Properties

Label 405.3.d.b.404.2
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.2
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.b.404.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.57411 q^{2} +8.77429 q^{4} +(3.06744 + 3.94852i) q^{5} -6.02185i q^{7} -17.0638 q^{8} +(-10.9634 - 14.1125i) q^{10} +15.2008i q^{11} +11.0271i q^{13} +21.5228i q^{14} +25.8909 q^{16} -26.8426 q^{17} +15.8915 q^{19} +(26.9146 + 34.6455i) q^{20} -54.3292i q^{22} +11.5342 q^{23} +(-6.18165 + 24.2237i) q^{25} -39.4120i q^{26} -52.8374i q^{28} -54.4382i q^{29} -31.5722 q^{31} -24.2818 q^{32} +95.9384 q^{34} +(23.7774 - 18.4716i) q^{35} +38.1480i q^{37} -56.7980 q^{38} +(-52.3423 - 67.3769i) q^{40} +37.6636i q^{41} +4.53892i q^{43} +133.376i q^{44} -41.2246 q^{46} +3.71811 q^{47} +12.7374 q^{49} +(22.0939 - 86.5782i) q^{50} +96.7548i q^{52} -56.1230 q^{53} +(-60.0205 + 46.6274i) q^{55} +102.756i q^{56} +194.568i q^{58} +50.0428i q^{59} -48.4417 q^{61} +112.842 q^{62} -16.7778 q^{64} +(-43.5407 + 33.8249i) q^{65} +69.3702i q^{67} -235.524 q^{68} +(-84.9831 + 66.0197i) q^{70} +38.5522i q^{71} +27.2700i q^{73} -136.345i q^{74} +139.437 q^{76} +91.5366 q^{77} -78.8985 q^{79} +(79.4189 + 102.231i) q^{80} -134.614i q^{82} -150.602 q^{83} +(-82.3379 - 105.988i) q^{85} -16.2226i q^{86} -259.383i q^{88} -3.50521i q^{89} +66.4034 q^{91} +101.204 q^{92} -13.2890 q^{94} +(48.7462 + 62.7479i) q^{95} +27.6546i q^{97} -45.5248 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} + 12 q^{10} + 96 q^{16} + 48 q^{25} + 144 q^{34} + 72 q^{40} - 168 q^{46} - 288 q^{49} - 132 q^{55} - 360 q^{61} - 72 q^{64} - 156 q^{70} + 48 q^{76} - 480 q^{79} - 456 q^{85} - 48 q^{91}+ \cdots + 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.57411 −1.78706 −0.893528 0.449007i \(-0.851778\pi\)
−0.893528 + 0.449007i \(0.851778\pi\)
\(3\) 0 0
\(4\) 8.77429 2.19357
\(5\) 3.06744 + 3.94852i 0.613488 + 0.789704i
\(6\) 0 0
\(7\) 6.02185i 0.860264i −0.902766 0.430132i \(-0.858467\pi\)
0.902766 0.430132i \(-0.141533\pi\)
\(8\) −17.0638 −2.13298
\(9\) 0 0
\(10\) −10.9634 14.1125i −1.09634 1.41125i
\(11\) 15.2008i 1.38189i 0.722909 + 0.690944i \(0.242805\pi\)
−0.722909 + 0.690944i \(0.757195\pi\)
\(12\) 0 0
\(13\) 11.0271i 0.848237i 0.905607 + 0.424119i \(0.139416\pi\)
−0.905607 + 0.424119i \(0.860584\pi\)
\(14\) 21.5228i 1.53734i
\(15\) 0 0
\(16\) 25.8909 1.61818
\(17\) −26.8426 −1.57898 −0.789488 0.613767i \(-0.789654\pi\)
−0.789488 + 0.613767i \(0.789654\pi\)
\(18\) 0 0
\(19\) 15.8915 0.836395 0.418197 0.908356i \(-0.362662\pi\)
0.418197 + 0.908356i \(0.362662\pi\)
\(20\) 26.9146 + 34.6455i 1.34573 + 1.73227i
\(21\) 0 0
\(22\) 54.3292i 2.46951i
\(23\) 11.5342 0.501488 0.250744 0.968053i \(-0.419325\pi\)
0.250744 + 0.968053i \(0.419325\pi\)
\(24\) 0 0
\(25\) −6.18165 + 24.2237i −0.247266 + 0.968948i
\(26\) 39.4120i 1.51585i
\(27\) 0 0
\(28\) 52.8374i 1.88705i
\(29\) 54.4382i 1.87718i −0.345037 0.938589i \(-0.612134\pi\)
0.345037 0.938589i \(-0.387866\pi\)
\(30\) 0 0
\(31\) −31.5722 −1.01846 −0.509228 0.860631i \(-0.670069\pi\)
−0.509228 + 0.860631i \(0.670069\pi\)
\(32\) −24.2818 −0.758807
\(33\) 0 0
\(34\) 95.9384 2.82172
\(35\) 23.7774 18.4716i 0.679354 0.527761i
\(36\) 0 0
\(37\) 38.1480i 1.03103i 0.856881 + 0.515514i \(0.172399\pi\)
−0.856881 + 0.515514i \(0.827601\pi\)
\(38\) −56.7980 −1.49468
\(39\) 0 0
\(40\) −52.3423 67.3769i −1.30856 1.68442i
\(41\) 37.6636i 0.918625i 0.888275 + 0.459312i \(0.151904\pi\)
−0.888275 + 0.459312i \(0.848096\pi\)
\(42\) 0 0
\(43\) 4.53892i 0.105556i 0.998606 + 0.0527782i \(0.0168076\pi\)
−0.998606 + 0.0527782i \(0.983192\pi\)
\(44\) 133.376i 3.03127i
\(45\) 0 0
\(46\) −41.2246 −0.896187
\(47\) 3.71811 0.0791088 0.0395544 0.999217i \(-0.487406\pi\)
0.0395544 + 0.999217i \(0.487406\pi\)
\(48\) 0 0
\(49\) 12.7374 0.259947
\(50\) 22.0939 86.5782i 0.441878 1.73156i
\(51\) 0 0
\(52\) 96.7548i 1.86067i
\(53\) −56.1230 −1.05892 −0.529462 0.848333i \(-0.677606\pi\)
−0.529462 + 0.848333i \(0.677606\pi\)
\(54\) 0 0
\(55\) −60.0205 + 46.6274i −1.09128 + 0.847771i
\(56\) 102.756i 1.83492i
\(57\) 0 0
\(58\) 194.568i 3.35462i
\(59\) 50.0428i 0.848184i 0.905619 + 0.424092i \(0.139407\pi\)
−0.905619 + 0.424092i \(0.860593\pi\)
\(60\) 0 0
\(61\) −48.4417 −0.794126 −0.397063 0.917791i \(-0.629971\pi\)
−0.397063 + 0.917791i \(0.629971\pi\)
\(62\) 112.842 1.82004
\(63\) 0 0
\(64\) −16.7778 −0.262153
\(65\) −43.5407 + 33.8249i −0.669857 + 0.520383i
\(66\) 0 0
\(67\) 69.3702i 1.03538i 0.855570 + 0.517688i \(0.173207\pi\)
−0.855570 + 0.517688i \(0.826793\pi\)
\(68\) −235.524 −3.46359
\(69\) 0 0
\(70\) −84.9831 + 66.0197i −1.21404 + 0.943139i
\(71\) 38.5522i 0.542989i 0.962440 + 0.271494i \(0.0875179\pi\)
−0.962440 + 0.271494i \(0.912482\pi\)
\(72\) 0 0
\(73\) 27.2700i 0.373561i 0.982402 + 0.186781i \(0.0598054\pi\)
−0.982402 + 0.186781i \(0.940195\pi\)
\(74\) 136.345i 1.84250i
\(75\) 0 0
