Properties

Label 405.2.r.a.332.5
Level $405$
Weight $2$
Character 405.332
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 332.5
Character \(\chi\) \(=\) 405.332
Dual form 405.2.r.a.233.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.606324 - 0.865920i) q^{2} +(0.301851 - 0.829330i) q^{4} +(1.02123 - 1.98924i) q^{5} +(-2.61975 - 1.22161i) q^{7} +(-2.94330 + 0.788655i) q^{8} +(-2.34172 + 0.321816i) q^{10} +(-1.51740 + 1.80836i) q^{11} +(-4.45519 - 3.11956i) q^{13} +(0.530600 + 3.00918i) q^{14} +(1.11535 + 0.935892i) q^{16} +(2.67549 + 0.716894i) q^{17} +(5.35751 + 3.09316i) q^{19} +(-1.34148 - 1.44740i) q^{20} +(2.48593 + 0.217491i) q^{22} +(0.301527 + 0.646627i) q^{23} +(-2.91416 - 4.06296i) q^{25} +5.74930i q^{26} +(-1.80389 + 1.80389i) q^{28} +(0.623300 - 3.53491i) q^{29} +(-5.18043 - 1.88552i) q^{31} +(-0.397007 + 4.53781i) q^{32} +(-1.00144 - 2.75143i) q^{34} +(-5.10545 + 3.96376i) q^{35} +(1.14193 - 4.26173i) q^{37} +(-0.569956 - 6.51463i) q^{38} +(-1.43698 + 6.66033i) q^{40} +(-5.70140 + 1.00531i) q^{41} +(1.44271 - 0.126221i) q^{43} +(1.04170 + 1.80428i) q^{44} +(0.377104 - 0.653164i) q^{46} +(4.38688 - 9.40770i) q^{47} +(0.871236 + 1.03830i) q^{49} +(-1.75128 + 4.98690i) q^{50} +(-3.93195 + 2.75318i) q^{52} +(-7.22940 - 7.22940i) q^{53} +(2.04765 + 4.86523i) q^{55} +(8.67413 + 1.52948i) q^{56} +(-3.43887 + 1.60357i) q^{58} +(6.27320 - 5.26384i) q^{59} +(2.64019 - 0.960952i) q^{61} +(1.50831 + 5.62907i) q^{62} +(6.69194 - 3.86359i) q^{64} +(-10.7553 + 5.67665i) q^{65} +(-4.28254 + 6.11610i) q^{67} +(1.40214 - 2.00246i) q^{68} +(6.52785 + 2.01759i) q^{70} +(4.24004 - 2.44799i) q^{71} +(1.80353 + 6.73088i) q^{73} +(-4.38269 + 1.59517i) q^{74} +(4.18242 - 3.50947i) q^{76} +(6.18430 - 2.88379i) q^{77} +(12.8661 + 2.26863i) q^{79} +(3.00075 - 1.26294i) q^{80} +(4.32741 + 4.32741i) q^{82} +(3.90587 - 2.73492i) q^{83} +(4.15837 - 4.59007i) q^{85} +(-0.984048 - 1.17274i) q^{86} +(3.03998 - 6.51925i) q^{88} +(3.33276 - 5.77251i) q^{89} +(7.86060 + 13.6150i) q^{91} +(0.627283 - 0.0548802i) q^{92} +(-10.8062 + 1.90542i) q^{94} +(11.6243 - 7.49853i) q^{95} +(-1.59893 - 18.2758i) q^{97} +(0.370833 - 1.38397i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.606324 0.865920i −0.428736 0.612298i 0.545424 0.838161i \(-0.316369\pi\)
−0.974159 + 0.225863i \(0.927480\pi\)
\(3\) 0 0
\(4\) 0.301851 0.829330i 0.150926 0.414665i
\(5\) 1.02123 1.98924i 0.456710 0.889616i
\(6\) 0 0
\(7\) −2.61975 1.22161i −0.990171 0.461725i −0.141096 0.989996i \(-0.545063\pi\)
−0.849076 + 0.528271i \(0.822840\pi\)
\(8\) −2.94330 + 0.788655i −1.04061 + 0.278832i
\(9\) 0 0
\(10\) −2.34172 + 0.321816i −0.740518 + 0.101767i
\(11\) −1.51740 + 1.80836i −0.457512 + 0.545242i −0.944648 0.328084i \(-0.893597\pi\)
0.487136 + 0.873326i \(0.338041\pi\)
\(12\) 0 0
\(13\) −4.45519 3.11956i −1.23565 0.865210i −0.241203 0.970475i \(-0.577542\pi\)
−0.994444 + 0.105265i \(0.966431\pi\)
\(14\) 0.530600 + 3.00918i 0.141809 + 0.804238i
\(15\) 0 0
\(16\) 1.11535 + 0.935892i 0.278838 + 0.233973i
\(17\) 2.67549 + 0.716894i 0.648901 + 0.173872i 0.568232 0.822869i \(-0.307628\pi\)
0.0806688 + 0.996741i \(0.474294\pi\)
\(18\) 0 0
\(19\) 5.35751 + 3.09316i 1.22910 + 0.709619i 0.966841 0.255379i \(-0.0822003\pi\)
0.262256 + 0.964998i \(0.415534\pi\)
\(20\) −1.34148 1.44740i −0.299963 0.323647i
\(21\) 0 0
\(22\) 2.48593 + 0.217491i 0.530002 + 0.0463692i
\(23\) 0.301527 + 0.646627i 0.0628728 + 0.134831i 0.935233 0.354032i \(-0.115190\pi\)
−0.872361 + 0.488863i \(0.837412\pi\)
\(24\) 0 0
\(25\) −2.91416 4.06296i −0.582832 0.812593i
\(26\) 5.74930i 1.12753i
\(27\) 0 0
\(28\) −1.80389 + 1.80389i −0.340903 + 0.340903i
\(29\) 0.623300 3.53491i 0.115744 0.656416i −0.870635 0.491929i \(-0.836292\pi\)
0.986379 0.164487i \(-0.0525969\pi\)
\(30\) 0 0
\(31\) −5.18043 1.88552i −0.930432 0.338650i −0.168051 0.985778i \(-0.553747\pi\)
−0.762381 + 0.647129i \(0.775970\pi\)
\(32\) −0.397007 + 4.53781i −0.0701815 + 0.802178i
\(33\) 0 0
\(34\) −1.00144 2.75143i −0.171745 0.471866i
\(35\) −5.10545 + 3.96376i −0.862979 + 0.669998i
\(36\) 0 0
\(37\) 1.14193 4.26173i 0.187732 0.700624i −0.806298 0.591510i \(-0.798532\pi\)
0.994029 0.109114i \(-0.0348013\pi\)
\(38\) −0.569956 6.51463i −0.0924591 1.05681i
\(39\) 0 0
\(40\) −1.43698 + 6.66033i −0.227206 + 1.05309i
\(41\) −5.70140 + 1.00531i −0.890409 + 0.157003i −0.600095 0.799928i \(-0.704871\pi\)
−0.290314 + 0.956932i \(0.593760\pi\)
\(42\) 0 0
\(43\) 1.44271 0.126221i 0.220012 0.0192485i 0.0233831 0.999727i \(-0.492556\pi\)
0.196629 + 0.980478i \(0.437001\pi\)
\(44\) 1.04170 + 1.80428i 0.157042 + 0.272005i
\(45\) 0 0
\(46\) 0.377104 0.653164i 0.0556010 0.0963037i
\(47\) 4.38688 9.40770i 0.639893 1.37225i −0.272188 0.962244i \(-0.587747\pi\)
0.912081 0.410010i \(-0.134475\pi\)
\(48\) 0 0
\(49\) 0.871236 + 1.03830i 0.124462 + 0.148328i
\(50\) −1.75128 + 4.98690i −0.247668 + 0.705254i
\(51\) 0 0
\(52\) −3.93195 + 2.75318i −0.545263 + 0.381797i
\(53\) −7.22940 7.22940i −0.993035 0.993035i 0.00694140 0.999976i \(-0.497790\pi\)
−0.999976 + 0.00694140i \(0.997790\pi\)
\(54\) 0 0
\(55\) 2.04765 + 4.86523i 0.276105 + 0.656027i
\(56\) 8.67413 + 1.52948i 1.15913 + 0.204386i
\(57\) 0 0
\(58\) −3.43887 + 1.60357i −0.451546 + 0.210559i
\(59\) 6.27320 5.26384i 0.816701 0.685293i −0.135496 0.990778i \(-0.543263\pi\)
0.952197 + 0.305484i \(0.0988184\pi\)
\(60\) 0 0
\(61\) 2.64019 0.960952i 0.338042 0.123037i −0.167421 0.985885i \(-0.553544\pi\)
0.505463 + 0.862848i \(0.331322\pi\)
\(62\) 1.50831 + 5.62907i 0.191555 + 0.714893i
\(63\) 0 0
\(64\) 6.69194 3.86359i 0.836493 0.482949i
\(65\) −10.7553 + 5.67665i −1.33404 + 0.704101i
\(66\) 0 0
\(67\) −4.28254 + 6.11610i −0.523196 + 0.747201i −0.990592 0.136847i \(-0.956303\pi\)
0.467396 + 0.884048i \(0.345192\pi\)
\(68\) 1.40214 2.00246i 0.170034 0.242834i
\(69\) 0 0
\(70\) 6.52785 + 2.01759i 0.780228 + 0.241148i
\(71\) 4.24004 2.44799i 0.503200 0.290523i −0.226834 0.973933i \(-0.572838\pi\)
0.730034 + 0.683411i \(0.239504\pi\)
\(72\) 0 0
\(73\) 1.80353 + 6.73088i 0.211088 + 0.787790i 0.987507 + 0.157574i \(0.0503671\pi\)
−0.776420 + 0.630216i \(0.782966\pi\)
\(74\) −4.38269 + 1.59517i −0.509478 + 0.185435i
\(75\) 0 0
\(76\) 4.18242 3.50947i 0.479756 0.402563i
\(77\) 6.18430 2.88379i 0.704767 0.328638i
\(78\) 0 0
\(79\) 12.8661 + 2.26863i 1.44754 + 0.255241i 0.841529 0.540212i \(-0.181656\pi\)
