Properties

Label 405.3.g.f.163.2
Level $405$
Weight $3$
Character 405.163
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(82,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.82"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 256x^{12} + 15630x^{8} + 235936x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.2
Root \(1.96165 + 1.96165i\) of defining polynomial
Character \(\chi\) \(=\) 405.163
Dual form 405.3.g.f.82.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96165 + 1.96165i) q^{2} -3.69616i q^{4} +(-0.453215 + 4.97942i) q^{5} +(6.04960 - 6.04960i) q^{7} +(-0.596019 - 0.596019i) q^{8} +(-8.87884 - 10.6569i) q^{10} -0.445449 q^{11} +(2.66383 + 2.66383i) q^{13} +23.7344i q^{14} +17.1230 q^{16} +(14.8395 - 14.8395i) q^{17} -29.1331i q^{19} +(18.4047 + 1.67516i) q^{20} +(0.873817 - 0.873817i) q^{22} +(14.5548 + 14.5548i) q^{23} +(-24.5892 - 4.51349i) q^{25} -10.4510 q^{26} +(-22.3603 - 22.3603i) q^{28} -40.1018i q^{29} +15.2931 q^{31} +(-31.2054 + 31.2054i) q^{32} +58.2198i q^{34} +(27.3817 + 32.8653i) q^{35} +(6.61115 - 6.61115i) q^{37} +(57.1490 + 57.1490i) q^{38} +(3.23795 - 2.69770i) q^{40} +42.4361 q^{41} +(25.7093 + 25.7093i) q^{43} +1.64645i q^{44} -57.1029 q^{46} +(-52.9832 + 52.9832i) q^{47} -24.1953i q^{49} +(57.0894 - 39.3816i) q^{50} +(9.84595 - 9.84595i) q^{52} +(44.8558 + 44.8558i) q^{53} +(0.201884 - 2.21808i) q^{55} -7.21135 q^{56} +(78.6658 + 78.6658i) q^{58} -70.7920i q^{59} +107.011 q^{61} +(-29.9998 + 29.9998i) q^{62} -53.9361i q^{64} +(-14.4716 + 12.0570i) q^{65} +(-89.6252 + 89.6252i) q^{67} +(-54.8491 - 54.8491i) q^{68} +(-118.184 - 10.7568i) q^{70} -71.1649 q^{71} +(77.9049 + 77.9049i) q^{73} +25.9376i q^{74} -107.681 q^{76} +(-2.69479 + 2.69479i) q^{77} +67.2537i q^{79} +(-7.76041 + 85.2627i) q^{80} +(-83.2449 + 83.2449i) q^{82} +(-22.7178 - 22.7178i) q^{83} +(67.1665 + 80.6174i) q^{85} -100.865 q^{86} +(0.265496 + 0.265496i) q^{88} -104.971i q^{89} +32.2302 q^{91} +(53.7969 - 53.7969i) q^{92} -207.869i q^{94} +(145.066 + 13.2035i) q^{95} +(105.410 - 105.410i) q^{97} +(47.4628 + 47.4628i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{7} - 56 q^{10} - 44 q^{13} - 32 q^{16} + 32 q^{22} - 92 q^{25} + 176 q^{28} + 320 q^{31} + 4 q^{37} - 528 q^{40} + 256 q^{43} - 16 q^{46} - 308 q^{52} - 364 q^{55} + 492 q^{58} + 8 q^{61} + 88 q^{67}+ \cdots + 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96165 + 1.96165i −0.980826 + 0.980826i −0.999820 0.0189931i \(-0.993954\pi\)
0.0189931 + 0.999820i \(0.493954\pi\)
\(3\) 0 0
\(4\) 3.69616i 0.924041i
\(5\) −0.453215 + 4.97942i −0.0906430 + 0.995883i
\(6\) 0 0
\(7\) 6.04960 6.04960i 0.864229 0.864229i −0.127597 0.991826i \(-0.540727\pi\)
0.991826 + 0.127597i \(0.0407266\pi\)
\(8\) −0.596019 0.596019i −0.0745024 0.0745024i
\(9\) 0 0
\(10\) −8.87884 10.6569i −0.887884 1.06569i
\(11\) −0.445449 −0.0404954 −0.0202477 0.999795i \(-0.506445\pi\)
−0.0202477 + 0.999795i \(0.506445\pi\)
\(12\) 0 0
\(13\) 2.66383 + 2.66383i 0.204910 + 0.204910i 0.802100 0.597190i \(-0.203716\pi\)
−0.597190 + 0.802100i \(0.703716\pi\)
\(14\) 23.7344i 1.69532i
\(15\) 0 0
\(16\) 17.1230 1.07019
\(17\) 14.8395 14.8395i 0.872910 0.872910i −0.119878 0.992789i \(-0.538250\pi\)
0.992789 + 0.119878i \(0.0382504\pi\)
\(18\) 0 0
\(19\) 29.1331i 1.53332i −0.642054 0.766660i \(-0.721917\pi\)
0.642054 0.766660i \(-0.278083\pi\)
\(20\) 18.4047 + 1.67516i 0.920237 + 0.0837578i
\(21\) 0 0
\(22\) 0.873817 0.873817i 0.0397190 0.0397190i
\(23\) 14.5548 + 14.5548i 0.632817 + 0.632817i 0.948774 0.315956i \(-0.102325\pi\)
−0.315956 + 0.948774i \(0.602325\pi\)
\(24\) 0 0
\(25\) −24.5892 4.51349i −0.983568 0.180540i
\(26\) −10.4510 −0.401962
\(27\) 0 0
\(28\) −22.3603 22.3603i −0.798583 0.798583i
\(29\) 40.1018i 1.38282i −0.722463 0.691410i \(-0.756990\pi\)
0.722463 0.691410i \(-0.243010\pi\)
\(30\) 0 0
\(31\) 15.2931 0.493327 0.246663 0.969101i \(-0.420666\pi\)
0.246663 + 0.969101i \(0.420666\pi\)
\(32\) −31.2054 + 31.2054i −0.975167 + 0.975167i
\(33\) 0 0
\(34\) 58.2198i 1.71235i
\(35\) 27.3817 + 32.8653i 0.782335 + 0.939007i
\(36\) 0 0
\(37\) 6.61115 6.61115i 0.178680 0.178680i −0.612100 0.790780i \(-0.709675\pi\)
0.790780 + 0.612100i \(0.209675\pi\)
\(38\) 57.1490 + 57.1490i 1.50392 + 1.50392i
\(39\) 0 0
\(40\) 3.23795 2.69770i 0.0809488 0.0674426i
\(41\) 42.4361 1.03503 0.517513 0.855675i \(-0.326858\pi\)
0.517513 + 0.855675i \(0.326858\pi\)
\(42\) 0 0
\(43\) 25.7093 + 25.7093i 0.597890 + 0.597890i 0.939751 0.341860i \(-0.111057\pi\)
−0.341860 + 0.939751i \(0.611057\pi\)
\(44\) 1.64645i 0.0374194i
\(45\) 0 0
\(46\) −57.1029 −1.24137
\(47\) −52.9832 + 52.9832i −1.12730 + 1.12730i −0.136689 + 0.990614i \(0.543646\pi\)
−0.990614 + 0.136689i \(0.956354\pi\)
\(48\) 0 0
\(49\) 24.1953i 0.493782i
\(50\) 57.0894 39.3816i 1.14179 0.787631i
\(51\) 0 0
\(52\) 9.84595 9.84595i 0.189345 0.189345i
\(53\) 44.8558 + 44.8558i 0.846336 + 0.846336i 0.989674 0.143338i \(-0.0457836\pi\)
−0.143338 + 0.989674i \(0.545784\pi\)
\(54\) 0 0
\(55\) 0.201884 2.21808i 0.00367062 0.0403287i
\(56\) −7.21135 −0.128774
\(57\) 0 0
\(58\) 78.6658 + 78.6658i 1.35631 + 1.35631i
\(59\) 70.7920i 1.19986i −0.800051 0.599932i \(-0.795194\pi\)
0.800051 0.599932i \(-0.204806\pi\)
\(60\) 0 0
\(61\) 107.011 1.75429 0.877143 0.480230i \(-0.159447\pi\)
0.877143 + 0.480230i \(0.159447\pi\)
\(62\) −29.9998 + 29.9998i −0.483868 + 0.483868i
\(63\) 0 0
\(64\) 53.9361i 0.842751i
\(65\) −14.4716 + 12.0570i −0.222640 + 0.185493i
\(66\) 0 0
\(67\) −89.6252 + 89.6252i −1.33769 + 1.33769i −0.439398 + 0.898293i \(0.644808\pi\)
−0.898293 + 0.439398i \(0.855192\pi\)
\(68\) −54.8491 54.8491i −0.806605 0.806605i
\(69\) 0 0
\(70\) −118.184 10.7568i −1.68834 0.153669i
