Properties

Label 405.2.r.a.332.3
Level $405$
Weight $2$
Character 405.332
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 332.3
Character \(\chi\) \(=\) 405.332
Dual form 405.2.r.a.233.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15565 - 1.65044i) q^{2} +(-0.704386 + 1.93528i) q^{4} +(2.13942 + 0.650308i) q^{5} +(1.32708 + 0.618828i) q^{7} +(0.115769 - 0.0310202i) q^{8} +(-1.39912 - 4.28251i) q^{10} +(-1.86051 + 2.21727i) q^{11} +(5.02076 + 3.51558i) q^{13} +(-0.512304 - 2.90542i) q^{14} +(2.97033 + 2.49240i) q^{16} +(3.10881 + 0.833002i) q^{17} +(-3.51741 - 2.03078i) q^{19} +(-2.76550 + 3.68231i) q^{20} +(5.80958 + 0.508272i) q^{22} +(2.14034 + 4.58997i) q^{23} +(4.15420 + 2.78256i) q^{25} -12.3493i q^{26} +(-2.13239 + 2.13239i) q^{28} +(0.368261 - 2.08851i) q^{29} +(-3.20394 - 1.16614i) q^{31} +(0.701790 - 8.02150i) q^{32} +(-2.21787 - 6.09356i) q^{34} +(2.43675 + 2.18694i) q^{35} +(3.04540 - 11.3656i) q^{37} +(0.713220 + 8.15214i) q^{38} +(0.267850 + 0.00892031i) q^{40} +(-0.839107 + 0.147957i) q^{41} +(-0.732994 + 0.0641287i) q^{43} +(-2.98053 - 5.16243i) q^{44} +(5.10199 - 8.83690i) q^{46} +(1.21825 - 2.61254i) q^{47} +(-3.12132 - 3.71984i) q^{49} +(-0.208362 - 10.0719i) q^{50} +(-10.3402 + 7.24028i) q^{52} +(-0.0757900 - 0.0757900i) q^{53} +(-5.42232 + 3.53376i) q^{55} +(0.172831 + 0.0304748i) q^{56} +(-3.87255 + 1.80580i) q^{58} +(-2.89613 + 2.43014i) q^{59} +(-4.21993 + 1.53593i) q^{61} +(1.77799 + 6.63556i) q^{62} +(-7.33402 + 4.23430i) q^{64} +(8.45529 + 10.7863i) q^{65} +(-2.55795 + 3.65313i) q^{67} +(-3.80189 + 5.42967i) q^{68} +(0.793385 - 6.54906i) q^{70} +(7.84988 - 4.53213i) q^{71} +(2.15667 + 8.04880i) q^{73} +(-22.2777 + 8.10840i) q^{74} +(6.40774 - 5.37673i) q^{76} +(-3.84116 + 1.79116i) q^{77} +(-1.44073 - 0.254040i) q^{79} +(4.73394 + 7.26391i) q^{80} +(1.21391 + 1.21391i) q^{82} +(13.8441 - 9.69375i) q^{83} +(6.10932 + 3.80382i) q^{85} +(0.952926 + 1.13565i) q^{86} +(-0.146609 + 0.314404i) q^{88} +(3.05075 - 5.28406i) q^{89} +(4.48742 + 7.77244i) q^{91} +(-10.3905 + 0.909052i) q^{92} +(-5.71971 + 1.00854i) q^{94} +(-6.20457 - 6.63207i) q^{95} +(1.41304 + 16.1512i) q^{97} +(-2.53222 + 9.45039i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15565 1.65044i −0.817169 1.16704i −0.983489 0.180966i \(-0.942077\pi\)
0.166320 0.986072i \(-0.446811\pi\)
\(3\) 0 0
\(4\) −0.704386 + 1.93528i −0.352193 + 0.967642i
\(5\) 2.13942 + 0.650308i 0.956776 + 0.290826i
\(6\) 0 0
\(7\) 1.32708 + 0.618828i 0.501590 + 0.233895i 0.656910 0.753969i \(-0.271863\pi\)
−0.155320 + 0.987864i \(0.549641\pi\)
\(8\) 0.115769 0.0310202i 0.0409305 0.0109673i
\(9\) 0 0
\(10\) −1.39912 4.28251i −0.442442 1.35425i
\(11\) −1.86051 + 2.21727i −0.560965 + 0.668532i −0.969751 0.244098i \(-0.921508\pi\)
0.408785 + 0.912631i \(0.365953\pi\)
\(12\) 0 0