0.606015 + 0.795453i \(0.292767\pi\)
\(80\) 3.00075 1.26294i 0.335494 0.141201i
\(81\) 0 0
\(82\) 4.32741 + 4.32741i 0.477883 + 0.477883i
\(83\) 3.90587 2.73492i 0.428724 0.300196i −0.339227 0.940705i \(-0.610165\pi\)
0.767951 + 0.640509i \(0.221276\pi\)
\(84\) 0 0
\(85\) 4.15837 4.59007i 0.451039 0.497863i
\(86\) −0.984048 1.17274i −0.106113 0.126460i
\(87\) 0 0
\(88\) 3.03998 6.51925i 0.324063 0.694955i
\(89\) 3.33276 5.77251i 0.353272 0.611885i −0.633549 0.773703i \(-0.718402\pi\)
0.986821 + 0.161818i \(0.0517357\pi\)
\(90\) 0 0
\(91\) 7.86060 + 13.6150i 0.824014 + 1.42723i
\(92\) 0.627283 0.0548802i 0.0653988 0.00572165i
\(93\) 0 0
\(94\) −10.8062 + 1.90542i −1.11457 + 0.196529i
\(95\) 11.6243 7.49853i 1.19263 0.769333i
\(96\) 0 0
\(97\) −1.59893 18.2758i −0.162346 1.85563i −0.443894 0.896079i \(-0.646403\pi\)
0.281548 0.959547i \(-0.409152\pi\)
\(98\) 0.370833 1.38397i 0.0374597 0.139802i
\(99\) 0 0
\(100\) −4.24918 + 1.19039i −0.424918 + 0.119039i
\(101\) 1.15191 + 3.16484i 0.114619 + 0.314913i 0.983716 0.179728i \(-0.0575217\pi\)
−0.869097 + 0.494641i \(0.835299\pi\)
\(102\) 0 0
\(103\) −0.316137 + 3.61346i −0.0311499 + 0.356045i 0.964584 + 0.263775i \(0.0849677\pi\)
−0.995734 + 0.0922694i \(0.970588\pi\)
\(104\) 15.5732 + 5.66819i 1.52708 + 0.555812i
\(105\) 0 0
\(106\) −1.87673 + 10.6434i −0.182284 + 1.03378i
\(107\) −4.03460 + 4.03460i −0.390039 + 0.390039i −0.874701 0.484662i \(-0.838943\pi\)
0.484662 + 0.874701i \(0.338943\pi\)
\(108\) 0 0
\(109\) 15.8226i 1.51553i −0.652527 0.757765i \(-0.726291\pi\)
0.652527 0.757765i \(-0.273709\pi\)
\(110\) 2.97136 4.72301i 0.283308 0.450321i
\(111\) 0 0
\(112\) −1.77865 3.81433i −0.168067 0.360420i
\(113\) −2.65880 0.232615i −0.250119 0.0218825i −0.0385931 0.999255i \(-0.512288\pi\)
−0.211526 + 0.977372i \(0.567843\pi\)
\(114\) 0 0
\(115\) 1.59423 + 0.0605481i 0.148662 + 0.00564614i
\(116\) −2.74346 1.58394i −0.254724 0.147065i
\(117\) 0 0
\(118\) −8.36165 2.24050i −0.769753 0.206255i
\(119\) −6.13333 5.14648i −0.562242 0.471777i
\(120\) 0 0
\(121\) 0.942447 + 5.34488i 0.0856770 + 0.485898i
\(122\) −2.43292 1.70355i −0.220266 0.154232i
\(123\) 0 0
\(124\) −3.12744 + 3.72713i −0.280852 + 0.334707i
\(125\) −11.0583 + 1.64772i −0.989080 + 0.147377i
\(126\) 0 0
\(127\) 3.15881 0.846401i 0.280299 0.0751059i −0.115931 0.993257i \(-0.536985\pi\)
0.396230 + 0.918151i \(0.370318\pi\)
\(128\) 0.853671 + 0.398073i 0.0754546 + 0.0351850i
\(129\) 0 0
\(130\) 11.4367 + 5.87139i 1.00307 + 0.514955i
\(131\) −0.497235 + 1.36614i −0.0434436 + 0.119360i −0.959517 0.281649i \(-0.909118\pi\)
0.916074 + 0.401010i \(0.131341\pi\)
\(132\) 0 0
\(133\) −10.2567 14.6481i −0.889368 1.27015i
\(134\) 7.89266 0.681822
\(135\) 0 0
\(136\) −8.44014 −0.723736
\(137\) 9.15193 + 13.0703i 0.781902 + 1.11667i 0.990343 + 0.138637i \(0.0442720\pi\)
−0.208442 + 0.978035i \(0.566839\pi\)
\(138\) 0 0
\(139\) 3.12149 8.57623i 0.264762 0.727426i −0.734069 0.679075i \(-0.762381\pi\)
0.998830 0.0483514i \(-0.0153967\pi\)
\(140\) 1.74618 + 5.43057i 0.147579 + 0.458967i
\(141\) 0 0
\(142\) −4.69060 2.18726i −0.393626 0.183551i
\(143\) 12.4016 3.32299i 1.03707 0.277883i
\(144\) 0 0
\(145\) −6.39525 4.84987i −0.531097 0.402760i
\(146\) 4.73488 5.64281i 0.391861 0.467002i
\(147\) 0 0
\(148\) −3.18968 2.23344i −0.262190 0.183588i
\(149\) 1.63395 + 9.26659i 0.133858 + 0.759149i 0.975648 + 0.219343i \(0.0703913\pi\)
−0.841789 + 0.539806i \(0.818498\pi\)
\(150\) 0 0
\(151\) −0.808803 0.678666i −0.0658194 0.0552291i 0.609284 0.792952i \(-0.291457\pi\)
−0.675104 + 0.737723i \(0.735901\pi\)
\(152\) −18.2082 4.87887i −1.47688 0.395729i
\(153\) 0 0
\(154\) −6.24682 3.60660i −0.503383 0.290628i
\(155\) −9.04119 + 8.37956i −0.726206 + 0.673062i
\(156\) 0 0
\(157\) 22.2338 + 1.94520i 1.77445 + 0.155244i 0.926860 0.375408i \(-0.122497\pi\)
0.847590 + 0.530652i \(0.178053\pi\)
\(158\) −5.83654 12.5165i −0.464330 0.995759i
\(159\) 0 0
\(160\) 8.62135 + 5.42391i 0.681578 + 0.428798i
\(161\) 2.06235i 0.162536i
\(162\) 0 0
\(163\) −1.74889 + 1.74889i −0.136983 + 0.136983i −0.772274 0.635290i \(-0.780881\pi\)
0.635290 + 0.772274i \(0.280881\pi\)
\(164\) −0.887241 + 5.03179i −0.0692819 + 0.392917i
\(165\) 0 0
\(166\) −4.73644 1.72392i −0.367619 0.133802i
\(167\) 0.634893 7.25686i 0.0491295 0.561553i −0.931243 0.364399i \(-0.881275\pi\)
0.980373 0.197154i \(-0.0631699\pi\)
\(168\) 0 0
\(169\) 5.67082 + 15.5805i 0.436217 + 1.19850i
\(170\) −6.49595 0.817753i −0.498217 0.0627188i
\(171\) 0 0
\(172\) 0.330806 1.23458i 0.0252237 0.0941362i
\(173\) 1.78680 + 20.4232i 0.135848 + 1.55275i 0.692143 + 0.721760i \(0.256667\pi\)
−0.556295 + 0.830985i \(0.687778\pi\)
\(174\) 0 0
\(175\) 2.67101 + 14.2039i 0.201909 + 1.07371i
\(176\) −3.38487 + 0.596843i −0.255144 + 0.0449887i
\(177\) 0 0
\(178\) −7.01926 + 0.614106i −0.526116 + 0.0460292i
\(179\) 7.17079 + 12.4202i 0.535970 + 0.928327i 0.999116 + 0.0420450i \(0.0133873\pi\)
−0.463146 + 0.886282i \(0.653279\pi\)
\(180\) 0 0
\(181\) 1.03474 1.79221i 0.0769112 0.133214i −0.825005 0.565126i \(-0.808828\pi\)
0.901916 + 0.431912i \(0.142161\pi\)
\(182\) 7.02339 15.0617i 0.520609 1.11645i
\(183\) 0 0
\(184\) −1.39745 1.66542i −0.103021 0.122776i
\(185\) −7.31143 6.62379i −0.537547 0.486991i
\(186\) 0 0
\(187\) −5.35618 + 3.75043i −0.391682 + 0.274259i
\(188\) −6.47790 6.47790i −0.472449 0.472449i
\(189\) 0 0
\(190\) −13.5412 5.51919i −0.982384 0.400404i
\(191\) −22.9618 4.04878i −1.66145 0.292959i −0.737467 0.675383i \(-0.763978\pi\)
−0.923987 + 0.382424i \(0.875089\pi\)
\(192\) 0 0
\(193\) −0.282417 + 0.131693i −0.0203288 + 0.00947948i −0.432756 0.901511i \(-0.642459\pi\)
0.412427 + 0.910991i \(0.364681\pi\)
\(194\) −14.8559 + 12.4656i −1.06659 + 0.894977i
\(195\) 0 0
\(196\) 1.12408 0.409130i 0.0802911 0.0292236i
\(197\) 0.840756 + 3.13774i 0.0599014 + 0.223555i 0.989387 0.145303i \(-0.0464156\pi\)
−0.929486 + 0.368858i \(0.879749\pi\)
\(198\) 0 0
\(199\) −5.52277 + 3.18857i −0.391499 + 0.226032i −0.682809 0.730596i \(-0.739242\pi\)
0.291310 + 0.956629i \(0.405909\pi\)
\(200\) 11.7815 + 9.66026i 0.833079 + 0.683083i
\(201\) 0 0
\(202\) 2.04207 2.91638i 0.143679 0.205196i
\(203\) −5.95116 + 8.49914i −0.417690 + 0.596523i
\(204\) 0 0
\(205\) −3.82266 + 12.3681i −0.266986 + 0.863827i
\(206\) 3.32065 1.91718i 0.231360 0.133576i
