Properties

Label 405.2.r.a.368.8
Level $405$
Weight $2$
Character 405.368
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 368.8
Character \(\chi\) \(=\) 405.368
Dual form 405.2.r.a.197.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0152086 + 0.00133058i) q^{2} +(-1.96939 - 0.347256i) q^{4} +(1.79388 + 1.33492i) q^{5} +(0.211408 + 0.148030i) q^{7} +(-0.0589827 - 0.0158044i) q^{8} +(0.0255062 + 0.0226891i) q^{10} +(-1.49616 + 4.11066i) q^{11} +(0.187451 + 2.14258i) q^{13} +(0.00301826 + 0.00253263i) q^{14} +(3.75746 + 1.36760i) q^{16} +(-1.70216 + 0.456091i) q^{17} +(4.91894 - 2.83995i) q^{19} +(-3.06928 - 3.25190i) q^{20} +(-0.0282241 + 0.0605267i) q^{22} +(3.32360 + 4.74660i) q^{23} +(1.43600 + 4.78935i) q^{25} +0.0328351i q^{26} +(-0.364940 - 0.364940i) q^{28} +(-3.59567 + 3.01712i) q^{29} +(-0.912568 + 5.17543i) q^{31} +(0.166010 + 0.0774120i) q^{32} +(-0.0264943 + 0.00467167i) q^{34} +(0.181634 + 0.547759i) q^{35} +(-0.837479 - 3.12552i) q^{37} +(0.0785891 - 0.0366467i) q^{38} +(-0.0847103 - 0.107088i) q^{40} +(-0.241984 + 0.288386i) q^{41} +(3.84888 + 8.25395i) q^{43} +(4.37396 - 7.57592i) q^{44} +(0.0442317 + 0.0766116i) q^{46} +(2.29910 - 3.28345i) q^{47} +(-2.37136 - 6.51526i) q^{49} +(0.0154670 + 0.0747502i) q^{50} +(0.374859 - 4.28465i) q^{52} +(8.15900 - 8.15900i) q^{53} +(-8.17131 + 5.37678i) q^{55} +(-0.0101299 - 0.0120724i) q^{56} +(-0.0586997 + 0.0411020i) q^{58} +(-10.6146 + 3.86341i) q^{59} +(-2.10712 - 11.9501i) q^{61} +(-0.0207652 + 0.0774969i) q^{62} +(-6.92336 - 3.99720i) q^{64} +(-2.52389 + 4.09375i) q^{65} +(1.82940 - 0.160052i) q^{67} +(3.51058 - 0.307136i) q^{68} +(0.00203356 + 0.00857235i) q^{70} +(-4.44360 - 2.56551i) q^{71} +(3.71651 - 13.8702i) q^{73} +(-0.00857816 - 0.0486492i) q^{74} +(-10.6735 + 3.88483i) q^{76} +(-0.924799 + 0.647552i) q^{77} +(1.98949 + 2.37099i) q^{79} +(4.91479 + 7.46920i) q^{80} +(-0.00406398 + 0.00406398i) q^{82} +(0.432904 - 4.94812i) q^{83} +(-3.66230 - 1.45406i) q^{85} +(0.0475536 + 0.130653i) q^{86} +(0.153214 - 0.218812i) q^{88} +(1.44584 + 2.50426i) q^{89} +(-0.277536 + 0.480707i) q^{91} +(-4.89717 - 10.5020i) q^{92} +(0.0393351 - 0.0468777i) q^{94} +(12.6151 + 1.47184i) q^{95} +(-4.27105 + 1.99162i) q^{97} +(-0.0273961 - 0.102243i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0152086 + 0.00133058i 0.0107541 + 0.000940864i 0.0925315 0.995710i \(-0.470504\pi\)
−0.0817774 + 0.996651i \(0.526060\pi\)
\(3\) 0 0
\(4\) −1.96939 0.347256i −0.984693 0.173628i
\(5\) 1.79388 + 1.33492i 0.802247 + 0.596992i
\(6\) 0 0
\(7\) 0.211408 + 0.148030i 0.0799048 + 0.0559499i 0.612846 0.790202i \(-0.290025\pi\)
−0.532941 + 0.846152i \(0.678913\pi\)
\(8\) −0.0589827 0.0158044i −0.0208535 0.00558769i
\(9\) 0 0
\(10\) 0.0255062 + 0.0226891i 0.00806578 + 0.00717494i
\(11\) −1.49616 + 4.11066i −0.451108 + 1.23941i 0.480836 + 0.876810i \(0.340333\pi\)
−0.931945 + 0.362600i \(0.881889\pi\)
\(12\) 0 0
\(13\) 0.187451 + 2.14258i 0.0519896 + 0.594244i 0.976848 + 0.213933i \(0.0686274\pi\)
−0.924859 + 0.380311i \(0.875817\pi\)
\(14\) 0.00301826 + 0.00253263i 0.000806665 + 0.000676873i
\(15\) 0 0
\(16\) 3.75746 + 1.36760i 0.939364 + 0.341901i
\(17\) −1.70216 + 0.456091i −0.412833 + 0.110618i −0.459257 0.888303i \(-0.651884\pi\)
0.0464236 + 0.998922i \(0.485218\pi\)
\(18\) 0 0
\(19\) 4.91894 2.83995i 1.12848 0.651529i 0.184929 0.982752i \(-0.440794\pi\)
0.943553 + 0.331222i \(0.107461\pi\)
\(20\) −3.06928 3.25190i −0.686312 0.727147i
\(21\) 0 0
\(22\) −0.0282241 + 0.0605267i −0.00601740 + 0.0129043i
\(23\) 3.32360 + 4.74660i 0.693019 + 0.989734i 0.999286 + 0.0377879i \(0.0120311\pi\)
−0.306267 + 0.951946i \(0.599080\pi\)
\(24\) 0 0
\(25\) 1.43600 + 4.78935i 0.287200 + 0.957871i
\(26\) 0.0328351i 0.00643949i
\(27\) 0 0
\(28\) −0.364940 0.364940i −0.0689672 0.0689672i
\(29\) −3.59567 + 3.01712i −0.667699 + 0.560266i −0.912383 0.409337i \(-0.865760\pi\)
0.244685 + 0.969603i \(0.421316\pi\)
\(30\) 0 0
\(31\) −0.912568 + 5.17543i −0.163902 + 0.929534i 0.786287 + 0.617861i \(0.212001\pi\)
−0.950189 + 0.311673i \(0.899111\pi\)
\(32\) 0.166010 + 0.0774120i 0.0293468 + 0.0136846i
\(33\) 0 0
\(34\) −0.0264943 + 0.00467167i −0.00454374 + 0.000801184i
\(35\) 0.181634 + 0.547759i 0.0307017 + 0.0925882i
\(36\) 0 0
\(37\) −0.837479 3.12552i −0.137681 0.513832i −0.999972 0.00741968i \(-0.997638\pi\)
0.862292 0.506412i \(-0.169028\pi\)
\(38\) 0.0785891 0.0366467i 0.0127488 0.00594488i
\(39\) 0 0
\(40\) −0.0847103 0.107088i −0.0133939 0.0169321i
\(41\) −0.241984 + 0.288386i −0.0377916 + 0.0450383i −0.784609 0.619991i \(-0.787136\pi\)
0.746818 + 0.665029i \(0.231581\pi\)
\(42\) 0 0
\(43\) 3.84888 + 8.25395i 0.586948 + 1.25872i 0.945627 + 0.325254i \(0.105450\pi\)
−0.358678 + 0.933461i \(0.616772\pi\)
\(44\) 4.37396 7.57592i 0.659400 1.14211i
\(45\) 0 0
\(46\) 0.0442317 + 0.0766116i 0.00652161 + 0.0112958i
\(47\) 2.29910 3.28345i 0.335358 0.478941i −0.615688 0.787990i \(-0.711122\pi\)
0.951046 + 0.309049i \(0.100011\pi\)
\(48\) 0 0
\(49\) −2.37136 6.51526i −0.338766 0.930751i
\(50\) 0.0154670 + 0.0747502i 0.00218736 + 0.0105713i
\(51\) 0 0
\(52\) 0.374859 4.28465i 0.0519835 0.594174i
\(53\) 8.15900 8.15900i 1.12072 1.12072i 0.129092 0.991633i \(-0.458794\pi\)
0.991633 0.129092i \(-0.0412062\pi\)
\(54\) 0 0
\(55\) −8.17131 + 5.37678i −1.10182 + 0.725005i
\(56\) −0.0101299 0.0120724i −0.00135367 0.00161324i
\(57\) 0 0
\(58\) −0.0586997 + 0.0411020i −0.00770765 + 0.00539696i
\(59\) −10.6146 + 3.86341i −1.38191 + 0.502973i −0.922756 0.385385i \(-0.874069\pi\)
−0.459152 + 0.888358i \(0.651847\pi\)
\(60\) 0 0
\(61\) −2.10712 11.9501i −0.269790 1.53005i −0.755040 0.655678i \(-0.772383\pi\)
0.485251 0.874375i \(-0.338728\pi\)
\(62\) −0.0207652 + 0.0774969i −0.00263719 + 0.00984212i
\(63\) 0 0
\(64\) −6.92336 3.99720i −0.865420 0.499650i
\(65\) −2.52389 + 4.09375i −0.313050 + 0.507768i
\(66\) 0 0
\(67\) 1.82940 0.160052i 0.223497 0.0195534i 0.0251426 0.999684i \(-0.491996\pi\)
0.198354 + 0.980130i \(0.436440\pi\)
\(68\) 3.51058 0.307136i 0.425721 0.0372457i
\(69\) 0 0
\(70\) 0.00203356 + 0.00857235i 0.000243057 + 0.00102459i
\(71\) −4.44360 2.56551i −0.527358 0.304471i 0.212582 0.977143i \(-0.431813\pi\)
−0.739940 + 0.672673i \(0.765146\pi\)
\(72\) 0 0
\(73\) 3.71651 13.8702i 0.434984 1.62338i −0.306120 0.951993i \(-0.599031\pi\)
0.741104 0.671390i \(-0.234303\pi\)
\(74\) −0.00857816 0.0486492i −0.000997191 0.00565535i
\(75\) 0 0
\(76\) −10.6735 + 3.88483i −1.22433 + 0.445620i
\(77\) −0.924799 + 0.647552i −0.105391 + 0.0737953i
\(78\) 0 0
