\(367\) −130.805 130.805i −0.356417 0.356417i 0.506073 0.862490i \(-0.331097\pi\)
−0.862490 + 0.506073i \(0.831097\pi\)
\(368\) 249.222 249.222i 0.677234 0.677234i
\(369\) 0 0
\(370\) −129.154 + 11.7553i −0.349065 + 0.0317711i
\(371\) 542.719 1.46286
\(372\) 0 0
\(373\) 172.185 172.185i 0.461623 0.461623i −0.437564 0.899187i \(-0.644159\pi\)
0.899187 + 0.437564i \(0.144159\pi\)
\(374\) 25.9340i 0.0693422i
\(375\) 0 0
\(376\) 63.1580 0.167973
\(377\) 106.824 + 106.824i 0.283354 + 0.283354i
\(378\) 0 0
\(379\) 240.778i 0.635297i −0.948208 0.317649i \(-0.897107\pi\)
0.948208 0.317649i \(-0.102893\pi\)
\(380\) 48.8025 + 536.187i 0.128428 + 1.41102i
\(381\) 0 0
\(382\) −373.281 373.281i −0.977175 0.977175i
\(383\) 119.769 119.769i 0.312712 0.312712i −0.533247 0.845959i \(-0.679028\pi\)
0.845959 + 0.533247i \(0.179028\pi\)
\(384\) 0 0
\(385\) −12.1972 + 14.6398i −0.0316810 + 0.0380255i
\(386\) −25.2820 −0.0654974
\(387\) 0 0
\(388\) −389.613 + 389.613i −1.00416 + 1.00416i
\(389\) 147.816i 0.379989i −0.981785 0.189995i \(-0.939153\pi\)
0.981785 0.189995i \(-0.0608470\pi\)
\(390\) 0 0
\(391\) 431.971 1.10479
\(392\) −14.4209 14.4209i −0.0367879 0.0367879i
\(393\) 0 0
\(394\) 455.544i 1.15620i
\(395\) −334.884 + 30.4804i −0.847809 + 0.0771656i
\(396\) 0 0
\(397\) 154.690 + 154.690i 0.389647 + 0.389647i 0.874561 0.484915i \(-0.161149\pi\)
−0.484915 + 0.874561i \(0.661149\pi\)
\(398\) −552.566 + 552.566i −1.38836 + 1.38836i
\(399\) 0 0
\(400\) −421.041 + 77.2846i −1.05260 + 0.193212i
\(401\) 708.918 1.76787 0.883937 0.467606i \(-0.154883\pi\)
0.883937 + 0.467606i \(0.154883\pi\)
\(402\) 0 0
\(403\) 40.7383 40.7383i 0.101088 0.101088i
\(404\) 22.8129i 0.0564675i
\(405\) 0 0
\(406\) 951.793 2.34432
\(407\) −2.94493 2.94493i −0.00723571 0.00723571i
\(408\) 0 0
\(409\) 167.538i 0.409629i 0.978801 + 0.204814i \(0.0656590\pi\)
−0.978801 + 0.204814i \(0.934341\pi\)
\(410\) −376.783 + 452.239i −0.918984 + 1.10302i
\(411\) 0 0
\(412\) 51.1107 + 51.1107i 0.124055 + 0.124055i
\(413\) −428.263 + 428.263i −1.03696 + 1.03696i
\(414\) 0 0
\(415\) 123.417 + 102.825i 0.297391 + 0.247772i
\(416\) −166.252 −0.399643
\(417\) 0 0
\(418\) −25.4570 + 25.4570i −0.0609019 + 0.0609019i
\(419\) 141.227i 0.337058i 0.985697 + 0.168529i \(0.0539017\pi\)
−0.985697 + 0.168529i \(0.946098\pi\)
\(420\) 0 0
\(421\) −576.339 −1.36898 −0.684488 0.729024i \(-0.739974\pi\)
−0.684488 + 0.729024i \(0.739974\pi\)
\(422\) 472.467 + 472.467i 1.11959 + 1.11959i
\(423\) 0 0
\(424\) 53.4698i 0.126108i
\(425\) −431.869 297.913i −1.01616 0.700971i
\(426\) 0 0
\(427\) 647.376 + 647.376i 1.51610 + 1.51610i
\(428\) −176.990 + 176.990i −0.413529 + 0.413529i
\(429\) 0 0
\(430\) 45.7137 + 502.251i 0.106311 + 1.16803i
\(431\) 449.009 1.04179 0.520893 0.853622i \(-0.325599\pi\)
0.520893 + 0.853622i \(0.325599\pi\)
\(432\) 0 0
\(433\) 542.261 542.261i 1.25233 1.25233i 0.297663 0.954671i \(-0.403793\pi\)
0.954671 0.297663i \(-0.0962072\pi\)
\(434\) 362.974i 0.836345i
\(435\) 0 0
\(436\) −222.670 −0.510712
\(437\) 424.026 + 424.026i 0.970311 + 0.970311i
\(438\) 0 0
\(439\) 458.923i 1.04538i −0.852522 0.522692i \(-0.824928\pi\)
0.852522 0.522692i \(-0.175072\pi\)
\(440\) −1.44234 1.20169i −0.00327805 0.00273111i
\(441\) 0 0
\(442\) −155.088 155.088i −0.350877 0.350877i
\(443\) −166.912 + 166.912i −0.376777 + 0.376777i −0.869938 0.493161i \(-0.835841\pi\)