\(207\) 0 0
\(208\) −2.04954 7.64899i −0.142110 0.530362i
\(209\) −13.7230 + 4.99477i −0.949241 + 0.345495i
\(210\) 0 0
\(211\) 4.91430 4.12359i 0.338314 0.283879i −0.457763 0.889074i \(-0.651349\pi\)
0.796077 + 0.605195i \(0.206905\pi\)
\(212\) −8.17776 + 3.81335i −0.561651 + 0.261902i
\(213\) 0 0
\(214\) 5.93991 + 1.04737i 0.406044 + 0.0715965i
\(215\) 1.22226 2.99880i 0.0833578 0.204517i
\(216\) 0 0
\(217\) 11.2680 + 11.2680i 0.764925 + 0.764925i
\(218\) −13.7011 + 9.59362i −0.927956 + 0.649762i
\(219\) 0 0
\(220\) 4.65296 0.229601i 0.313703 0.0154797i
\(221\) −9.68341 11.5402i −0.651376 0.776280i
\(222\) 0 0
\(223\) −4.39023 + 9.41489i −0.293992 + 0.630467i −0.996714 0.0809965i \(-0.974190\pi\)
0.702723 + 0.711464i \(0.251968\pi\)
\(224\) 6.58348 11.4029i 0.439877 0.761889i
\(225\) 0 0
\(226\) 1.41067 + 2.44335i 0.0938361 + 0.162529i
\(227\) 3.11245 0.272304i 0.206580 0.0180734i 0.0166042 0.999862i \(-0.494714\pi\)
0.189976 + 0.981789i \(0.439159\pi\)
\(228\) 0 0
\(229\) −23.1368 + 4.07964i −1.52892 + 0.269590i −0.873933 0.486047i \(-0.838438\pi\)
−0.654990 + 0.755638i \(0.727327\pi\)
\(230\) −0.914188 1.41718i −0.0602798 0.0934464i
\(231\) 0 0
\(232\) 0.953265 + 10.8959i 0.0625849 + 0.715349i
\(233\) 0.858538 3.20411i 0.0562447 0.209908i −0.932085 0.362241i \(-0.882012\pi\)
0.988329 + 0.152333i \(0.0486785\pi\)
\(234\) 0 0
\(235\) −14.2341 18.3340i −0.928533 1.19598i
\(236\) −2.47188 6.79145i −0.160906 0.442085i
\(237\) 0 0
\(238\) −0.737653 + 8.43141i −0.0478149 + 0.546527i
\(239\) −15.9837 5.81759i −1.03390 0.376309i −0.231335 0.972874i \(-0.574309\pi\)
−0.802564 + 0.596566i \(0.796532\pi\)
\(240\) 0 0
\(241\) 3.22231 18.2746i 0.207567 1.17717i −0.685782 0.727807i \(-0.740540\pi\)
0.893349 0.449364i \(-0.148349\pi\)
\(242\) 4.05681 4.05681i 0.260782 0.260782i
\(243\) 0 0
\(244\) 2.47965i 0.158744i
\(245\) 2.95516 0.672751i 0.188798 0.0429805i
\(246\) 0 0
\(247\) −14.2194 30.4937i −0.904761 1.94027i
\(248\) 16.7346 + 1.46409i 1.06265 + 0.0929695i
\(249\) 0 0
\(250\) 8.13168 + 8.57651i 0.514292 + 0.542426i
\(251\) 13.1493 + 7.59178i 0.829979 + 0.479189i 0.853846 0.520527i \(-0.174264\pi\)
−0.0238664 + 0.999715i \(0.507598\pi\)
\(252\) 0 0
\(253\) −1.62687 0.435919i −0.102281 0.0274060i
\(254\) −2.64818 2.22208i −0.166161 0.139426i
\(255\) 0 0
\(256\) −2.85653 16.2002i −0.178533 1.01251i
\(257\) −7.11815 4.98418i −0.444018 0.310905i 0.330100 0.943946i \(-0.392917\pi\)
−0.774118 + 0.633041i \(0.781806\pi\)
\(258\) 0 0
\(259\) −8.19772 + 9.76966i −0.509382 + 0.607057i
\(260\) 1.46129 + 10.6332i 0.0906256 + 0.659445i
\(261\) 0 0
\(262\) 1.48446 0.397759i 0.0917099 0.0245736i
\(263\) 21.3889 + 9.97382i 1.31890 + 0.615012i 0.949356 0.314203i \(-0.101737\pi\)
0.369541 + 0.929214i \(0.379515\pi\)
\(264\) 0 0
\(265\) −21.7639 + 6.99810i −1.33695 + 0.429890i
\(266\) −6.46518 + 17.7629i −0.396406 + 1.08912i
\(267\) 0 0
\(268\) 3.77957 + 5.39779i 0.230874 + 0.329723i
\(269\) 10.2124 0.622659 0.311330 0.950302i \(-0.399226\pi\)
0.311330 + 0.950302i \(0.399226\pi\)
\(270\) 0 0
\(271\) 4.84409 0.294258 0.147129 0.989117i \(-0.452997\pi\)
0.147129 + 0.989117i \(0.452997\pi\)
\(272\) 2.31318 + 3.30356i 0.140257 + 0.200308i
\(273\) 0 0
\(274\) 5.76881 15.8497i 0.348506 0.957514i
\(275\) 11.7692 + 0.895273i 0.709712 + 0.0539870i
\(276\) 0 0
\(277\) −12.2491 5.71185i −0.735978 0.343192i 0.0182248 0.999834i \(-0.494199\pi\)
−0.754203 + 0.656642i \(0.771976\pi\)
\(278\) −9.31897 + 2.49701i −0.558914 + 0.149761i
\(279\) 0 0
\(280\) 11.9008 15.6930i 0.711211 0.937834i
\(281\) 10.1156 12.0553i 0.603445 0.719158i −0.374685 0.927152i \(-0.622249\pi\)
0.978130 + 0.207994i \(0.0666936\pi\)
\(282\) 0 0
\(283\) 24.7001 + 17.2952i 1.46827 + 1.02809i 0.988587 + 0.150648i \(0.0481361\pi\)
0.479680 + 0.877443i \(0.340753\pi\)
\(284\) −0.750327 4.25532i −0.0445237 0.252507i
\(285\) 0 0
\(286\) −10.3968 8.72397i −0.614777 0.515859i
\(287\) 16.1643 + 4.33122i 0.954150 + 0.255664i
\(288\) 0 0
\(289\) −8.07815 4.66392i −0.475185 0.274348i
\(290\) −0.322005 + 8.47837i −0.0189088 + 0.497867i
\(291\) 0 0
\(292\) 6.12652 + 0.536001i 0.358527 + 0.0313671i
\(293\) −3.10333 6.65512i −0.181299 0.388796i 0.794564 0.607180i \(-0.207699\pi\)
−0.975863 + 0.218384i \(0.929922\pi\)
\(294\) 0 0
\(295\) −4.06463 17.8545i −0.236652 1.03953i
\(296\) 13.4441i 0.781424i
\(297\) 0 0
\(298\) 7.03343 7.03343i 0.407435 0.407435i
\(299\) 0.673830 3.82148i 0.0389686 0.221002i
\(300\) 0 0
\(301\) −3.93374 1.43176i −0.226737 0.0825254i
\(302\) −0.0972742 + 1.11185i −0.00559750 + 0.0639798i
\(303\) 0 0
\(304\) 3.08065 + 8.46402i 0.176687 + 0.485445i
\(305\) 0.784693 6.23334i 0.0449314 0.356920i
\(306\) 0 0
\(307\) −3.54038 + 13.2129i −0.202060 + 0.754099i 0.788265 + 0.615336i \(0.210980\pi\)
−0.990326 + 0.138764i \(0.955687\pi\)
\(308\) −0.524871 5.99930i −0.0299073 0.341842i
\(309\) 0 0
\(310\) 12.7379 + 2.74822i 0.723465 + 0.156089i
\(311\) −3.80231 + 0.670449i −0.215609 + 0.0380177i −0.280409 0.959881i \(-0.590470\pi\)
0.0648001 + 0.997898i \(0.479359\pi\)
\(312\) 0 0
\(313\) 24.5081 2.14418i 1.38528 0.121196i 0.629997 0.776597i \(-0.283056\pi\)
0.755281 + 0.655401i \(0.227500\pi\)
\(314\) −11.7965 20.4321i −0.665714 1.15305i
\(315\) 0 0
\(316\) 5.76508 9.98541i 0.324311 0.561723i
\(317\) 6.97386 14.9555i 0.391691 0.839984i −0.607274 0.794493i \(-0.707737\pi\)
0.998965 0.0454916i \(-0.0144854\pi\)
\(318\) 0 0
\(319\) 5.44660 + 6.49101i 0.304951 + 0.363427i
\(320\) −0.851574 17.2575i −0.0476045 0.964725i
\(321\) 0 0
\(322\) −1.78583 + 1.25045i −0.0995203 + 0.0696849i
\(323\) 12.1165 + 12.1165i 0.674178 + 0.674178i
\(324\) 0 0
\(325\) 0.308476 + 27.1922i 0.0171112 + 1.50835i
\(326\) 2.57479 + 0.454005i 0.142604 + 0.0251450i
\(327\) 0 0
\(328\) 15.9881 7.45537i 0.882794 0.411654i
\(329\) −22.9851 + 19.2867i −1.26721 + 1.06331i
\(330\) 0 0
\(331\) −19.3973 + 7.06005i −1.06617 + 0.388056i −0.814744 0.579820i \(-0.803123\pi\)
−0.251429 + 0.967876i \(0.580901\pi\)
\(332\) −1.08916 4.06479i −0.0597752 0.223084i
\(333\) 0 0
\(334\) −6.66881 + 3.85024i −0.364901 + 0.210676i
\(335\) 7.79292 + 14.7650i 0.425773 + 0.806697i
\(336\) 0 0
\(337\) 6.00115 8.57053i 0.326904 0.466867i −0.621735 0.783227i \(-0.713572\pi\)
0.948639 + 0.316361i \(0.102461\pi\)
\(338\) 10.0531 14.3573i 0.546815 0.780933i
\(339\) 0 0
\(340\) −2.55147 4.83418i −0.138373 0.262170i