\(76\) 139.437 1.83469
\(77\) 91.5366 1.18879
\(78\) 0 0
\(79\) −78.8985 −0.998716 −0.499358 0.866396i \(-0.666431\pi\)
−0.499358 + 0.866396i \(0.666431\pi\)
\(80\) 79.4189 + 102.231i 0.992736 + 1.27789i
\(81\) 0 0
\(82\) 134.614i 1.64163i
\(83\) −150.602 −1.81448 −0.907242 0.420609i \(-0.861816\pi\)
−0.907242 + 0.420609i \(0.861816\pi\)
\(84\) 0 0
\(85\) −82.3379 105.988i −0.968682 1.24692i
\(86\) 16.2226i 0.188635i
\(87\) 0 0
\(88\) 259.383i 2.94754i
\(89\) 3.50521i 0.0393843i −0.999806 0.0196922i \(-0.993731\pi\)
0.999806 0.0196922i \(-0.00626862\pi\)
\(90\) 0 0
\(91\) 66.4034 0.729708
\(92\) 101.204 1.10005
\(93\) 0 0
\(94\) −13.2890 −0.141372
\(95\) 48.7462 + 62.7479i 0.513118 + 0.660504i
\(96\) 0 0
\(97\) 27.6546i 0.285099i 0.989788 + 0.142550i \(0.0455300\pi\)
−0.989788 + 0.142550i \(0.954470\pi\)
\(98\) −45.5248 −0.464539
\(99\) 0 0
\(100\) −54.2396 + 212.546i −0.542396 + 2.12546i
\(101\) 36.0907i 0.357333i −0.983910 0.178667i \(-0.942822\pi\)
0.983910 0.178667i \(-0.0571784\pi\)
\(102\) 0 0
\(103\) 28.0612i 0.272439i 0.990679 + 0.136219i \(0.0434952\pi\)
−0.990679 + 0.136219i \(0.956505\pi\)
\(104\) 188.164i 1.80927i
\(105\) 0 0
\(106\) 200.590 1.89236
\(107\) 91.8455 0.858369 0.429184 0.903217i \(-0.358801\pi\)
0.429184 + 0.903217i \(0.358801\pi\)
\(108\) 0 0
\(109\) 78.1779 0.717228 0.358614 0.933486i \(-0.383249\pi\)
0.358614 + 0.933486i \(0.383249\pi\)
\(110\) 214.520 166.652i 1.95018 1.51501i
\(111\) 0 0
\(112\) 155.911i 1.39206i
\(113\) 6.56726 0.0581174 0.0290587 0.999578i \(-0.490749\pi\)
0.0290587 + 0.999578i \(0.490749\pi\)
\(114\) 0 0
\(115\) 35.3805 + 45.5431i 0.307656 + 0.396027i
\(116\) 477.656i 4.11772i
\(117\) 0 0
\(118\) 178.859i 1.51575i
\(119\) 161.642i 1.35833i
\(120\) 0 0
\(121\) −110.063 −0.909613
\(122\) 173.136 1.41915
\(123\) 0 0
\(124\) −277.023 −2.23406
\(125\) −114.610 + 49.8963i −0.916877 + 0.399170i
\(126\) 0 0
\(127\) 247.486i 1.94871i 0.225023 + 0.974353i \(0.427754\pi\)
−0.225023 + 0.974353i \(0.572246\pi\)
\(128\) 157.093 1.22729
\(129\) 0 0
\(130\) 155.619 120.894i 1.19707 0.929954i
\(131\) 142.174i 1.08530i 0.839960 + 0.542648i \(0.182578\pi\)
−0.839960 + 0.542648i \(0.817422\pi\)
\(132\) 0 0
\(133\) 95.6961i 0.719520i
\(134\) 247.937i 1.85027i
\(135\) 0 0
\(136\) 458.037 3.36792
\(137\) 72.8900 0.532044 0.266022 0.963967i \(-0.414291\pi\)
0.266022 + 0.963967i \(0.414291\pi\)
\(138\) 0 0
\(139\) −66.9989 −0.482007 −0.241003 0.970524i \(-0.577476\pi\)
−0.241003 + 0.970524i \(0.577476\pi\)
\(140\) 208.630 162.075i 1.49021 1.15768i
\(141\) 0 0
\(142\) 137.790i 0.970352i
\(143\) −167.620 −1.17217
\(144\) 0 0
\(145\) 214.950 166.986i 1.48242 1.15163i
\(146\) 97.4660i 0.667575i
\(147\) 0 0
\(148\) 334.721i 2.26163i
\(149\) 76.5668i 0.513871i −0.966429 0.256936i \(-0.917287\pi\)
0.966429 0.256936i \(-0.0827128\pi\)
\(150\) 0 0
\(151\) −39.9051 −0.264272 −0.132136 0.991232i \(-0.542184\pi\)
−0.132136 + 0.991232i \(0.542184\pi\)
\(152\) −271.170 −1.78401
\(153\) 0 0
\(154\) −327.162 −2.12443
\(155\) −96.8456 124.663i −0.624810 0.804280i
\(156\) 0 0
\(157\) 135.575i 0.863538i −0.901984 0.431769i \(-0.857890\pi\)
0.901984 0.431769i \(-0.142110\pi\)
\(158\) 281.992 1.78476
\(159\) 0 0
\(160\) −74.4830 95.8773i −0.465518 0.599233i
\(161\) 69.4572i 0.431411i
\(162\) 0 0
\(163\) 85.9303i 0.527180i −0.964635 0.263590i \(-0.915093\pi\)
0.964635 0.263590i \(-0.0849066\pi\)
\(164\) 330.471i 2.01507i
\(165\) 0 0
\(166\) 538.269 3.24258
\(167\) −111.718 −0.668970 −0.334485 0.942401i \(-0.608562\pi\)
−0.334485 + 0.942401i \(0.608562\pi\)
\(168\) 0 0
\(169\) 47.4034 0.280494
\(170\) 294.285 + 378.815i 1.73109 + 2.22832i
\(171\) 0 0
\(172\) 39.8258i 0.231545i
\(173\) −8.68986 −0.0502304 −0.0251152 0.999685i \(-0.507995\pi\)
−0.0251152 + 0.999685i \(0.507995\pi\)
\(174\) 0 0
\(175\) 145.871 + 37.2249i 0.833550 + 0.212714i
\(176\) 393.562i 2.23615i
\(177\) 0 0
\(178\) 12.5280i 0.0703821i
\(179\) 57.4651i 0.321034i 0.987033 + 0.160517i \(0.0513162\pi\)
−0.987033 + 0.160517i \(0.948684\pi\)
\(180\) 0 0
\(181\) −139.711 −0.771884 −0.385942 0.922523i \(-0.626124\pi\)
−0.385942 + 0.922523i \(0.626124\pi\)
\(182\) −237.333 −1.30403
\(183\) 0 0
\(184\) −196.818 −1.06966
\(185\) −150.628 + 117.017i −0.814207 + 0.632522i
\(186\) 0 0
\(187\) 408.028i 2.18197i
\(188\) 32.6238 0.173531
\(189\) 0 0
\(190\) −174.224 224.268i −0.916970 1.18036i
\(191\) 31.4760i 0.164796i 0.996600 + 0.0823980i \(0.0262579\pi\)
−0.996600 + 0.0823980i \(0.973742\pi\)
\(192\) 0 0
\(193\) 50.0752i 0.259457i −0.991550 0.129729i \(-0.958589\pi\)
0.991550 0.129729i \(-0.0414106\pi\)
\(194\) 98.8407i 0.509488i
\(195\) 0 0
\(196\) 111.761 0.570211
\(197\) −37.4908 −0.190308 −0.0951542 0.995463i \(-0.530334\pi\)
−0.0951542 + 0.995463i \(0.530334\pi\)
\(198\) 0 0
\(199\) 40.5173 0.203604 0.101802 0.994805i \(-0.467539\pi\)
0.101802 + 0.994805i \(0.467539\pi\)
\(200\) 105.483 413.349i 0.527413 2.06675i