0.493161 + 0.869938i \(0.335841\pi\)
\(444\) 0 0
\(445\) 522.696 47.5746i 1.17460 0.106909i
\(446\) −211.599 −0.474437
\(447\) 0 0
\(448\) −326.292 + 326.292i −0.728329 + 0.728329i
\(449\) 267.125i 0.594933i −0.954732 0.297467i \(-0.903858\pi\)
0.954732 0.297467i \(-0.0961417\pi\)
\(450\) 0 0
\(451\) −18.9031 −0.0419138
\(452\) −210.007 210.007i −0.464617 0.464617i
\(453\) 0 0
\(454\) 23.3486i 0.0514286i
\(455\) −14.6072 160.488i −0.0321038 0.352720i
\(456\) 0 0
\(457\) −61.7372 61.7372i −0.135092 0.135092i 0.636327 0.771419i \(-0.280453\pi\)
−0.771419 + 0.636327i \(0.780453\pi\)
\(458\) −424.659 + 424.659i −0.927203 + 0.927203i
\(459\) 0 0
\(460\) 243.496 292.259i 0.529339 0.635346i
\(461\) −456.501 −0.990241 −0.495121 0.868824i \(-0.664876\pi\)
−0.495121 + 0.868824i \(0.664876\pi\)
\(462\) 0 0
\(463\) −522.907 + 522.907i −1.12939 + 1.12939i −0.139112 + 0.990277i \(0.544425\pi\)
−0.990277 + 0.139112i \(0.955575\pi\)
\(464\) 686.664i 1.47988i
\(465\) 0 0
\(466\) −333.818 −0.716349
\(467\) −200.076 200.076i −0.428428 0.428428i 0.459664 0.888093i \(-0.347970\pi\)
−0.888093 + 0.459664i \(0.847970\pi\)
\(468\) 0 0
\(469\) 1084.39i 2.31214i
\(470\) 1035.07 94.2095i 2.20227 0.200446i
\(471\) 0 0
\(472\) −42.1934 42.1934i −0.0893928 0.0893928i
\(473\) −11.4522 + 11.4522i −0.0242118 + 0.0242118i
\(474\) 0 0
\(475\) −131.492 716.359i −0.276825 1.50812i
\(476\) −663.631 −1.39418
\(477\) 0 0
\(478\) 524.025 524.025i 1.09629 1.09629i
\(479\) 527.960i 1.10221i 0.834435 + 0.551107i \(0.185794\pi\)
−0.834435 + 0.551107i \(0.814206\pi\)
\(480\) 0 0
\(481\) 35.2220 0.0732266
\(482\) 553.187 + 553.187i 1.14769 + 1.14769i
\(483\) 0 0
\(484\) 446.503i 0.922526i
\(485\) 477.107 572.654i 0.983726 1.18073i
\(486\) 0 0
\(487\) 2.96411 + 2.96411i 0.00608646 + 0.00608646i 0.710143 0.704057i \(-0.248630\pi\)
−0.704057 + 0.710143i \(0.748630\pi\)
\(488\) −63.7808 + 63.7808i −0.130698 + 0.130698i
\(489\) 0 0
\(490\) −257.848 214.826i −0.526221 0.438421i
\(491\) −790.825 −1.61064 −0.805320 0.592840i \(-0.798007\pi\)
−0.805320 + 0.592840i \(0.798007\pi\)
\(492\) 0 0
\(493\) −595.089 + 595.089i −1.20708 + 1.20708i
\(494\) 304.470i 0.616337i
\(495\) 0 0
\(496\) 261.865 0.527953
\(497\) −430.519 430.519i −0.866236 0.866236i
\(498\) 0 0
\(499\) 587.934i 1.17822i −0.808052 0.589112i \(-0.799478\pi\)
0.808052 0.589112i \(-0.200522\pi\)
\(500\) −444.997 + 124.260i −0.889994 + 0.248521i
\(501\) 0 0
\(502\) −58.5325 58.5325i −0.116599 0.116599i
\(503\) 282.741 282.741i 0.562109 0.562109i −0.367797 0.929906i \(-0.619888\pi\)
0.929906 + 0.367797i \(0.119888\pi\)
\(504\) 0 0
\(505\) 2.79726 + 30.7332i 0.00553913 + 0.0608577i
\(506\) 25.4365 0.0502697
\(507\) 0 0
\(508\) −419.652 + 419.652i −0.826087 + 0.826087i
\(509\) 524.061i 1.02959i 0.857313 + 0.514795i \(0.172132\pi\)
−0.857313 + 0.514795i \(0.827868\pi\)
\(510\) 0 0
\(511\) 942.587 1.84459
\(512\) −493.507 493.507i −0.963882 0.963882i
\(513\) 0 0
\(514\) 434.377i 0.845092i
\(515\) −75.1226 62.5885i −0.145869 0.121531i
\(516\) 0 0
\(517\) 23.6014 + 23.6014i 0.0456506 + 0.0456506i
\(518\) 156.912 156.912i 0.302919 0.302919i
\(519\) 0 0
\(520\) 15.8116 1.43913i 0.0304069 0.00276756i
\(521\) −149.033 −0.286051 −0.143026 0.989719i \(-0.545683\pi\)
−0.143026 + 0.989719i \(0.545683\pi\)
\(522\) 0 0
\(523\) −529.426 + 529.426i −1.01229 + 1.01229i −0.0123638 + 0.999924i \(0.503936\pi\)
−0.999924 + 0.0123638i \(0.996064\pi\)