\(71\) −71.1649 −1.00232 −0.501161 0.865354i \(-0.667094\pi\)
−0.501161 + 0.865354i \(0.667094\pi\)
\(72\) 0 0
\(73\) 77.9049 + 77.9049i 1.06719 + 1.06719i 0.997574 + 0.0696171i \(0.0221777\pi\)
0.0696171 + 0.997574i \(0.477822\pi\)
\(74\) 25.9376i 0.350508i
\(75\) 0 0
\(76\) −107.681 −1.41685
\(77\) −2.69479 + 2.69479i −0.0349973 + 0.0349973i
\(78\) 0 0
\(79\) 67.2537i 0.851313i 0.904885 + 0.425657i \(0.139957\pi\)
−0.904885 + 0.425657i \(0.860043\pi\)
\(80\) −7.76041 + 85.2627i −0.0970051 + 1.06578i
\(81\) 0 0
\(82\) −83.2449 + 83.2449i −1.01518 + 1.01518i
\(83\) −22.7178 22.7178i −0.273708 0.273708i 0.556883 0.830591i \(-0.311997\pi\)
−0.830591 + 0.556883i \(0.811997\pi\)
\(84\) 0 0
\(85\) 67.1665 + 80.6174i 0.790194 + 0.948440i
\(86\) −100.865 −1.17285
\(87\) 0 0
\(88\) 0.265496 + 0.265496i 0.00301700 + 0.00301700i
\(89\) 104.971i 1.17945i −0.807603 0.589727i \(-0.799235\pi\)
0.807603 0.589727i \(-0.200765\pi\)
\(90\) 0 0
\(91\) 32.2302 0.354178
\(92\) 53.7969 53.7969i 0.584749 0.584749i
\(93\) 0 0
\(94\) 207.869i 2.21138i
\(95\) 145.066 + 13.2035i 1.52701 + 0.138985i
\(96\) 0 0
\(97\) 105.410 105.410i 1.08670 1.08670i 0.0908350 0.995866i \(-0.471046\pi\)
0.995866 0.0908350i \(-0.0289536\pi\)
\(98\) 47.4628 + 47.4628i 0.484315 + 0.484315i
\(99\) 0 0
\(100\) −16.6826 + 90.8857i −0.166826 + 0.908857i
\(101\) −6.17204 −0.0611093 −0.0305546 0.999533i \(-0.509727\pi\)
−0.0305546 + 0.999533i \(0.509727\pi\)
\(102\) 0 0
\(103\) 13.8280 + 13.8280i 0.134253 + 0.134253i 0.771040 0.636787i \(-0.219737\pi\)
−0.636787 + 0.771040i \(0.719737\pi\)
\(104\) 3.17539i 0.0305326i
\(105\) 0 0
\(106\) −175.983 −1.66022
\(107\) 47.8849 47.8849i 0.447522 0.447522i −0.447008 0.894530i \(-0.647510\pi\)
0.894530 + 0.447008i \(0.147510\pi\)
\(108\) 0 0
\(109\) 60.2436i 0.552694i −0.961058 0.276347i \(-0.910876\pi\)
0.961058 0.276347i \(-0.0891239\pi\)
\(110\) 3.95507 + 4.74713i 0.0359552 + 0.0431557i
\(111\) 0 0
\(112\) 103.587 103.587i 0.924888 0.924888i
\(113\) −56.8175 56.8175i −0.502810 0.502810i 0.409500 0.912310i \(-0.365703\pi\)
−0.912310 + 0.409500i \(0.865703\pi\)
\(114\) 0 0
\(115\) −79.0709 + 65.8780i −0.687573 + 0.572852i
\(116\) −148.223 −1.27778
\(117\) 0 0
\(118\) 138.869 + 138.869i 1.17686 + 1.17686i
\(119\) 179.546i 1.50879i
\(120\) 0 0
\(121\) −120.802 −0.998360
\(122\) −209.919 + 209.919i −1.72065 + 1.72065i
\(123\) 0 0
\(124\) 56.5259i 0.455854i
\(125\) 33.6187 120.394i 0.268950 0.963154i
\(126\) 0 0
\(127\) 113.537 113.537i 0.893994 0.893994i −0.100902 0.994896i \(-0.532173\pi\)
0.994896 + 0.100902i \(0.0321730\pi\)
\(128\) −19.0176 19.0176i −0.148575 0.148575i
\(129\) 0 0
\(130\) 4.73656 52.0400i 0.0364350 0.400308i
\(131\) 79.3967 0.606081 0.303041 0.952978i \(-0.401998\pi\)
0.303041 + 0.952978i \(0.401998\pi\)
\(132\) 0 0
\(133\) −176.243 176.243i −1.32514 1.32514i
\(134\) 351.627i 2.62408i
\(135\) 0 0
\(136\) −17.6892 −0.130068
\(137\) 69.7872 69.7872i 0.509396 0.509396i −0.404945 0.914341i \(-0.632709\pi\)
0.914341 + 0.404945i \(0.132709\pi\)
\(138\) 0 0
\(139\) 85.8108i 0.617344i −0.951169 0.308672i \(-0.900116\pi\)
0.951169 0.308672i \(-0.0998845\pi\)
\(140\) 121.475 101.207i 0.867681 0.722910i
\(141\) 0 0
\(142\) 139.601 139.601i 0.983105 0.983105i
\(143\) −1.18660 1.18660i −0.00829791 0.00829791i
\(144\) 0 0
\(145\) 199.683 + 18.1747i 1.37713 + 0.125343i
\(146\) −305.645 −2.09346
\(147\) 0 0
\(148\) −24.4359 24.4359i −0.165108 0.165108i
\(149\) 135.293i 0.908006i 0.891000 + 0.454003i \(0.150004\pi\)
−0.891000 + 0.454003i \(0.849996\pi\)
\(150\) 0 0
\(151\) 144.205 0.954999 0.477500 0.878632i \(-0.341543\pi\)
0.477500 + 0.878632i \(0.341543\pi\)
\(152\) −17.3639 + 17.3639i −0.114236 + 0.114236i
\(153\) 0 0
\(154\) 10.5725i 0.0686525i
\(155\) −6.93107 + 76.1509i −0.0447166 + 0.491296i
\(156\) 0 0
\(157\) 45.4271 45.4271i 0.289345 0.289345i −0.547477 0.836821i \(-0.684411\pi\)
0.836821 + 0.547477i \(0.184411\pi\)
\(158\) −131.929 131.929i −0.834991 0.834991i
\(159\) 0 0
\(160\) −141.242 169.527i −0.882761 1.05955i
\(161\) 176.101 1.09380
\(162\) 0 0
\(163\) −18.1117 18.1117i −0.111115 0.111115i 0.649364 0.760478i \(-0.275035\pi\)
−0.760478 + 0.649364i \(0.775035\pi\)
\(164\) 156.851i 0.956408i
\(165\) 0 0
\(166\) 89.1287 0.536920
\(167\) −31.0302 + 31.0302i −0.185810 + 0.185810i −0.793882 0.608072i \(-0.791943\pi\)
0.608072 + 0.793882i \(0.291943\pi\)
\(168\) 0 0
\(169\) 154.808i 0.916024i
\(170\) −289.901 26.3861i −1.70530 0.155212i
\(171\) 0 0
\(172\) 95.0258 95.0258i 0.552475 0.552475i
\(173\) 57.0256 + 57.0256i 0.329628 + 0.329628i 0.852445 0.522817i \(-0.175119\pi\)
−0.522817 + 0.852445i \(0.675119\pi\)
\(174\) 0 0
\(175\) −176.060 + 121.450i −1.00605 + 0.694000i
\(176\) −7.62744 −0.0433377
\(177\) 0 0
\(178\) 205.917 + 205.917i 1.15684 + 1.15684i
\(179\) 55.1405i 0.308047i −0.988067 0.154024i \(-0.950777\pi\)
0.988067 0.154024i \(-0.0492232\pi\)
\(180\) 0 0
\(181\) −180.687 −0.998270 −0.499135 0.866524i \(-0.666349\pi\)
−0.499135 + 0.866524i \(0.666349\pi\)
\(182\) −63.2245 + 63.2245i −0.347387 + 0.347387i
\(183\) 0 0
\(184\) 17.3499i 0.0942928i
\(185\) 29.9234 + 35.9160i 0.161748 + 0.194140i
\(186\) 0 0
\(187\) −6.61024 + 6.61024i −0.0353489 + 0.0353489i
\(188\) 195.835 + 195.835i 1.04167 + 1.04167i
\(189\) 0 0
\(190\) −310.469 + 258.668i −1.63405 + 1.36141i
\(191\) 190.289 0.996278 0.498139 0.867097i \(-0.334017\pi\)
0.498139 + 0.867097i \(0.334017\pi\)
\(192\) 0 0
\(193\) 6.44405 + 6.44405i 0.0333889 + 0.0333889i 0.723604 0.690215i \(-0.242484\pi\)
−0.690215 + 0.723604i \(0.742484\pi\)
\(194\) 413.556i 2.13173i
\(195\) 0 0
\(196\) −89.4299 −0.456275
\(197\) −116.112 + 116.112i −0.589403 + 0.589403i −0.937470 0.348067i \(-0.886838\pi\)