\(201\) 0 0
\(202\) 128.992i 0.638575i
\(203\) −327.818 −1.61487
\(204\) 0 0
\(205\) −148.716 + 115.531i −0.725442 + 0.563565i
\(206\) 100.294i 0.486864i
\(207\) 0 0
\(208\) 285.502i 1.37260i
\(209\) 241.563i 1.15580i
\(210\) 0 0
\(211\) 172.473 0.817406 0.408703 0.912668i \(-0.365981\pi\)
0.408703 + 0.912668i \(0.365981\pi\)
\(212\) −492.439 −2.32283
\(213\) 0 0
\(214\) −328.266 −1.53395
\(215\) −17.9220 + 13.9229i −0.0833583 + 0.0647575i
\(216\) 0 0
\(217\) 190.123i 0.876141i
\(218\) −279.417 −1.28173
\(219\) 0 0
\(220\) −526.637 + 409.122i −2.39381 + 1.85965i
\(221\) 295.995i 1.33935i
\(222\) 0 0
\(223\) 299.356i 1.34240i 0.741276 + 0.671201i \(0.234221\pi\)
−0.741276 + 0.671201i \(0.765779\pi\)
\(224\) 146.221i 0.652774i
\(225\) 0 0
\(226\) −23.4721 −0.103859
\(227\) 298.716 1.31593 0.657965 0.753049i \(-0.271418\pi\)
0.657965 + 0.753049i \(0.271418\pi\)
\(228\) 0 0
\(229\) −203.310 −0.887816 −0.443908 0.896072i \(-0.646408\pi\)
−0.443908 + 0.896072i \(0.646408\pi\)
\(230\) −126.454 162.776i −0.549799 0.707722i
\(231\) 0 0
\(232\) 928.924i 4.00398i
\(233\) 436.398 1.87295 0.936476 0.350733i \(-0.114067\pi\)
0.936476 + 0.350733i \(0.114067\pi\)
\(234\) 0 0
\(235\) 11.4051 + 14.6810i 0.0485322 + 0.0624725i
\(236\) 439.090i 1.86055i
\(237\) 0 0
\(238\) 577.726i 2.42742i
\(239\) 239.697i 1.00292i −0.865182 0.501458i \(-0.832797\pi\)
0.865182 0.501458i \(-0.167203\pi\)
\(240\) 0 0
\(241\) 205.348 0.852067 0.426034 0.904707i \(-0.359911\pi\)
0.426034 + 0.904707i \(0.359911\pi\)
\(242\) 393.378 1.62553
\(243\) 0 0
\(244\) −425.041 −1.74197
\(245\) 39.0711 + 50.2938i 0.159474 + 0.205281i
\(246\) 0 0
\(247\) 175.237i 0.709461i
\(248\) 538.742 2.17235
\(249\) 0 0
\(250\) 409.628 178.335i 1.63851 0.713340i
\(251\) 357.277i 1.42341i 0.702477 + 0.711707i \(0.252077\pi\)
−0.702477 + 0.711707i \(0.747923\pi\)
\(252\) 0 0
\(253\) 175.329i 0.692999i
\(254\) 884.542i 3.48245i
\(255\) 0 0
\(256\) −494.357 −1.93108
\(257\) 280.513 1.09149 0.545746 0.837951i \(-0.316246\pi\)
0.545746 + 0.837951i \(0.316246\pi\)
\(258\) 0 0
\(259\) 229.721 0.886955
\(260\) −382.038 + 296.789i −1.46938 + 1.14150i
\(261\) 0 0
\(262\) 508.145i 1.93949i
\(263\) 120.494 0.458153 0.229077 0.973408i \(-0.426429\pi\)
0.229077 + 0.973408i \(0.426429\pi\)
\(264\) 0 0
\(265\) −172.154 221.603i −0.649637 0.836237i
\(266\) 342.029i 1.28582i
\(267\) 0 0
\(268\) 608.674i 2.27117i
\(269\) 308.065i 1.14522i 0.819827 + 0.572612i \(0.194070\pi\)
−0.819827 + 0.572612i \(0.805930\pi\)
\(270\) 0 0
\(271\) 354.684 1.30880 0.654399 0.756149i \(-0.272922\pi\)
0.654399 + 0.756149i \(0.272922\pi\)
\(272\) −694.980 −2.55507
\(273\) 0 0
\(274\) −260.517 −0.950792
\(275\) −368.219 93.9658i −1.33898 0.341694i
\(276\) 0 0
\(277\) 480.306i 1.73396i −0.498346 0.866978i \(-0.666059\pi\)
0.498346 0.866978i \(-0.333941\pi\)
\(278\) 239.462 0.861373
\(279\) 0 0
\(280\) −405.733 + 315.197i −1.44905 + 1.12570i
\(281\) 126.250i 0.449287i −0.974441 0.224644i \(-0.927878\pi\)
0.974441 0.224644i \(-0.0721218\pi\)
\(282\) 0 0
\(283\) 365.044i 1.28991i −0.764221 0.644954i \(-0.776876\pi\)
0.764221 0.644954i \(-0.223124\pi\)
\(284\) 338.268i 1.19109i
\(285\) 0 0
\(286\) 599.093 2.09473
\(287\) 226.804 0.790259
\(288\) 0 0
\(289\) 431.524 1.49316
\(290\) −768.257 + 596.826i −2.64916 + 2.05802i
\(291\) 0 0
\(292\) 239.275i 0.819433i
\(293\) −194.169 −0.662693 −0.331347 0.943509i \(-0.607503\pi\)
−0.331347 + 0.943509i \(0.607503\pi\)
\(294\) 0 0
\(295\) −197.595 + 153.503i −0.669814 + 0.520350i
\(296\) 650.951i 2.19916i
\(297\) 0 0
\(298\) 273.658i 0.918317i
\(299\) 127.189i 0.425380i
\(300\) 0 0
\(301\) 27.3327 0.0908063
\(302\) 142.625 0.472269
\(303\) 0 0
\(304\) 411.446 1.35344
\(305\) −148.592 191.273i −0.487187 0.627125i
\(306\) 0 0
\(307\) 492.555i 1.60441i −0.597046 0.802207i \(-0.703659\pi\)
0.597046 0.802207i \(-0.296341\pi\)
\(308\) 803.168 2.60769
\(309\) 0 0
\(310\) 346.137 + 445.561i 1.11657 + 1.43729i
\(311\) 186.362i 0.599235i 0.954059 + 0.299617i \(0.0968590\pi\)
−0.954059 + 0.299617i \(0.903141\pi\)
\(312\) 0 0
\(313\) 218.646i 0.698548i 0.937021 + 0.349274i \(0.113572\pi\)
−0.937021 + 0.349274i \(0.886428\pi\)
\(314\) 484.562i 1.54319i
\(315\) 0 0
\(316\) −692.278 −2.19075
\(317\) 204.603 0.645435 0.322718 0.946495i \(-0.395404\pi\)
0.322718 + 0.946495i \(0.395404\pi\)
\(318\) 0 0
\(319\) 827.502 2.59405
\(320\) −51.4649 66.2476i −0.160828 0.207024i
\(321\) 0 0
\(322\) 248.248i 0.770957i
\(323\) −426.569 −1.32065
\(324\) 0 0
\(325\) −267.117 68.1656i −0.821897 0.209740i
\(326\) 307.125i 0.942100i
\(327\) 0 0
\(328\) 642.686i 1.95941i
\(329\) 22.3899i 0.0680544i
\(330\) 0 0
\(331\) −596.610 −1.80245 −0.901224 0.433353i \(-0.857330\pi\)
−0.901224 + 0.433353i \(0.857330\pi\)
\(332\) −1321.43 −3.98020
\(333\) 0 0
\(334\) 399.293 1.19549
\(335\) −273.910 + 212.789i −0.817641 + 0.635190i
\(336\) 0 0
\(337\) 332.596i 0.986931i 0.869765 + 0.493466i \(0.164270\pi\)