\(524\) 293.463i 0.560044i
\(525\) 0 0
\(526\) 77.4211 0.147188
\(527\) 226.942 + 226.942i 0.430630 + 0.430630i
\(528\) 0 0
\(529\) 105.316i 0.199084i
\(530\) 79.7581 + 876.293i 0.150487 + 1.65338i
\(531\) 0 0
\(532\) −651.425 651.425i −1.22448 1.22448i
\(533\) 113.043 113.043i 0.212087 0.212087i
\(534\) 0 0
\(535\) 216.737 260.141i 0.405115 0.486245i
\(536\) 106.837 0.199322
\(537\) 0 0
\(538\) −197.662 + 197.662i −0.367402 + 0.367402i
\(539\) 10.7778i 0.0199959i
\(540\) 0 0
\(541\) −95.0214 −0.175640 −0.0878202 0.996136i \(-0.527990\pi\)
−0.0878202 + 0.996136i \(0.527990\pi\)
\(542\) 671.371 + 671.371i 1.23869 + 1.23869i
\(543\) 0 0
\(544\) 926.142i 1.70247i
\(545\) 299.978 27.3033i 0.550419 0.0500978i
\(546\) 0 0
\(547\) 437.531 + 437.531i 0.799875 + 0.799875i 0.983075 0.183201i \(-0.0586459\pi\)
−0.183201 + 0.983075i \(0.558646\pi\)
\(548\) −257.945 + 257.945i −0.470703 + 0.470703i
\(549\) 0 0
\(550\) −25.4304 17.5425i −0.0462371 0.0318954i
\(551\) −1168.29 −2.12030
\(552\) 0 0
\(553\) 406.858 406.858i 0.735729 0.735729i
\(554\) 631.845i 1.14051i
\(555\) 0 0
\(556\) −317.171 −0.570451
\(557\) −591.236 591.236i −1.06147 1.06147i −0.997983 0.0634822i \(-0.979779\pi\)
−0.0634822 0.997983i \(-0.520221\pi\)
\(558\) 0 0
\(559\) 136.970i 0.245027i
\(560\) 468.858 562.753i 0.837246 1.00492i
\(561\) 0 0
\(562\) −999.791 999.791i −1.77899 1.77899i
\(563\) −526.655 + 526.655i −0.935444 + 0.935444i −0.998039 0.0625946i \(-0.980062\pi\)
0.0625946 + 0.998039i \(0.480062\pi\)
\(564\) 0 0
\(565\) 308.669 + 257.168i 0.546316 + 0.455164i
\(566\) 1000.29 1.76730
\(567\) 0 0
\(568\) 42.4156 42.4156i 0.0746754 0.0746754i
\(569\) 590.957i 1.03859i 0.854595 + 0.519294i \(0.173805\pi\)
−0.854595 + 0.519294i \(0.826195\pi\)
\(570\) 0 0
\(571\) −380.609 −0.666565 −0.333283 0.942827i \(-0.608156\pi\)
−0.333283 + 0.942827i \(0.608156\pi\)
\(572\) −4.38587 4.38587i −0.00766761 0.00766761i
\(573\) 0 0
\(574\) 1007.20i 1.75470i
\(575\) −292.198 + 423.584i −0.508170 + 0.736667i
\(576\) 0 0
\(577\) −156.284 156.284i −0.270856 0.270856i 0.558589 0.829445i \(-0.311343\pi\)
−0.829445 + 0.558589i \(0.811343\pi\)
\(578\) 297.034 297.034i 0.513899 0.513899i
\(579\) 0 0
\(580\) 67.1768 + 738.063i 0.115822 + 1.27252i
\(581\) −274.867 −0.473093
\(582\) 0 0
\(583\) −19.9810 + 19.9810i −0.0342727 + 0.0342727i
\(584\) 92.8656i 0.159017i
\(585\) 0 0
\(586\) 550.137 0.938800
\(587\) −717.351 717.351i −1.22206 1.22206i −0.966897 0.255166i \(-0.917870\pi\)
−0.255166 0.966897i \(-0.582130\pi\)
\(588\) 0 0
\(589\) 445.536i 0.756427i
\(590\) −754.426 628.551i −1.27869 1.06534i
\(591\) 0 0
\(592\) 113.203 + 113.203i 0.191221 + 0.191221i
\(593\) 336.299 336.299i 0.567115 0.567115i −0.364204 0.931319i \(-0.618659\pi\)
0.931319 + 0.364204i \(0.118659\pi\)
\(594\) 0 0
\(595\) 894.033 81.3728i 1.50258 0.136761i
\(596\) 500.065 0.839035
\(597\) 0 0
\(598\) −152.112 + 152.112i −0.254369 + 0.254369i
\(599\) 427.985i 0.714500i −0.934009 0.357250i \(-0.883714\pi\)
0.934009 0.357250i \(-0.116286\pi\)
\(600\) 0 0
\(601\) 17.0151 0.0283112 0.0141556 0.999900i \(-0.495494\pi\)
0.0141556 + 0.999900i \(0.495494\pi\)
\(602\) −610.195 610.195i −1.01361 1.01361i
\(603\) 0 0
\(604\) 533.005i 0.882459i
\(605\) 54.7491 + 601.521i 0.0904943 + 0.994250i
\(606\) 0 0
\(607\) 209.591 + 209.591i 0.345290 + 0.345290i 0.858352 0.513062i \(-0.171489\pi\)