0.348067 + 0.937470i \(0.386838\pi\)
\(198\) 0 0
\(199\) 281.684i 1.41550i 0.706465 + 0.707748i \(0.250289\pi\)
−0.706465 + 0.707748i \(0.749711\pi\)
\(200\) 11.9655 + 17.3458i 0.0598275 + 0.0867288i
\(201\) 0 0
\(202\) 12.1074 12.1074i 0.0599376 0.0599376i
\(203\) −242.600 242.600i −1.19507 1.19507i
\(204\) 0 0
\(205\) −19.2327 + 211.307i −0.0938179 + 1.03077i
\(206\) −54.2516 −0.263357
\(207\) 0 0
\(208\) 45.6128 + 45.6128i 0.219292 + 0.219292i
\(209\) 12.9773i 0.0620924i
\(210\) 0 0
\(211\) −240.852 −1.14148 −0.570739 0.821132i \(-0.693343\pi\)
−0.570739 + 0.821132i \(0.693343\pi\)
\(212\) 165.794 165.794i 0.782049 0.782049i
\(213\) 0 0
\(214\) 187.867i 0.877883i
\(215\) −139.669 + 116.365i −0.649624 + 0.541235i
\(216\) 0 0
\(217\) 92.5173 92.5173i 0.426347 0.426347i
\(218\) 118.177 + 118.177i 0.542097 + 0.542097i
\(219\) 0 0
\(220\) −8.19838 0.746198i −0.0372654 0.00339181i
\(221\) 79.0597 0.357736
\(222\) 0 0
\(223\) 53.9338 + 53.9338i 0.241856 + 0.241856i 0.817618 0.575762i \(-0.195294\pi\)
−0.575762 + 0.817618i \(0.695294\pi\)
\(224\) 377.560i 1.68554i
\(225\) 0 0
\(226\) 222.913 0.986339
\(227\) 5.95126 5.95126i 0.0262170 0.0262170i −0.693877 0.720094i \(-0.744099\pi\)
0.720094 + 0.693877i \(0.244099\pi\)
\(228\) 0 0
\(229\) 216.480i 0.945328i 0.881243 + 0.472664i \(0.156708\pi\)
−0.881243 + 0.472664i \(0.843292\pi\)
\(230\) 25.8799 284.339i 0.112521 1.23626i
\(231\) 0 0
\(232\) −23.9014 + 23.9014i −0.103023 + 0.103023i
\(233\) 85.0860 + 85.0860i 0.365176 + 0.365176i 0.865714 0.500538i \(-0.166865\pi\)
−0.500538 + 0.865714i \(0.666865\pi\)
\(234\) 0 0
\(235\) −239.813 287.838i −1.02048 1.22484i
\(236\) −261.659 −1.10872
\(237\) 0 0
\(238\) 352.207 + 352.207i 1.47986 + 1.47986i
\(239\) 267.134i 1.11772i −0.829263 0.558858i \(-0.811240\pi\)
0.829263 0.558858i \(-0.188760\pi\)
\(240\) 0 0
\(241\) −282.000 −1.17013 −0.585063 0.810988i \(-0.698930\pi\)
−0.585063 + 0.810988i \(0.698930\pi\)
\(242\) 236.971 236.971i 0.979218 0.979218i
\(243\) 0 0
\(244\) 395.532i 1.62103i
\(245\) 120.479 + 10.9657i 0.491749 + 0.0447579i
\(246\) 0 0
\(247\) 77.6055 77.6055i 0.314192 0.314192i
\(248\) −9.11500 9.11500i −0.0367540 0.0367540i
\(249\) 0 0
\(250\) 170.223 + 302.120i 0.680894 + 1.20848i
\(251\) 29.8384 0.118878 0.0594390 0.998232i \(-0.481069\pi\)
0.0594390 + 0.998232i \(0.481069\pi\)
\(252\) 0 0
\(253\) −6.48343 6.48343i −0.0256262 0.0256262i
\(254\) 445.441i 1.75371i
\(255\) 0 0
\(256\) 290.356 1.13420
\(257\) 110.717 110.717i 0.430806 0.430806i −0.458096 0.888902i \(-0.651469\pi\)
0.888902 + 0.458096i \(0.151469\pi\)
\(258\) 0 0
\(259\) 79.9897i 0.308840i
\(260\) 44.5648 + 53.4894i 0.171403 + 0.205729i
\(261\) 0 0
\(262\) −155.749 + 155.749i −0.594461 + 0.594461i
\(263\) −19.7336 19.7336i −0.0750328 0.0750328i 0.668594 0.743627i \(-0.266896\pi\)
−0.743627 + 0.668594i \(0.766896\pi\)
\(264\) 0 0
\(265\) −243.685 + 203.026i −0.919566 + 0.766138i
\(266\) 691.457 2.59946
\(267\) 0 0
\(268\) 331.270 + 331.270i 1.23608 + 1.23608i
\(269\) 100.763i 0.374584i 0.982304 + 0.187292i \(0.0599711\pi\)
−0.982304 + 0.187292i \(0.940029\pi\)
\(270\) 0 0
\(271\) −342.248 −1.26291 −0.631453 0.775414i \(-0.717541\pi\)
−0.631453 + 0.775414i \(0.717541\pi\)
\(272\) 254.097 254.097i 0.934179 0.934179i
\(273\) 0 0
\(274\) 273.797i 0.999258i
\(275\) 10.9532 + 2.01053i 0.0398300 + 0.00731103i
\(276\) 0 0
\(277\) −161.049 + 161.049i −0.581405 + 0.581405i −0.935289 0.353884i \(-0.884861\pi\)
0.353884 + 0.935289i \(0.384861\pi\)
\(278\) 168.331 + 168.331i 0.605507 + 0.605507i
\(279\) 0 0
\(280\) 3.26829 35.9083i 0.0116725 0.128244i
\(281\) 509.668 1.81376 0.906882 0.421384i \(-0.138456\pi\)
0.906882 + 0.421384i \(0.138456\pi\)
\(282\) 0 0
\(283\) −254.961 254.961i −0.900923 0.900923i 0.0945934 0.995516i \(-0.469845\pi\)
−0.995516 + 0.0945934i \(0.969845\pi\)
\(284\) 263.037i 0.926187i
\(285\) 0 0
\(286\) 4.65540 0.0162776
\(287\) 256.721 256.721i 0.894500 0.894500i
\(288\) 0 0
\(289\) 151.420i 0.523945i
\(290\) −427.362 + 356.057i −1.47366 + 1.22778i
\(291\) 0 0
\(292\) 287.949 287.949i 0.986128 0.986128i
\(293\) −140.223 140.223i −0.478576 0.478576i 0.426100 0.904676i \(-0.359887\pi\)
−0.904676 + 0.426100i \(0.859887\pi\)
\(294\) 0 0
\(295\) 352.503 + 32.0840i 1.19493 + 0.108759i
\(296\) −7.88075 −0.0266241
\(297\) 0 0
\(298\) −265.398 265.398i −0.890596 0.890596i
\(299\) 77.5430i 0.259341i
\(300\) 0 0
\(301\) 311.062 1.03343
\(302\) −282.880 + 282.880i −0.936689 + 0.936689i
\(303\) 0 0
\(304\) 498.846i 1.64094i
\(305\) −48.4992 + 532.855i −0.159014 + 1.74706i
\(306\) 0 0
\(307\) 123.104 123.104i 0.400990 0.400990i −0.477592 0.878582i \(-0.658490\pi\)
0.878582 + 0.477592i \(0.158490\pi\)
\(308\) 9.96039 + 9.96039i 0.0323389 + 0.0323389i
\(309\) 0 0
\(310\) −135.785 162.978i −0.438017 0.525735i
\(311\) −248.018 −0.797485 −0.398742 0.917063i \(-0.630553\pi\)
−0.398742 + 0.917063i \(0.630553\pi\)
\(312\) 0 0
\(313\) 127.568 + 127.568i 0.407567 + 0.407567i 0.880889 0.473322i \(-0.156945\pi\)
−0.473322 + 0.880889i \(0.656945\pi\)
\(314\) 178.224i 0.567594i
\(315\) 0 0
\(316\) 248.581 0.786649
\(317\) −235.473 + 235.473i −0.742817 + 0.742817i −0.973119 0.230302i \(-0.926028\pi\)
0.230302 + 0.973119i \(0.426028\pi\)
\(318\) 0 0
\(319\) 17.8633i 0.0559978i
\(320\) 268.570 + 24.4446i 0.839282 + 0.0763894i
\(321\) 0 0
\(322\) −345.450 + 345.450i −1.07283 + 1.07283i
\(323\) −432.319 432.319i −1.33845 1.33845i
\(324\) 0 0
\(325\) −53.4782 77.5246i −0.164548 0.238537i
\(326\) 71.0576 0.217968
\(327\) 0 0
\(328\) −25.2927 25.2927i −0.0771120 0.0771120i
\(329\) 641.055i 1.94849i
\(330\) 0 0
\(331\) 17.7617 0.0536608 0.0268304 0.999640i \(-0.491459\pi\)
0.0268304 + 0.999640i \(0.491459\pi\)