−0.869765 + 0.493466i \(0.835730\pi\)
\(338\) −169.425 −0.501258
\(339\) 0 0
\(340\) −722.457 929.973i −2.12487 2.73522i
\(341\) 479.921i 1.40739i
\(342\) 0 0
\(343\) 371.773i 1.08389i
\(344\) 77.4514i 0.225149i
\(345\) 0 0
\(346\) 31.0585 0.0897645
\(347\) −69.2057 −0.199440 −0.0997201 0.995016i \(-0.531795\pi\)
−0.0997201 + 0.995016i \(0.531795\pi\)
\(348\) 0 0
\(349\) 554.851 1.58983 0.794915 0.606721i \(-0.207515\pi\)
0.794915 + 0.606721i \(0.207515\pi\)
\(350\) −521.361 133.046i −1.48960 0.380132i
\(351\) 0 0
\(352\) 369.102i 1.04859i
\(353\) 176.268 0.499343 0.249672 0.968331i \(-0.419677\pi\)
0.249672 + 0.968331i \(0.419677\pi\)
\(354\) 0 0
\(355\) −152.224 + 118.257i −0.428801 + 0.333117i
\(356\) 30.7557i 0.0863924i
\(357\) 0 0
\(358\) 205.387i 0.573706i
\(359\) 122.033i 0.339924i 0.985451 + 0.169962i \(0.0543645\pi\)
−0.985451 + 0.169962i \(0.945636\pi\)
\(360\) 0 0
\(361\) −108.460 −0.300444
\(362\) 499.343 1.37940
\(363\) 0 0
\(364\) 582.642 1.60067
\(365\) −107.676 + 83.6490i −0.295003 + 0.229175i
\(366\) 0 0
\(367\) 672.393i 1.83213i −0.401025 0.916067i \(-0.631346\pi\)
0.401025 0.916067i \(-0.368654\pi\)
\(368\) 298.632 0.811499
\(369\) 0 0
\(370\) 538.362 418.231i 1.45503 1.13035i
\(371\) 337.964i 0.910954i
\(372\) 0 0
\(373\) 513.816i 1.37752i −0.724988 0.688762i \(-0.758155\pi\)
0.724988 0.688762i \(-0.241845\pi\)
\(374\) 1458.34i 3.89930i
\(375\) 0 0
\(376\) −63.4453 −0.168737
\(377\) 600.294 1.59229
\(378\) 0 0
\(379\) −496.340 −1.30960 −0.654802 0.755800i \(-0.727248\pi\)
−0.654802 + 0.755800i \(0.727248\pi\)
\(380\) 427.713 + 550.568i 1.12556 + 1.44886i
\(381\) 0 0
\(382\) 112.499i 0.294500i
\(383\) 595.923 1.55594 0.777968 0.628304i \(-0.216251\pi\)
0.777968 + 0.628304i \(0.216251\pi\)
\(384\) 0 0
\(385\) 280.783 + 361.434i 0.729306 + 0.938791i
\(386\) 178.974i 0.463664i
\(387\) 0 0
\(388\) 242.650i 0.625385i
\(389\) 439.285i 1.12927i −0.825342 0.564633i \(-0.809018\pi\)
0.825342 0.564633i \(-0.190982\pi\)
\(390\) 0 0
\(391\) −309.608 −0.791836
\(392\) −217.349 −0.554461
\(393\) 0 0
\(394\) 133.996 0.340092
\(395\) −242.016 311.533i −0.612700 0.788690i
\(396\) 0 0
\(397\) 405.932i 1.02250i 0.859432 + 0.511250i \(0.170817\pi\)
−0.859432 + 0.511250i \(0.829183\pi\)
\(398\) −144.813 −0.363853
\(399\) 0 0
\(400\) −160.049 + 627.174i −0.400122 + 1.56794i
\(401\) 328.446i 0.819066i −0.912295 0.409533i \(-0.865692\pi\)
0.912295 0.409533i \(-0.134308\pi\)
\(402\) 0 0
\(403\) 348.149i 0.863893i
\(404\) 316.670i 0.783836i
\(405\) 0 0
\(406\) 1171.66 2.88586
\(407\) −579.879 −1.42476
\(408\) 0 0
\(409\) −16.3136 −0.0398866 −0.0199433 0.999801i \(-0.506349\pi\)
−0.0199433 + 0.999801i \(0.506349\pi\)
\(410\) 531.526 412.920i 1.29641 1.00712i
\(411\) 0 0
\(412\) 246.217i 0.597614i
\(413\) 301.350 0.729662
\(414\) 0 0
\(415\) −461.963 594.656i −1.11316 1.43291i
\(416\) 267.758i 0.643648i
\(417\) 0 0
\(418\) 863.373i 2.06549i
\(419\) 381.549i 0.910618i −0.890333 0.455309i \(-0.849529\pi\)
0.890333 0.455309i \(-0.150471\pi\)
\(420\) 0 0
\(421\) 423.338 1.00555 0.502776 0.864416i \(-0.332312\pi\)
0.502776 + 0.864416i \(0.332312\pi\)
\(422\) −616.436 −1.46075
\(423\) 0 0
\(424\) 957.674 2.25866
\(425\) 165.931 650.226i 0.390427 1.52994i
\(426\) 0 0
\(427\) 291.708i 0.683158i
\(428\) 805.878 1.88289
\(429\) 0 0
\(430\) 64.0554 49.7619i 0.148966 0.115725i
\(431\) 48.3081i 0.112084i −0.998428 0.0560419i \(-0.982152\pi\)
0.998428 0.0560419i \(-0.0178480\pi\)
\(432\) 0 0
\(433\) 36.0601i 0.0832797i 0.999133 + 0.0416399i \(0.0132582\pi\)
−0.999133 + 0.0416399i \(0.986742\pi\)
\(434\) 679.520i 1.56571i
\(435\) 0 0
\(436\) 685.955 1.57329
\(437\) 183.296 0.419441
\(438\) 0 0
\(439\) −260.086 −0.592452 −0.296226 0.955118i \(-0.595728\pi\)
−0.296226 + 0.955118i \(0.595728\pi\)
\(440\) 1024.18 795.642i 2.32768 1.80828i
\(441\) 0 0
\(442\) 1057.92i 2.39349i
\(443\) −22.5294 −0.0508565 −0.0254282 0.999677i \(-0.508095\pi\)
−0.0254282 + 0.999677i \(0.508095\pi\)
\(444\) 0 0
\(445\) 13.8404 10.7520i 0.0311020 0.0241618i
\(446\) 1069.93i 2.39895i
\(447\) 0 0
\(448\) 101.033i 0.225521i
\(449\) 275.640i 0.613898i −0.951726 0.306949i \(-0.900692\pi\)
0.951726 0.306949i \(-0.0993080\pi\)
\(450\) 0 0
\(451\) −572.516 −1.26944
\(452\) 57.6230 0.127485
\(453\) 0 0
\(454\) −1067.64 −2.35164
\(455\) 203.688 + 262.195i 0.447667 + 0.576253i
\(456\) 0 0
\(457\) 119.408i 0.261286i −0.991429 0.130643i \(-0.958296\pi\)
0.991429 0.130643i \(-0.0417041\pi\)
\(458\) 726.653 1.58658
\(459\) 0 0
\(460\) 310.438 + 399.608i 0.674866 + 0.868713i
\(461\) 90.3566i 0.196001i −0.995186 0.0980007i \(-0.968755\pi\)
0.995186 0.0980007i \(-0.0312447\pi\)
\(462\) 0 0
\(463\) 610.436i 1.31844i 0.751951 + 0.659219i \(0.229113\pi\)
−0.751951 + 0.659219i \(0.770887\pi\)
\(464\) 1409.46i 3.03762i
\(465\) 0 0
\(466\) −1559.73 −3.34707
\(467\) 65.6533 0.140585 0.0702926 0.997526i \(-0.477607\pi\)