−0.513062 + 0.858352i \(0.671489\pi\)
\(608\) 909.108 909.108i 1.49524 1.49524i
\(609\) 0 0
\(610\) −950.137 + 1140.41i −1.55760 + 1.86953i
\(611\) −282.277 −0.461991
\(612\) 0 0
\(613\) −229.232 + 229.232i −0.373951 + 0.373951i −0.868914 0.494963i \(-0.835181\pi\)
0.494963 + 0.868914i \(0.335181\pi\)
\(614\) 482.974i 0.786603i
\(615\) 0 0
\(616\) 3.21229 0.00521476
\(617\) −89.8034 89.8034i −0.145548 0.145548i 0.630578 0.776126i \(-0.282818\pi\)
−0.776126 + 0.630578i \(0.782818\pi\)
\(618\) 0 0
\(619\) 1157.67i 1.87022i −0.354351 0.935112i \(-0.615298\pi\)
0.354351 0.935112i \(-0.384702\pi\)
\(620\) 281.466 25.6184i 0.453978 0.0413200i
\(621\) 0 0
\(622\) 486.525 + 486.525i 0.782194 + 0.782194i
\(623\) −635.035 + 635.035i −1.01932 + 1.01932i
\(624\) 0 0
\(625\) 584.257 221.966i 0.934811 0.355146i
\(626\) −500.490 −0.799505
\(627\) 0 0
\(628\) −167.906 + 167.906i −0.267366 + 0.267366i
\(629\) 196.212i 0.311943i
\(630\) 0 0
\(631\) −1139.80 −1.80634 −0.903169 0.429285i \(-0.858766\pi\)
−0.903169 + 0.429285i \(0.858766\pi\)
\(632\) 40.0845 + 40.0845i 0.0634249 + 0.0634249i
\(633\) 0 0
\(634\) 923.832i 1.45715i
\(635\) 513.892 616.806i 0.809279 0.971348i
\(636\) 0 0
\(637\) 64.4522 + 64.4522i 0.101181 + 0.101181i
\(638\) −35.0416 + 35.0416i −0.0549242 + 0.0549242i
\(639\) 0 0
\(640\) 103.316 + 86.0774i 0.161431 + 0.134496i
\(641\) 762.768 1.18997 0.594983 0.803738i \(-0.297159\pi\)
0.594983 + 0.803738i \(0.297159\pi\)
\(642\) 0 0
\(643\) −321.892 + 321.892i −0.500610 + 0.500610i −0.911627 0.411018i \(-0.865173\pi\)
0.411018 + 0.911627i \(0.365173\pi\)
\(644\) 650.900i 1.01071i
\(645\) 0 0
\(646\) 1696.12 2.62557
\(647\) 19.2194 + 19.2194i 0.0297054 + 0.0297054i 0.721803 0.692098i \(-0.243313\pi\)
−0.692098 + 0.721803i \(0.743313\pi\)
\(648\) 0 0
\(649\) 31.5343i 0.0485890i
\(650\) 256.982 47.1706i 0.395357 0.0725701i
\(651\) 0 0
\(652\) −66.9437 66.9437i −0.102674 0.102674i
\(653\) 897.572 897.572i 1.37454 1.37454i 0.520948 0.853589i \(-0.325579\pi\)
0.853589 0.520948i \(-0.174421\pi\)
\(654\) 0 0
\(655\) −35.9837 395.349i −0.0549370 0.603586i
\(656\) 726.634 1.10767
\(657\) 0 0
\(658\) −1257.53 + 1257.53i −1.91114 + 1.91114i
\(659\) 785.804i 1.19242i −0.802829 0.596209i \(-0.796673\pi\)
0.802829 0.596209i \(-0.203327\pi\)
\(660\) 0 0
\(661\) 368.211 0.557051 0.278526 0.960429i \(-0.410154\pi\)
0.278526 + 0.960429i \(0.410154\pi\)
\(662\) −34.8423 34.8423i −0.0526319 0.0526319i
\(663\) 0 0
\(664\) 27.0804i 0.0407838i
\(665\) 957.466 + 797.713i 1.43980 + 1.19957i
\(666\) 0 0
\(667\) 583.673 + 583.673i 0.875072 + 0.875072i
\(668\) 114.693 114.693i 0.171696 0.171696i
\(669\) 0 0
\(670\) 1750.90 159.363i 2.61328 0.237855i
\(671\) −47.6682 −0.0710405
\(672\) 0 0
\(673\) −583.994 + 583.994i −0.867748 + 0.867748i −0.992223 0.124475i \(-0.960275\pi\)
0.124475 + 0.992223i \(0.460275\pi\)
\(674\) 767.200i 1.13828i
\(675\) 0 0
\(676\) −572.196 −0.846444
\(677\) −510.053 510.053i −0.753401 0.753401i 0.221711 0.975112i \(-0.428836\pi\)
−0.975112 + 0.221711i \(0.928836\pi\)
\(678\) 0 0
\(679\) 1275.38i 1.87832i
\(680\) 8.01702 + 88.0820i 0.0117897 + 0.129532i
\(681\) 0 0
\(682\) 13.3634 + 13.3634i 0.0195944 + 0.0195944i
\(683\) −264.640 + 264.640i −0.387467 + 0.387467i −0.873783 0.486316i \(-0.838340\pi\)
0.486316 + 0.873783i \(0.338340\pi\)
\(684\) 0 0
\(685\) 315.871 379.128i 0.461126 0.553472i
\(686\) −588.725 −0.858200
\(687\) 0 0