\(341\) 11.2705 6.50701i 0.610330 0.352374i
\(342\) 0 0
\(343\) 4.22292 + 15.7602i 0.228016 + 0.850968i
\(344\) −4.14679 + 1.50931i −0.223580 + 0.0813765i
\(345\) 0 0
\(346\) 16.6015 13.9303i 0.892500 0.748896i
\(347\) −10.4146 + 4.85639i −0.559083 + 0.260705i −0.681554 0.731767i \(-0.738696\pi\)
0.122472 + 0.992472i \(0.460918\pi\)
\(348\) 0 0
\(349\) −15.6377 2.75735i −0.837067 0.147597i −0.261347 0.965245i \(-0.584167\pi\)
−0.575719 + 0.817647i \(0.695278\pi\)
\(350\) 10.6799 10.9250i 0.570867 0.583968i
\(351\) 0 0
\(352\) −7.60358 7.60358i −0.405272 0.405272i
\(353\) −7.10893 + 4.97772i −0.378370 + 0.264938i −0.747255 0.664538i \(-0.768629\pi\)
0.368885 + 0.929475i \(0.379740\pi\)
\(354\) 0 0
\(355\) −0.539561 10.9344i −0.0286369 0.580339i
\(356\) −3.78131 4.50640i −0.200409 0.238838i
\(357\) 0 0
\(358\) 6.40706 13.7400i 0.338623 0.726180i
\(359\) 10.2032 17.6725i 0.538505 0.932718i −0.460480 0.887670i \(-0.652323\pi\)
0.998985 0.0450476i \(-0.0143439\pi\)
\(360\) 0 0
\(361\) 9.63526 + 16.6888i 0.507119 + 0.878356i
\(362\) −2.17930 + 0.190664i −0.114541 + 0.0100211i
\(363\) 0 0
\(364\) 13.6640 2.40933i 0.716189 0.126283i
\(365\) 15.2312 + 3.28615i 0.797236 + 0.172005i
\(366\) 0 0
\(367\) 2.26163 + 25.8506i 0.118056 + 1.34939i 0.791962 + 0.610571i \(0.209060\pi\)
−0.673906 + 0.738818i \(0.735385\pi\)
\(368\) −0.268864 + 1.00341i −0.0140155 + 0.0523066i
\(369\) 0 0
\(370\) −1.30258 + 10.3473i −0.0677180 + 0.537929i
\(371\) 10.1077 + 27.7707i 0.524766 + 1.44178i
\(372\) 0 0
\(373\) 0.416402 4.75950i 0.0215605 0.246438i −0.977765 0.209705i \(-0.932750\pi\)
0.999325 0.0367323i \(-0.0116949\pi\)
\(374\) 6.49515 + 2.36404i 0.335856 + 0.122242i
\(375\) 0 0
\(376\) −5.49248 + 31.1494i −0.283253 + 1.60641i
\(377\) −13.8043 + 13.8043i −0.710956 + 0.710956i
\(378\) 0 0
\(379\) 25.3002i 1.29958i −0.760112 0.649792i \(-0.774856\pi\)
0.760112 0.649792i \(-0.225144\pi\)
\(380\) −2.70994 11.9038i −0.139017 0.610653i
\(381\) 0 0
\(382\) 10.4163 + 22.3379i 0.532946 + 1.14291i
\(383\) −12.2766 1.07406i −0.627303 0.0548819i −0.230929 0.972971i \(-0.574176\pi\)
−0.396375 + 0.918089i \(0.629732\pi\)
\(384\) 0 0
\(385\) 0.579078 15.2471i 0.0295126 0.777064i
\(386\) 0.285272 + 0.164702i 0.0145200 + 0.00838310i
\(387\) 0 0
\(388\) −15.6393 4.19054i −0.793965 0.212742i
\(389\) 6.83430 + 5.73466i 0.346513 + 0.290759i 0.799388 0.600815i \(-0.205157\pi\)
−0.452875 + 0.891574i \(0.649602\pi\)
\(390\) 0 0
\(391\) 0.343168 + 1.94620i 0.0173548 + 0.0984238i
\(392\) −3.38317 2.36892i −0.170876 0.119649i
\(393\) 0 0
\(394\) 2.20727 2.63052i 0.111200 0.132524i
\(395\) 17.6521 23.2769i 0.888175 1.17119i
\(396\) 0 0
\(397\) −13.1660 + 3.52782i −0.660782 + 0.177056i −0.573599 0.819136i \(-0.694453\pi\)
−0.0871833 + 0.996192i \(0.527787\pi\)
\(398\) 6.10964 + 2.84897i 0.306249 + 0.142806i
\(399\) 0 0
\(400\) 0.552182 7.25898i 0.0276091 0.362949i
\(401\) 1.00354 2.75721i 0.0501146 0.137689i −0.912110 0.409945i \(-0.865548\pi\)
0.962225 + 0.272257i \(0.0877700\pi\)
\(402\) 0 0
\(403\) 17.1978 + 24.5610i 0.856683 + 1.22347i
\(404\) 2.97240 0.147882
\(405\) 0 0
\(406\) 10.9679 0.544328
\(407\) 5.97399 + 8.53175i 0.296120 + 0.422903i
\(408\) 0 0
\(409\) −9.80467 + 26.9381i −0.484810 + 1.33200i 0.420515 + 0.907285i \(0.361849\pi\)
−0.905325 + 0.424719i \(0.860373\pi\)
\(410\) 13.0276 4.18896i 0.643386 0.206878i
\(411\) 0 0
\(412\) 2.90132 + 1.35291i 0.142938 + 0.0666530i
\(413\) −22.8645 + 6.12654i −1.12509 + 0.301467i
\(414\) 0 0
\(415\) −1.45160 10.5627i −0.0712563 0.518503i
\(416\) 15.9247 18.9783i 0.780772 0.930488i
\(417\) 0 0
\(418\) 12.6457 + 8.85459i 0.618519 + 0.433092i
\(419\) −2.30839 13.0915i −0.112772 0.639563i −0.987829 0.155543i \(-0.950287\pi\)
0.875057 0.484020i \(-0.160824\pi\)
\(420\) 0 0
\(421\) 6.93437 + 5.81863i 0.337960 + 0.283582i 0.795934 0.605383i \(-0.206980\pi\)
−0.457974 + 0.888966i \(0.651425\pi\)
\(422\) −6.55035 1.75516i −0.318866 0.0854399i
\(423\) 0 0
\(424\) 26.9798 + 15.5768i 1.31025 + 0.756476i
\(425\) −4.88407 12.9595i −0.236912 0.628630i
\(426\) 0 0
\(427\) −8.09054 0.707831i −0.391529 0.0342543i
\(428\) 2.12816 + 4.56386i 0.102869 + 0.220602i
\(429\) 0 0
\(430\) −3.33781 + 0.759863i −0.160964 + 0.0366438i
\(431\) 0.295969i 0.0142563i 0.999975 + 0.00712817i \(0.00226899\pi\)
−0.999975 + 0.00712817i \(0.997731\pi\)
\(432\) 0 0
\(433\) 12.8171 12.8171i 0.615949 0.615949i −0.328541 0.944490i \(-0.606557\pi\)
0.944490 + 0.328541i \(0.106557\pi\)
\(434\) 2.92514 16.5893i 0.140411 0.796312i
\(435\) 0 0
\(436\) −13.1221 4.77607i −0.628437 0.228732i
\(437\) −0.384686 + 4.39698i −0.0184020 + 0.210336i
\(438\) 0 0
\(439\) 9.75841 + 26.8110i 0.465743 + 1.27962i 0.921105 + 0.389313i \(0.127288\pi\)
−0.455362 + 0.890306i \(0.650490\pi\)
\(440\) −9.86383 12.7049i −0.470240 0.605684i
\(441\) 0 0
\(442\) −4.12164 + 15.3822i −0.196046 + 0.731655i
\(443\) −3.51399 40.1651i −0.166955 1.90830i −0.369833 0.929098i \(-0.620585\pi\)
0.202878 0.979204i \(-0.434970\pi\)
\(444\) 0 0
\(445\) −8.07938 12.5248i −0.382999 0.593730i
\(446\) 10.8144 1.90688i 0.512079 0.0902933i
\(447\) 0 0
\(448\) −22.2510 + 1.94671i −1.05126 + 0.0919734i
\(449\) −3.91232 6.77634i −0.184634 0.319795i 0.758819 0.651301i \(-0.225777\pi\)
−0.943453 + 0.331506i \(0.892443\pi\)
\(450\) 0 0
\(451\) 6.83332 11.8357i 0.321768 0.557319i
\(452\) −0.995476 + 2.13480i −0.0468232 + 0.100413i
\(453\) 0 0
\(454\) −2.12294 2.53003i −0.0996347 0.118740i
\(455\) 35.1109 1.73255i 1.64603 0.0812234i
\(456\) 0 0
\(457\) 4.48957 3.14363i 0.210013 0.147053i −0.463838 0.885920i \(-0.653528\pi\)
0.673851 + 0.738867i \(0.264639\pi\)
\(458\) 17.5610 + 17.5610i 0.820573 + 0.820573i
\(459\) 0 0
\(460\) 0.531434 1.30386i 0.0247782 0.0607929i
\(461\) −29.6880 5.23480i −1.38271 0.243809i −0.567689 0.823243i \(-0.692163\pi\)
−0.815019 + 0.579434i \(0.803274\pi\)
\(462\) 0 0
\(463\) 0.163397 0.0761934i 0.00759371 0.00354101i −0.418818 0.908070i \(-0.637555\pi\)
0.426411 + 0.904529i \(0.359778\pi\)
\(464\) 4.00350 3.35933i 0.185858 0.155953i
\(465\) 0 0
\(466\) −3.29505 + 1.19930i −0.152640 + 0.0555566i
\(467\) 3.26672 + 12.1916i 0.151166 + 0.564158i 0.999403 + 0.0345422i \(0.0109973\pi\)
−0.848238 + 0.529616i \(0.822336\pi\)
\(468\) 0 0
\(469\) 18.6907 10.7911i 0.863055 0.498285i
\(470\) −7.24531 + 23.4420i −0.334201 + 1.08130i
\(471\) 0 0