\(332\) −83.9686 + 83.9686i −0.252918 + 0.252918i
\(333\) 0 0
\(334\) 121.741i 0.364494i
\(335\) −405.662 486.901i −1.21093 1.45344i
\(336\) 0 0
\(337\) −195.549 + 195.549i −0.580265 + 0.580265i −0.934976 0.354711i \(-0.884579\pi\)
0.354711 + 0.934976i \(0.384579\pi\)
\(338\) 303.680 + 303.680i 0.898460 + 0.898460i
\(339\) 0 0
\(340\) 297.975 248.258i 0.876398 0.730172i
\(341\) −6.81232 −0.0199775
\(342\) 0 0
\(343\) 150.058 + 150.058i 0.437488 + 0.437488i
\(344\) 30.6464i 0.0890885i
\(345\) 0 0
\(346\) −223.729 −0.646616
\(347\) −223.633 + 223.633i −0.644475 + 0.644475i −0.951652 0.307177i \(-0.900615\pi\)
0.307177 + 0.951652i \(0.400615\pi\)
\(348\) 0 0
\(349\) 675.814i 1.93643i −0.250120 0.968215i \(-0.580470\pi\)
0.250120 0.968215i \(-0.419530\pi\)
\(350\) 107.125 583.611i 0.306072 1.66746i
\(351\) 0 0
\(352\) 13.9004 13.9004i 0.0394898 0.0394898i
\(353\) 293.602 + 293.602i 0.831735 + 0.831735i 0.987754 0.156019i \(-0.0498661\pi\)
−0.156019 + 0.987754i \(0.549866\pi\)
\(354\) 0 0
\(355\) 32.2530 354.360i 0.0908535 0.998196i
\(356\) −387.991 −1.08986
\(357\) 0 0
\(358\) 108.167 + 108.167i 0.302141 + 0.302141i
\(359\) 206.110i 0.574122i −0.957912 0.287061i \(-0.907322\pi\)
0.957912 0.287061i \(-0.0926783\pi\)
\(360\) 0 0
\(361\) −487.736 −1.35107
\(362\) 354.445 354.445i 0.979130 0.979130i
\(363\) 0 0
\(364\) 119.128i 0.327275i
\(365\) −423.229 + 352.614i −1.15953 + 0.966064i
\(366\) 0 0
\(367\) −130.805 + 130.805i −0.356417 + 0.356417i −0.862490 0.506073i \(-0.831097\pi\)
0.506073 + 0.862490i \(0.331097\pi\)
\(368\) 249.222 + 249.222i 0.677234 + 0.677234i
\(369\) 0 0
\(370\) −129.154 11.7553i −0.349065 0.0317711i
\(371\) 542.719 1.46286
\(372\) 0 0
\(373\) 172.185 + 172.185i 0.461623 + 0.461623i 0.899187 0.437564i \(-0.144159\pi\)
−0.437564 + 0.899187i \(0.644159\pi\)
\(374\) 25.9340i 0.0693422i
\(375\) 0 0
\(376\) 63.1580 0.167973
\(377\) 106.824 106.824i 0.283354 0.283354i
\(378\) 0 0
\(379\) 240.778i 0.635297i 0.948208 + 0.317649i \(0.102893\pi\)
−0.948208 + 0.317649i \(0.897107\pi\)
\(380\) 48.8025 536.187i 0.128428 1.41102i
\(381\) 0 0
\(382\) −373.281 + 373.281i −0.977175 + 0.977175i
\(383\) 119.769 + 119.769i 0.312712 + 0.312712i 0.845959 0.533247i \(-0.179028\pi\)
−0.533247 + 0.845959i \(0.679028\pi\)
\(384\) 0 0
\(385\) −12.1972 14.6398i −0.0316810 0.0380255i
\(386\) −25.2820 −0.0654974
\(387\) 0 0
\(388\) −389.613 389.613i −1.00416 1.00416i
\(389\) 147.816i 0.379989i 0.981785 + 0.189995i \(0.0608470\pi\)
−0.981785 + 0.189995i \(0.939153\pi\)
\(390\) 0 0
\(391\) 431.971 1.10479
\(392\) −14.4209 + 14.4209i −0.0367879 + 0.0367879i
\(393\) 0 0
\(394\) 455.544i 1.15620i
\(395\) −334.884 30.4804i −0.847809 0.0771656i
\(396\) 0 0
\(397\) 154.690 154.690i 0.389647 0.389647i −0.484915 0.874561i \(-0.661149\pi\)
0.874561 + 0.484915i \(0.161149\pi\)
\(398\) −552.566 552.566i −1.38836 1.38836i
\(399\) 0 0
\(400\) −421.041 77.2846i −1.05260 0.193212i
\(401\) 708.918 1.76787 0.883937 0.467606i \(-0.154883\pi\)
0.883937 + 0.467606i \(0.154883\pi\)
\(402\) 0 0
\(403\) 40.7383 + 40.7383i 0.101088 + 0.101088i
\(404\) 22.8129i 0.0564675i
\(405\) 0 0
\(406\) 951.793 2.34432
\(407\) −2.94493 + 2.94493i −0.00723571 + 0.00723571i
\(408\) 0 0
\(409\) 167.538i 0.409629i −0.978801 0.204814i \(-0.934341\pi\)
0.978801 0.204814i \(-0.0656590\pi\)
\(410\) −376.783 452.239i −0.918984 1.10302i
\(411\) 0 0
\(412\) 51.1107 51.1107i 0.124055 0.124055i
\(413\) −428.263 428.263i −1.03696 1.03696i
\(414\) 0 0
\(415\) 123.417 102.825i 0.297391 0.247772i
\(416\) −166.252 −0.399643
\(417\) 0 0
\(418\) −25.4570 25.4570i −0.0609019 0.0609019i
\(419\) 141.227i 0.337058i −0.985697 0.168529i \(-0.946098\pi\)
0.985697 0.168529i \(-0.0539017\pi\)
\(420\) 0 0
\(421\) −576.339 −1.36898 −0.684488 0.729024i \(-0.739974\pi\)
−0.684488 + 0.729024i \(0.739974\pi\)
\(422\) 472.467 472.467i 1.11959 1.11959i
\(423\) 0 0
\(424\) 53.4698i 0.126108i
\(425\) −431.869 + 297.913i −1.01616 + 0.700971i
\(426\) 0 0
\(427\) 647.376 647.376i 1.51610 1.51610i
\(428\) −176.990 176.990i −0.413529 0.413529i
\(429\) 0 0
\(430\) 45.7137 502.251i 0.106311 1.16803i
\(431\) 449.009 1.04179 0.520893 0.853622i \(-0.325599\pi\)
0.520893 + 0.853622i \(0.325599\pi\)
\(432\) 0 0
\(433\) 542.261 + 542.261i 1.25233 + 1.25233i 0.954671 + 0.297663i \(0.0962072\pi\)
0.297663 + 0.954671i \(0.403793\pi\)
\(434\) 362.974i 0.836345i
\(435\) 0 0
\(436\) −222.670 −0.510712
\(437\) 424.026 424.026i 0.970311 0.970311i
\(438\) 0 0
\(439\) 458.923i 1.04538i 0.852522 + 0.522692i \(0.175072\pi\)
−0.852522 + 0.522692i \(0.824928\pi\)
\(440\) −1.44234 + 1.20169i −0.00327805 + 0.00273111i
\(441\) 0 0
\(442\) −155.088 + 155.088i −0.350877 + 0.350877i
\(443\) −166.912 166.912i −0.376777 0.376777i 0.493161 0.869938i \(-0.335841\pi\)
−0.869938 + 0.493161i \(0.835841\pi\)
\(444\) 0 0
\(445\) 522.696 + 47.5746i 1.17460 + 0.106909i
\(446\) −211.599 −0.474437
\(447\) 0 0
\(448\) −326.292 326.292i −0.728329 0.728329i
\(449\) 267.125i 0.594933i 0.954732 + 0.297467i \(0.0961417\pi\)
−0.954732 + 0.297467i \(0.903858\pi\)
\(450\) 0 0
\(451\) −18.9031 −0.0419138
\(452\) −210.007 + 210.007i −0.464617 + 0.464617i
\(453\) 0 0
\(454\) 23.3486i 0.0514286i
\(455\) −14.6072 + 160.488i −0.0321038 + 0.352720i
\(456\) 0 0
\(457\) −61.7372 + 61.7372i −0.135092 + 0.135092i −0.771419 0.636327i \(-0.780453\pi\)
0.636327 + 0.771419i \(0.280453\pi\)
\(458\) −424.659 424.659i −0.927203 0.927203i
\(459\) 0 0
\(460\) 243.496 + 292.259i 0.529339 + 0.635346i
\(461\) −456.501 −0.990241 −0.495121 0.868824i \(-0.664876\pi\)
−0.495121 + 0.868824i \(0.664876\pi\)
\(462\) 0 0
\(463\) −522.907 522.907i −1.12939 1.12939i −0.990277 0.139112i \(-0.955575\pi\)
−0.139112 0.990277i \(-0.544425\pi\)
\(464\) 686.664i 1.47988i