\(79\) 1.98949 + 2.37099i 0.223835 + 0.266757i 0.866261 0.499591i \(-0.166516\pi\)
−0.642426 + 0.766348i \(0.722072\pi\)
\(80\) 4.91479 + 7.46920i 0.549490 + 0.835082i
\(81\) 0 0
\(82\) −0.00406398 + 0.00406398i −0.000448791 + 0.000448791i
\(83\) 0.432904 4.94812i 0.0475174 0.543127i −0.934707 0.355418i \(-0.884338\pi\)
0.982225 0.187708i \(-0.0601060\pi\)
\(84\) 0 0
\(85\) −3.66230 1.45406i −0.397233 0.157715i
\(86\) 0.0475536 + 0.130653i 0.00512784 + 0.0140886i
\(87\) 0 0
\(88\) 0.153214 0.218812i 0.0163326 0.0233254i
\(89\) 1.44584 + 2.50426i 0.153259 + 0.265452i 0.932424 0.361367i \(-0.117690\pi\)
−0.779165 + 0.626819i \(0.784357\pi\)
\(90\) 0 0
\(91\) −0.277536 + 0.480707i −0.0290937 + 0.0503917i
\(92\) −4.89717 10.5020i −0.510565 1.09491i
\(93\) 0 0
\(94\) 0.0393351 0.0468777i 0.00405710 0.00483507i
\(95\) 12.6151 + 1.47184i 1.29428 + 0.151008i
\(96\) 0 0
\(97\) −4.27105 + 1.99162i −0.433659 + 0.202219i −0.627175 0.778879i \(-0.715789\pi\)
0.193516 + 0.981097i \(0.438011\pi\)
\(98\) −0.0273961 0.102243i −0.00276742 0.0103282i
\(99\) 0 0
\(100\) −1.16491 9.93074i −0.116491 0.993074i
\(101\) −2.84523 + 0.501690i −0.283110 + 0.0499200i −0.313400 0.949621i \(-0.601468\pi\)
0.0302897 + 0.999541i \(0.490357\pi\)
\(102\) 0 0
\(103\) 9.15274 + 4.26799i 0.901846 + 0.420538i 0.817520 0.575900i \(-0.195348\pi\)
0.0843263 + 0.996438i \(0.473126\pi\)
\(104\) 0.0228057 0.129337i 0.00223628 0.0126826i
\(105\) 0 0
\(106\) 0.134943 0.113231i 0.0131069 0.0109980i
\(107\) −10.6261 10.6261i −1.02727 1.02727i −0.999618 0.0276498i \(-0.991198\pi\)
−0.0276498 0.999618i \(-0.508802\pi\)
\(108\) 0 0
\(109\) 12.0030i 1.14968i 0.818265 + 0.574841i \(0.194936\pi\)
−0.818265 + 0.574841i \(0.805064\pi\)
\(110\) −0.131429 + 0.0709009i −0.0125312 + 0.00676013i
\(111\) 0 0
\(112\) 0.591912 + 0.845337i 0.0559304 + 0.0798769i
\(113\) 3.92562 8.41851i 0.369291 0.791947i −0.630584 0.776121i \(-0.717184\pi\)
0.999875 0.0158260i \(-0.00503778\pi\)
\(114\) 0 0
\(115\) −0.374165 + 12.9515i −0.0348911 + 1.20774i
\(116\) 8.12897 4.69326i 0.754756 0.435759i
\(117\) 0 0
\(118\) −0.166575 + 0.0446336i −0.0153344 + 0.00410885i
\(119\) −0.427365 0.155548i −0.0391765 0.0142591i
\(120\) 0 0
\(121\) −6.23254 5.22972i −0.566595 0.475429i
\(122\) −0.0161459 0.184548i −0.00146178 0.0167082i
\(123\) 0 0
\(124\) 3.59440 9.87552i 0.322786 0.886848i
\(125\) −3.81737 + 10.5085i −0.341436 + 0.939905i
\(126\) 0 0
\(127\) 18.7735 + 5.03035i 1.66588 + 0.446371i 0.963996 0.265918i \(-0.0856752\pi\)
0.701885 + 0.712290i \(0.252342\pi\)
\(128\) −0.400068 0.280131i −0.0353614 0.0247603i
\(129\) 0 0
\(130\) −0.0438320 + 0.0589021i −0.00384433 + 0.00516606i
\(131\) 4.49710 + 0.792959i 0.392913 + 0.0692812i 0.366614 0.930373i \(-0.380517\pi\)
0.0262986 + 0.999654i \(0.491628\pi\)
\(132\) 0 0
\(133\) 1.46030 + 0.127760i 0.126624 + 0.0110782i
\(134\) 0.0280356 0.00242191
\(135\) 0 0
\(136\) 0.107606 0.00922713
\(137\) 6.96948 + 0.609750i 0.595443 + 0.0520945i 0.380894 0.924619i \(-0.375616\pi\)
0.214549 + 0.976713i \(0.431172\pi\)
\(138\) 0 0
\(139\) −8.03836 1.41738i −0.681805 0.120221i −0.177990 0.984032i \(-0.556959\pi\)
−0.503815 + 0.863812i \(0.668071\pi\)
\(140\) −0.167494 1.14182i −0.0141558 0.0965017i
\(141\) 0 0
\(142\) −0.0641675 0.0449306i −0.00538482 0.00377049i
\(143\) −9.08786 2.43508i −0.759965 0.203632i
\(144\) 0 0
\(145\) −10.4778 + 0.612441i −0.870133 + 0.0508605i
\(146\) 0.0749784 0.206002i 0.00620526 0.0170488i
\(147\) 0 0
\(148\) 0.563966 + 6.44617i 0.0463578 + 0.529872i
\(149\) −14.7726 12.3956i −1.21021 1.01549i −0.999278 0.0379911i \(-0.987904\pi\)
−0.210937 0.977500i \(-0.567651\pi\)
\(150\) 0 0
\(151\) −14.1147 5.13734i −1.14864 0.418070i −0.303613 0.952795i \(-0.598193\pi\)
−0.845026 + 0.534725i \(0.820415\pi\)
\(152\) −0.335016 + 0.0897672i −0.0271734 + 0.00728108i
\(153\) 0 0
\(154\) −0.0149266 + 0.00861785i −0.00120282 + 0.000694446i
\(155\) −8.54579 + 8.06589i −0.686415 + 0.647868i
\(156\) 0 0
\(157\) 0.987420 2.11753i 0.0788047 0.168997i −0.862958 0.505276i \(-0.831391\pi\)
0.941762 + 0.336279i \(0.109168\pi\)
\(158\) 0.0271027 + 0.0387066i 0.00215617 + 0.00307933i
\(159\) 0 0
\(160\) 0.194464 + 0.360478i 0.0153737 + 0.0284983i
\(161\) 1.49546i 0.117859i
\(162\) 0 0
\(163\) 10.7302 + 10.7302i 0.840451 + 0.840451i 0.988917 0.148467i \(-0.0474338\pi\)
−0.148467 + 0.988917i \(0.547434\pi\)
\(164\) 0.576705 0.483913i 0.0450331 0.0377872i
\(165\) 0 0
\(166\) 0.0131678 0.0746781i 0.00102202 0.00579615i
\(167\) 17.5852 + 8.20013i 1.36079 + 0.634545i 0.959578 0.281442i \(-0.0908126\pi\)
0.401208 + 0.915987i \(0.368590\pi\)
\(168\) 0 0
\(169\) 8.24701 1.45417i 0.634385 0.111859i
\(170\) −0.0537639 0.0269873i −0.00412350 0.00206983i
\(171\) 0 0
\(172\) −4.71370 17.5918i −0.359416 1.34136i
\(173\) 5.26921 2.45707i 0.400610 0.186808i −0.211862 0.977300i \(-0.567953\pi\)
0.612472 + 0.790492i \(0.290175\pi\)
\(174\) 0 0
\(175\) −0.405384 + 1.22508i −0.0306441 + 0.0926073i
\(176\) −11.2435 + 13.3995i −0.847510 + 1.01002i
\(177\) 0 0
\(178\) 0.0186571 + 0.0400103i 0.00139841 + 0.00299890i
\(179\) 4.77974 8.27875i 0.357254 0.618783i −0.630247 0.776395i \(-0.717046\pi\)
0.987501 + 0.157612i \(0.0503796\pi\)
\(180\) 0 0
\(181\) 6.93879 + 12.0183i 0.515756 + 0.893315i 0.999833 + 0.0182899i \(0.00582219\pi\)
−0.484077 + 0.875026i \(0.660844\pi\)
\(182\) −0.00486056 + 0.00694161i −0.000360289 + 0.000514546i
\(183\) 0 0
\(184\) −0.121018 0.332494i −0.00892157 0.0245118i
\(185\) 2.66996 6.72476i 0.196300 0.494414i
\(186\) 0 0
\(187\) 0.671857 7.67937i 0.0491311 0.561571i
\(188\) −5.66801 + 5.66801i −0.413382 + 0.413382i
\(189\) 0 0
\(190\) 0.189900 + 0.0391701i 0.0137768 + 0.00284170i
\(191\) 7.63489 + 9.09890i 0.552441 + 0.658374i 0.967929 0.251225i \(-0.0808335\pi\)
−0.415488 + 0.909599i \(0.636389\pi\)
\(192\) 0 0
\(193\) 9.91741 6.94425i 0.713871 0.499858i −0.159325 0.987226i \(-0.550932\pi\)
0.873197 + 0.487368i \(0.162043\pi\)
\(194\) −0.0676068 + 0.0246069i −0.00485389 + 0.00176667i
\(195\) 0 0
\(196\) 2.40766 + 13.6545i 0.171976 + 0.975323i
\(197\) −1.53862 + 5.74222i −0.109622 + 0.409116i −0.998828 0.0483907i \(-0.984591\pi\)
0.889206 + 0.457507i \(0.151257\pi\)
\(198\) 0 0
\(199\) −4.84519 2.79737i −0.343466 0.198300i 0.318337 0.947977i \(-0.396876\pi\)
−0.661804 + 0.749677i \(0.730209\pi\)
\(200\) −0.00900656 0.305184i −0.000636860 0.0215798i
\(201\) 0 0
\(202\) −0.0439395 + 0.00384421i −0.00309157 + 0.000270478i
\(203\) −1.20678 + 0.105579i −0.0846992 + 0.00741022i
\(204\) 0 0
\(205\) −0.819062 + 0.194300i −0.0572057 + 0.0135705i