\(688\) 440.221 440.221i 0.639856 0.639856i
\(689\) 238.976i 0.346845i
\(690\) 0 0
\(691\) 484.032 0.700480 0.350240 0.936660i \(-0.386100\pi\)
0.350240 + 0.936660i \(0.386100\pi\)
\(692\) 210.776 + 210.776i 0.304590 + 0.304590i
\(693\) 0 0
\(694\) 877.380i 1.26424i
\(695\) 427.288 38.8907i 0.614802 0.0559579i
\(696\) 0 0
\(697\) 629.730 + 629.730i 0.903486 + 0.903486i
\(698\) 1325.71 1325.71i 1.89930 1.89930i
\(699\) 0 0
\(700\) 448.899 650.745i 0.641284 0.929636i
\(701\) 394.513 0.562787 0.281393 0.959593i \(-0.409203\pi\)
0.281393 + 0.959593i \(0.409203\pi\)
\(702\) 0 0
\(703\) −192.603 + 192.603i −0.273973 + 0.273973i
\(704\) 24.0258i 0.0341275i
\(705\) 0 0
\(706\) −1151.89 −1.63158
\(707\) −37.3384 37.3384i −0.0528124 0.0528124i
\(708\) 0 0
\(709\) 113.025i 0.159415i −0.996818 0.0797074i \(-0.974601\pi\)
0.996818 0.0797074i \(-0.0253986\pi\)
\(710\) 631.862 758.400i 0.889946 1.06817i
\(711\) 0 0
\(712\) −62.5649 62.5649i −0.0878721 0.0878721i
\(713\) 222.588 222.588i 0.312186 0.312186i
\(714\) 0 0
\(715\) 6.44637 + 5.37080i 0.00901590 + 0.00751161i
\(716\) −203.808 −0.284649
\(717\) 0 0
\(718\) 404.316 404.316i 0.563115 0.563115i
\(719\) 242.271i 0.336955i −0.985705 0.168478i \(-0.946115\pi\)
0.985705 0.168478i \(-0.0538851\pi\)
\(720\) 0 0
\(721\) 167.308 0.232050
\(722\) 956.768 + 956.768i 1.32516 + 1.32516i
\(723\) 0 0
\(724\) 667.849i 0.922443i
\(725\) −180.999 986.070i −0.249654 1.36010i
\(726\) 0 0
\(727\) 297.287 + 297.287i 0.408923 + 0.408923i 0.881363 0.472440i \(-0.156627\pi\)
−0.472440 + 0.881363i \(0.656627\pi\)
\(728\) −19.2098 + 19.2098i −0.0263871 + 0.0263871i
\(729\) 0 0
\(730\) 138.523 + 1521.93i 0.189757 + 2.08484i
\(731\) 763.025 1.04381
\(732\) 0 0
\(733\) 102.972 102.972i 0.140480 0.140480i −0.633369 0.773850i \(-0.718329\pi\)
0.773850 + 0.633369i \(0.218329\pi\)
\(734\) 513.188i 0.699167i
\(735\) 0 0
\(736\) −908.375 −1.23421
\(737\) 39.9235 + 39.9235i 0.0541703 + 0.0541703i
\(738\) 0 0
\(739\) 951.239i 1.28720i 0.765363 + 0.643599i \(0.222559\pi\)
−0.765363 + 0.643599i \(0.777441\pi\)
\(740\) 132.751 + 110.602i 0.179394 + 0.149462i
\(741\) 0 0
\(742\) −1064.63 1064.63i −1.43481 1.43481i
\(743\) 98.0333 98.0333i 0.131942 0.131942i −0.638051 0.769994i \(-0.720259\pi\)
0.769994 + 0.638051i \(0.220259\pi\)
\(744\) 0 0
\(745\) −673.679 + 61.3167i −0.904268 + 0.0823043i
\(746\) −675.536 −0.905544
\(747\) 0 0
\(748\) 24.4325 24.4325i 0.0326638 0.0326638i
\(749\) 579.369i 0.773523i
\(750\) 0 0
\(751\) 144.613 0.192560 0.0962800 0.995354i \(-0.469306\pi\)
0.0962800 + 0.995354i \(0.469306\pi\)
\(752\) −907.233 907.233i −1.20643 1.20643i
\(753\) 0 0
\(754\) 419.104i 0.555841i
\(755\) −65.3558 718.056i −0.0865640 0.951068i
\(756\) 0 0
\(757\) −509.399 509.399i −0.672918 0.672918i 0.285470 0.958388i \(-0.407850\pi\)
−0.958388 + 0.285470i \(0.907850\pi\)
\(758\) −472.322 + 472.322i −0.623116 + 0.623116i
\(759\) 0 0
\(760\) −78.5924 + 94.3315i −0.103411 + 0.124120i
\(761\) −648.413 −0.852054 −0.426027 0.904710i \(-0.640087\pi\)
−0.426027 + 0.904710i \(0.640087\pi\)
\(762\) 0 0
\(763\) −364.450 + 364.450i −0.477654 + 0.477654i
\(764\) 703.340i 0.920601i
\(765\) 0 0
\(766\) −469.889 −0.613433
\(767\) 188.578 + 188.578i 0.245864 + 0.245864i
\(768\) 0 0
\(769\) 416.812i 0.542019i −0.962577 0.271009i \(-0.912643\pi\)
0.962577 0.271009i \(-0.0873574\pi\)
\(770\) 52.6448 4.79161i 0.0683699 0.00622287i