0.0702926 + 0.997526i \(0.477607\pi\)
\(468\) 0 0
\(469\) 417.736 0.890696
\(470\) −40.7630 52.4717i −0.0867299 0.111642i
\(471\) 0 0
\(472\) 853.923i 1.80916i
\(473\) −68.9951 −0.145867
\(474\) 0 0
\(475\) −98.2357 + 384.951i −0.206812 + 0.810423i
\(476\) 1418.29i 2.97960i
\(477\) 0 0
\(478\) 856.704i 1.79227i
\(479\) 93.9812i 0.196203i −0.995176 0.0981015i \(-0.968723\pi\)
0.995176 0.0981015i \(-0.0312770\pi\)
\(480\) 0 0
\(481\) −420.661 −0.874555
\(482\) −733.938 −1.52269
\(483\) 0 0
\(484\) −965.725 −1.99530
\(485\) −109.195 + 84.8288i −0.225144 + 0.174905i
\(486\) 0 0
\(487\) 805.464i 1.65393i 0.562253 + 0.826965i \(0.309935\pi\)
−0.562253 + 0.826965i \(0.690065\pi\)
\(488\) 826.601 1.69386
\(489\) 0 0
\(490\) −139.645 179.756i −0.284989 0.366849i
\(491\) 940.783i 1.91605i 0.286678 + 0.958027i \(0.407449\pi\)
−0.286678 + 0.958027i \(0.592551\pi\)
\(492\) 0 0
\(493\) 1461.26i 2.96402i
\(494\) 626.316i 1.26785i
\(495\) 0 0
\(496\) −817.433 −1.64805
\(497\) 232.155 0.467114
\(498\) 0 0
\(499\) 379.929 0.761380 0.380690 0.924703i \(-0.375686\pi\)
0.380690 + 0.924703i \(0.375686\pi\)
\(500\) −1005.62 + 437.804i −2.01123 + 0.875609i
\(501\) 0 0
\(502\) 1276.95i 2.54372i
\(503\) −637.608 −1.26761 −0.633805 0.773493i \(-0.718508\pi\)
−0.633805 + 0.773493i \(0.718508\pi\)
\(504\) 0 0
\(505\) 142.505 110.706i 0.282188 0.219220i
\(506\) 626.645i 1.23843i
\(507\) 0 0
\(508\) 2171.51i 4.27463i
\(509\) 963.113i 1.89217i −0.323922 0.946084i \(-0.605002\pi\)
0.323922 0.946084i \(-0.394998\pi\)
\(510\) 0 0
\(511\) 164.216 0.321361
\(512\) 1138.52 2.22366
\(513\) 0 0
\(514\) −1002.59 −1.95056
\(515\) −110.800 + 86.0760i −0.215146 + 0.167138i
\(516\) 0 0
\(517\) 56.5181i 0.109319i
\(518\) −821.050 −1.58504
\(519\) 0 0
\(520\) 742.971 577.182i 1.42879 1.10997i
\(521\) 36.7876i 0.0706095i −0.999377 0.0353048i \(-0.988760\pi\)
0.999377 0.0353048i \(-0.0112402\pi\)
\(522\) 0 0
\(523\) 441.292i 0.843770i −0.906649 0.421885i \(-0.861369\pi\)
0.906649 0.421885i \(-0.138631\pi\)
\(524\) 1247.47i 2.38067i
\(525\) 0 0
\(526\) −430.660 −0.818746
\(527\) 847.478 1.60812
\(528\) 0 0
\(529\) −395.962 −0.748510
\(530\) 615.297 + 792.034i 1.16094 + 1.49440i
\(531\) 0 0
\(532\) 839.665i 1.57832i
\(533\) −415.320 −0.779212
\(534\) 0 0
\(535\) 281.730 + 362.654i 0.526599 + 0.677858i
\(536\) 1183.72i 2.20844i
\(537\) 0 0
\(538\) 1101.06i 2.04658i
\(539\) 193.618i 0.359217i
\(540\) 0 0
\(541\) −426.631 −0.788598 −0.394299 0.918982i \(-0.629013\pi\)
−0.394299 + 0.918982i \(0.629013\pi\)
\(542\) −1267.68 −2.33890
\(543\) 0 0
\(544\) 651.786 1.19814
\(545\) 239.806 + 308.687i 0.440011 + 0.566398i
\(546\) 0 0
\(547\) 602.928i 1.10224i 0.834424 + 0.551122i \(0.185800\pi\)
−0.834424 + 0.551122i \(0.814200\pi\)
\(548\) 639.558 1.16708
\(549\) 0 0
\(550\) 1316.05 + 335.844i 2.39283 + 0.610626i
\(551\) 865.104i 1.57006i
\(552\) 0 0
\(553\) 475.115i 0.859159i
\(554\) 1716.67i 3.09868i
\(555\) 0 0
\(556\) −587.868 −1.05732
\(557\) 527.490 0.947020 0.473510 0.880788i \(-0.342987\pi\)
0.473510 + 0.880788i \(0.342987\pi\)
\(558\) 0 0
\(559\) −50.0511 −0.0895368
\(560\) 615.619 478.248i 1.09932 0.854014i
\(561\) 0 0
\(562\) 451.231i 0.802902i
\(563\) 14.2805 0.0253650 0.0126825 0.999920i \(-0.495963\pi\)
0.0126825 + 0.999920i \(0.495963\pi\)
\(564\) 0 0
\(565\) 20.1447 + 25.9310i 0.0356543 + 0.0458955i
\(566\) 1304.71i 2.30514i
\(567\) 0 0
\(568\) 657.849i 1.15818i
\(569\) 672.782i 1.18239i 0.806527 + 0.591197i \(0.201344\pi\)
−0.806527 + 0.591197i \(0.798656\pi\)
\(570\) 0 0
\(571\) 857.665 1.50204 0.751020 0.660280i \(-0.229562\pi\)
0.751020 + 0.660280i \(0.229562\pi\)
\(572\) −1470.75 −2.57123
\(573\) 0 0
\(574\) −810.625 −1.41224
\(575\) −71.3005 + 279.401i −0.124001 + 0.485915i
\(576\) 0 0
\(577\) 134.308i 0.232769i −0.993204 0.116385i \(-0.962869\pi\)
0.993204 0.116385i \(-0.0371305\pi\)
\(578\) −1542.32 −2.66837
\(579\) 0 0
\(580\) 1886.04 1465.18i 3.25179 2.52617i
\(581\) 906.903i 1.56093i
\(582\) 0 0
\(583\) 853.112i 1.46331i
\(584\) 465.330i 0.796799i
\(585\) 0 0
\(586\) 693.983 1.18427
\(587\) 900.274 1.53369 0.766843 0.641835i \(-0.221826\pi\)
0.766843 + 0.641835i \(0.221826\pi\)
\(588\) 0 0
\(589\) −501.729 −0.851832
\(590\) 706.228 548.638i 1.19700 0.929895i
\(591\) 0 0
\(592\) 987.688i 1.66839i
\(593\) −282.338 −0.476118 −0.238059 0.971251i \(-0.576511\pi\)
−0.238059 + 0.971251i \(0.576511\pi\)
\(594\) 0 0
\(595\) −638.246 + 495.826i −1.07268 + 0.833322i
\(596\) 671.819i 1.12721i
\(597\) 0 0
\(598\) 454.587i 0.760179i
\(599\) 96.2914i 0.160754i −0.996765 0.0803768i \(-0.974388\pi\)
0.996765 0.0803768i \(-0.0256124\pi\)
\(600\) 0 0
\(601\) −537.809 −0.894857 −0.447428 0.894320i \(-0.647660\pi\)
−0.447428 + 0.894320i \(0.647660\pi\)
\(602\) −97.6901 −0.162276
\(603\) 0 0
\(604\) −350.138 −0.579699
\(605\) −337.612 434.587i −0.558036 0.718325i
\(606\) 0 0
\(607\) 473.265i 0.779679i 0.920883 + 0.389839i \(0.127470\pi\)