\(206\) 0.133522 + 0.0770888i 0.00930290 + 0.00537103i
\(207\) 0 0
\(208\) −2.22585 + 8.30699i −0.154335 + 0.575986i
\(209\) 4.31456 + 24.4691i 0.298444 + 1.69256i
\(210\) 0 0
\(211\) 5.33826 1.94297i 0.367501 0.133759i −0.151667 0.988432i \(-0.548464\pi\)
0.519168 + 0.854672i \(0.326242\pi\)
\(212\) −18.9015 + 13.2350i −1.29816 + 0.908980i
\(213\) 0 0
\(214\) −0.147470 0.175748i −0.0100808 0.0120139i
\(215\) −4.11390 + 19.9445i −0.280566 + 1.36020i
\(216\) 0 0
\(217\) −0.959041 + 0.959041i −0.0651039 + 0.0651039i
\(218\) −0.0159710 + 0.182550i −0.00108169 + 0.0123638i
\(219\) 0 0
\(220\) 17.9596 7.75142i 1.21083 0.522601i
\(221\) −1.29628 3.56150i −0.0871973 0.239573i
\(222\) 0 0
\(223\) −7.56295 + 10.8010i −0.506452 + 0.723289i −0.988225 0.153007i \(-0.951104\pi\)
0.481773 + 0.876296i \(0.339993\pi\)
\(224\) 0.0236367 + 0.0409400i 0.00157929 + 0.00273542i
\(225\) 0 0
\(226\) 0.0709048 0.122811i 0.00471652 0.00816925i
\(227\) 6.15899 + 13.2080i 0.408787 + 0.876646i 0.997657 + 0.0684181i \(0.0217952\pi\)
−0.588870 + 0.808228i \(0.700427\pi\)
\(228\) 0 0
\(229\) 5.35302 6.37948i 0.353738 0.421568i −0.559605 0.828759i \(-0.689047\pi\)
0.913343 + 0.407191i \(0.133492\pi\)
\(230\) −0.0229236 + 0.196477i −0.00151154 + 0.0129553i
\(231\) 0 0
\(232\) 0.259766 0.121131i 0.0170545 0.00795262i
\(233\) 7.15675 + 26.7094i 0.468854 + 1.74979i 0.643784 + 0.765207i \(0.277363\pi\)
−0.174930 + 0.984581i \(0.555970\pi\)
\(234\) 0 0
\(235\) 8.50744 2.82101i 0.554964 0.184023i
\(236\) 22.2459 3.92255i 1.44808 0.255336i
\(237\) 0 0
\(238\) −0.00629266 0.00293432i −0.000407893 0.000190204i
\(239\) 3.76477 21.3510i 0.243522 1.38108i −0.580377 0.814348i \(-0.697095\pi\)
0.823899 0.566736i \(-0.191794\pi\)
\(240\) 0 0
\(241\) 3.99926 3.35578i 0.257615 0.216165i −0.504828 0.863220i \(-0.668444\pi\)
0.762443 + 0.647055i \(0.224000\pi\)
\(242\) −0.0878299 0.0878299i −0.00564592 0.00564592i
\(243\) 0 0
\(244\) 24.2661i 1.55348i
\(245\) 4.44339 14.8531i 0.283878 0.948933i
\(246\) 0 0
\(247\) 7.00687 + 10.0068i 0.445837 + 0.636721i
\(248\) 0.135620 0.290838i 0.00861188 0.0184682i
\(249\) 0 0
\(250\) −0.0720393 + 0.154740i −0.00455617 + 0.00978662i
\(251\) −12.0778 + 6.97313i −0.762345 + 0.440140i −0.830137 0.557560i \(-0.811738\pi\)
0.0677923 + 0.997699i \(0.478404\pi\)
\(252\) 0 0
\(253\) −24.4843 + 6.56054i −1.53931 + 0.412458i
\(254\) 0.278826 + 0.101484i 0.0174951 + 0.00636770i
\(255\) 0 0
\(256\) 12.2424 + 10.2726i 0.765152 + 0.642039i
\(257\) −0.816897 9.33717i −0.0509566 0.582437i −0.978156 0.207870i \(-0.933347\pi\)
0.927200 0.374567i \(-0.122209\pi\)
\(258\) 0 0
\(259\) 0.285619 0.784731i 0.0177475 0.0487608i
\(260\) 6.39210 7.18574i 0.396421 0.445641i
\(261\) 0 0
\(262\) 0.0673396 + 0.0180436i 0.00416025 + 0.00111474i
\(263\) −8.22122 5.75656i −0.506942 0.354965i 0.291955 0.956432i \(-0.405694\pi\)
−0.798897 + 0.601467i \(0.794583\pi\)
\(264\) 0 0
\(265\) 25.5278 3.74468i 1.56816 0.230034i
\(266\) 0.0220392 + 0.00388610i 0.00135131 + 0.000238272i
\(267\) 0 0
\(268\) −3.65837 0.320066i −0.223470 0.0195511i
\(269\) 1.84882 0.112724 0.0563622 0.998410i \(-0.482050\pi\)
0.0563622 + 0.998410i \(0.482050\pi\)
\(270\) 0 0
\(271\) 14.0068 0.850851 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(272\) −7.01953 0.614129i −0.425621 0.0372370i
\(273\) 0 0
\(274\) 0.105185 + 0.0185469i 0.00635445 + 0.00112046i
\(275\) −21.8359 1.26271i −1.31675 0.0761445i
\(276\) 0 0
\(277\) −14.8975 10.4313i −0.895103 0.626758i 0.0328481 0.999460i \(-0.489542\pi\)
−0.927951 + 0.372703i \(0.878431\pi\)
\(278\) −0.120367 0.0322521i −0.00721911 0.00193435i
\(279\) 0 0
\(280\) −0.00205625 0.0351789i −0.000122885 0.00210234i
\(281\) 8.98091 24.6748i 0.535756 1.47198i −0.316368 0.948637i \(-0.602463\pi\)
0.852124 0.523341i \(-0.175314\pi\)
\(282\) 0 0
\(283\) −1.59875 18.2738i −0.0950360 1.08627i −0.882629 0.470071i \(-0.844228\pi\)
0.787593 0.616196i \(-0.211327\pi\)
\(284\) 7.86028 + 6.59556i 0.466422 + 0.391374i
\(285\) 0 0
\(286\) −0.134974 0.0491264i −0.00798117 0.00290491i
\(287\) −0.0938472 + 0.0251463i −0.00553962 + 0.00148434i
\(288\) 0 0
\(289\) −12.0331 + 6.94732i −0.707830 + 0.408666i
\(290\) −0.160168 0.00462718i −0.00940538 0.000271718i
\(291\) 0 0
\(292\) −12.1357 + 26.0252i −0.710191 + 1.52301i
\(293\) −6.02781 8.60861i −0.352149 0.502920i 0.603527 0.797343i \(-0.293762\pi\)
−0.955675 + 0.294422i \(0.904873\pi\)
\(294\) 0 0
\(295\) −24.1987 7.23915i −1.40890 0.421480i
\(296\) 0.197587i 0.0114845i
\(297\) 0 0
\(298\) −0.208177 0.208177i −0.0120594 0.0120594i
\(299\) −9.54693 + 8.01082i −0.552113 + 0.463278i
\(300\) 0 0
\(301\) −0.408144 + 2.31470i −0.0235250 + 0.133417i
\(302\) −0.207830 0.0969127i −0.0119593 0.00557670i
\(303\) 0 0
\(304\) 22.3666 3.94384i 1.28281 0.226195i
\(305\) 12.1724 24.2499i 0.696992 1.38854i
\(306\) 0 0
\(307\) 3.31491 + 12.3714i 0.189192 + 0.706074i 0.993694 + 0.112124i \(0.0357654\pi\)
−0.804502 + 0.593949i \(0.797568\pi\)
\(308\) 2.04615 0.954137i 0.116590 0.0543670i
\(309\) 0 0
\(310\) −0.140702 + 0.111300i −0.00799135 + 0.00632143i
\(311\) −13.5014 + 16.0903i −0.765592 + 0.912397i −0.998188 0.0601768i \(-0.980834\pi\)
0.232596 + 0.972573i \(0.425278\pi\)
\(312\) 0 0
\(313\) −12.4918 26.7887i −0.706078 1.51419i −0.851237 0.524781i \(-0.824147\pi\)
0.145159 0.989408i \(-0.453631\pi\)
\(314\) 0.0178349 0.0308909i 0.00100648 0.00174327i
\(315\) 0 0
\(316\) −3.09474 5.36025i −0.174093 0.301538i
\(317\) 15.2311 21.7523i 0.855465 1.22173i −0.118027 0.993010i \(-0.537657\pi\)
0.973492 0.228720i \(-0.0734540\pi\)
\(318\) 0 0
\(319\) −7.02268 19.2947i −0.393195 1.08029i
\(320\) −7.08374 16.4126i −0.395993 0.917492i
\(321\) 0 0
\(322\) −0.00198984 + 0.0227439i −0.000110889 + 0.00126747i
\(323\) −7.07752 + 7.07752i −0.393804 + 0.393804i
\(324\) 0 0
\(325\) −9.99237 + 3.97451i −0.554277 + 0.220466i
\(326\) 0.148914 + 0.177468i 0.00824756 + 0.00982906i
\(327\) 0 0
\(328\) 0.0188306 0.0131854i 0.00103975 0.000728040i
\(329\) 0.972097 0.353814i 0.0535934 0.0195064i
\(330\) 0 0
\(331\) −1.72647 9.79132i −0.0948956 0.538179i −0.994779 0.102050i \(-0.967460\pi\)
0.899884 0.436130i \(-0.143651\pi\)
\(332\) −2.57082 + 9.59443i −0.141092 + 0.526563i
\(333\) 0 0
\(334\) 0.256536 + 0.148111i 0.0140371 + 0.00810430i
\(335\) 3.49537 + 2.15498i 0.190973 + 0.117739i
\(336\) 0 0
\(337\) −13.9748 + 1.22264i −0.761258 + 0.0666015i −0.461172 0.887311i \(-0.652571\pi\)
−0.300086 + 0.953912i \(0.597015\pi\)
\(338\) 0.127361 0.0111426i 0.00692750 0.000606078i
\(339\) 0 0