\(771\) 0 0
\(772\) 23.8183 + 23.8183i 0.0308527 + 0.0308527i
\(773\) −114.629 + 114.629i −0.148292 + 0.148292i −0.777354 0.629063i \(-0.783439\pi\)
0.629063 + 0.777354i \(0.283439\pi\)
\(774\) 0 0
\(775\) −376.046 + 69.0254i −0.485220 + 0.0890650i
\(776\) −125.653 −0.161924
\(777\) 0 0
\(778\) −289.963 + 289.963i −0.372703 + 0.372703i
\(779\) 1236.29i 1.58703i
\(780\) 0 0
\(781\) 31.7004 0.0405895
\(782\) −847.377 847.377i −1.08360 1.08360i
\(783\) 0 0
\(784\) 414.297i 0.528440i
\(785\) 205.612 246.789i 0.261926 0.314380i
\(786\) 0 0
\(787\) −671.451 671.451i −0.853178 0.853178i 0.137345 0.990523i \(-0.456143\pi\)
−0.990523 + 0.137345i \(0.956143\pi\)
\(788\) 429.170 429.170i 0.544632 0.544632i
\(789\) 0 0
\(790\) 716.719 + 597.135i 0.907239 + 0.755867i
\(791\) −687.447 −0.869085
\(792\) 0 0
\(793\) 285.060 285.060i 0.359471 0.359471i
\(794\) 606.895i 0.764352i
\(795\) 0 0
\(796\) 1041.15 1.30798
\(797\) −194.568 194.568i −0.244126 0.244126i 0.574429 0.818555i \(-0.305224\pi\)
−0.818555 + 0.574429i \(0.805224\pi\)
\(798\) 0 0
\(799\) 1572.49i 1.96807i
\(800\) 908.160 + 626.469i 1.13520 + 0.783087i
\(801\) 0 0
\(802\) −1390.65 1390.65i −1.73398 1.73398i
\(803\) −34.7027 + 34.7027i −0.0432163 + 0.0432163i
\(804\) 0 0
\(805\) −79.8118 876.882i −0.0991451 1.08929i
\(806\) −159.829 −0.198299
\(807\) 0 0
\(808\) 3.67865 3.67865i 0.00455279 0.00455279i
\(809\) 724.904i 0.896049i −0.894021 0.448025i \(-0.852128\pi\)
0.894021 0.448025i \(-0.147872\pi\)
\(810\) 0 0
\(811\) 331.996 0.409366 0.204683 0.978828i \(-0.434384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(812\) −896.689 896.689i −1.10430 1.10430i
\(813\) 0 0
\(814\) 11.5539i 0.0141940i
\(815\) 98.3940 + 81.9771i 0.120729 + 0.100585i
\(816\) 0 0
\(817\) 748.990 + 748.990i 0.916757 + 0.916757i
\(818\) 328.652 328.652i 0.401775 0.401775i
\(819\) 0 0
\(820\) 781.026 71.0871i 0.952470 0.0866916i
\(821\) 719.613 0.876508 0.438254 0.898851i \(-0.355597\pi\)
0.438254 + 0.898851i \(0.355597\pi\)
\(822\) 0 0
\(823\) 290.454 290.454i 0.352921 0.352921i −0.508274 0.861195i \(-0.669716\pi\)
0.861195 + 0.508274i \(0.169716\pi\)
\(824\) 16.4835i 0.0200043i
\(825\) 0 0
\(826\) 1680.21 2.03415
\(827\) 185.364 + 185.364i 0.224140 + 0.224140i 0.810239 0.586099i \(-0.199337\pi\)
−0.586099 + 0.810239i \(0.699337\pi\)
\(828\) 0 0
\(829\) 601.887i 0.726040i 0.931781 + 0.363020i \(0.118254\pi\)
−0.931781 + 0.363020i \(0.881746\pi\)
\(830\) −40.3945 443.809i −0.0486680 0.534710i
\(831\) 0 0
\(832\) 143.676 + 143.676i 0.172688 + 0.172688i
\(833\) −359.046 + 359.046i −0.431028 + 0.431028i
\(834\) 0 0
\(835\) −140.449 + 168.576i −0.168202 + 0.201887i
\(836\) 47.9663 0.0573759
\(837\) 0 0
\(838\) 277.039 277.039i 0.330595 0.330595i
\(839\) 168.066i 0.200317i −0.994971 0.100159i \(-0.968065\pi\)
0.994971 0.100159i \(-0.0319350\pi\)
\(840\) 0 0
\(841\) −767.152 −0.912191
\(842\) 1130.58 + 1130.58i 1.34273 + 1.34273i
\(843\) 0 0
\(844\) 890.227i 1.05477i
\(845\) 770.854 70.1613i 0.912253 0.0830311i
\(846\) 0 0
\(847\) −730.801 730.801i −0.862811 0.862811i
\(848\) 768.067 768.067i 0.905739 0.905739i
\(849\) 0 0
\(850\) 262.775 + 1431.58i 0.309147 + 1.68421i
\(851\) 192.448 0.226143
\(852\) 0 0
\(853\) 318.997 318.997i 0.373971 0.373971i −0.494950 0.868921i \(-0.664814\pi\)
0.868921 + 0.494950i \(0.164814\pi\)
\(854\) 2539.86i 2.97407i
\(855\) 0 0
\(856\) −57.0806 −0.0666830