\(472\) −14.3126 + 20.4404i −0.658789 + 0.940848i
\(473\) −1.96091 + 2.80048i −0.0901629 + 0.128766i
\(474\) 0 0
\(475\) −3.04523 30.7813i −0.139725 1.41234i
\(476\) −6.11948 + 3.53308i −0.280486 + 0.161939i
\(477\) 0 0
\(478\) 4.65373 + 17.3679i 0.212857 + 0.794391i
\(479\) −33.4923 + 12.1902i −1.53030 + 0.556985i −0.963696 0.267003i \(-0.913966\pi\)
−0.566607 + 0.823988i \(0.691744\pi\)
\(480\) 0 0
\(481\) −18.3822 + 15.4245i −0.838157 + 0.703297i
\(482\) −17.7781 + 8.29007i −0.809771 + 0.377602i
\(483\) 0 0
\(484\) 4.71715 + 0.831760i 0.214416 + 0.0378073i
\(485\) −37.9878 15.4832i −1.72494 0.703058i
\(486\) 0 0
\(487\) 4.88907 + 4.88907i 0.221545 + 0.221545i 0.809149 0.587604i \(-0.199929\pi\)
−0.587604 + 0.809149i \(0.699929\pi\)
\(488\) −7.01302 + 4.91057i −0.317464 + 0.222291i
\(489\) 0 0
\(490\) −2.37433 2.15103i −0.107262 0.0971736i
\(491\) 16.6934 + 19.8944i 0.753361 + 0.897821i 0.997409 0.0719426i \(-0.0229198\pi\)
−0.244048 + 0.969763i \(0.578475\pi\)
\(492\) 0 0
\(493\) 4.20179 9.01076i 0.189239 0.405824i
\(494\) −17.7835 + 30.8019i −0.800117 + 1.38584i
\(495\) 0 0
\(496\) −4.01336 6.95135i −0.180205 0.312125i
\(497\) −14.0983 + 1.23344i −0.632396 + 0.0553275i
\(498\) 0 0
\(499\) −11.0477 + 1.94801i −0.494564 + 0.0872050i −0.415367 0.909654i \(-0.636347\pi\)
−0.0791972 + 0.996859i \(0.525236\pi\)
\(500\) −1.97144 + 9.66830i −0.0881657 + 0.432380i
\(501\) 0 0
\(502\) −1.39889 15.9894i −0.0624354 0.713640i
\(503\) −7.82118 + 29.1890i −0.348729 + 1.30147i 0.539466 + 0.842008i \(0.318626\pi\)
−0.888195 + 0.459467i \(0.848040\pi\)
\(504\) 0 0
\(505\) 7.47200 + 0.940624i 0.332499 + 0.0418572i
\(506\) 0.608940 + 1.67305i 0.0270707 + 0.0743761i
\(507\) 0 0
\(508\) 0.251546 2.87518i 0.0111605 0.127566i
\(509\) 22.0511 + 8.02596i 0.977399 + 0.355744i 0.780829 0.624745i \(-0.214797\pi\)
0.196571 + 0.980490i \(0.437019\pi\)
\(510\) 0 0
\(511\) 3.49769 19.8364i 0.154729 0.877511i
\(512\) −10.9640 + 10.9640i −0.484544 + 0.484544i
\(513\) 0 0
\(514\) 9.18578i 0.405167i
\(515\) 6.86519 + 4.31906i 0.302516 + 0.190321i
\(516\) 0 0
\(517\) 10.3559 + 22.2083i 0.455452 + 0.976719i
\(518\) 13.4302 + 1.17499i 0.590090 + 0.0516262i
\(519\) 0 0
\(520\) 27.1793 25.1903i 1.19189 1.10467i
\(521\) 14.2319 + 8.21681i 0.623512 + 0.359985i 0.778235 0.627973i \(-0.216115\pi\)
−0.154723 + 0.987958i \(0.549449\pi\)
\(522\) 0 0
\(523\) −14.1137 3.78176i −0.617150 0.165365i −0.0633182 0.997993i \(-0.520168\pi\)
−0.553832 + 0.832629i \(0.686835\pi\)
\(524\) 0.982891 + 0.824743i 0.0429378 + 0.0360291i
\(525\) 0 0
\(526\) −4.33208 24.5685i −0.188888 1.07124i
\(527\) −12.5084 8.75850i −0.544876 0.381526i
\(528\) 0 0
\(529\) 14.4569 17.2291i 0.628561 0.749090i
\(530\) 19.2558 + 14.6027i 0.836418 + 0.634301i
\(531\) 0 0
\(532\) −15.2441 + 4.08464i −0.660914 + 0.177091i
\(533\) 28.5370 + 13.3070i 1.23607 + 0.576390i
\(534\) 0 0
\(535\) 3.90551 + 12.1461i 0.168850 + 0.525120i
\(536\) 7.78131 21.3790i 0.336101 0.923431i
\(537\) 0 0
\(538\) −6.19200 8.84309i −0.266956 0.381253i
\(539\) −3.19963 −0.137818
\(540\) 0 0
\(541\) −28.4337 −1.22246 −0.611230 0.791453i \(-0.709325\pi\)
−0.611230 + 0.791453i \(0.709325\pi\)
\(542\) −2.93709 4.19460i −0.126159 0.180173i
\(543\) 0 0
\(544\) −4.31531 + 11.8562i −0.185017 + 0.508331i
\(545\) −31.4750 16.1586i −1.34824 0.692158i
\(546\) 0 0
\(547\) 9.52924 + 4.44356i 0.407441 + 0.189993i 0.615524 0.788118i \(-0.288945\pi\)
−0.208083 + 0.978111i \(0.566722\pi\)
\(548\) 13.6021 3.64467i 0.581053 0.155693i
\(549\) 0 0
\(550\) −6.36074 10.7340i −0.271223 0.457701i
\(551\) 14.2734 17.0103i 0.608066 0.724665i
\(552\) 0 0
\(553\) −30.9344 21.6605i −1.31547 0.921099i
\(554\) 2.48092 + 14.0700i 0.105404 + 0.597776i
\(555\) 0 0
\(556\) −6.17030 5.17749i −0.261679 0.219575i
\(557\) 16.7541 + 4.48926i 0.709896 + 0.190216i 0.595659 0.803238i \(-0.296891\pi\)
0.114237 + 0.993454i \(0.463558\pi\)
\(558\) 0 0
\(559\) −6.82132 3.93829i −0.288511 0.166572i
\(560\) −9.40403 0.357161i −0.397393 0.0150928i
\(561\) 0 0
\(562\) −16.5722 1.44988i −0.699057 0.0611596i
\(563\) 9.91099 + 21.2542i 0.417699 + 0.895758i 0.996757 + 0.0804714i \(0.0256426\pi\)
−0.579058 + 0.815286i \(0.696580\pi\)
\(564\) 0 0
\(565\) −3.17798 + 5.05144i −0.133699 + 0.212515i
\(566\) 31.8748i 1.33980i
\(567\) 0 0
\(568\) −10.5491 + 10.5491i −0.442630 + 0.442630i
\(569\) 6.84027 38.7931i 0.286759 1.62629i −0.412175 0.911105i \(-0.635231\pi\)
0.698934 0.715186i \(-0.253658\pi\)
\(570\) 0 0
\(571\) 31.4980 + 11.4643i 1.31815 + 0.479767i 0.902865 0.429924i \(-0.141460\pi\)
0.415285 + 0.909691i \(0.363682\pi\)
\(572\) 0.987576 11.2880i 0.0412926 0.471977i
\(573\) 0 0
\(574\) −6.05032 16.6231i −0.252536 0.693836i
\(575\) 1.74853 3.10947i 0.0729185 0.129674i
\(576\) 0 0
\(577\) 5.64888 21.0819i 0.235166 0.877651i −0.742908 0.669393i \(-0.766554\pi\)
0.978074 0.208257i \(-0.0667792\pi\)
\(578\) 0.859390 + 9.82287i 0.0357459 + 0.408578i
\(579\) 0 0
\(580\) −5.95255 + 3.83983i −0.247166 + 0.159440i
\(581\) −13.5734 + 2.39335i −0.563119 + 0.0992930i
\(582\) 0 0
\(583\) 24.0432 2.10351i 0.995769 0.0871185i
\(584\) −10.6167 18.3886i −0.439321 0.760927i
\(585\) 0 0
\(586\) −3.88117 + 6.72239i −0.160330 + 0.277699i
\(587\) −10.3168 + 22.1244i −0.425819 + 0.913173i 0.569984 + 0.821656i \(0.306949\pi\)
−0.995804 + 0.0915170i \(0.970828\pi\)
\(588\) 0 0
\(589\) −21.9220 26.1256i −0.903279 1.07649i
\(590\) −12.9961 + 14.3453i −0.535041 + 0.590585i
\(591\) 0 0
\(592\) 5.26217 3.68461i 0.216274 0.151437i
\(593\) −4.09490 4.09490i −0.168157 0.168157i 0.618012 0.786169i \(-0.287938\pi\)
−0.786169 + 0.618012i \(0.787938\pi\)
\(594\) 0 0
\(595\) −16.5012 + 6.94491i −0.676481 + 0.284714i
\(596\) 8.17827 + 1.44205i 0.334995 + 0.0590687i
\(597\) 0 0
\(598\) −3.71765 + 1.73357i −0.152026 + 0.0708910i
\(599\) 30.3866 25.4974i 1.24156 1.04180i 0.244163 0.969734i \(-0.421487\pi\)
0.997400 0.0720615i \(-0.0229578\pi\)
\(600\) 0 0
\(601\) −22.4811 + 8.18244i −0.917022 + 0.333769i −0.757053 0.653353i \(-0.773362\pi\)
−0.159969 + 0.987122i \(0.551139\pi\)
\(602\) 1.14533 + 4.27441i 0.0466800 + 0.174212i
\(603\) 0 0
\(604\) −0.806976 + 0.465908i −0.0328354 + 0.0189575i
\(605\) 11.5947 + 3.58363i 0.471392 + 0.145695i
\(606\) 0 0
\(607\) 18.5771 26.5308i 0.754020 1.07685i −0.240329 0.970691i \(-0.577255\pi\)
0.994349 0.106160i \(-0.0338557\pi\)