\(340\) 6.70756 + 4.13536i 0.363768 + 0.224272i
\(341\) −19.9091 11.4945i −1.07814 0.622463i
\(342\) 0 0
\(343\) 0.930702 3.47343i 0.0502532 0.187547i
\(344\) −0.0965688 0.547669i −0.00520664 0.0295283i
\(345\) 0 0
\(346\) 0.0834068 0.0303576i 0.00448397 0.00163203i
\(347\) −5.00149 + 3.50208i −0.268494 + 0.188001i −0.700068 0.714076i \(-0.746847\pi\)
0.431574 + 0.902077i \(0.357958\pi\)
\(348\) 0 0
\(349\) 2.45708 + 2.92823i 0.131524 + 0.156745i 0.827787 0.561042i \(-0.189600\pi\)
−0.696263 + 0.717787i \(0.745155\pi\)
\(350\) −0.00779540 + 0.0180924i −0.000416682 + 0.000967079i
\(351\) 0 0
\(352\) −0.566592 + 0.566592i −0.0301995 + 0.0301995i
\(353\) −0.194119 + 2.21879i −0.0103319 + 0.118094i −0.999609 0.0279554i \(-0.991100\pi\)
0.989277 + 0.146050i \(0.0466559\pi\)
\(354\) 0 0
\(355\) −4.54654 10.5341i −0.241305 0.559090i
\(356\) −1.97779 5.43394i −0.104823 0.287998i
\(357\) 0 0
\(358\) 0.0837088 0.119549i 0.00442415 0.00631834i
\(359\) 5.90045 + 10.2199i 0.311414 + 0.539385i 0.978669 0.205445i \(-0.0658641\pi\)
−0.667255 + 0.744829i \(0.732531\pi\)
\(360\) 0 0
\(361\) 6.63064 11.4846i 0.348981 0.604453i
\(362\) 0.0895381 + 0.192015i 0.00470602 + 0.0100921i
\(363\) 0 0
\(364\) 0.713504 0.850321i 0.0373978 0.0445689i
\(365\) 25.1825 19.9202i 1.31811 1.04267i
\(366\) 0 0
\(367\) −1.92158 + 0.896047i −0.100306 + 0.0467733i −0.472123 0.881532i \(-0.656512\pi\)
0.371818 + 0.928306i \(0.378735\pi\)
\(368\) 5.99683 + 22.3805i 0.312607 + 1.16666i
\(369\) 0 0
\(370\) 0.0495543 0.0987218i 0.00257621 0.00513230i
\(371\) 2.93265 0.517106i 0.152256 0.0268468i
\(372\) 0 0
\(373\) 3.00825 + 1.40277i 0.155762 + 0.0726328i 0.498936 0.866639i \(-0.333724\pi\)
−0.343174 + 0.939272i \(0.611502\pi\)
\(374\) 0.0204361 0.115899i 0.00105672 0.00599298i
\(375\) 0 0
\(376\) −0.187500 + 0.157331i −0.00966957 + 0.00811373i
\(377\) −7.13843 7.13843i −0.367648 0.367648i
\(378\) 0 0
\(379\) 15.7634i 0.809713i 0.914380 + 0.404856i \(0.132678\pi\)
−0.914380 + 0.404856i \(0.867322\pi\)
\(380\) −24.3328 7.27928i −1.24825 0.373419i
\(381\) 0 0
\(382\) 0.104009 + 0.148541i 0.00532158 + 0.00760001i
\(383\) 11.6401 24.9622i 0.594781 1.27551i −0.346552 0.938031i \(-0.612648\pi\)
0.941333 0.337480i \(-0.109575\pi\)
\(384\) 0 0
\(385\) −2.52340 0.0729001i −0.128605 0.00371533i
\(386\) 0.160070 0.0924166i 0.00814736 0.00470388i
\(387\) 0 0
\(388\) 9.10294 2.43913i 0.462132 0.123828i
\(389\) 28.2091 + 10.2673i 1.43026 + 0.520571i 0.937005 0.349315i \(-0.113586\pi\)
0.493252 + 0.869886i \(0.335808\pi\)
\(390\) 0 0
\(391\) −7.82217 6.56358i −0.395584 0.331934i
\(392\) 0.0368997 + 0.421765i 0.00186372 + 0.0213024i
\(393\) 0 0
\(394\) −0.0310408 + 0.0852840i −0.00156382 + 0.00429655i
\(395\) 0.403844 + 6.90906i 0.0203196 + 0.347633i
\(396\) 0 0
\(397\) 4.62074 + 1.23812i 0.231908 + 0.0621397i 0.372902 0.927871i \(-0.378363\pi\)
−0.140993 + 0.990011i \(0.545030\pi\)
\(398\) −0.0699666 0.0489911i −0.00350711 0.00245570i
\(399\) 0 0
\(400\) −1.15422 + 19.9597i −0.0577108 + 0.997983i
\(401\) 8.47214 + 1.49387i 0.423078 + 0.0746001i 0.381134 0.924520i \(-0.375534\pi\)
0.0419444 + 0.999120i \(0.486645\pi\)
\(402\) 0 0
\(403\) −11.2598 0.985106i −0.560891 0.0490716i
\(404\) 5.77756 0.287444
\(405\) 0 0
\(406\) −0.0184939 −0.000917838
\(407\) 14.1009 + 1.23367i 0.698957 + 0.0611508i
\(408\) 0 0
\(409\) −8.33076 1.46894i −0.411930 0.0726343i −0.0361568 0.999346i \(-0.511512\pi\)
−0.375773 + 0.926712i \(0.622623\pi\)
\(410\) −0.0127153 + 0.00186522i −0.000627966 + 9.21164e-5i
\(411\) 0 0
\(412\) −16.5432 11.5837i −0.815024 0.570686i
\(413\) −2.81592 0.754524i −0.138562 0.0371277i
\(414\) 0 0
\(415\) 7.38190 8.29843i 0.362363 0.407354i
\(416\) −0.134742 + 0.370201i −0.00660628 + 0.0181506i
\(417\) 0 0
\(418\) 0.0330604 + 0.377882i 0.00161704 + 0.0184828i
\(419\) 6.72816 + 5.64560i 0.328692 + 0.275806i 0.792167 0.610305i \(-0.208953\pi\)
−0.463475 + 0.886110i \(0.653397\pi\)
\(420\) 0 0
\(421\) 0.538899 + 0.196143i 0.0262643 + 0.00955944i 0.355119 0.934821i \(-0.384440\pi\)
−0.328855 + 0.944381i \(0.606663\pi\)
\(422\) 0.0837730 0.0224469i 0.00407800 0.00109270i
\(423\) 0 0
\(424\) −0.610187 + 0.352292i −0.0296333 + 0.0171088i
\(425\) −4.62868 7.49728i −0.224524 0.363671i
\(426\) 0 0
\(427\) 1.32351 2.83827i 0.0640489 0.137353i
\(428\) 17.2370 + 24.6170i 0.833181 + 1.18991i
\(429\) 0 0
\(430\) −0.0891046 + 0.297855i −0.00429701 + 0.0143638i
\(431\) 25.0117i 1.20477i −0.798205 0.602386i \(-0.794217\pi\)
0.798205 0.602386i \(-0.205783\pi\)
\(432\) 0 0
\(433\) −24.9892 24.9892i −1.20090 1.20090i −0.973892 0.227011i \(-0.927105\pi\)
−0.227011 0.973892i \(-0.572895\pi\)
\(434\) −0.0158618 + 0.0133096i −0.000761390 + 0.000638882i
\(435\) 0 0
\(436\) 4.16812 23.6386i 0.199617 1.13208i
\(437\) 29.8287 + 13.9093i 1.42690 + 0.665374i
\(438\) 0 0
\(439\) 4.64923 0.819785i 0.221896 0.0391262i −0.0615948 0.998101i \(-0.519619\pi\)
0.283491 + 0.958975i \(0.408508\pi\)
\(440\) 0.566942 0.187995i 0.0270279 0.00896229i
\(441\) 0 0
\(442\) −0.0149758 0.0558904i −0.000712326 0.00265844i
\(443\) −26.7976 + 12.4959i −1.27319 + 0.593700i −0.937406 0.348238i \(-0.886780\pi\)
−0.335787 + 0.941938i \(0.609002\pi\)
\(444\) 0 0
\(445\) −0.749324 + 6.42242i −0.0355214 + 0.304452i
\(446\) −0.129394 + 0.154205i −0.00612697 + 0.00730184i
\(447\) 0 0
\(448\) −0.871951 1.86990i −0.0411958 0.0883447i
\(449\) 3.36725 5.83225i 0.158910 0.275241i −0.775566 0.631267i \(-0.782535\pi\)
0.934476 + 0.356026i \(0.115869\pi\)
\(450\) 0 0
\(451\) −0.823409 1.42619i −0.0387728 0.0671565i
\(452\) −10.6544 + 15.2161i −0.501142 + 0.715706i
\(453\) 0 0
\(454\) 0.0760955 + 0.209071i 0.00357134 + 0.00981217i
\(455\) −1.13957 + 0.491842i −0.0534238 + 0.0230579i
\(456\) 0 0
\(457\) −3.16016 + 36.1208i −0.147826 + 1.68966i 0.453974 + 0.891015i \(0.350006\pi\)
−0.601800 + 0.798647i \(0.705550\pi\)
\(458\) 0.0899006 0.0899006i 0.00420078 0.00420078i
\(459\) 0 0
\(460\) 5.23438 25.3767i 0.244054 1.18319i
\(461\) −16.9825 20.2390i −0.790956 0.942625i 0.208417 0.978040i \(-0.433169\pi\)
−0.999373 + 0.0354156i \(0.988725\pi\)
\(462\) 0 0
\(463\) −9.85172 + 6.89825i −0.457848 + 0.320589i −0.779647 0.626219i \(-0.784601\pi\)
0.321799 + 0.946808i \(0.395713\pi\)
\(464\) −17.6368 + 6.41927i −0.818767 + 0.298007i
\(465\) 0 0
\(466\) 0.0733054 + 0.415735i 0.00339581 + 0.0192586i
\(467\) 2.86104 10.6775i 0.132393 0.494098i −0.867602 0.497260i \(-0.834340\pi\)
0.999995 + 0.00316149i \(0.00100633\pi\)
\(468\) 0 0
\(469\) 0.410442 + 0.236969i 0.0189525 + 0.0109422i
\(470\) 0.133140 0.0315839i 0.00614129 0.00145686i