−0.920883 + 0.389839i \(0.872530\pi\)
\(608\) −385.874 −0.634662
\(609\) 0 0
\(610\) 531.084 + 683.632i 0.870630 + 1.12071i
\(611\) 40.9999i 0.0671030i
\(612\) 0 0
\(613\) 109.517i 0.178658i −0.996002 0.0893288i \(-0.971528\pi\)
0.996002 0.0893288i \(-0.0284722\pi\)
\(614\) 1760.45i 2.86718i
\(615\) 0 0
\(616\) −1561.97 −2.53566
\(617\) 1132.89 1.83613 0.918064 0.396432i \(-0.129752\pi\)
0.918064 + 0.396432i \(0.129752\pi\)
\(618\) 0 0
\(619\) 153.529 0.248027 0.124014 0.992281i \(-0.460423\pi\)
0.124014 + 0.992281i \(0.460423\pi\)
\(620\) −849.751 1093.83i −1.37057 1.76424i
\(621\) 0 0
\(622\) 666.079i 1.07087i
\(623\) −21.1078 −0.0338809
\(624\) 0 0
\(625\) −548.574 299.485i −0.877719 0.479176i
\(626\) 781.464i 1.24835i
\(627\) 0 0
\(628\) 1189.58i 1.89423i
\(629\) 1023.99i 1.62797i
\(630\) 0 0
\(631\) −289.486 −0.458774 −0.229387 0.973335i \(-0.573672\pi\)
−0.229387 + 0.973335i \(0.573672\pi\)
\(632\) 1346.31 2.13024
\(633\) 0 0
\(634\) −731.274 −1.15343
\(635\) −977.203 + 759.147i −1.53890 + 1.19551i
\(636\) 0 0
\(637\) 140.456i 0.220496i
\(638\) −2957.58 −4.63571
\(639\) 0 0
\(640\) 481.873 + 620.285i 0.752927 + 0.969196i
\(641\) 777.452i 1.21287i −0.795132 0.606436i \(-0.792598\pi\)
0.795132 0.606436i \(-0.207402\pi\)
\(642\) 0 0
\(643\) 292.731i 0.455258i 0.973748 + 0.227629i \(0.0730974\pi\)
−0.973748 + 0.227629i \(0.926903\pi\)
\(644\) 609.438i 0.946332i
\(645\) 0 0
\(646\) 1524.60 2.36007
\(647\) −504.594 −0.779899 −0.389949 0.920836i \(-0.627507\pi\)
−0.389949 + 0.920836i \(0.627507\pi\)
\(648\) 0 0
\(649\) −760.689 −1.17209
\(650\) 954.705 + 243.631i 1.46878 + 0.374818i
\(651\) 0 0
\(652\) 753.977i 1.15641i
\(653\) 221.350 0.338974 0.169487 0.985532i \(-0.445789\pi\)
0.169487 + 0.985532i \(0.445789\pi\)
\(654\) 0 0
\(655\) −561.376 + 436.109i −0.857063 + 0.665816i
\(656\) 975.146i 1.48650i
\(657\) 0 0
\(658\) 80.0240i 0.121617i
\(659\) 768.534i 1.16621i 0.812396 + 0.583106i \(0.198163\pi\)
−0.812396 + 0.583106i \(0.801837\pi\)
\(660\) 0 0
\(661\) −383.835 −0.580689 −0.290345 0.956922i \(-0.593770\pi\)
−0.290345 + 0.956922i \(0.593770\pi\)
\(662\) 2132.35 3.22108
\(663\) 0 0
\(664\) 2569.85 3.87026
\(665\) 377.858 293.542i 0.568208 0.441416i
\(666\) 0 0
\(667\) 627.901i 0.941381i
\(668\) −980.245 −1.46743
\(669\) 0 0
\(670\) 978.984 760.531i 1.46117 1.13512i
\(671\) 736.351i 1.09739i
\(672\) 0 0
\(673\) 394.850i 0.586702i 0.956005 + 0.293351i \(0.0947704\pi\)
−0.956005 + 0.293351i \(0.905230\pi\)
\(674\) 1188.73i 1.76370i
\(675\) 0 0
\(676\) 415.931 0.615283
\(677\) 606.978 0.896571 0.448285 0.893890i \(-0.352035\pi\)
0.448285 + 0.893890i \(0.352035\pi\)
\(678\) 0 0
\(679\) 166.532 0.245260
\(680\) 1405.00 + 1808.57i 2.06618 + 2.65966i
\(681\) 0 0
\(682\) 1715.29i 2.51509i
\(683\) 711.162 1.04123 0.520616 0.853791i \(-0.325702\pi\)
0.520616 + 0.853791i \(0.325702\pi\)
\(684\) 0 0
\(685\) 223.586 + 287.808i 0.326402 + 0.420157i
\(686\) 1328.76i 1.93697i
\(687\) 0 0
\(688\) 117.517i 0.170810i
\(689\) 618.873i 0.898219i
\(690\) 0 0
\(691\) 850.879 1.23137 0.615687 0.787991i \(-0.288879\pi\)
0.615687 + 0.787991i \(0.288879\pi\)
\(692\) −76.2473 −0.110184
\(693\) 0 0
\(694\) 247.349 0.356411
\(695\) −205.515 264.547i −0.295705 0.380643i
\(696\) 0 0
\(697\) 1010.99i 1.45049i
\(698\) −1983.10 −2.84112
\(699\) 0 0
\(700\) 1279.92 + 326.622i 1.82845 + 0.466603i
\(701\) 1073.69i 1.53166i −0.643043 0.765830i \(-0.722328\pi\)
0.643043 0.765830i \(-0.277672\pi\)
\(702\) 0 0
\(703\) 606.229i 0.862345i
\(704\) 255.036i 0.362266i
\(705\) 0 0
\(706\) −630.002 −0.892355
\(707\) −217.332 −0.307401
\(708\) 0 0
\(709\) 833.608 1.17575 0.587876 0.808951i \(-0.299964\pi\)
0.587876 + 0.808951i \(0.299964\pi\)
\(710\) 544.067 422.662i 0.766291 0.595299i
\(711\) 0 0
\(712\) 59.8123i 0.0840060i
\(713\) −364.160 −0.510743
\(714\) 0 0
\(715\) −514.164 661.851i −0.719111 0.925666i
\(716\) 504.216i 0.704212i
\(717\) 0 0
\(718\) 436.159i 0.607463i
\(719\) 433.030i 0.602267i 0.953582 + 0.301134i \(0.0973650\pi\)
−0.953582 + 0.301134i \(0.902635\pi\)
\(720\) 0 0
\(721\) 168.980 0.234369
\(722\) 387.649 0.536910
\(723\) 0 0
\(724\) −1225.86 −1.69318
\(725\) 1318.69 + 336.518i 1.81889 + 0.464162i
\(726\) 0 0
\(727\) 678.559i 0.933369i −0.884424 0.466684i \(-0.845448\pi\)
0.884424 0.466684i \(-0.154552\pi\)
\(728\) −1133.10 −1.55645
\(729\) 0 0
\(730\) 384.847 298.971i 0.527187 0.409549i
\(731\) 121.836i 0.166671i
\(732\) 0 0
\(733\) 182.056i 0.248371i 0.992259 + 0.124186i \(0.0396318\pi\)
−0.992259 + 0.124186i \(0.960368\pi\)
\(734\) 2403.21i 3.27413i
\(735\) 0 0
\(736\) −280.072 −0.380532
\(737\) −1054.48 −1.43077
\(738\) 0 0
\(739\) 727.990 0.985101 0.492551 0.870284i \(-0.336065\pi\)
0.492551 + 0.870284i \(0.336065\pi\)
\(740\) −1321.65 + 1026.74i −1.78602 + 1.38748i
\(741\) 0 0
\(742\) 1207.92i 1.62793i
\(743\) −394.282 −0.530663 −0.265331 0.964157i \(-0.585481\pi\)