\(608\) −16.1631 + 23.0833i −0.655501 + 0.936152i
\(609\) 0 0
\(610\) −5.87335 + 3.09994i −0.237805 + 0.125513i
\(611\) −48.8923 + 28.2280i −1.97797 + 1.14198i
\(612\) 0 0
\(613\) −3.95860 14.7737i −0.159886 0.596704i −0.998637 0.0521885i \(-0.983380\pi\)
0.838751 0.544515i \(-0.183286\pi\)
\(614\) 13.5879 4.94560i 0.548364 0.199588i
\(615\) 0 0
\(616\) −15.9279 + 13.3651i −0.641755 + 0.538497i
\(617\) 24.2804 11.3221i 0.977492 0.455812i 0.132845 0.991137i \(-0.457589\pi\)
0.844646 + 0.535325i \(0.179811\pi\)
\(618\) 0 0
\(619\) −18.6300 3.28497i −0.748802 0.132034i −0.213792 0.976879i \(-0.568581\pi\)
−0.535011 + 0.844845i \(0.679692\pi\)
\(620\) 4.22032 + 10.0275i 0.169492 + 0.402714i
\(621\) 0 0
\(622\) 2.88598 + 2.88598i 0.115717 + 0.115717i
\(623\) −15.7827 + 11.0512i −0.632322 + 0.442757i
\(624\) 0 0
\(625\) −8.01536 + 23.6802i −0.320615 + 0.947210i
\(626\) −16.7165 19.9220i −0.668126 0.796242i
\(627\) 0 0
\(628\) 8.32451 17.8520i 0.332184 0.712371i
\(629\) 6.11042 10.5836i 0.243638 0.421994i
\(630\) 0 0
\(631\) 0.0126965 + 0.0219910i 0.000505440 + 0.000875448i 0.866278 0.499562i \(-0.166506\pi\)
−0.865773 + 0.500438i \(0.833172\pi\)
\(632\) −39.6578 + 3.46961i −1.57750 + 0.138014i
\(633\) 0 0
\(634\) −17.1787 + 3.02907i −0.682253 + 0.120300i
\(635\) 1.54219 7.14801i 0.0612001 0.283660i
\(636\) 0 0
\(637\) −0.642490 7.34369i −0.0254564 0.290968i
\(638\) 2.31829 8.65198i 0.0917820 0.342535i
\(639\) 0 0
\(640\) 1.66366 1.29163i 0.0657620 0.0510562i
\(641\) −9.97230 27.3987i −0.393882 1.08218i −0.965214 0.261463i \(-0.915795\pi\)
0.571331 0.820720i \(-0.306427\pi\)
\(642\) 0 0
\(643\) −0.152914 + 1.74781i −0.00603033 + 0.0689270i −0.998614 0.0526401i \(-0.983236\pi\)
0.992583 + 0.121567i \(0.0387920\pi\)
\(644\) −1.71037 0.622522i −0.0673979 0.0245308i
\(645\) 0 0
\(646\) 3.14539 17.8384i 0.123754 0.701842i
\(647\) 14.7341 14.7341i 0.579259 0.579259i −0.355440 0.934699i \(-0.615669\pi\)
0.934699 + 0.355440i \(0.115669\pi\)
\(648\) 0 0
\(649\) 19.3315i 0.758830i
\(650\) 23.3592 16.7544i 0.916223 0.657161i
\(651\) 0 0
\(652\) 0.922501 + 1.97831i 0.0361279 + 0.0774766i
\(653\) 9.28810 + 0.812604i 0.363471 + 0.0317996i 0.267429 0.963578i \(-0.413826\pi\)
0.0960426 + 0.995377i \(0.469382\pi\)
\(654\) 0 0
\(655\) 2.20979 + 2.38427i 0.0863437 + 0.0931612i
\(656\) −7.29994 4.21462i −0.285015 0.164553i
\(657\) 0 0
\(658\) 30.6372 + 8.20920i 1.19436 + 0.320028i
\(659\) −14.0775 11.8125i −0.548383 0.460148i 0.326010 0.945366i \(-0.394296\pi\)
−0.874393 + 0.485218i \(0.838740\pi\)
\(660\) 0 0
\(661\) 4.43306 + 25.1412i 0.172426 + 0.977878i 0.941073 + 0.338204i \(0.109819\pi\)
−0.768647 + 0.639674i \(0.779070\pi\)
\(662\) 17.8745 + 12.5159i 0.694712 + 0.486443i
\(663\) 0 0
\(664\) −9.33923 + 11.1301i −0.362432 + 0.431930i
\(665\) −39.6130 + 5.44390i −1.53613 + 0.211106i
\(666\) 0 0
\(667\) 2.47371 0.662829i 0.0957825 0.0256648i
\(668\) −5.82669 2.71703i −0.225441 0.105125i
\(669\) 0 0
\(670\) 8.06026 15.7004i 0.311395 0.606560i
\(671\) −2.26847 + 6.23257i −0.0875733 + 0.240606i
\(672\) 0 0
\(673\) −2.68248 3.83098i −0.103402 0.147673i 0.764117 0.645078i \(-0.223175\pi\)
−0.867518 + 0.497405i \(0.834286\pi\)
\(674\) −11.0600 −0.426017
\(675\) 0 0
\(676\) 14.6331 0.562810
\(677\) 22.5105 + 32.1483i 0.865147 + 1.23556i 0.970495 + 0.241123i \(0.0775158\pi\)
−0.105347 + 0.994436i \(0.533595\pi\)
\(678\) 0 0
\(679\) −18.1371 + 49.8312i −0.696038 + 1.91235i
\(680\) −8.61936 + 16.7895i −0.330538 + 0.643847i
\(681\) 0 0
\(682\) −12.4681 5.81397i −0.477428 0.222628i
\(683\) −36.4765 + 9.77386i −1.39574 + 0.373986i −0.876812 0.480834i \(-0.840334\pi\)
−0.518924 + 0.854820i \(0.673667\pi\)
\(684\) 0 0
\(685\) 35.3462 4.85753i 1.35051 0.185597i
\(686\) 11.0866 13.2125i 0.423287 0.504454i
\(687\) 0 0
\(688\) 1.72726 + 1.20944i 0.0658513 + 0.0461096i
\(689\) 9.65582 + 54.7609i 0.367858 + 2.08622i
\(690\) 0 0
\(691\) 10.1478 + 8.51501i 0.386040 + 0.323926i 0.815068 0.579365i \(-0.196699\pi\)
−0.429028 + 0.903291i \(0.641144\pi\)
\(692\) 17.4769 + 4.68292i 0.664372 + 0.178018i
\(693\) 0 0
\(694\) 10.5198 + 6.07363i 0.399327 + 0.230552i
\(695\) −13.8724 14.9677i −0.526211 0.567759i
\(696\) 0 0
\(697\) −15.9747 1.39761i −0.605086 0.0529381i
\(698\) 7.09386 + 15.2128i 0.268507 + 0.575814i
\(699\) 0 0
\(700\) 12.5860 + 2.07232i 0.475705 + 0.0783263i
\(701\) 1.42181i 0.0537011i 0.999639 + 0.0268505i \(0.00854782\pi\)
−0.999639 + 0.0268505i \(0.991452\pi\)
\(702\) 0 0
\(703\) 19.3001 19.3001i 0.727916 0.727916i
\(704\) −3.16755 + 17.9641i −0.119381 + 0.677046i
\(705\) 0 0
\(706\) 8.62062 + 3.13765i 0.324441 + 0.118087i
\(707\) 0.848488 9.69826i 0.0319107 0.364741i
\(708\) 0 0
\(709\) −12.4901 34.3163i −0.469077 1.28878i −0.918487 0.395452i \(-0.870588\pi\)
0.449410 0.893325i \(-0.351634\pi\)
\(710\) −9.14119 + 7.09702i −0.343063 + 0.266346i
\(711\) 0 0
\(712\) −5.25679 + 19.6186i −0.197007 + 0.735239i
\(713\) −0.342810 3.91834i −0.0128384 0.146743i
\(714\) 0 0
\(715\) 6.05469 28.0633i 0.226433 1.04951i
\(716\) 12.4649 2.19790i 0.465836 0.0821395i
\(717\) 0 0
\(718\) −21.4894 + 1.88008i −0.801977 + 0.0701639i
\(719\) 12.9014 + 22.3459i 0.481142 + 0.833363i 0.999766 0.0216398i \(-0.00688871\pi\)
−0.518624 + 0.855003i \(0.673555\pi\)
\(720\) 0 0
\(721\) 5.24243 9.08015i 0.195238 0.338162i
\(722\) 8.60904 18.4622i 0.320395 0.687090i
\(723\) 0 0
\(724\) −1.17400 1.39912i −0.0436314 0.0519978i
\(725\) −16.1786 + 7.76884i −0.600858 + 0.288528i
\(726\) 0 0
\(727\) 1.32255 0.926059i 0.0490507 0.0343456i −0.548794 0.835958i \(-0.684913\pi\)
0.597845 + 0.801612i \(0.296024\pi\)
\(728\) −33.8736 33.8736i −1.25544 1.25544i
\(729\) 0 0
\(730\) −6.38948 15.1814i −0.236485 0.561890i
\(731\) 3.95045 + 0.696570i 0.146112 + 0.0257636i
\(732\) 0 0
\(733\) −12.0574 + 5.62244i −0.445349 + 0.207669i −0.632338 0.774692i \(-0.717905\pi\)
0.186990 + 0.982362i \(0.440127\pi\)
\(734\) 21.0132 17.6322i 0.775613 0.650816i
\(735\) 0 0
\(736\) −3.05398 + 1.11156i −0.112571 + 0.0409725i
\(737\) −4.56182 17.0249i −0.168037 0.627122i
\(738\) 0 0
\(739\) −30.9063 + 17.8437i −1.13691 + 0.656393i −0.945663 0.325150i \(-0.894585\pi\)
−0.191243 + 0.981543i \(0.561252\pi\)
\(740\) −7.70027 + 4.06418i −0.283068 + 0.149402i
\(741\) 0 0
\(742\) 17.9187 25.5905i 0.657815 0.939457i
\(743\) 20.1985 28.8465i 0.741012 1.05828i −0.254813 0.966990i \(-0.582014\pi\)