\(465\) 0 0
\(466\) −333.818 −0.716349
\(467\) −200.076 + 200.076i −0.428428 + 0.428428i −0.888093 0.459664i \(-0.847970\pi\)
0.459664 + 0.888093i \(0.347970\pi\)
\(468\) 0 0
\(469\) 1084.39i 2.31214i
\(470\) 1035.07 + 94.2095i 2.20227 + 0.200446i
\(471\) 0 0
\(472\) −42.1934 + 42.1934i −0.0893928 + 0.0893928i
\(473\) −11.4522 11.4522i −0.0242118 0.0242118i
\(474\) 0 0
\(475\) −131.492 + 716.359i −0.276825 + 1.50812i
\(476\) −663.631 −1.39418
\(477\) 0 0
\(478\) 524.025 + 524.025i 1.09629 + 1.09629i
\(479\) 527.960i 1.10221i −0.834435 0.551107i \(-0.814206\pi\)
0.834435 0.551107i \(-0.185794\pi\)
\(480\) 0 0
\(481\) 35.2220 0.0732266
\(482\) 553.187 553.187i 1.14769 1.14769i
\(483\) 0 0
\(484\) 446.503i 0.922526i
\(485\) 477.107 + 572.654i 0.983726 + 1.18073i
\(486\) 0 0
\(487\) 2.96411 2.96411i 0.00608646 0.00608646i −0.704057 0.710143i \(-0.748630\pi\)
0.710143 + 0.704057i \(0.248630\pi\)
\(488\) −63.7808 63.7808i −0.130698 0.130698i
\(489\) 0 0
\(490\) −257.848 + 214.826i −0.526221 + 0.438421i
\(491\) −790.825 −1.61064 −0.805320 0.592840i \(-0.798007\pi\)
−0.805320 + 0.592840i \(0.798007\pi\)
\(492\) 0 0
\(493\) −595.089 595.089i −1.20708 1.20708i
\(494\) 304.470i 0.616337i
\(495\) 0 0
\(496\) 261.865 0.527953
\(497\) −430.519 + 430.519i −0.866236 + 0.866236i
\(498\) 0 0
\(499\) 587.934i 1.17822i 0.808052 + 0.589112i \(0.200522\pi\)
−0.808052 + 0.589112i \(0.799478\pi\)
\(500\) −444.997 124.260i −0.889994 0.248521i
\(501\) 0 0
\(502\) −58.5325 + 58.5325i −0.116599 + 0.116599i
\(503\) 282.741 + 282.741i 0.562109 + 0.562109i 0.929906 0.367797i \(-0.119888\pi\)
−0.367797 + 0.929906i \(0.619888\pi\)
\(504\) 0 0
\(505\) 2.79726 30.7332i 0.00553913 0.0608577i
\(506\) 25.4365 0.0502697
\(507\) 0 0
\(508\) −419.652 419.652i −0.826087 0.826087i
\(509\) 524.061i 1.02959i −0.857313 0.514795i \(-0.827868\pi\)
0.857313 0.514795i \(-0.172132\pi\)
\(510\) 0 0
\(511\) 942.587 1.84459
\(512\) −493.507 + 493.507i −0.963882 + 0.963882i
\(513\) 0 0
\(514\) 434.377i 0.845092i
\(515\) −75.1226 + 62.5885i −0.145869 + 0.121531i
\(516\) 0 0
\(517\) 23.6014 23.6014i 0.0456506 0.0456506i
\(518\) 156.912 + 156.912i 0.302919 + 0.302919i
\(519\) 0 0
\(520\) 15.8116 + 1.43913i 0.0304069 + 0.00276756i
\(521\) −149.033 −0.286051 −0.143026 0.989719i \(-0.545683\pi\)
−0.143026 + 0.989719i \(0.545683\pi\)
\(522\) 0 0
\(523\) −529.426 529.426i −1.01229 1.01229i −0.999924 0.0123638i \(-0.996064\pi\)
−0.0123638 0.999924i \(-0.503936\pi\)
\(524\) 293.463i 0.560044i
\(525\) 0 0
\(526\) 77.4211 0.147188
\(527\) 226.942 226.942i 0.430630 0.430630i
\(528\) 0 0
\(529\) 105.316i 0.199084i
\(530\) 79.7581 876.293i 0.150487 1.65338i
\(531\) 0 0
\(532\) −651.425 + 651.425i −1.22448 + 1.22448i
\(533\) 113.043 + 113.043i 0.212087 + 0.212087i
\(534\) 0 0
\(535\) 216.737 + 260.141i 0.405115 + 0.486245i
\(536\) 106.837 0.199322
\(537\) 0 0
\(538\) −197.662 197.662i −0.367402 0.367402i
\(539\) 10.7778i 0.0199959i
\(540\) 0 0
\(541\) −95.0214 −0.175640 −0.0878202 0.996136i \(-0.527990\pi\)
−0.0878202 + 0.996136i \(0.527990\pi\)
\(542\) 671.371 671.371i 1.23869 1.23869i
\(543\) 0 0
\(544\) 926.142i 1.70247i
\(545\) 299.978 + 27.3033i 0.550419 + 0.0500978i
\(546\) 0 0
\(547\) 437.531 437.531i 0.799875 0.799875i −0.183201 0.983075i \(-0.558646\pi\)
0.983075 + 0.183201i \(0.0586459\pi\)
\(548\) −257.945 257.945i −0.470703 0.470703i
\(549\) 0 0
\(550\) −25.4304 + 17.5425i −0.0462371 + 0.0318954i
\(551\) −1168.29 −2.12030
\(552\) 0 0
\(553\) 406.858 + 406.858i 0.735729 + 0.735729i
\(554\) 631.845i 1.14051i
\(555\) 0 0
\(556\) −317.171 −0.570451
\(557\) −591.236 + 591.236i −1.06147 + 1.06147i −0.0634822 + 0.997983i \(0.520221\pi\)
−0.997983 + 0.0634822i \(0.979779\pi\)
\(558\) 0 0
\(559\) 136.970i 0.245027i
\(560\) 468.858 + 562.753i 0.837246 + 1.00492i
\(561\) 0 0
\(562\) −999.791 + 999.791i −1.77899 + 1.77899i
\(563\) −526.655 526.655i −0.935444 0.935444i 0.0625946 0.998039i \(-0.480062\pi\)
−0.998039 + 0.0625946i \(0.980062\pi\)
\(564\) 0 0
\(565\) 308.669 257.168i 0.546316 0.455164i
\(566\) 1000.29 1.76730
\(567\) 0 0
\(568\) 42.4156 + 42.4156i 0.0746754 + 0.0746754i
\(569\) 590.957i 1.03859i −0.854595 0.519294i \(-0.826195\pi\)
0.854595 0.519294i \(-0.173805\pi\)
\(570\) 0 0
\(571\) −380.609 −0.666565 −0.333283 0.942827i \(-0.608156\pi\)
−0.333283 + 0.942827i \(0.608156\pi\)
\(572\) −4.38587 + 4.38587i −0.00766761 + 0.00766761i
\(573\) 0 0
\(574\) 1007.20i 1.75470i
\(575\) −292.198 423.584i −0.508170 0.736667i
\(576\) 0 0
\(577\) −156.284 + 156.284i −0.270856 + 0.270856i −0.829445 0.558589i \(-0.811343\pi\)
0.558589 + 0.829445i \(0.311343\pi\)
\(578\) 297.034 + 297.034i 0.513899 + 0.513899i
\(579\) 0 0
\(580\) 67.1768 738.063i 0.115822 1.27252i
\(581\) −274.867 −0.473093
\(582\) 0 0
\(583\) −19.9810 19.9810i −0.0342727 0.0342727i
\(584\) 92.8656i 0.159017i
\(585\) 0 0
\(586\) 550.137 0.938800
\(587\) −717.351 + 717.351i −1.22206 + 1.22206i −0.255166 + 0.966897i \(0.582130\pi\)
−0.966897 + 0.255166i \(0.917870\pi\)
\(588\) 0 0
\(589\) 445.536i 0.756427i
\(590\) −754.426 + 628.551i −1.27869 + 1.06534i
\(591\) 0 0
\(592\) 113.203 113.203i 0.191221 0.191221i
\(593\) 336.299 + 336.299i 0.567115 + 0.567115i 0.931319 0.364204i \(-0.118659\pi\)
−0.364204 + 0.931319i \(0.618659\pi\)
\(594\) 0 0
\(595\) 894.033 + 81.3728i 1.50258 + 0.136761i
\(596\) 500.065 0.839035
\(597\) 0 0
\(598\) −152.112 152.112i −0.254369 0.254369i
\(599\) 427.985i 0.714500i 0.934009 + 0.357250i \(0.116286\pi\)
−0.934009 + 0.357250i \(0.883714\pi\)
\(600\) 0 0
\(601\) 17.0151 0.0283112 0.0141556 0.999900i \(-0.495494\pi\)
0.0141556 + 0.999900i \(0.495494\pi\)
\(602\) −610.195 + 610.195i −1.01361 + 1.01361i
\(603\) 0 0
\(604\) 533.005i 0.882459i