−0.265331 + 0.964157i \(0.585481\pi\)
\(744\) 0 0
\(745\) 302.326 234.864i 0.405806 0.315254i
\(746\) 1836.44i 2.46171i
\(747\) 0 0
\(748\) 3580.15i 4.78630i
\(749\) 553.079i 0.738423i
\(750\) 0 0
\(751\) 1339.18 1.78320 0.891600 0.452824i \(-0.149583\pi\)
0.891600 + 0.452824i \(0.149583\pi\)
\(752\) 96.2654 0.128013
\(753\) 0 0
\(754\) −2145.52 −2.84552
\(755\) −122.406 157.566i −0.162128 0.208697i
\(756\) 0 0
\(757\) 185.595i 0.245171i −0.992458 0.122586i \(-0.960881\pi\)
0.992458 0.122586i \(-0.0391186\pi\)
\(758\) 1773.98 2.34034
\(759\) 0 0
\(760\) −831.797 1070.72i −1.09447 1.40884i
\(761\) 933.732i 1.22698i −0.789703 0.613490i \(-0.789765\pi\)
0.789703 0.613490i \(-0.210235\pi\)
\(762\) 0 0
\(763\) 470.775i 0.617005i
\(764\) 276.180i 0.361492i
\(765\) 0 0
\(766\) −2129.90 −2.78054
\(767\) −551.827 −0.719461
\(768\) 0 0
\(769\) 1058.93 1.37702 0.688511 0.725226i \(-0.258265\pi\)
0.688511 + 0.725226i \(0.258265\pi\)
\(770\) −1003.55 1291.81i −1.30331 1.67767i
\(771\) 0 0
\(772\) 439.374i 0.569137i
\(773\) −79.0622 −0.102280 −0.0511399 0.998692i \(-0.516285\pi\)
−0.0511399 + 0.998692i \(0.516285\pi\)
\(774\) 0 0
\(775\) 195.168 764.794i 0.251830 0.986831i
\(776\) 471.894i 0.608111i
\(777\) 0 0
\(778\) 1570.05i 2.01806i
\(779\) 598.531i 0.768333i
\(780\) 0 0
\(781\) −586.023 −0.750350
\(782\) 1106.57 1.41506
\(783\) 0 0
\(784\) 329.783 0.420641
\(785\) 535.323 415.869i 0.681940 0.529770i
\(786\) 0 0
\(787\) 966.245i 1.22776i 0.789401 + 0.613878i \(0.210391\pi\)
−0.789401 + 0.613878i \(0.789609\pi\)
\(788\) −328.955 −0.417455
\(789\) 0 0
\(790\) 864.994 + 1113.45i 1.09493 + 1.40943i
\(791\) 39.5470i 0.0499962i
\(792\) 0 0
\(793\) 534.171i 0.673608i
\(794\) 1450.85i 1.82726i
\(795\) 0 0
\(796\) 355.510 0.446621
\(797\) −1275.81 −1.60077 −0.800384 0.599488i \(-0.795371\pi\)
−0.800384 + 0.599488i \(0.795371\pi\)
\(798\) 0 0
\(799\) −99.8037 −0.124911
\(800\) 150.102 588.195i 0.187627 0.735244i
\(801\) 0 0
\(802\) 1173.90i 1.46372i
\(803\) −414.524 −0.516220
\(804\) 0 0
\(805\) 274.253 213.056i 0.340688 0.264666i
\(806\) 1244.32i 1.54383i
\(807\) 0 0
\(808\) 615.845i 0.762185i
\(809\) 1533.89i 1.89603i 0.318220 + 0.948017i \(0.396915\pi\)
−0.318220 + 0.948017i \(0.603085\pi\)
\(810\) 0 0
\(811\) −753.037 −0.928530 −0.464265 0.885696i \(-0.653681\pi\)
−0.464265 + 0.885696i \(0.653681\pi\)
\(812\) −2876.37 −3.54233
\(813\) 0 0
\(814\) 2072.55 2.54613
\(815\) 339.298 263.586i 0.416316 0.323418i
\(816\) 0 0
\(817\) 72.1303i 0.0882867i
\(818\) 58.3067 0.0712796
\(819\) 0 0
\(820\) −1304.87 + 1013.70i −1.59131 + 1.23622i
\(821\) 1543.26i 1.87973i 0.341551 + 0.939863i \(0.389048\pi\)
−0.341551 + 0.939863i \(0.610952\pi\)
\(822\) 0 0
\(823\) 1167.96i 1.41915i 0.704632 + 0.709573i \(0.251112\pi\)
−0.704632 + 0.709573i \(0.748888\pi\)
\(824\) 478.832i 0.581107i
\(825\) 0 0
\(826\) −1077.06 −1.30395
\(827\) 432.942 0.523509 0.261755 0.965134i \(-0.415699\pi\)
0.261755 + 0.965134i \(0.415699\pi\)
\(828\) 0 0
\(829\) 470.069 0.567031 0.283515 0.958968i \(-0.408499\pi\)
0.283515 + 0.958968i \(0.408499\pi\)
\(830\) 1651.11 + 2125.37i 1.98929 + 2.56068i
\(831\) 0 0
\(832\) 185.010i 0.222368i
\(833\) −341.904 −0.410449
\(834\) 0 0
\(835\) −342.688 441.121i −0.410405 0.528288i
\(836\) 2119.54i 2.53534i
\(837\) 0 0
\(838\) 1363.70i 1.62733i
\(839\) 1009.21i 1.20288i 0.798919 + 0.601439i \(0.205406\pi\)
−0.798919 + 0.601439i \(0.794594\pi\)
\(840\) 0 0
\(841\) −2122.51 −2.52380
\(842\) −1513.06 −1.79698
\(843\) 0 0
\(844\) 1513.32 1.79304
\(845\) 145.407 + 187.173i 0.172079 + 0.221507i
\(846\) 0 0
\(847\) 662.783i 0.782507i
\(848\) −1453.08 −1.71353
\(849\) 0 0
\(850\) −593.058 + 2323.98i −0.697715 + 2.73410i
\(851\) 440.007i 0.517047i
\(852\) 0 0
\(853\) 900.755i 1.05598i −0.849249 0.527992i \(-0.822945\pi\)
0.849249 0.527992i \(-0.177055\pi\)
\(854\) 1042.60i 1.22084i
\(855\) 0 0
\(856\) −1567.24 −1.83088
\(857\) −111.824 −0.130483 −0.0652417 0.997869i \(-0.520782\pi\)
−0.0652417 + 0.997869i \(0.520782\pi\)
\(858\) 0 0
\(859\) 180.456 0.210076 0.105038 0.994468i \(-0.466504\pi\)
0.105038 + 0.994468i \(0.466504\pi\)
\(860\) −157.253 + 122.163i −0.182852 + 0.142050i
\(861\) 0 0
\(862\) 172.659i 0.200300i
\(863\) 451.735 0.523447 0.261724 0.965143i \(-0.415709\pi\)
0.261724 + 0.965143i \(0.415709\pi\)
\(864\) 0 0
\(865\) −26.6556 34.3121i −0.0308157 0.0396672i
\(866\) 128.883i 0.148826i
\(867\) 0 0
\(868\) 1668.19i 1.92188i
\(869\) 1199.32i 1.38011i
\(870\) 0 0
\(871\) −764.951 −0.878244
\(872\) −1334.01 −1.52983
\(873\) 0 0
\(874\) −655.120 −0.749566
\(875\) 300.468 + 690.161i 0.343392 + 0.788756i
\(876\) 0 0
\(877\) 736.225i 0.839481i −0.907644 0.419741i \(-0.862121\pi\)
0.907644 0.419741i \(-0.137879\pi\)
\(878\) 929.579 1.05875
\(879\) 0 0
\(880\) −1553.99 + 1207.23i −1.76590 + 1.37185i
\(881\) 52.0576i 0.0590892i 0.999563 + 0.0295446i \(0.00940571\pi\)
−0.999563 + 0.0295446i \(0.990594\pi\)
\(882\) 0 0