0.995825 0.0912848i \(-0.0290974\pi\)
\(744\) 0 0
\(745\) 20.1021 + 6.21305i 0.736485 + 0.227629i
\(746\) −4.37382 + 2.52523i −0.160137 + 0.0924551i
\(747\) 0 0
\(748\) 1.49358 + 5.57411i 0.0546106 + 0.203810i
\(749\) 15.4983 5.64093i 0.566296 0.206115i
\(750\) 0 0
\(751\) 19.0262 15.9649i 0.694275 0.582566i −0.225864 0.974159i \(-0.572520\pi\)
0.920138 + 0.391593i \(0.128076\pi\)
\(752\) 13.6975 6.38726i 0.499497 0.232919i
\(753\) 0 0
\(754\) 20.3233 + 3.58354i 0.740130 + 0.130505i
\(755\) −2.17601 + 0.915826i −0.0791930 + 0.0333303i
\(756\) 0 0
\(757\) 17.8009 + 17.8009i 0.646986 + 0.646986i 0.952263 0.305278i \(-0.0987493\pi\)
−0.305278 + 0.952263i \(0.598749\pi\)
\(758\) −21.9080 + 15.3401i −0.795733 + 0.557178i
\(759\) 0 0
\(760\) −28.3001 + 31.2380i −1.02655 + 1.13312i
\(761\) 31.3105 + 37.3144i 1.13500 + 1.35265i 0.927240 + 0.374467i \(0.122174\pi\)
0.207765 + 0.978179i \(0.433381\pi\)
\(762\) 0 0
\(763\) −19.3290 + 41.4512i −0.699757 + 1.50063i
\(764\) −10.2888 + 17.8207i −0.372236 + 0.644731i
\(765\) 0 0
\(766\) 6.51352 + 11.2818i 0.235343 + 0.407626i
\(767\) −44.3691 + 3.88180i −1.60208 + 0.140164i
\(768\) 0 0
\(769\) 43.1365 7.60612i 1.55554 0.274284i 0.671254 0.741227i \(-0.265756\pi\)
0.884287 + 0.466944i \(0.154645\pi\)
\(770\) −13.5539 + 8.74324i −0.488448 + 0.315085i
\(771\) 0 0
\(772\) 0.0239691 + 0.273968i 0.000862668 + 0.00986034i
\(773\) 5.91076 22.0592i 0.212595 0.793416i −0.774404 0.632691i \(-0.781950\pi\)
0.986999 0.160725i \(-0.0513831\pi\)
\(774\) 0 0
\(775\) 7.43578 + 26.5426i 0.267101 + 0.953438i
\(776\) 19.1194 + 52.5302i 0.686347 + 1.88572i
\(777\) 0 0
\(778\) 0.821958 9.39502i 0.0294686 0.336828i
\(779\) −33.6549 12.2494i −1.20581 0.438879i
\(780\) 0 0
\(781\) −2.00697 + 11.3821i −0.0718150 + 0.407283i
\(782\) 1.47719 1.47719i 0.0528241 0.0528241i
\(783\) 0 0
\(784\) 1.97345i 0.0704805i
\(785\) 26.5754 42.2419i 0.948517 1.50768i
\(786\) 0 0
\(787\) −7.27876 15.6093i −0.259460 0.556413i 0.732822 0.680421i \(-0.238203\pi\)
−0.992281 + 0.124008i \(0.960425\pi\)
\(788\) 2.85601 + 0.249868i 0.101741 + 0.00890119i
\(789\) 0 0
\(790\) −30.8588 1.17200i −1.09791 0.0416980i
\(791\) 6.68122 + 3.85740i 0.237557 + 0.137153i
\(792\) 0 0
\(793\) −14.7603 3.95501i −0.524154 0.140447i
\(794\) 11.0377 + 9.26170i 0.391712 + 0.328685i
\(795\) 0 0
\(796\) 0.977323 + 5.54267i 0.0346403 + 0.196455i
\(797\) −26.9373 18.8617i −0.954166 0.668115i −0.0108262 0.999941i \(-0.503446\pi\)
−0.943340 + 0.331827i \(0.892335\pi\)
\(798\) 0 0
\(799\) 18.4814 22.0252i 0.653824 0.779197i
\(800\) 19.5939 11.6109i 0.692748 0.410506i
\(801\) 0 0
\(802\) −2.99600 + 0.802775i −0.105792 + 0.0283470i
\(803\) −14.9085 6.95197i −0.526111 0.245330i
\(804\) 0 0
\(805\) −4.10251 2.10614i −0.144594 0.0742317i
\(806\) 10.8404 29.7838i 0.381838 1.04909i
\(807\) 0 0
\(808\) −5.88637 8.40661i −0.207082 0.295744i
\(809\) −0.589848 −0.0207379 −0.0103690 0.999946i \(-0.503301\pi\)
−0.0103690 + 0.999946i \(0.503301\pi\)
\(810\) 0 0
\(811\) −48.5224 −1.70385 −0.851925 0.523664i \(-0.824565\pi\)
−0.851925 + 0.523664i \(0.824565\pi\)
\(812\) 5.25222 + 7.50095i 0.184317 + 0.263232i
\(813\) 0 0
\(814\) 3.76564 10.3460i 0.131985 0.362627i
\(815\) 1.69293 + 5.26499i 0.0593009 + 0.184424i
\(816\) 0 0
\(817\) 8.11977 + 3.78631i 0.284075 + 0.132466i
\(818\) 29.2711 7.84316i 1.02344 0.274230i
\(819\) 0 0
\(820\) 9.10337 + 6.90358i 0.317903 + 0.241083i
\(821\) −12.3182 + 14.6802i −0.429907 + 0.512343i −0.936895 0.349610i \(-0.886314\pi\)
0.506989 + 0.861953i \(0.330759\pi\)
\(822\) 0 0
\(823\) 0.511895 + 0.358433i 0.0178435 + 0.0124942i 0.582464 0.812856i \(-0.302089\pi\)
−0.564621 + 0.825351i \(0.690978\pi\)
\(824\) −1.91929 10.8848i −0.0668615 0.379190i
\(825\) 0 0
\(826\) 19.1684 + 16.0842i 0.666954 + 0.559641i
\(827\) −11.3875 3.05127i −0.395981 0.106103i 0.0553328 0.998468i \(-0.482378\pi\)
−0.451314 + 0.892365i \(0.649045\pi\)
\(828\) 0 0
\(829\) 38.0844 + 21.9880i 1.32272 + 0.763675i 0.984163 0.177269i \(-0.0567261\pi\)
0.338562 + 0.940944i \(0.390059\pi\)
\(830\) −8.26631 + 7.66139i −0.286928 + 0.265931i
\(831\) 0 0
\(832\) −41.8666 3.66285i −1.45146 0.126986i
\(833\) 1.58663 + 3.40254i 0.0549735 + 0.117891i
\(834\) 0 0
\(835\) −13.7873 8.67392i −0.477128 0.300173i
\(836\) 12.8886i 0.445761i
\(837\) 0 0
\(838\) −9.93659 + 9.93659i −0.343254 + 0.343254i
\(839\) 0.173429 0.983567i 0.00598745 0.0339565i −0.981668 0.190601i \(-0.938956\pi\)
0.987655 + 0.156644i \(0.0500676\pi\)
\(840\) 0 0
\(841\) 15.1440 + 5.51197i 0.522207 + 0.190068i
\(842\) 0.833993 9.53258i 0.0287413 0.328514i
\(843\) 0 0
\(844\) −1.93642 5.32028i −0.0666545 0.183132i
\(845\) 36.7845 + 4.63067i 1.26543 + 0.159300i
\(846\) 0 0
\(847\) 4.06038 15.1535i 0.139516 0.520682i
\(848\) −1.29739 14.8293i −0.0445527 0.509239i
\(849\) 0 0
\(850\) −8.26060 + 12.0869i −0.283336 + 0.414577i
\(851\) 3.10007 0.546626i 0.106269 0.0187381i
\(852\) 0 0
\(853\) 4.50805 0.394403i 0.154353 0.0135041i −0.00971747 0.999953i \(-0.503093\pi\)
0.164070 + 0.986449i \(0.447538\pi\)
\(854\) 4.29256 + 7.43494i 0.146889 + 0.254418i
\(855\) 0 0
\(856\) 8.69313 15.0569i 0.297125 0.514635i
\(857\) 24.1963 51.8892i 0.826531 1.77250i 0.223650 0.974670i \(-0.428203\pi\)
0.602881 0.797831i \(-0.294019\pi\)
\(858\) 0 0
\(859\) −20.9711 24.9924i −0.715526 0.852730i 0.278662 0.960389i \(-0.410109\pi\)
−0.994188 + 0.107659i \(0.965665\pi\)
\(860\) −2.11806 1.91885i −0.0722251 0.0654324i
\(861\) 0 0
\(862\) 0.256286 0.179453i 0.00872913 0.00611220i
\(863\) 28.5706 + 28.5706i 0.972554 + 0.972554i 0.999633 0.0270792i \(-0.00862062\pi\)
−0.0270792 + 0.999633i \(0.508621\pi\)
\(864\) 0 0
\(865\) 42.4513 + 17.3025i 1.44339 + 0.588302i
\(866\) −18.8698 3.32726i −0.641223 0.113065i
\(867\) 0 0
\(868\) 12.7462 5.94365i 0.432634 0.201741i
\(869\) −23.6254 + 19.8241i −0.801437 + 0.672486i
\(870\) 0 0
\(871\) 38.1591 13.8888i 1.29297 0.470603i
\(872\) 12.4786 + 46.5707i 0.422578 + 1.57708i
\(873\) 0 0
\(874\) 4.04068 2.33289i 0.136678 0.0789111i
\(875\) 30.9827 + 9.19224i 1.04741 + 0.310755i
\(876\) 0 0
\(877\) 20.3911 29.1215i 0.688559 0.983364i −0.310899 0.950443i \(-0.600630\pi\)
0.999458 0.0329214i \(-0.0104811\pi\)
\(878\) 17.2994 24.7062i 0.583828 0.833792i
\(879\) 0 0
\(880\) −2.26948 + 7.34283i −0.0765041 + 0.247527i
\(881\) 30.9752 17.8836i 1.04358 0.602512i 0.122736 0.992439i \(-0.460833\pi\)