\(605\) 54.7491 601.521i 0.0904943 0.994250i
\(606\) 0 0
\(607\) 209.591 209.591i 0.345290 0.345290i −0.513062 0.858352i \(-0.671489\pi\)
0.858352 + 0.513062i \(0.171489\pi\)
\(608\) 909.108 + 909.108i 1.49524 + 1.49524i
\(609\) 0 0
\(610\) −950.137 1140.41i −1.55760 1.86953i
\(611\) −282.277 −0.461991
\(612\) 0 0
\(613\) −229.232 229.232i −0.373951 0.373951i 0.494963 0.868914i \(-0.335181\pi\)
−0.868914 + 0.494963i \(0.835181\pi\)
\(614\) 482.974i 0.786603i
\(615\) 0 0
\(616\) 3.21229 0.00521476
\(617\) −89.8034 + 89.8034i −0.145548 + 0.145548i −0.776126 0.630578i \(-0.782818\pi\)
0.630578 + 0.776126i \(0.282818\pi\)
\(618\) 0 0
\(619\) 1157.67i 1.87022i 0.354351 + 0.935112i \(0.384702\pi\)
−0.354351 + 0.935112i \(0.615298\pi\)
\(620\) 281.466 + 25.6184i 0.453978 + 0.0413200i
\(621\) 0 0
\(622\) 486.525 486.525i 0.782194 0.782194i
\(623\) −635.035 635.035i −1.01932 1.01932i
\(624\) 0 0
\(625\) 584.257 + 221.966i 0.934811 + 0.355146i
\(626\) −500.490 −0.799505
\(627\) 0 0
\(628\) −167.906 167.906i −0.267366 0.267366i
\(629\) 196.212i 0.311943i
\(630\) 0 0
\(631\) −1139.80 −1.80634 −0.903169 0.429285i \(-0.858766\pi\)
−0.903169 + 0.429285i \(0.858766\pi\)
\(632\) 40.0845 40.0845i 0.0634249 0.0634249i
\(633\) 0 0
\(634\) 923.832i 1.45715i
\(635\) 513.892 + 616.806i 0.809279 + 0.971348i
\(636\) 0 0
\(637\) 64.4522 64.4522i 0.101181 0.101181i
\(638\) −35.0416 35.0416i −0.0549242 0.0549242i
\(639\) 0 0
\(640\) 103.316 86.0774i 0.161431 0.134496i
\(641\) 762.768 1.18997 0.594983 0.803738i \(-0.297159\pi\)
0.594983 + 0.803738i \(0.297159\pi\)
\(642\) 0 0
\(643\) −321.892 321.892i −0.500610 0.500610i 0.411018 0.911627i \(-0.365173\pi\)
−0.911627 + 0.411018i \(0.865173\pi\)
\(644\) 650.900i 1.01071i
\(645\) 0 0
\(646\) 1696.12 2.62557
\(647\) 19.2194 19.2194i 0.0297054 0.0297054i −0.692098 0.721803i \(-0.743313\pi\)
0.721803 + 0.692098i \(0.243313\pi\)
\(648\) 0 0
\(649\) 31.5343i 0.0485890i
\(650\) 256.982 + 47.1706i 0.395357 + 0.0725701i
\(651\) 0 0
\(652\) −66.9437 + 66.9437i −0.102674 + 0.102674i
\(653\) 897.572 + 897.572i 1.37454 + 1.37454i 0.853589 + 0.520948i \(0.174421\pi\)
0.520948 + 0.853589i \(0.325579\pi\)
\(654\) 0 0
\(655\) −35.9837 + 395.349i −0.0549370 + 0.603586i
\(656\) 726.634 1.10767
\(657\) 0 0
\(658\) −1257.53 1257.53i −1.91114 1.91114i
\(659\) 785.804i 1.19242i 0.802829 + 0.596209i \(0.203327\pi\)
−0.802829 + 0.596209i \(0.796673\pi\)
\(660\) 0 0
\(661\) 368.211 0.557051 0.278526 0.960429i \(-0.410154\pi\)
0.278526 + 0.960429i \(0.410154\pi\)
\(662\) −34.8423 + 34.8423i −0.0526319 + 0.0526319i
\(663\) 0 0
\(664\) 27.0804i 0.0407838i
\(665\) 957.466 797.713i 1.43980 1.19957i
\(666\) 0 0
\(667\) 583.673 583.673i 0.875072 0.875072i
\(668\) 114.693 + 114.693i 0.171696 + 0.171696i
\(669\) 0 0
\(670\) 1750.90 + 159.363i 2.61328 + 0.237855i
\(671\) −47.6682 −0.0710405
\(672\) 0 0
\(673\) −583.994 583.994i −0.867748 0.867748i 0.124475 0.992223i \(-0.460275\pi\)
−0.992223 + 0.124475i \(0.960275\pi\)
\(674\) 767.200i 1.13828i
\(675\) 0 0
\(676\) −572.196 −0.846444
\(677\) −510.053 + 510.053i −0.753401 + 0.753401i −0.975112 0.221711i \(-0.928836\pi\)
0.221711 + 0.975112i \(0.428836\pi\)
\(678\) 0 0
\(679\) 1275.38i 1.87832i
\(680\) 8.01702 88.0820i 0.0117897 0.129532i
\(681\) 0 0
\(682\) 13.3634 13.3634i 0.0195944 0.0195944i
\(683\) −264.640 264.640i −0.387467 0.387467i 0.486316 0.873783i \(-0.338340\pi\)
−0.873783 + 0.486316i \(0.838340\pi\)
\(684\) 0 0
\(685\) 315.871 + 379.128i 0.461126 + 0.553472i
\(686\) −588.725 −0.858200
\(687\) 0 0
\(688\) 440.221 + 440.221i 0.639856 + 0.639856i
\(689\) 238.976i 0.346845i
\(690\) 0 0
\(691\) 484.032 0.700480 0.350240 0.936660i \(-0.386100\pi\)
0.350240 + 0.936660i \(0.386100\pi\)
\(692\) 210.776 210.776i 0.304590 0.304590i
\(693\) 0 0
\(694\) 877.380i 1.26424i
\(695\) 427.288 + 38.8907i 0.614802 + 0.0559579i
\(696\) 0 0
\(697\) 629.730 629.730i 0.903486 0.903486i
\(698\) 1325.71 + 1325.71i 1.89930 + 1.89930i
\(699\) 0 0
\(700\) 448.899 + 650.745i 0.641284 + 0.929636i
\(701\) 394.513 0.562787 0.281393 0.959593i \(-0.409203\pi\)
0.281393 + 0.959593i \(0.409203\pi\)
\(702\) 0 0
\(703\) −192.603 192.603i −0.273973 0.273973i
\(704\) 24.0258i 0.0341275i
\(705\) 0 0
\(706\) −1151.89 −1.63158
\(707\) −37.3384 + 37.3384i −0.0528124 + 0.0528124i
\(708\) 0 0
\(709\) 113.025i 0.159415i 0.996818 + 0.0797074i \(0.0253986\pi\)
−0.996818 + 0.0797074i \(0.974601\pi\)
\(710\) 631.862 + 758.400i 0.889946 + 1.06817i
\(711\) 0 0
\(712\) −62.5649 + 62.5649i −0.0878721 + 0.0878721i
\(713\) 222.588 + 222.588i 0.312186 + 0.312186i
\(714\) 0 0
\(715\) 6.44637 5.37080i 0.00901590 0.00751161i
\(716\) −203.808 −0.284649
\(717\) 0 0
\(718\) 404.316 + 404.316i 0.563115 + 0.563115i
\(719\) 242.271i 0.336955i 0.985705 + 0.168478i \(0.0538851\pi\)
−0.985705 + 0.168478i \(0.946115\pi\)
\(720\) 0 0
\(721\) 167.308 0.232050
\(722\) 956.768 956.768i 1.32516 1.32516i
\(723\) 0 0
\(724\) 667.849i 0.922443i
\(725\) −180.999 + 986.070i −0.249654 + 1.36010i
\(726\) 0 0
\(727\) 297.287 297.287i 0.408923 0.408923i −0.472440 0.881363i \(-0.656627\pi\)
0.881363 + 0.472440i \(0.156627\pi\)
\(728\) −19.2098 19.2098i −0.0263871 0.0263871i
\(729\) 0 0
\(730\) 138.523 1521.93i 0.189757 2.08484i
\(731\) 763.025 1.04381
\(732\) 0 0
\(733\) 102.972 + 102.972i 0.140480 + 0.140480i 0.773850 0.633369i \(-0.218329\pi\)
−0.633369 + 0.773850i \(0.718329\pi\)
\(734\) 513.188i 0.699167i
\(735\) 0 0
\(736\) −908.375 −1.23421
\(737\) 39.9235 39.9235i 0.0541703 0.0541703i
\(738\) 0 0
\(739\) 951.239i 1.28720i −0.765363 0.643599i \(-0.777441\pi\)
0.765363 0.643599i \(-0.222559\pi\)
\(740\) 132.751 110.602i 0.179394 0.149462i
\(741\) 0 0
\(742\) −1064.63 + 1064.63i −1.43481 + 1.43481i