\(883\) 637.785i 0.722294i −0.932509 0.361147i \(-0.882385\pi\)
0.932509 0.361147i \(-0.117615\pi\)
\(884\) 2597.15i 2.93795i
\(885\) 0 0
\(886\) 80.5227 0.0908834
\(887\) −1346.54 −1.51809 −0.759043 0.651041i \(-0.774333\pi\)
−0.759043 + 0.651041i \(0.774333\pi\)
\(888\) 0 0
\(889\) 1490.32 1.67640
\(890\) −49.4671 + 38.4289i −0.0555810 + 0.0431785i
\(891\) 0 0
\(892\) 2626.63i 2.94465i
\(893\) 59.0864 0.0661661
\(894\) 0 0
\(895\) −226.902 + 176.271i −0.253522 + 0.196951i
\(896\) 945.990i 1.05579i
\(897\) 0 0
\(898\) 985.169i 1.09707i
\(899\) 1718.73i 1.91182i
\(900\) 0 0
\(901\) 1506.49 1.67202
\(902\) 2046.24 2.26855
\(903\) 0 0
\(904\) −112.063 −0.123963
\(905\) −428.555 551.652i −0.473541 0.609560i
\(906\) 0 0
\(907\) 1073.34i 1.18339i 0.806161 + 0.591696i \(0.201541\pi\)
−0.806161 + 0.591696i \(0.798459\pi\)
\(908\) 2621.02 2.88658
\(909\) 0 0
\(910\) −728.005 937.115i −0.800005 1.02980i
\(911\) 83.7182i 0.0918970i −0.998944 0.0459485i \(-0.985369\pi\)
0.998944 0.0459485i \(-0.0146310\pi\)
\(912\) 0 0
\(913\) 2289.27i 2.50741i
\(914\) 426.776i 0.466932i
\(915\) 0 0
\(916\) −1783.90 −1.94749
\(917\) 856.149 0.933641
\(918\) 0 0
\(919\) 1235.72 1.34463 0.672317 0.740264i \(-0.265299\pi\)
0.672317 + 0.740264i \(0.265299\pi\)
\(920\) −603.727 777.140i −0.656225 0.844717i
\(921\) 0 0
\(922\) 322.945i 0.350266i
\(923\) −425.119 −0.460583
\(924\) 0 0
\(925\) −924.085 235.818i −0.999011 0.254938i
\(926\) 2181.77i 2.35612i
\(927\) 0 0
\(928\) 1321.86i 1.42442i
\(929\) 745.068i 0.802011i −0.916076 0.401006i \(-0.868661\pi\)
0.916076 0.401006i \(-0.131339\pi\)
\(930\) 0 0
\(931\) 202.416 0.217418
\(932\) 3829.08 4.10845
\(933\) 0 0
\(934\) −234.652 −0.251234
\(935\) 1611.11 1251.60i 1.72311 1.33861i
\(936\) 0 0
\(937\) 353.460i 0.377225i 0.982052 + 0.188613i \(0.0603991\pi\)
−0.982052 + 0.188613i \(0.939601\pi\)
\(938\) −1493.04 −1.59172
\(939\) 0 0
\(940\) 100.071 + 128.816i 0.106459 + 0.137038i
\(941\) 253.779i 0.269690i 0.990867 + 0.134845i \(0.0430537\pi\)
−0.990867 + 0.134845i \(0.956946\pi\)
\(942\) 0 0
\(943\) 434.420i 0.460679i
\(944\) 1295.66i 1.37252i
\(945\) 0 0
\(946\) 246.596 0.260673
\(947\) −1574.72 −1.66285 −0.831424 0.555639i \(-0.812474\pi\)
−0.831424 + 0.555639i \(0.812474\pi\)
\(948\) 0 0
\(949\) −300.708 −0.316869
\(950\) 351.105 1375.86i 0.369585 1.44827i
\(951\) 0 0
\(952\) 2758.23i 2.89730i
\(953\) 137.098 0.143860 0.0719300 0.997410i \(-0.477084\pi\)
0.0719300 + 0.997410i \(0.477084\pi\)
\(954\) 0 0
\(955\) −124.284 + 96.5508i −0.130140 + 0.101100i
\(956\) 2103.17i 2.19997i
\(957\) 0 0
\(958\) 335.900i 0.350626i
\(959\) 438.932i 0.457698i
\(960\) 0 0
\(961\) 35.8009 0.0372538
\(962\) 1503.49 1.56288
\(963\) 0 0
\(964\) 1801.78 1.86907
\(965\) 197.723 153.603i 0.204894 0.159174i
\(966\) 0 0
\(967\) 377.253i 0.390127i −0.980791 0.195064i \(-0.937509\pi\)
0.980791 0.195064i \(-0.0624913\pi\)
\(968\) 1878.10 1.94019
\(969\) 0 0
\(970\) 390.275 303.188i 0.402345 0.312565i
\(971\) 855.490i 0.881040i 0.897743 + 0.440520i \(0.145206\pi\)
−0.897743 + 0.440520i \(0.854794\pi\)
\(972\) 0 0
\(973\) 403.457i 0.414653i
\(974\) 2878.82i 2.95567i
\(975\) 0 0
\(976\) −1254.20 −1.28504
\(977\) −1074.71 −1.10001 −0.550004 0.835162i \(-0.685374\pi\)
−0.550004 + 0.835162i \(0.685374\pi\)
\(978\) 0 0
\(979\) 53.2818 0.0544247
\(980\) 342.821 + 441.292i 0.349818 + 0.450298i
\(981\) 0 0
\(982\) 3362.46i 3.42410i
\(983\) 1161.55 1.18164 0.590821 0.806803i \(-0.298804\pi\)
0.590821 + 0.806803i \(0.298804\pi\)
\(984\) 0 0
\(985\) −115.001 148.033i −0.116752 0.150287i
\(986\) 5222.71i 5.29687i
\(987\) 0 0
\(988\) 1537.58i 1.55625i
\(989\) 52.3529i 0.0529352i
\(990\) 0 0
\(991\) 463.882 0.468095 0.234047 0.972225i \(-0.424803\pi\)
0.234047 + 0.972225i \(0.424803\pi\)
\(992\) 766.629 0.772812
\(993\) 0 0
\(994\) −829.750 −0.834759
\(995\) 124.284 + 159.983i 0.124909 + 0.160787i
\(996\) 0 0
\(997\) 186.488i 0.187050i 0.995617 + 0.0935248i \(0.0298134\pi\)
−0.995617 + 0.0935248i \(0.970187\pi\)
\(998\) −1357.91 −1.36063
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.b.404.2 yes 24
3.2 odd 2 inner 405.3.d.b.404.23 yes 24
5.4 even 2 inner 405.3.d.b.404.24 yes 24
9.2 odd 6 405.3.h.k.134.2 48
9.4 even 3 405.3.h.k.269.24 48
9.5 odd 6 405.3.h.k.269.1 48
9.7 even 3 405.3.h.k.134.23 48
15.14 odd 2 inner 405.3.d.b.404.1 24
45.4 even 6 405.3.h.k.269.2 48
45.14 odd 6 405.3.h.k.269.23 48
45.29 odd 6 405.3.h.k.134.24 48
45.34 even 6 405.3.h.k.134.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.1 24 15.14 odd 2 inner
405.3.d.b.404.2 yes 24 1.1 even 1 trivial
405.3.d.b.404.23 yes 24 3.2 odd 2 inner
405.3.d.b.404.24 yes 24 5.4 even 2 inner
405.3.h.k.134.1 48 45.34 even 6
405.3.h.k.134.2 48 9.2 odd 6
405.3.h.k.134.23 48 9.7 even 3
405.3.h.k.134.24 48 45.29 odd 6
405.3.h.k.269.1 48 9.5 odd 6
405.3.h.k.269.2 48 45.4 even 6
405.3.h.k.269.23 48 45.14 odd 6
405.3.h.k.269.24 48 9.4 even 3