\(471\) 0 0
\(472\) 0.687138 0.0601168i 0.0316281 0.00276710i
\(473\) −39.6877 + 3.47222i −1.82484 + 0.159653i
\(474\) 0 0
\(475\) 20.6651 + 19.4804i 0.948181 + 0.893820i
\(476\) 0.787631 + 0.454739i 0.0361010 + 0.0208429i
\(477\) 0 0
\(478\) 0.0856663 0.319711i 0.00391828 0.0146232i
\(479\) −0.735877 4.17337i −0.0336231 0.190686i 0.963370 0.268175i \(-0.0864207\pi\)
−0.996993 + 0.0774895i \(0.975310\pi\)
\(480\) 0 0
\(481\) 6.53967 2.38024i 0.298183 0.108530i
\(482\) 0.0652884 0.0457155i 0.00297381 0.00208228i
\(483\) 0 0
\(484\) 10.4582 + 12.4636i 0.475374 + 0.566529i
\(485\) −10.3204 2.12876i −0.468625 0.0966619i
\(486\) 0 0
\(487\) 16.7646 16.7646i 0.759676 0.759676i −0.216587 0.976263i \(-0.569493\pi\)
0.976263 + 0.216587i \(0.0694925\pi\)
\(488\) −0.0645798 + 0.738151i −0.00292339 + 0.0334145i
\(489\) 0 0
\(490\) 0.0873412 0.219984i 0.00394567 0.00993786i
\(491\) −0.697417 1.91614i −0.0314740 0.0864740i 0.922960 0.384895i \(-0.125762\pi\)
−0.954434 + 0.298421i \(0.903540\pi\)
\(492\) 0 0
\(493\) 4.74430 6.77556i 0.213673 0.305156i
\(494\) 0.0932500 + 0.161514i 0.00419552 + 0.00726685i
\(495\) 0 0
\(496\) −10.5069 + 18.1984i −0.471772 + 0.817133i
\(497\) −0.559642 1.20016i −0.0251034 0.0538343i
\(498\) 0 0
\(499\) −8.77600 + 10.4588i −0.392868 + 0.468202i −0.925832 0.377937i \(-0.876634\pi\)
0.532964 + 0.846138i \(0.321078\pi\)
\(500\) 11.1670 19.3696i 0.499403 0.866235i
\(501\) 0 0
\(502\) −0.192965 + 0.0899812i −0.00861246 + 0.00401606i
\(503\) −11.4964 42.9050i −0.512597 1.91304i −0.390772 0.920487i \(-0.627792\pi\)
−0.121825 0.992552i \(-0.538875\pi\)
\(504\) 0 0
\(505\) −5.77370 2.89816i −0.256926 0.128967i
\(506\) −0.381102 + 0.0671985i −0.0169420 + 0.00298734i
\(507\) 0 0
\(508\) −35.2255 16.4259i −1.56288 0.728782i
\(509\) 0.883595 5.01112i 0.0391647 0.222114i −0.958943 0.283597i \(-0.908472\pi\)
0.998108 + 0.0614836i \(0.0195832\pi\)
\(510\) 0 0
\(511\) 2.83890 2.38212i 0.125586 0.105379i
\(512\) 0.863214 + 0.863214i 0.0381490 + 0.0381490i
\(513\) 0 0
\(514\) 0.143093i 0.00631155i
\(515\) 10.7215 + 19.8744i 0.472445 + 0.875770i
\(516\) 0 0
\(517\) 10.0573 + 14.3634i 0.442321 + 0.631700i
\(518\) 0.00538802 0.0115547i 0.000236736 0.000507682i
\(519\) 0 0
\(520\) 0.213565 0.201572i 0.00936545 0.00883952i
\(521\) 14.9219 8.61518i 0.653742 0.377438i −0.136146 0.990689i \(-0.543472\pi\)
0.789888 + 0.613251i \(0.210138\pi\)
\(522\) 0 0
\(523\) 12.9054 3.45799i 0.564314 0.151207i 0.0346265 0.999400i \(-0.488976\pi\)
0.529688 + 0.848193i \(0.322309\pi\)
\(524\) −8.58116 3.12329i −0.374870 0.136441i
\(525\) 0 0
\(526\) −0.117374 0.0984884i −0.00511775 0.00429430i
\(527\) −0.807135 9.22560i −0.0351594 0.401873i
\(528\) 0 0
\(529\) −3.61738 + 9.93866i −0.157277 + 0.432116i
\(530\) 0.393226 0.0229846i 0.0170806 0.000998386i
\(531\) 0 0
\(532\) −2.83153 0.758707i −0.122762 0.0328941i
\(533\) −0.663249 0.464412i −0.0287285 0.0201159i
\(534\) 0 0
\(535\) −4.87701 33.2470i −0.210851 1.43739i
\(536\) −0.110432 0.0194722i −0.00476995 0.000841071i
\(537\) 0 0
\(538\) 0.0281180 + 0.00246001i 0.00121225 + 0.000106058i
\(539\) 30.3299 1.30640
\(540\) 0 0
\(541\) 7.10549 0.305489 0.152745 0.988266i \(-0.451189\pi\)
0.152745 + 0.988266i \(0.451189\pi\)
\(542\) 0.213024 + 0.0186372i 0.00915016 + 0.000800535i
\(543\) 0 0
\(544\) −0.317883 0.0560513i −0.0136291 0.00240318i
\(545\) −16.0230 + 21.5320i −0.686351 + 0.922328i
\(546\) 0 0
\(547\) 8.41425 + 5.89172i 0.359767 + 0.251912i 0.739459 0.673201i \(-0.235081\pi\)
−0.379692 + 0.925113i \(0.623970\pi\)
\(548\) −13.5139 3.62103i −0.577283 0.154683i
\(549\) 0 0
\(550\) −0.330414 0.0482586i −0.0140889 0.00205775i
\(551\) −9.11839 + 25.0526i −0.388456 + 1.06728i
\(552\) 0 0
\(553\) 0.0696191 + 0.795750i 0.00296050 + 0.0338387i
\(554\) −0.212691 0.178469i −0.00903636 0.00758240i
\(555\) 0 0
\(556\) 15.3384 + 5.58274i 0.650495 + 0.236761i
\(557\) 5.55174 1.48759i 0.235235 0.0630310i −0.139276 0.990254i \(-0.544477\pi\)
0.374511 + 0.927223i \(0.377811\pi\)
\(558\) 0 0
\(559\) −16.9632 + 9.79373i −0.717468 + 0.414230i
\(560\) −0.0666363 + 2.30658i −0.00281590 + 0.0974710i
\(561\) 0 0
\(562\) 0.169419 0.363321i 0.00714652 0.0153258i
\(563\) 14.1548 + 20.2152i 0.596555 + 0.851969i 0.997954 0.0639343i \(-0.0203648\pi\)
−0.401399 + 0.915903i \(0.631476\pi\)
\(564\) 0 0
\(565\) 18.2801 9.86143i 0.769049 0.414873i
\(566\) 0.280047i 0.0117713i
\(567\) 0 0
\(568\) 0.221549 + 0.221549i 0.00929600 + 0.00929600i
\(569\) −1.46173 + 1.22654i −0.0612790 + 0.0514192i −0.672913 0.739722i \(-0.734957\pi\)
0.611634 + 0.791141i \(0.290513\pi\)
\(570\) 0 0
\(571\) −7.82276 + 44.3651i −0.327372 + 1.85662i 0.165080 + 0.986280i \(0.447212\pi\)
−0.492452 + 0.870340i \(0.663899\pi\)
\(572\) 17.0519 + 7.95143i 0.712976 + 0.332466i
\(573\) 0 0
\(574\) −0.00146075 0.000257569i −6.09704e−5 1.07507e-5i
\(575\) −17.9604 + 22.7340i −0.749001 + 0.948074i
\(576\) 0 0
\(577\) 5.87132 + 21.9121i 0.244426 + 0.912211i 0.973671 + 0.227958i \(0.0732049\pi\)
−0.729245 + 0.684253i \(0.760128\pi\)
\(578\) −0.192251 + 0.0896482i −0.00799660 + 0.00372888i
\(579\) 0 0
\(580\) 20.8475 + 2.43234i 0.865645 + 0.100998i
\(581\) 0.823988 0.981990i 0.0341848 0.0407398i
\(582\) 0 0
\(583\) 21.3317 + 45.7460i 0.883469 + 1.89461i
\(584\) −0.438419 + 0.759364i −0.0181419 + 0.0314227i
\(585\) 0 0
\(586\) −0.0802204 0.138946i −0.00331387 0.00573980i
\(587\) −4.91190 + 7.01492i −0.202736 + 0.289537i −0.907626 0.419780i \(-0.862107\pi\)
0.704890 + 0.709316i \(0.250996\pi\)
\(588\) 0 0
\(589\) 10.2091 + 28.0493i 0.420659 + 1.15575i
\(590\) −0.358397 0.142296i −0.0147550 0.00585823i
\(591\) 0 0
\(592\) 1.12767 12.8893i 0.0463469 0.529748i
\(593\) −4.26261 + 4.26261i −0.175044 + 0.175044i −0.789192 0.614147i \(-0.789500\pi\)
0.614147 + 0.789192i \(0.289500\pi\)
\(594\) 0 0
\(595\) −0.558997 0.849530i −0.0229166 0.0348273i
\(596\) 24.7884 + 29.5417i 1.01537 + 1.21007i
\(597\) 0 0
\(598\) −0.155855 + 0.109131i −0.00637338 + 0.00446269i
\(599\) −13.5981 + 4.94929i −0.555602 + 0.202223i −0.604534 0.796580i \(-0.706641\pi\)
0.0489318 + 0.998802i \(0.484418\pi\)
\(600\) 0 0
\(601\) −2.11215 11.9786i −0.0861565 0.488618i −0.997101 0.0760891i \(-0.975757\pi\)
0.910944 0.412529i \(-0.135354\pi\)
\(602\) −0.00928722 + 0.0346604i −0.000378519 + 0.00141265i
\(603\) 0 0
\(604\) 26.0133 + 15.0188i 1.05847 + 0.611107i
\(605\) −4.19918 17.7014i −0.170721 0.719664i
\(606\) 0 0
\(607\) 19.3845 1.69592i 0.786792 0.0688354i 0.313324 0.949646i \(-0.398557\pi\)
0.473468 + 0.880811i \(0.343002\pi\)