\(743\) 98.0333 + 98.0333i 0.131942 + 0.131942i 0.769994 0.638051i \(-0.220259\pi\)
−0.638051 + 0.769994i \(0.720259\pi\)
\(744\) 0 0
\(745\) −673.679 61.3167i −0.904268 0.0823043i
\(746\) −675.536 −0.905544
\(747\) 0 0
\(748\) 24.4325 + 24.4325i 0.0326638 + 0.0326638i
\(749\) 579.369i 0.773523i
\(750\) 0 0
\(751\) 144.613 0.192560 0.0962800 0.995354i \(-0.469306\pi\)
0.0962800 + 0.995354i \(0.469306\pi\)
\(752\) −907.233 + 907.233i −1.20643 + 1.20643i
\(753\) 0 0
\(754\) 419.104i 0.555841i
\(755\) −65.3558 + 718.056i −0.0865640 + 0.951068i
\(756\) 0 0
\(757\) −509.399 + 509.399i −0.672918 + 0.672918i −0.958388 0.285470i \(-0.907850\pi\)
0.285470 + 0.958388i \(0.407850\pi\)
\(758\) −472.322 472.322i −0.623116 0.623116i
\(759\) 0 0
\(760\) −78.5924 94.3315i −0.103411 0.124120i
\(761\) −648.413 −0.852054 −0.426027 0.904710i \(-0.640087\pi\)
−0.426027 + 0.904710i \(0.640087\pi\)
\(762\) 0 0
\(763\) −364.450 364.450i −0.477654 0.477654i
\(764\) 703.340i 0.920601i
\(765\) 0 0
\(766\) −469.889 −0.613433
\(767\) 188.578 188.578i 0.245864 0.245864i
\(768\) 0 0
\(769\) 416.812i 0.542019i 0.962577 + 0.271009i \(0.0873574\pi\)
−0.962577 + 0.271009i \(0.912643\pi\)
\(770\) 52.6448 + 4.79161i 0.0683699 + 0.00622287i
\(771\) 0 0
\(772\) 23.8183 23.8183i 0.0308527 0.0308527i
\(773\) −114.629 114.629i −0.148292 0.148292i 0.629063 0.777354i \(-0.283439\pi\)
−0.777354 + 0.629063i \(0.783439\pi\)
\(774\) 0 0
\(775\) −376.046 69.0254i −0.485220 0.0890650i
\(776\) −125.653 −0.161924
\(777\) 0 0
\(778\) −289.963 289.963i −0.372703 0.372703i
\(779\) 1236.29i 1.58703i
\(780\) 0 0
\(781\) 31.7004 0.0405895
\(782\) −847.377 + 847.377i −1.08360 + 1.08360i
\(783\) 0 0
\(784\) 414.297i 0.528440i
\(785\) 205.612 + 246.789i 0.261926 + 0.314380i
\(786\) 0 0
\(787\) −671.451 + 671.451i −0.853178 + 0.853178i −0.990523 0.137345i \(-0.956143\pi\)
0.137345 + 0.990523i \(0.456143\pi\)
\(788\) 429.170 + 429.170i 0.544632 + 0.544632i
\(789\) 0 0
\(790\) 716.719 597.135i 0.907239 0.755867i
\(791\) −687.447 −0.869085
\(792\) 0 0
\(793\) 285.060 + 285.060i 0.359471 + 0.359471i
\(794\) 606.895i 0.764352i
\(795\) 0 0
\(796\) 1041.15 1.30798
\(797\) −194.568 + 194.568i −0.244126 + 0.244126i −0.818555 0.574429i \(-0.805224\pi\)
0.574429 + 0.818555i \(0.305224\pi\)
\(798\) 0 0
\(799\) 1572.49i 1.96807i
\(800\) 908.160 626.469i 1.13520 0.783087i
\(801\) 0 0
\(802\) −1390.65 + 1390.65i −1.73398 + 1.73398i
\(803\) −34.7027 34.7027i −0.0432163 0.0432163i
\(804\) 0 0
\(805\) −79.8118 + 876.882i −0.0991451 + 1.08929i
\(806\) −159.829 −0.198299
\(807\) 0 0
\(808\) 3.67865 + 3.67865i 0.00455279 + 0.00455279i
\(809\) 724.904i 0.896049i 0.894021 + 0.448025i \(0.147872\pi\)
−0.894021 + 0.448025i \(0.852128\pi\)
\(810\) 0 0
\(811\) 331.996 0.409366 0.204683 0.978828i \(-0.434384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(812\) −896.689 + 896.689i −1.10430 + 1.10430i
\(813\) 0 0
\(814\) 11.5539i 0.0141940i
\(815\) 98.3940 81.9771i 0.120729 0.100585i
\(816\) 0 0
\(817\) 748.990 748.990i 0.916757 0.916757i
\(818\) 328.652 + 328.652i 0.401775 + 0.401775i
\(819\) 0 0
\(820\) 781.026 + 71.0871i 0.952470 + 0.0866916i
\(821\) 719.613 0.876508 0.438254 0.898851i \(-0.355597\pi\)
0.438254 + 0.898851i \(0.355597\pi\)
\(822\) 0 0
\(823\) 290.454 + 290.454i 0.352921 + 0.352921i 0.861195 0.508274i \(-0.169716\pi\)
−0.508274 + 0.861195i \(0.669716\pi\)
\(824\) 16.4835i 0.0200043i
\(825\) 0 0
\(826\) 1680.21 2.03415
\(827\) 185.364 185.364i 0.224140 0.224140i −0.586099 0.810239i \(-0.699337\pi\)
0.810239 + 0.586099i \(0.199337\pi\)
\(828\) 0 0
\(829\) 601.887i 0.726040i −0.931781 0.363020i \(-0.881746\pi\)
0.931781 0.363020i \(-0.118254\pi\)
\(830\) −40.3945 + 443.809i −0.0486680 + 0.534710i
\(831\) 0 0
\(832\) 143.676 143.676i 0.172688 0.172688i
\(833\) −359.046 359.046i −0.431028 0.431028i
\(834\) 0 0
\(835\) −140.449 168.576i −0.168202 0.201887i
\(836\) 47.9663 0.0573759
\(837\) 0 0
\(838\) 277.039 + 277.039i 0.330595 + 0.330595i
\(839\) 168.066i 0.200317i 0.994971 + 0.100159i \(0.0319350\pi\)
−0.994971 + 0.100159i \(0.968065\pi\)
\(840\) 0 0
\(841\) −767.152 −0.912191
\(842\) 1130.58 1130.58i 1.34273 1.34273i
\(843\) 0 0
\(844\) 890.227i 1.05477i
\(845\) 770.854 + 70.1613i 0.912253 + 0.0830311i
\(846\) 0 0
\(847\) −730.801 + 730.801i −0.862811 + 0.862811i
\(848\) 768.067 + 768.067i 0.905739 + 0.905739i
\(849\) 0 0
\(850\) 262.775 1431.58i 0.309147 1.68421i
\(851\) 192.448 0.226143
\(852\) 0 0
\(853\) 318.997 + 318.997i 0.373971 + 0.373971i 0.868921 0.494950i \(-0.164814\pi\)
−0.494950 + 0.868921i \(0.664814\pi\)
\(854\) 2539.86i 2.97407i
\(855\) 0 0
\(856\) −57.0806 −0.0666830
\(857\) −680.909 + 680.909i −0.794526 + 0.794526i −0.982226 0.187700i \(-0.939897\pi\)
0.187700 + 0.982226i \(0.439897\pi\)
\(858\) 0 0
\(859\) 329.452i 0.383530i 0.981441 + 0.191765i \(0.0614211\pi\)
−0.981441 + 0.191765i \(0.938579\pi\)
\(860\) 430.106 + 516.240i 0.500123 + 0.600279i
\(861\) 0 0
\(862\) −880.801 + 880.801i −1.02181 + 1.02181i
\(863\) −271.802 271.802i −0.314950 0.314950i 0.531874 0.846824i \(-0.321488\pi\)
−0.846824 + 0.531874i \(0.821488\pi\)
\(864\) 0 0
\(865\) −309.799 + 258.110i −0.358150 + 0.298393i
\(866\) −2127.45 −2.45664
\(867\) 0 0
\(868\) −341.959 341.959i −0.393962 0.393962i
\(869\) 29.9581i 0.0344743i
\(870\) 0 0
\(871\) −477.493 −0.548212
\(872\) −35.9064 + 35.9064i −0.0411770 + 0.0411770i
\(873\) 0 0
\(874\) 1663.58i 1.90341i
\(875\) −524.957 931.717i −0.599951 1.06482i
\(876\) 0 0
\(877\) −515.213 + 515.213i −0.587473 + 0.587473i −0.936946 0.349474i \(-0.886360\pi\)
0.349474 + 0.936946i \(0.386360\pi\)
\(878\) −900.248 900.248i −1.02534 1.02534i
\(879\) 0 0
\(880\) 3.45687 37.9802i 0.00392826 0.0431593i