\(857\) −680.909 680.909i −0.794526 0.794526i 0.187700 0.982226i \(-0.439897\pi\)
−0.982226 + 0.187700i \(0.939897\pi\)
\(858\) 0 0
\(859\) 329.452i 0.383530i −0.981441 0.191765i \(-0.938579\pi\)
0.981441 0.191765i \(-0.0614211\pi\)
\(860\) 430.106 516.240i 0.500123 0.600279i
\(861\) 0 0
\(862\) −880.801 880.801i −1.02181 1.02181i
\(863\) −271.802 + 271.802i −0.314950 + 0.314950i −0.846824 0.531874i \(-0.821488\pi\)
0.531874 + 0.846824i \(0.321488\pi\)
\(864\) 0 0
\(865\) −309.799 258.110i −0.358150 0.298393i
\(866\) −2127.45 −2.45664
\(867\) 0 0
\(868\) −341.959 + 341.959i −0.393962 + 0.393962i
\(869\) 29.9581i 0.0344743i
\(870\) 0 0
\(871\) −477.493 −0.548212
\(872\) −35.9064 35.9064i −0.0411770 0.0411770i
\(873\) 0 0
\(874\) 1663.58i 1.90341i
\(875\) −524.957 + 931.717i −0.599951 + 1.06482i
\(876\) 0 0
\(877\) −515.213 515.213i −0.587473 0.587473i 0.349474 0.936946i \(-0.386360\pi\)
−0.936946 + 0.349474i \(0.886360\pi\)
\(878\) −900.248 + 900.248i −1.02534 + 1.02534i
\(879\) 0 0
\(880\) 3.45687 + 37.9802i 0.00392826 + 0.0431593i
\(881\) −1330.41 −1.51011 −0.755055 0.655661i \(-0.772390\pi\)
−0.755055 + 0.655661i \(0.772390\pi\)
\(882\) 0 0
\(883\) −678.846 + 678.846i −0.768795 + 0.768795i −0.977894 0.209099i \(-0.932947\pi\)
0.209099 + 0.977894i \(0.432947\pi\)
\(884\) 292.218i 0.330563i
\(885\) 0 0
\(886\) 654.848 0.739106
\(887\) 803.393 + 803.393i 0.905742 + 0.905742i 0.995925 0.0901829i \(-0.0287452\pi\)
−0.0901829 + 0.995925i \(0.528745\pi\)
\(888\) 0 0
\(889\) 1373.71i 1.54523i
\(890\) −1118.67 932.024i −1.25694 1.04722i
\(891\) 0 0
\(892\) 199.348 + 199.348i 0.223485 + 0.223485i
\(893\) 1543.56 1543.56i 1.72852 1.72852i
\(894\) 0 0
\(895\) 274.568 24.9905i 0.306779 0.0279223i
\(896\) −230.098 −0.256805
\(897\) 0 0
\(898\) −524.007 + 524.007i −0.583526 + 0.583526i
\(899\) 613.282i 0.682182i
\(900\) 0 0
\(901\) 1331.27 1.47755
\(902\) 37.0814 + 37.0814i 0.0411102 + 0.0411102i
\(903\) 0 0
\(904\) 67.7287i 0.0749211i
\(905\) 81.8900 + 899.716i 0.0904862 + 0.994161i
\(906\) 0 0
\(907\) −1079.59 1079.59i −1.19029 1.19029i −0.976986 0.213305i \(-0.931577\pi\)
−0.213305 0.976986i \(-0.568423\pi\)
\(908\) −21.9968 + 21.9968i −0.0242256 + 0.0242256i
\(909\) 0 0
\(910\) −286.167 + 343.475i −0.314469 + 0.377445i
\(911\) 1792.53 1.96765 0.983825 0.179133i \(-0.0573294\pi\)
0.983825 + 0.179133i \(0.0573294\pi\)
\(912\) 0 0
\(913\) 10.1196 10.1196i 0.0110839 0.0110839i
\(914\) 242.214i 0.265004i
\(915\) 0 0
\(916\) 800.146 0.873522
\(917\) 480.318 + 480.318i 0.523793 + 0.523793i
\(918\) 0 0
\(919\) 1164.78i 1.26744i −0.773563 0.633719i \(-0.781527\pi\)
0.773563 0.633719i \(-0.218473\pi\)
\(920\) 86.3923 7.86322i 0.0939046 0.00854698i
\(921\) 0 0
\(922\) 895.497 + 895.497i 0.971255 + 0.971255i
\(923\) −189.571 + 189.571i −0.205386 + 0.205386i
\(924\) 0 0
\(925\) −192.402 132.724i −0.208003 0.143485i
\(926\) 2051.52 2.21547
\(927\) 0 0
\(928\) 1251.39 1251.39i 1.34848 1.34848i
\(929\) 822.723i 0.885600i 0.896620 + 0.442800i \(0.146015\pi\)
−0.896620 + 0.442800i \(0.853985\pi\)
\(930\) 0 0
\(931\) −704.884 −0.757126
\(932\) 314.492 + 314.492i 0.337438 + 0.337438i
\(933\) 0 0
\(934\) 784.959i 0.840428i
\(935\) −29.9193 + 35.9110i −0.0319992 + 0.0384075i
\(936\) 0 0
\(937\) 857.665 + 857.665i 0.915331 + 0.915331i 0.996685 0.0813546i \(-0.0259246\pi\)
−0.0813546 + 0.996685i \(0.525925\pi\)