\(608\) 1.03644 0.0906769i 0.0420333 0.00367743i
\(609\) 0 0
\(610\) 0.217393 0.352611i 0.00880197 0.0142768i
\(611\) 7.46602 + 4.31051i 0.302043 + 0.174384i
\(612\) 0 0
\(613\) 3.48768 13.0162i 0.140866 0.525720i −0.859038 0.511911i \(-0.828938\pi\)
0.999905 0.0138088i \(-0.00439561\pi\)
\(614\) 0.0339541 + 0.192563i 0.00137027 + 0.00777121i
\(615\) 0 0
\(616\) 0.0647813 0.0235785i 0.00261011 0.000950003i
\(617\) −37.1967 + 26.0454i −1.49748 + 1.04855i −0.516090 + 0.856535i \(0.672613\pi\)
−0.981392 + 0.192014i \(0.938498\pi\)
\(618\) 0 0
\(619\) −0.765342 0.912099i −0.0307617 0.0366604i 0.750444 0.660934i \(-0.229840\pi\)
−0.781206 + 0.624273i \(0.785395\pi\)
\(620\) 19.6309 12.9173i 0.788396 0.518770i
\(621\) 0 0
\(622\) −0.226747 + 0.226747i −0.00909171 + 0.00909171i
\(623\) −0.0650434 + 0.743449i −0.00260591 + 0.0297857i
\(624\) 0 0
\(625\) −20.8758 + 13.7550i −0.835032 + 0.550201i
\(626\) −0.154339 0.424042i −0.00616861 0.0169481i
\(627\) 0 0
\(628\) −2.67993 + 3.82734i −0.106941 + 0.152728i
\(629\) 2.85104 + 4.93815i 0.113678 + 0.196897i
\(630\) 0 0
\(631\) 10.8669 18.8220i 0.432605 0.749293i −0.564492 0.825438i \(-0.690928\pi\)
0.997097 + 0.0761454i \(0.0242613\pi\)
\(632\) −0.0798737 0.171290i −0.00317721 0.00681354i
\(633\) 0 0
\(634\) 0.260588 0.310556i 0.0103493 0.0123338i
\(635\) 26.9623 + 34.0849i 1.06997 + 1.35262i
\(636\) 0 0
\(637\) 13.5149 6.30211i 0.535481 0.249699i
\(638\) −0.0811322 0.302790i −0.00321206 0.0119876i
\(639\) 0 0
\(640\) −0.343723 1.03658i −0.0135868 0.0409743i
\(641\) −11.0540 + 1.94912i −0.436606 + 0.0769855i −0.387631 0.921815i \(-0.626707\pi\)
−0.0489751 + 0.998800i \(0.515595\pi\)
\(642\) 0 0
\(643\) 21.6198 + 10.0815i 0.852602 + 0.397575i 0.799248 0.601001i \(-0.205231\pi\)
0.0533535 + 0.998576i \(0.483009\pi\)
\(644\) 0.519308 2.94514i 0.0204636 0.116055i
\(645\) 0 0
\(646\) −0.117057 + 0.0982222i −0.00460553 + 0.00386450i
\(647\) 17.7336 + 17.7336i 0.697179 + 0.697179i 0.963801 0.266622i \(-0.0859076\pi\)
−0.266622 + 0.963801i \(0.585908\pi\)
\(648\) 0 0
\(649\) 49.4134i 1.93965i
\(650\) −0.157259 + 0.0471512i −0.00616820 + 0.00184942i
\(651\) 0 0
\(652\) −17.4057 24.8579i −0.681660 0.973511i
\(653\) −7.70684 + 16.5274i −0.301592 + 0.646766i −0.997447 0.0714165i \(-0.977248\pi\)
0.695855 + 0.718183i \(0.255026\pi\)
\(654\) 0 0
\(655\) 7.00871 + 7.42571i 0.273853 + 0.290147i
\(656\) −1.30364 + 0.752659i −0.0508987 + 0.0293864i
\(657\) 0 0
\(658\) 0.0152550 0.00408758i 0.000594704 0.000159350i
\(659\) −32.1808 11.7129i −1.25359 0.456269i −0.371975 0.928243i \(-0.621319\pi\)
−0.881612 + 0.471974i \(0.843542\pi\)
\(660\) 0 0
\(661\) 3.43935 + 2.88596i 0.133775 + 0.112251i 0.707220 0.706993i \(-0.249949\pi\)
−0.573445 + 0.819244i \(0.694393\pi\)
\(662\) −0.0132291 0.151210i −0.000514165 0.00587693i
\(663\) 0 0
\(664\) −0.103736 + 0.285012i −0.00402573 + 0.0110606i
\(665\) 2.44905 + 2.17856i 0.0949703 + 0.0844811i
\(666\) 0 0
\(667\) −26.2716 7.03946i −1.01724 0.272569i
\(668\) −31.7846 22.2558i −1.22978 0.861103i
\(669\) 0 0
\(670\) 0.0502925 + 0.0374252i 0.00194297 + 0.00144586i
\(671\) 52.2754 + 9.21756i 2.01807 + 0.355840i
\(672\) 0 0
\(673\) 15.0821 + 1.31952i 0.581374 + 0.0508636i 0.374050 0.927409i \(-0.377969\pi\)
0.207324 + 0.978272i \(0.433525\pi\)
\(674\) −0.214165 −0.00824933
\(675\) 0 0
\(676\) −16.7465 −0.644096
\(677\) 9.69800 + 0.848465i 0.372724 + 0.0326092i 0.271979 0.962303i \(-0.412322\pi\)
0.100745 + 0.994912i \(0.467877\pi\)
\(678\) 0 0
\(679\) −1.19775 0.211196i −0.0459656 0.00810497i
\(680\) 0.193032 + 0.143645i 0.00740244 + 0.00550853i
\(681\) 0 0
\(682\) −0.287495 0.201306i −0.0110088 0.00770842i
\(683\) 22.4891 + 6.02595i 0.860523 + 0.230577i 0.661985 0.749517i \(-0.269714\pi\)
0.198538 + 0.980093i \(0.436381\pi\)
\(684\) 0 0
\(685\) 11.6884 + 10.3975i 0.446592 + 0.397267i
\(686\) 0.0187764 0.0515877i 0.000716886 0.00196963i
\(687\) 0 0
\(688\) 3.17388 + 36.2776i 0.121003 + 1.38307i
\(689\) 19.0107 + 15.9519i 0.724249 + 0.607717i
\(690\) 0 0
\(691\) −4.24724 1.54587i −0.161573 0.0588077i 0.259968 0.965617i \(-0.416288\pi\)
−0.421540 + 0.906810i \(0.638510\pi\)
\(692\) −11.2303 + 3.00916i −0.426913 + 0.114391i
\(693\) 0 0
\(694\) −0.0807256 + 0.0466069i −0.00306430 + 0.00176918i
\(695\) −12.5278 13.2731i −0.475205 0.503479i
\(696\) 0 0
\(697\) 0.280365 0.601245i 0.0106196 0.0227738i
\(698\) 0.0334725 + 0.0478038i 0.00126695 + 0.00180940i
\(699\) 0 0
\(700\) 1.22377 2.27188i 0.0462543 0.0858691i
\(701\) 28.3612i 1.07119i 0.844476 + 0.535593i \(0.179912\pi\)
−0.844476 + 0.535593i \(0.820088\pi\)
\(702\) 0 0
\(703\) −12.9958 12.9958i −0.490147 0.490147i
\(704\) 26.7896 22.4791i 1.00967 0.847214i
\(705\) 0 0
\(706\) −0.00590457 + 0.0334865i −0.000222221 + 0.00126028i
\(707\) −0.675769 0.315116i −0.0254149 0.0118512i
\(708\) 0 0
\(709\) −27.9978 + 4.93677i −1.05148 + 0.185404i −0.672574 0.740030i \(-0.734811\pi\)
−0.378907 + 0.925435i \(0.623700\pi\)
\(710\) −0.0551302 0.166258i −0.00206900 0.00623956i
\(711\) 0 0
\(712\) −0.0457011 0.170559i −0.00171272 0.00639196i
\(713\) −27.5987 + 12.8695i −1.03358 + 0.481966i
\(714\) 0 0
\(715\) −13.0519 16.4998i −0.488113 0.617056i
\(716\) −12.2880 + 14.6443i −0.459224 + 0.547282i
\(717\) 0 0
\(718\) 0.0761394 + 0.163281i 0.00284150 + 0.00609361i
\(719\) 8.97949 15.5529i 0.334878 0.580026i −0.648583 0.761144i \(-0.724638\pi\)
0.983461 + 0.181118i \(0.0579714\pi\)
\(720\) 0 0
\(721\) 1.30318 + 2.25717i 0.0485328 + 0.0840612i
\(722\) 0.116124 0.165843i 0.00432170 0.00617202i
\(723\) 0 0
\(724\) −9.49171 26.0783i −0.352757 0.969191i
\(725\) −19.6134 12.8883i −0.728425 0.478660i
\(726\) 0 0
\(727\) 2.47494 28.2887i 0.0917905 1.04917i −0.800990 0.598678i \(-0.795693\pi\)
0.892780 0.450492i \(-0.148751\pi\)
\(728\) 0.0239671 0.0239671i 0.000888279 0.000888279i
\(729\) 0 0
\(730\) 0.409497 0.269452i 0.0151562 0.00997286i
\(731\) −10.3159 12.2941i −0.381549 0.454712i
\(732\) 0 0
\(733\) −8.28966 + 5.80448i −0.306185 + 0.214393i −0.716563 0.697522i \(-0.754286\pi\)
0.410378 + 0.911916i \(0.365397\pi\)
\(734\) −0.0304169 + 0.0110708i −0.00112271 + 0.000408632i
\(735\) 0 0
\(736\) 0.184310 + 1.04527i 0.00679374 + 0.0385292i
\(737\) −2.07915 + 7.75949i −0.0765865 + 0.285825i
\(738\) 0 0
\(739\) 35.8294 + 20.6861i 1.31801 + 0.760951i 0.983408 0.181410i \(-0.0580660\pi\)
0.334598 + 0.942361i \(0.391399\pi\)
\(740\) −7.59340 + 12.3165i −0.279139 + 0.452763i
\(741\) 0 0
\(742\) 0.0452897 0.00396233i 0.00166264 0.000145462i
\(743\) 7.70953 0.674496i 0.282835 0.0247449i 0.0551445 0.998478i \(-0.482438\pi\)