\(881\) −1330.41 −1.51011 −0.755055 0.655661i \(-0.772390\pi\)
−0.755055 + 0.655661i \(0.772390\pi\)
\(882\) 0 0
\(883\) −678.846 678.846i −0.768795 0.768795i 0.209099 0.977894i \(-0.432947\pi\)
−0.977894 + 0.209099i \(0.932947\pi\)
\(884\) 292.218i 0.330563i
\(885\) 0 0
\(886\) 654.848 0.739106
\(887\) 803.393 803.393i 0.905742 0.905742i −0.0901829 0.995925i \(-0.528745\pi\)
0.995925 + 0.0901829i \(0.0287452\pi\)
\(888\) 0 0
\(889\) 1373.71i 1.54523i
\(890\) −1118.67 + 932.024i −1.25694 + 1.04722i
\(891\) 0 0
\(892\) 199.348 199.348i 0.223485 0.223485i
\(893\) 1543.56 + 1543.56i 1.72852 + 1.72852i
\(894\) 0 0
\(895\) 274.568 + 24.9905i 0.306779 + 0.0279223i
\(896\) −230.098 −0.256805
\(897\) 0 0
\(898\) −524.007 524.007i −0.583526 0.583526i
\(899\) 613.282i 0.682182i
\(900\) 0 0
\(901\) 1331.27 1.47755
\(902\) 37.0814 37.0814i 0.0411102 0.0411102i
\(903\) 0 0
\(904\) 67.7287i 0.0749211i
\(905\) 81.8900 899.716i 0.0904862 0.994161i
\(906\) 0 0
\(907\) −1079.59 + 1079.59i −1.19029 + 1.19029i −0.213305 + 0.976986i \(0.568423\pi\)
−0.976986 + 0.213305i \(0.931577\pi\)
\(908\) −21.9968 21.9968i −0.0242256 0.0242256i
\(909\) 0 0
\(910\) −286.167 343.475i −0.314469 0.377445i
\(911\) 1792.53 1.96765 0.983825 0.179133i \(-0.0573294\pi\)
0.983825 + 0.179133i \(0.0573294\pi\)
\(912\) 0 0
\(913\) 10.1196 + 10.1196i 0.0110839 + 0.0110839i
\(914\) 242.214i 0.265004i
\(915\) 0 0
\(916\) 800.146 0.873522
\(917\) 480.318 480.318i 0.523793 0.523793i
\(918\) 0 0
\(919\) 1164.78i 1.26744i 0.773563 + 0.633719i \(0.218473\pi\)
−0.773563 + 0.633719i \(0.781527\pi\)
\(920\) 86.3923 + 7.86322i 0.0939046 + 0.00854698i
\(921\) 0 0
\(922\) 895.497 895.497i 0.971255 0.971255i
\(923\) −189.571 189.571i −0.205386 0.205386i
\(924\) 0 0
\(925\) −192.402 + 132.724i −0.208003 + 0.143485i
\(926\) 2051.52 2.21547
\(927\) 0 0
\(928\) 1251.39 + 1251.39i 1.34848 + 1.34848i
\(929\) 822.723i 0.885600i −0.896620 0.442800i \(-0.853985\pi\)
0.896620 0.442800i \(-0.146015\pi\)
\(930\) 0 0
\(931\) −704.884 −0.757126
\(932\) 314.492 314.492i 0.337438 0.337438i
\(933\) 0 0
\(934\) 784.959i 0.840428i
\(935\) −29.9193 35.9110i −0.0319992 0.0384075i
\(936\) 0 0
\(937\) 857.665 857.665i 0.915331 0.915331i −0.0813546 0.996685i \(-0.525925\pi\)
0.996685 + 0.0813546i \(0.0259246\pi\)
\(938\) −2127.20 2127.20i −2.26781 2.26781i
\(939\) 0 0
\(940\) −1063.90 + 886.388i −1.13181 + 0.942966i
\(941\) −168.157 −0.178700 −0.0893501 0.996000i \(-0.528479\pi\)
−0.0893501 + 0.996000i \(0.528479\pi\)
\(942\) 0 0
\(943\) 617.649 + 617.649i 0.654983 + 0.654983i
\(944\) 1212.17i 1.28408i
\(945\) 0 0
\(946\) 44.9304 0.0474952
\(947\) −565.892 + 565.892i −0.597562 + 0.597562i −0.939663 0.342101i \(-0.888862\pi\)
0.342101 + 0.939663i \(0.388862\pi\)
\(948\) 0 0
\(949\) 415.051i 0.437356i
\(950\) −1147.31 1663.19i −1.20769 1.75072i
\(951\) 0 0
\(952\) −107.013 + 107.013i −0.112408 + 0.112408i
\(953\) −387.854 387.854i −0.406982 0.406982i 0.473703 0.880685i \(-0.342917\pi\)
−0.880685 + 0.473703i \(0.842917\pi\)
\(954\) 0 0
\(955\) −86.2418 + 947.528i −0.0903055 + 0.992176i
\(956\) −987.372 −1.03282
\(957\) 0 0
\(958\) 1035.68 + 1035.68i 1.08108 + 1.08108i
\(959\) 844.370i 0.880469i
\(960\) 0 0
\(961\) −727.120 −0.756629
\(962\) −69.0933 + 69.0933i −0.0718225 + 0.0718225i
\(963\) 0 0
\(964\) 1042.32i 1.08124i
\(965\) −35.0082 + 29.1671i −0.0362779 + 0.0302250i
\(966\) 0 0
\(967\) −944.809 + 944.809i −0.977051 + 0.977051i −0.999743 0.0226911i \(-0.992777\pi\)
0.0226911 + 0.999743i \(0.492777\pi\)
\(968\) 72.0000 + 72.0000i 0.0743802 + 0.0743802i
\(969\) 0 0
\(970\) −2059.27 187.430i −2.12295 0.193226i
\(971\) −1177.49 −1.21266 −0.606328 0.795215i \(-0.707358\pi\)
−0.606328 + 0.795215i \(0.707358\pi\)
\(972\) 0 0
\(973\) −519.121 519.121i −0.533526 0.533526i
\(974\) 11.6291i 0.0119395i
\(975\) 0 0
\(976\) 1832.36 1.87742
\(977\) 256.140 256.140i 0.262170 0.262170i −0.563765 0.825935i \(-0.690648\pi\)
0.825935 + 0.563765i \(0.190648\pi\)
\(978\) 0 0
\(979\) 46.7594i 0.0477624i
\(980\) 40.5310 445.309i 0.0413581 0.454397i
\(981\) 0 0
\(982\) 1551.32 1551.32i 1.57976 1.57976i
\(983\) 480.914 + 480.914i 0.489231 + 0.489231i 0.908063 0.418833i \(-0.137561\pi\)
−0.418833 + 0.908063i \(0.637561\pi\)
\(984\) 0 0
\(985\) −525.548 630.795i −0.533551 0.640401i
\(986\) 2334.72 2.36787
\(987\) 0 0
\(988\) −286.843 286.843i −0.290327 0.290327i
\(989\) 748.387i 0.756711i
\(990\) 0 0
\(991\) 809.023 0.816370 0.408185 0.912899i \(-0.366162\pi\)
0.408185 + 0.912899i \(0.366162\pi\)
\(992\) −477.228 + 477.228i −0.481076 + 0.481076i
\(993\) 0 0
\(994\) 1689.06i 1.69925i
\(995\) −1402.62 127.663i −1.40967 0.128305i
\(996\) 0 0
\(997\) 75.4865 75.4865i 0.0757137 0.0757137i −0.668236 0.743950i \(-0.732950\pi\)
0.743950 + 0.668236i \(0.232950\pi\)
\(998\) −1153.32 1153.32i −1.15563 1.15563i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.g.f.163.2 yes 16
3.2 odd 2 inner 405.3.g.f.163.7 yes 16
5.2 odd 4 inner 405.3.g.f.82.2 16
9.2 odd 6 405.3.l.m.28.1 16
9.4 even 3 405.3.l.m.298.1 16
9.5 odd 6 405.3.l.j.298.4 16
9.7 even 3 405.3.l.j.28.4 16
15.2 even 4 inner 405.3.g.f.82.7 yes 16
45.2 even 12 405.3.l.j.352.4 16
45.7 odd 12 405.3.l.m.352.1 16
45.22 odd 12 405.3.l.j.217.4 16
45.32 even 12 405.3.l.m.217.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.f.82.2 16 5.2 odd 4 inner
405.3.g.f.82.7 yes 16 15.2 even 4 inner
405.3.g.f.163.2 yes 16 1.1 even 1 trivial
405.3.g.f.163.7 yes 16 3.2 odd 2 inner
405.3.l.j.28.4 16 9.7 even 3
405.3.l.j.217.4 16 45.22 odd 12
405.3.l.j.298.4 16 9.5 odd 6
405.3.l.j.352.4 16 45.2 even 12
405.3.l.m.28.1 16 9.2 odd 6
405.3.l.m.217.1 16 45.32 even 12
405.3.l.m.298.1 16 9.4 even 3
405.3.l.m.352.1 16 45.7 odd 12