\(938\) −2127.20 + 2127.20i −2.26781 + 2.26781i
\(939\) 0 0
\(940\) −1063.90 886.388i −1.13181 0.942966i
\(941\) −168.157 −0.178700 −0.0893501 0.996000i \(-0.528479\pi\)
−0.0893501 + 0.996000i \(0.528479\pi\)
\(942\) 0 0
\(943\) 617.649 617.649i 0.654983 0.654983i
\(944\) 1212.17i 1.28408i
\(945\) 0 0
\(946\) 44.9304 0.0474952
\(947\) −565.892 565.892i −0.597562 0.597562i 0.342101 0.939663i \(-0.388862\pi\)
−0.939663 + 0.342101i \(0.888862\pi\)
\(948\) 0 0
\(949\) 415.051i 0.437356i
\(950\) −1147.31 + 1663.19i −1.20769 + 1.75072i
\(951\) 0 0
\(952\) −107.013 107.013i −0.112408 0.112408i
\(953\) −387.854 + 387.854i −0.406982 + 0.406982i −0.880685 0.473703i \(-0.842917\pi\)
0.473703 + 0.880685i \(0.342917\pi\)
\(954\) 0 0
\(955\) −86.2418 947.528i −0.0903055 0.992176i
\(956\) −987.372 −1.03282
\(957\) 0 0
\(958\) 1035.68 1035.68i 1.08108 1.08108i
\(959\) 844.370i 0.880469i
\(960\) 0 0
\(961\) −727.120 −0.756629
\(962\) −69.0933 69.0933i −0.0718225 0.0718225i
\(963\) 0 0
\(964\) 1042.32i 1.08124i
\(965\) −35.0082 29.1671i −0.0362779 0.0302250i
\(966\) 0 0
\(967\) −944.809 944.809i −0.977051 0.977051i 0.0226911 0.999743i \(-0.492777\pi\)
−0.999743 + 0.0226911i \(0.992777\pi\)
\(968\) 72.0000 72.0000i 0.0743802 0.0743802i
\(969\) 0 0
\(970\) −2059.27 + 187.430i −2.12295 + 0.193226i
\(971\) −1177.49 −1.21266 −0.606328 0.795215i \(-0.707358\pi\)
−0.606328 + 0.795215i \(0.707358\pi\)
\(972\) 0 0
\(973\) −519.121 + 519.121i −0.533526 + 0.533526i
\(974\) 11.6291i 0.0119395i
\(975\) 0 0
\(976\) 1832.36 1.87742
\(977\) 256.140 + 256.140i 0.262170 + 0.262170i 0.825935 0.563765i \(-0.190648\pi\)
−0.563765 + 0.825935i \(0.690648\pi\)
\(978\) 0 0
\(979\) 46.7594i 0.0477624i
\(980\) 40.5310 + 445.309i 0.0413581 + 0.454397i
\(981\) 0 0
\(982\) 1551.32 + 1551.32i 1.57976 + 1.57976i
\(983\) 480.914 480.914i 0.489231 0.489231i −0.418833 0.908063i \(-0.637561\pi\)
0.908063 + 0.418833i \(0.137561\pi\)
\(984\) 0 0
\(985\) −525.548 + 630.795i −0.533551 + 0.640401i
\(986\) 2334.72 2.36787
\(987\) 0 0
\(988\) −286.843 + 286.843i −0.290327 + 0.290327i
\(989\) 748.387i 0.756711i
\(990\) 0 0
\(991\) 809.023 0.816370 0.408185 0.912899i \(-0.366162\pi\)
0.408185 + 0.912899i \(0.366162\pi\)
\(992\) −477.228 477.228i −0.481076 0.481076i
\(993\) 0 0
\(994\) 1689.06i 1.69925i
\(995\) −1402.62 + 127.663i −1.40967 + 0.128305i
\(996\) 0 0
\(997\) 75.4865 + 75.4865i 0.0757137 + 0.0757137i 0.743950 0.668236i \(-0.232950\pi\)
−0.668236 + 0.743950i \(0.732950\pi\)
\(998\) −1153.32 + 1153.32i −1.15563 + 1.15563i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.f.82.2 16
3.2 odd 2 inner 405.3.g.f.82.7 yes 16
5.3 odd 4 inner 405.3.g.f.163.2 yes 16
9.2 odd 6 405.3.l.j.352.4 16
9.4 even 3 405.3.l.j.217.4 16
9.5 odd 6 405.3.l.m.217.1 16
9.7 even 3 405.3.l.m.352.1 16
15.8 even 4 inner 405.3.g.f.163.7 yes 16
45.13 odd 12 405.3.l.m.298.1 16
45.23 even 12 405.3.l.j.298.4 16
45.38 even 12 405.3.l.m.28.1 16
45.43 odd 12 405.3.l.j.28.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.f.82.2 16 1.1 even 1 trivial
405.3.g.f.82.7 yes 16 3.2 odd 2 inner
405.3.g.f.163.2 yes 16 5.3 odd 4 inner
405.3.g.f.163.7 yes 16 15.8 even 4 inner
405.3.l.j.28.4 16 45.43 odd 12
405.3.l.j.217.4 16 9.4 even 3
405.3.l.j.298.4 16 45.23 even 12
405.3.l.j.352.4 16 9.2 odd 6
405.3.l.m.28.1 16 45.38 even 12
405.3.l.m.217.1 16 9.5 odd 6
405.3.l.m.298.1 16 45.13 odd 12
405.3.l.m.352.1 16 9.7 even 3