0.227691 + 0.973734i \(0.426882\pi\)
\(744\) 0 0
\(745\) −9.95303 41.9564i −0.364651 1.53716i
\(746\) 0.0438849 + 0.0253370i 0.00160674 + 0.000927653i
\(747\) 0 0
\(748\) −3.98985 + 14.8903i −0.145883 + 0.544444i
\(749\) −0.673470 3.81944i −0.0246080 0.139559i
\(750\) 0 0
\(751\) −38.8916 + 14.1554i −1.41918 + 0.516537i −0.933808 0.357773i \(-0.883536\pi\)
−0.485367 + 0.874311i \(0.661314\pi\)
\(752\) 13.1292 9.19318i 0.478773 0.335241i
\(753\) 0 0
\(754\) −0.0990675 0.118064i −0.00360782 0.00429964i
\(755\) −18.4622 28.0577i −0.671907 1.02112i
\(756\) 0 0
\(757\) −10.7021 + 10.7021i −0.388975 + 0.388975i −0.874322 0.485347i \(-0.838693\pi\)
0.485347 + 0.874322i \(0.338693\pi\)
\(758\) −0.0209745 + 0.239740i −0.000761830 + 0.00870775i
\(759\) 0 0
\(760\) −0.720809 0.286186i −0.0261465 0.0103811i
\(761\) −16.8761 46.3666i −0.611756 1.68079i −0.726308 0.687370i \(-0.758765\pi\)
0.114551 0.993417i \(-0.463457\pi\)
\(762\) 0 0
\(763\) −1.77680 + 2.53754i −0.0643246 + 0.0918651i
\(764\) −11.8764 20.5705i −0.429673 0.744215i
\(765\) 0 0
\(766\) 0.210244 0.364154i 0.00759643 0.0131574i
\(767\) −10.2674 22.0185i −0.370733 0.795040i
\(768\) 0 0
\(769\) −4.55804 + 5.43206i −0.164367 + 0.195885i −0.841941 0.539570i \(-0.818587\pi\)
0.677574 + 0.735455i \(0.263031\pi\)
\(770\) −0.0382805 0.00446631i −0.00137953 0.000160955i
\(771\) 0 0
\(772\) −21.9426 + 10.2320i −0.789733 + 0.368259i
\(773\) −2.31145 8.62644i −0.0831370 0.310272i 0.911818 0.410595i \(-0.134679\pi\)
−0.994955 + 0.100323i \(0.968012\pi\)
\(774\) 0 0
\(775\) −26.0974 + 3.06131i −0.937446 + 0.109966i
\(776\) 0.283394 0.0499700i 0.0101733 0.00179382i
\(777\) 0 0
\(778\) 0.415360 + 0.193686i 0.0148914 + 0.00694397i
\(779\) −0.371305 + 2.10578i −0.0133034 + 0.0754473i
\(780\) 0 0
\(781\) 17.1943 14.4277i 0.615260 0.516264i
\(782\) −0.110231 0.110231i −0.00394186 0.00394186i
\(783\) 0 0
\(784\) 27.7239i 0.990139i
\(785\) 4.59803 2.48047i 0.164111 0.0885317i
\(786\) 0 0
\(787\) 0.397947 + 0.568328i 0.0141853 + 0.0202587i 0.826182 0.563403i \(-0.190508\pi\)
−0.811997 + 0.583662i \(0.801619\pi\)
\(788\) 5.02416 10.7743i 0.178978 0.383820i
\(789\) 0 0
\(790\) −0.00305117 + 0.105615i −0.000108556 + 0.00375761i
\(791\) 2.07610 1.19864i 0.0738175 0.0426186i
\(792\) 0 0
\(793\) 25.2090 6.75473i 0.895198 0.239868i
\(794\) 0.0686278 + 0.0249785i 0.00243551 + 0.000886453i
\(795\) 0 0
\(796\) 8.57065 + 7.19163i 0.303778 + 0.254900i
\(797\) −3.24018 37.0354i −0.114773 1.31186i −0.807158 0.590335i \(-0.798996\pi\)
0.692385 0.721528i \(-0.256560\pi\)
\(798\) 0 0
\(799\) −2.41587 + 6.63755i −0.0854673 + 0.234820i
\(800\) −0.132362 + 0.906246i −0.00467970 + 0.0320406i
\(801\) 0 0
\(802\) 0.126862 + 0.0339926i 0.00447965 + 0.00120032i
\(803\) 51.4551 + 36.0293i 1.81581 + 1.27145i
\(804\) 0 0
\(805\) −1.99631 + 2.68268i −0.0703608 + 0.0945519i
\(806\) −0.169936 0.0299642i −0.00598573 0.00105544i
\(807\) 0 0
\(808\) 0.175748 + 0.0153759i 0.00618279 + 0.000540924i
\(809\) −9.19706 −0.323351 −0.161676 0.986844i \(-0.551690\pi\)
−0.161676 + 0.986844i \(0.551690\pi\)
\(810\) 0 0
\(811\) −3.49413 −0.122695 −0.0613477 0.998116i \(-0.519540\pi\)
−0.0613477 + 0.998116i \(0.519540\pi\)
\(812\) 2.41327 + 0.211134i 0.0846893 + 0.00740935i
\(813\) 0 0
\(814\) 0.212814 + 0.0375249i 0.00745914 + 0.00131525i
\(815\) 4.92475 + 33.5724i 0.172506 + 1.17599i
\(816\) 0 0
\(817\) 42.3732 + 29.6700i 1.48245 + 1.03802i
\(818\) −0.124745 0.0334253i −0.00436160 0.00116869i
\(819\) 0 0
\(820\) 1.68052 0.0982287i 0.0586863 0.00343029i
\(821\) 5.34053 14.6730i 0.186386 0.512091i −0.810944 0.585124i \(-0.801046\pi\)
0.997329 + 0.0730336i \(0.0232680\pi\)
\(822\) 0 0
\(823\) −2.60641 29.7914i −0.0908536 1.03846i −0.895605 0.444850i \(-0.853257\pi\)
0.804752 0.593612i \(-0.202298\pi\)
\(824\) −0.472400 0.396391i −0.0164568 0.0138089i
\(825\) 0 0
\(826\) −0.0418223 0.0152221i −0.00145519 0.000529644i
\(827\) −35.9960 + 9.64511i −1.25171 + 0.335393i −0.822995 0.568049i \(-0.807699\pi\)
−0.428710 + 0.903442i \(0.641032\pi\)
\(828\) 0 0
\(829\) 6.82502 3.94043i 0.237043 0.136857i −0.376774 0.926305i \(-0.622967\pi\)
0.613817 + 0.789448i \(0.289633\pi\)
\(830\) 0.123310 0.116386i 0.00428016 0.00403980i
\(831\) 0 0
\(832\) 7.26652 15.5831i 0.251921 0.540247i
\(833\) 7.00798 + 10.0084i 0.242812 + 0.346771i
\(834\) 0 0
\(835\) 20.5993 + 38.1848i 0.712868 + 1.32144i
\(836\) 49.6874i 1.71847i
\(837\) 0 0
\(838\) 0.0948142 + 0.0948142i 0.00327530 + 0.00327530i
\(839\) −26.9906 + 22.6478i −0.931819 + 0.781889i −0.976143 0.217128i \(-0.930331\pi\)
0.0443239 + 0.999017i \(0.485887\pi\)
\(840\) 0 0
\(841\) −1.21001 + 6.86229i −0.0417244 + 0.236631i
\(842\) 0.00793494 + 0.00370012i 0.000273456 + 0.000127515i
\(843\) 0 0
\(844\) −11.1878 + 1.97271i −0.385100 + 0.0679035i
\(845\) 16.7353 + 8.40045i 0.575713 + 0.288984i
\(846\) 0 0
\(847\) −0.543456 2.02821i −0.0186734 0.0696900i
\(848\) 41.8153 19.4988i 1.43594 0.669592i
\(849\) 0 0
\(850\) −0.0604201 0.120182i −0.00207239 0.00412221i
\(851\) 12.0521 14.3631i 0.413141 0.492362i
\(852\) 0 0
\(853\) −10.3392 22.1725i −0.354007 0.759171i 0.645984 0.763351i \(-0.276447\pi\)
−0.999991 + 0.00417979i \(0.998670\pi\)
\(854\) 0.0239053 0.0414051i 0.000818021 0.00141685i
\(855\) 0 0
\(856\) 0.458819 + 0.794697i 0.0156821 + 0.0271622i
\(857\) −2.59518 + 3.70630i −0.0886496 + 0.126605i −0.861027 0.508559i \(-0.830178\pi\)
0.772378 + 0.635164i \(0.219067\pi\)
\(858\) 0 0
\(859\) 3.10612 + 8.53399i 0.105979 + 0.291176i 0.981336 0.192302i \(-0.0615954\pi\)
−0.875356 + 0.483478i \(0.839373\pi\)
\(860\) 15.0277 37.8499i 0.512440 1.29067i
\(861\) 0 0
\(862\) 0.0332801 0.380394i 0.00113353 0.0129563i
\(863\) 21.0851 21.0851i 0.717746 0.717746i −0.250398 0.968143i \(-0.580561\pi\)
0.968143 + 0.250398i \(0.0805613\pi\)
\(864\) 0 0
\(865\) 12.7323 + 2.62626i 0.432911 + 0.0892954i
\(866\) −0.346801 0.413302i −0.0117848 0.0140446i
\(867\) 0 0
\(868\) 2.22175 1.55569i 0.0754113 0.0528035i
\(869\) −12.7229 + 4.63076i −0.431595 + 0.157088i
\(870\) 0 0
\(871\) 0.685845 + 3.88962i 0.0232390 + 0.131795i
\(872\) 0.189700 0.707971i 0.00642406 0.0239749i
\(873\) 0 0
\(874\) 0.435146 + 0.251232i 0.0147190 + 0.00849804i
\(875\) −2.36259 + 1.65649i −0.0798700 + 0.0559996i
\(876\) 0 0
\(877\) −45.5933 + 3.98890i −1.53958 + 0.134696i −0.825110 0.564973i \(-0.808887\pi\)
−0.714468 + 0.699668i \(0.753331\pi\)
\(878\) 0.0717992 0.00628162i 0.00242311 0.000211994i
\(879\) 0 0
\(880\) −38.0566 + 9.02792i −1.28289 + 0.304331i