0.920846 + 0.389927i \(0.127500\pi\)
\(882\) 0 0
\(883\) 0.905746 + 3.38029i 0.0304808 + 0.113756i 0.979490 0.201492i \(-0.0645790\pi\)
−0.949009 + 0.315248i \(0.897912\pi\)
\(884\) −12.4936 + 4.54730i −0.420205 + 0.152942i
\(885\) 0 0
\(886\) −32.6492 + 27.3959i −1.09687 + 0.920383i
\(887\) 25.7899 12.0260i 0.865939 0.403794i 0.0616962 0.998095i \(-0.480349\pi\)
0.804243 + 0.594301i \(0.202571\pi\)
\(888\) 0 0
\(889\) −9.30926 1.64147i −0.312222 0.0550532i
\(890\) −5.94671 + 14.5902i −0.199334 + 0.489063i
\(891\) 0 0
\(892\) 6.48285 + 6.48285i 0.217062 + 0.217062i
\(893\) 52.6023 36.8325i 1.76027 1.23255i
\(894\) 0 0
\(895\) 32.0298 1.58051i 1.07064 0.0528307i
\(896\) −1.75011 2.08570i −0.0584672 0.0696785i
\(897\) 0 0
\(898\) −3.49564 + 7.49641i −0.116651 + 0.250159i
\(899\) −9.89411 + 17.1371i −0.329987 + 0.571554i
\(900\) 0 0
\(901\) −14.1594 24.5249i −0.471719 0.817042i
\(902\) −14.3919 + 1.25913i −0.479199 + 0.0419245i
\(903\) 0 0
\(904\) 8.00909 1.41222i 0.266378 0.0469697i
\(905\) −2.50844 3.88861i −0.0833833 0.129262i
\(906\) 0 0
\(907\) 2.85879 + 32.6761i 0.0949246 + 1.08499i 0.882987 + 0.469398i \(0.155529\pi\)
−0.788062 + 0.615596i \(0.788915\pi\)
\(908\) 0.713667 2.66344i 0.0236839 0.0883894i
\(909\) 0 0
\(910\) −22.7888 29.3528i −0.755443 0.973035i
\(911\) −9.92857 27.2785i −0.328948 0.903778i −0.988379 0.152012i \(-0.951425\pi\)
0.659430 0.751766i \(-0.270798\pi\)
\(912\) 0 0
\(913\) −0.981025 + 11.2132i −0.0324672 + 0.371102i
\(914\) −5.44427 1.98155i −0.180080 0.0655439i
\(915\) 0 0
\(916\) −3.60050 + 20.4195i −0.118964 + 0.674678i
\(917\) 2.97152 2.97152i 0.0981282 0.0981282i
\(918\) 0 0
\(919\) 28.2931i 0.933302i −0.884442 0.466651i \(-0.845460\pi\)
0.884442 0.466651i \(-0.154540\pi\)
\(920\) −4.74004 + 1.07908i −0.156274 + 0.0355763i
\(921\) 0 0
\(922\) 13.4676 + 28.8814i 0.443533 + 0.951159i
\(923\) −26.5268 2.32080i −0.873141 0.0763899i
\(924\) 0 0
\(925\) −20.6430 + 7.77974i −0.678738 + 0.255796i
\(926\) −0.165049 0.0952911i −0.00542385 0.00313146i
\(927\) 0 0
\(928\) 15.7933 + 4.23180i 0.518440 + 0.138916i
\(929\) 25.1788 + 21.1275i 0.826089 + 0.693171i 0.954390 0.298564i \(-0.0965076\pi\)
−0.128300 + 0.991735i \(0.540952\pi\)
\(930\) 0 0
\(931\) 1.45603 + 8.25757i 0.0477195 + 0.270631i
\(932\) −2.39811 1.67917i −0.0785527 0.0550032i
\(933\) 0 0
\(934\) 8.57623 10.2208i 0.280623 0.334433i
\(935\) 1.99060 + 14.4848i 0.0650997 + 0.473704i
\(936\) 0 0
\(937\) 4.87347 1.30584i 0.159209 0.0426600i −0.178334 0.983970i \(-0.557071\pi\)
0.337543 + 0.941310i \(0.390404\pi\)
\(938\) −20.6768 9.64174i −0.675121 0.314814i
\(939\) 0 0
\(940\) −19.5016 + 6.27064i −0.636071 + 0.204526i
\(941\) −19.6715 + 54.0471i −0.641274 + 1.76189i 0.00641343 + 0.999979i \(0.497959\pi\)
−0.647687 + 0.761906i \(0.724264\pi\)
\(942\) 0 0
\(943\) −2.36919 3.38355i −0.0771514 0.110184i
\(944\) 11.9232 0.388068
\(945\) 0 0
\(946\) 3.61394 0.117499
\(947\) 18.4673 + 26.3740i 0.600107 + 0.857041i 0.998180 0.0603125i \(-0.0192097\pi\)
−0.398073 + 0.917354i \(0.630321\pi\)
\(948\) 0 0
\(949\) 12.9623 35.6136i 0.420773 1.15607i
\(950\) −24.8078 + 21.3004i −0.804870 + 0.691075i
\(951\) 0 0
\(952\) 22.1110 + 10.3105i 0.716623 + 0.334167i
\(953\) 20.8927 5.59819i 0.676782 0.181343i 0.0959743 0.995384i \(-0.469403\pi\)
0.580808 + 0.814041i \(0.302737\pi\)
\(954\) 0 0
\(955\) −31.5033 + 41.5417i −1.01942 + 1.34426i
\(956\) −9.64940 + 11.4997i −0.312084 + 0.371927i
\(957\) 0 0
\(958\) 30.8629 + 21.6105i 0.997136 + 0.698202i
\(959\) −8.00894 45.4210i −0.258622 1.46672i
\(960\) 0 0
\(961\) −0.465741 0.390803i −0.0150239 0.0126065i
\(962\) 24.5020 + 6.56528i 0.789975 + 0.211673i
\(963\) 0 0
\(964\) −14.1830 8.18857i −0.456804 0.263736i
\(965\) −0.0264446 + 0.696285i −0.000851282 + 0.0224142i
\(966\) 0 0
\(967\) 10.9923 + 0.961701i 0.353488 + 0.0309262i 0.262517 0.964927i \(-0.415447\pi\)
0.0909711 + 0.995854i \(0.471003\pi\)
\(968\) −6.98917 14.9883i −0.224640 0.481743i
\(969\) 0 0
\(970\) 9.62569 + 42.2823i 0.309062 + 1.35760i
\(971\) 21.9387i 0.704047i −0.935991 0.352023i \(-0.885494\pi\)
0.935991 0.352023i \(-0.114506\pi\)
\(972\) 0 0
\(973\) −18.6543 + 18.6543i −0.598030 + 0.598030i
\(974\) 1.26918 7.19790i 0.0406673 0.230635i
\(975\) 0 0
\(976\) 3.84410 + 1.39914i 0.123046 + 0.0447853i
\(977\) −0.479546 + 5.48124i −0.0153420 + 0.175360i 0.984658 + 0.174498i \(0.0558301\pi\)
−1.00000 0.000862648i \(0.999725\pi\)
\(978\) 0 0
\(979\) 5.38167 + 14.7860i 0.171999 + 0.472563i
\(980\) 0.334087 2.65388i 0.0106720 0.0847749i
\(981\) 0 0
\(982\) 7.10536 26.5176i 0.226741 0.846209i
\(983\) −2.39635 27.3904i −0.0764316 0.873618i −0.933538 0.358478i \(-0.883296\pi\)
0.857106 0.515139i \(-0.172260\pi\)
\(984\) 0 0
\(985\) 7.10034 + 1.53191i 0.226236 + 0.0488107i
\(986\) −10.3502 + 1.82503i −0.329619 + 0.0581207i
\(987\) 0 0
\(988\) −29.5815 + 2.58804i −0.941111 + 0.0823366i
\(989\) 0.516635 + 0.894838i 0.0164280 + 0.0284542i
\(990\) 0 0
\(991\) 7.95205 13.7734i 0.252605 0.437525i −0.711637 0.702547i \(-0.752046\pi\)
0.964242 + 0.265022i \(0.0853793\pi\)
\(992\) 10.6128 22.7592i 0.336956 0.722606i
\(993\) 0 0
\(994\) 9.61620 + 11.4601i 0.305007 + 0.363494i
\(995\) 0.702794 + 14.2424i 0.0222801 + 0.451515i
\(996\) 0 0
\(997\) 3.00447 2.10376i 0.0951527 0.0666266i −0.525032 0.851083i \(-0.675947\pi\)
0.620185 + 0.784456i \(0.287058\pi\)
\(998\) 8.38532 + 8.38532i 0.265433 + 0.265433i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.332.5 192
3.2 odd 2 135.2.q.a.2.12 192
5.3 odd 4 inner 405.2.r.a.8.5 192
15.2 even 4 675.2.ba.b.218.5 192
15.8 even 4 135.2.q.a.83.12 yes 192
15.14 odd 2 675.2.ba.b.407.5 192
27.13 even 9 135.2.q.a.122.12 yes 192
27.14 odd 18 inner 405.2.r.a.152.5 192
135.13 odd 36 135.2.q.a.68.12 yes 192
135.67 odd 36 675.2.ba.b.68.5 192
135.68 even 36 inner 405.2.r.a.233.5 192
135.94 even 18 675.2.ba.b.257.5 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.12 192 3.2 odd 2
135.2.q.a.68.12 yes 192 135.13 odd 36
135.2.q.a.83.12 yes 192 15.8 even 4
135.2.q.a.122.12 yes 192 27.13 even 9
405.2.r.a.8.5 192 5.3 odd 4 inner
405.2.r.a.152.5 192 27.14 odd 18 inner
405.2.r.a.233.5 192 135.68 even 36 inner
405.2.r.a.332.5 192 1.1 even 1 trivial
675.2.ba.b.68.5 192 135.67 odd 36
675.2.ba.b.218.5 192 15.2 even 4
675.2.ba.b.257.5 192 135.94 even 18
675.2.ba.b.407.5 192 15.14 odd 2