\(881\) 33.3855 + 19.2752i 1.12479 + 0.649396i 0.942619 0.333871i \(-0.108355\pi\)
0.182169 + 0.983267i \(0.441688\pi\)
\(882\) 0 0
\(883\) −4.85682 + 18.1259i −0.163445 + 0.609986i 0.834788 + 0.550571i \(0.185590\pi\)
−0.998233 + 0.0594144i \(0.981077\pi\)
\(884\) 1.31612 + 7.46412i 0.0442661 + 0.251045i
\(885\) 0 0
\(886\) −0.424182 + 0.154390i −0.0142507 + 0.00518682i
\(887\) −30.0349 + 21.0306i −1.00847 + 0.706140i −0.956267 0.292496i \(-0.905514\pi\)
−0.0522057 + 0.998636i \(0.516625\pi\)
\(888\) 0 0
\(889\) 3.22424 + 3.84250i 0.108137 + 0.128873i
\(890\) −0.0199418 + 0.0966792i −0.000668449 + 0.00324069i
\(891\) 0 0
\(892\) 18.6451 18.6451i 0.624283 0.624283i
\(893\) 1.98428 22.6804i 0.0664014 0.758972i
\(894\) 0 0
\(895\) 19.6257 8.47052i 0.656015 0.283138i
\(896\) −0.0431100 0.118444i −0.00144021 0.00395693i
\(897\) 0 0
\(898\) 0.0589716 0.0842201i 0.00196791 0.00281046i
\(899\) −12.3336 21.3624i −0.411349 0.712477i
\(900\) 0 0
\(901\) −10.1666 + 17.6091i −0.338700 + 0.586645i
\(902\) −0.0106253 0.0227860i −0.000353783 0.000758690i
\(903\) 0 0
\(904\) −0.364593 + 0.434505i −0.0121262 + 0.0144514i
\(905\) −3.59611 + 30.8221i −0.119539 + 1.02456i
\(906\) 0 0
\(907\) −17.4935 + 8.15736i −0.580863 + 0.270861i −0.690762 0.723082i \(-0.742725\pi\)
0.109900 + 0.993943i \(0.464947\pi\)
\(908\) −7.54288 28.1504i −0.250319 0.934204i
\(909\) 0 0
\(910\) −0.0179857 + 0.00596396i −0.000596221 + 0.000197703i
\(911\) −39.2363 + 6.91842i −1.29996 + 0.229217i −0.780433 0.625239i \(-0.785001\pi\)
−0.519523 + 0.854456i \(0.673890\pi\)
\(912\) 0 0
\(913\) 19.6923 + 9.18269i 0.651721 + 0.303903i
\(914\) −0.0961236 + 0.545144i −0.00317949 + 0.0180318i
\(915\) 0 0
\(916\) −12.7575 + 10.7048i −0.421519 + 0.353696i
\(917\) 0.833342 + 0.833342i 0.0275194 + 0.0275194i
\(918\) 0 0
\(919\) 43.5953i 1.43808i −0.694971 0.719038i \(-0.744583\pi\)
0.694971 0.719038i \(-0.255417\pi\)
\(920\) 0.226760 0.758003i 0.00747606 0.0249906i
\(921\) 0 0
\(922\) −0.231352 0.330404i −0.00761916 0.0108813i
\(923\) 4.66385 10.0017i 0.153513 0.329209i
\(924\) 0 0
\(925\) 13.7666 8.49923i 0.452642 0.279453i
\(926\) −0.159010 + 0.0918044i −0.00522539 + 0.00301688i
\(927\) 0 0
\(928\) −0.830480 + 0.222526i −0.0272618 + 0.00730479i
\(929\) 32.4046 + 11.7943i 1.06316 + 0.386959i 0.813615 0.581404i \(-0.197496\pi\)
0.249546 + 0.968363i \(0.419719\pi\)
\(930\) 0 0
\(931\) −30.1676 25.3136i −0.988703 0.829620i
\(932\) −4.81942 55.0863i −0.157865 1.80441i
\(933\) 0 0
\(934\) 0.0577199 0.158584i 0.00188865 0.00518903i
\(935\) 11.4565 12.8790i 0.374669 0.421188i
\(936\) 0 0
\(937\) −44.7642 11.9945i −1.46238 0.391845i −0.562072 0.827089i \(-0.689995\pi\)
−0.900313 + 0.435244i \(0.856662\pi\)
\(938\) 0.00592696 + 0.00415010i 0.000193522 + 0.000135506i
\(939\) 0 0
\(940\) −17.7340 + 2.60141i −0.578421 + 0.0848486i
\(941\) −8.77614 1.54747i −0.286094 0.0504461i 0.0287596 0.999586i \(-0.490844\pi\)
−0.314854 + 0.949140i \(0.601955\pi\)
\(942\) 0 0
\(943\) −2.17311 0.190123i −0.0707662 0.00619124i
\(944\) −45.1676 −1.47008
\(945\) 0 0
\(946\) −0.608216 −0.0197748
\(947\) −36.6998 3.21081i −1.19258 0.104337i −0.526473 0.850192i \(-0.676486\pi\)
−0.666109 + 0.745854i \(0.732041\pi\)
\(948\) 0 0
\(949\) 30.4146 + 5.36292i 0.987300 + 0.174088i
\(950\) 0.288368 + 0.323766i 0.00935590 + 0.0105044i
\(951\) 0 0
\(952\) 0.0227488 + 0.0159289i 0.000737292 + 0.000516257i
\(953\) 27.9077 + 7.47785i 0.904020 + 0.242231i 0.680742 0.732523i \(-0.261658\pi\)
0.223278 + 0.974755i \(0.428324\pi\)
\(954\) 0 0
\(955\) 1.54979 + 26.5143i 0.0501501 + 0.857981i
\(956\) −14.8286 + 40.7411i −0.479590 + 1.31766i
\(957\) 0 0
\(958\) −0.00563868 0.0644504i −0.000182177 0.00208230i
\(959\) 1.38314 + 1.16060i 0.0446641 + 0.0374776i
\(960\) 0 0
\(961\) 3.17820 + 1.15677i 0.102522 + 0.0373151i
\(962\) 0.102627 0.0274987i 0.00330881 0.000886594i
\(963\) 0 0
\(964\) −9.04140 + 5.22006i −0.291204 + 0.168127i
\(965\) 27.0606 + 0.781770i 0.871112 + 0.0251661i
\(966\) 0 0
\(967\) 8.87400 19.0304i 0.285369 0.611975i −0.710407 0.703791i \(-0.751489\pi\)
0.995776 + 0.0918158i \(0.0292671\pi\)
\(968\) 0.284960 + 0.406964i 0.00915895 + 0.0130803i
\(969\) 0 0
\(970\) −0.154126 0.0461076i −0.00494870 0.00148043i
\(971\) 58.1766i 1.86697i 0.358610 + 0.933487i \(0.383251\pi\)
−0.358610 + 0.933487i \(0.616749\pi\)
\(972\) 0 0
\(973\) −1.48956 1.48956i −0.0477531 0.0477531i
\(974\) 0.277273 0.232660i 0.00888441 0.00745490i
\(975\) 0 0
\(976\) 8.42555 47.7837i 0.269695 1.52952i
\(977\) 39.2996 + 18.3257i 1.25731 + 0.586291i 0.933073 0.359686i \(-0.117116\pi\)
0.324232 + 0.945977i \(0.394894\pi\)
\(978\) 0 0
\(979\) −12.4574 + 2.19657i −0.398140 + 0.0702028i
\(980\) −13.9086 + 27.7086i −0.444294 + 0.885119i
\(981\) 0 0
\(982\) −0.00805718 0.0300698i −0.000257115 0.000959566i
\(983\) 47.1628 21.9924i 1.50426 0.701447i 0.516335 0.856387i \(-0.327296\pi\)
0.987924 + 0.154940i \(0.0495183\pi\)
\(984\) 0 0
\(985\) −10.4255 + 8.24691i −0.332183 + 0.262768i
\(986\) 0.0811698 0.0967344i 0.00258497 0.00308065i
\(987\) 0 0
\(988\) −10.3243 22.1405i −0.328460 0.704384i
\(989\) −26.3860 + 45.7019i −0.839026 + 1.45324i
\(990\) 0 0
\(991\) −1.64852 2.85532i −0.0523670 0.0907023i 0.838654 0.544665i \(-0.183343\pi\)
−0.891021 + 0.453963i \(0.850010\pi\)
\(992\) −0.552136 + 0.788532i −0.0175303 + 0.0250359i
\(993\) 0 0
\(994\) −0.00691448 0.0189974i −0.000219314 0.000602560i
\(995\) −4.95743 11.4861i −0.157161 0.364133i
\(996\) 0 0
\(997\) 2.04371 23.3597i 0.0647248 0.739808i −0.892610 0.450829i \(-0.851129\pi\)
0.957335 0.288979i \(-0.0933159\pi\)
\(998\) −0.147387 + 0.147387i −0.00466546 + 0.00466546i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.368.8 192
3.2 odd 2 135.2.q.a.113.9 yes 192
5.2 odd 4 inner 405.2.r.a.287.9 192
15.2 even 4 135.2.q.a.32.8 192
15.8 even 4 675.2.ba.b.32.9 192
15.14 odd 2 675.2.ba.b.518.8 192
27.11 odd 18 inner 405.2.r.a.278.9 192
27.16 even 9 135.2.q.a.38.8 yes 192
135.43 odd 36 675.2.ba.b.632.8 192
135.92 even 36 inner 405.2.r.a.197.8 192
135.97 odd 36 135.2.q.a.92.9 yes 192
135.124 even 18 675.2.ba.b.443.9 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.32.8 192 15.2 even 4
135.2.q.a.38.8 yes 192 27.16 even 9
135.2.q.a.92.9 yes 192 135.97 odd 36
135.2.q.a.113.9 yes 192 3.2 odd 2
405.2.r.a.197.8 192 135.92 even 36 inner
405.2.r.a.278.9 192 27.11 odd 18 inner
405.2.r.a.287.9 192 5.2 odd 4 inner
405.2.r.a.368.8 192 1.1 even 1 trivial
675.2.ba.b.32.9 192 15.8 even 4
675.2.ba.b.443.9 192 135.124 even 18
675.2.ba.b.518.8 192 15.14 odd 2
675.2.ba.b.632.8 192 135.43 odd 36