\(13\) 5.02076 + 3.51558i 1.39251 + 0.975045i 0.998433 + 0.0559675i \(0.0178243\pi\)
0.394076 + 0.919078i \(0.371065\pi\)
\(14\) −0.512304 2.90542i −0.136919 0.776506i
\(15\) 0 0
\(16\) 2.97033 + 2.49240i 0.742582 + 0.623101i
\(17\) 3.10881 + 0.833002i 0.753996 + 0.202033i 0.615290 0.788301i \(-0.289039\pi\)
0.138706 + 0.990334i \(0.455706\pi\)
\(18\) 0 0
\(19\) −3.51741 2.03078i −0.806949 0.465892i 0.0389464 0.999241i \(-0.487600\pi\)
−0.845895 + 0.533349i \(0.820933\pi\)
\(20\) −2.76550 + 3.68231i −0.618385 + 0.823389i
\(21\) 0 0
\(22\) 5.80958 + 0.508272i 1.23861 + 0.108364i
\(23\) 2.14034 + 4.58997i 0.446291 + 0.957074i 0.992818 + 0.119633i \(0.0381717\pi\)
−0.546527 + 0.837441i \(0.684051\pi\)
\(24\) 0 0
\(25\) 4.15420 + 2.78256i 0.830840 + 0.556511i
\(26\) 12.3493i 2.42189i
\(27\) 0 0
\(28\) −2.13239 + 2.13239i −0.402983 + 0.402983i
\(29\) 0.368261 2.08851i 0.0683844 0.387827i −0.931336 0.364162i \(-0.881355\pi\)
0.999720 0.0236650i \(-0.00753352\pi\)
\(30\) 0 0
\(31\) −3.20394 1.16614i −0.575445 0.209445i 0.0378710 0.999283i \(-0.487942\pi\)
−0.613316 + 0.789838i \(0.710165\pi\)
\(32\) 0.701790 8.02150i 0.124060 1.41801i
\(33\) 0 0
\(34\) −2.21787 6.09356i −0.380362 1.04504i
\(35\) 2.43675 + 2.18694i 0.411886 + 0.369661i
\(36\) 0 0
\(37\) 3.04540 11.3656i 0.500661 1.86849i 0.00497757 0.999988i \(-0.498416\pi\)
0.495683 0.868503i \(-0.334918\pi\)
\(38\) 0.713220 + 8.15214i 0.115700 + 1.32245i
\(39\) 0 0
\(40\) 0.267850 + 0.00892031i 0.0423509 + 0.00141043i
\(41\) −0.839107 + 0.147957i −0.131046 + 0.0231070i −0.238787 0.971072i \(-0.576750\pi\)
0.107740 + 0.994179i \(0.465639\pi\)
\(42\) 0 0
\(43\) −0.732994 + 0.0641287i −0.111781 + 0.00977953i −0.142909 0.989736i \(-0.545646\pi\)
0.0311282 + 0.999515i \(0.490090\pi\)
\(44\) −2.98053 5.16243i −0.449332 0.778266i
\(45\) 0 0
\(46\) 5.10199 8.83690i 0.752247 1.30293i
\(47\) 1.21825 2.61254i 0.177700 0.381078i −0.797203 0.603712i \(-0.793688\pi\)
0.974902 + 0.222634i \(0.0714655\pi\)
\(48\) 0 0
\(49\) −3.12132 3.71984i −0.445902 0.531406i
\(50\) −0.208362 10.0719i −0.0294668 1.42439i
\(51\) 0 0
\(52\) −10.3402 + 7.24028i −1.43393 + 1.00405i
\(53\) −0.0757900 0.0757900i −0.0104106 0.0104106i 0.701882 0.712293i \(-0.252343\pi\)
−0.712293 + 0.701882i \(0.752343\pi\)
\(54\) 0 0
\(55\) −5.42232 + 3.53376i −0.731145 + 0.476492i
\(56\) 0.172831 + 0.0304748i 0.0230955 + 0.00407236i
\(57\) 0 0
\(58\) −3.87255 + 1.80580i −0.508491 + 0.237113i
\(59\) −2.89613 + 2.43014i −0.377044 + 0.316377i −0.811540 0.584296i \(-0.801371\pi\)
0.434497 + 0.900673i \(0.356926\pi\)
\(60\) 0 0
\(61\) −4.21993 + 1.53593i −0.540306 + 0.196655i −0.597734 0.801694i \(-0.703932\pi\)
0.0574282 + 0.998350i \(0.481710\pi\)
\(62\) 1.77799 + 6.63556i 0.225805 + 0.842717i
\(63\) 0 0
\(64\) −7.33402 + 4.23430i −0.916753 + 0.529287i
\(65\) 8.45529 + 10.7863i 1.04875 + 1.33788i
\(66\) 0 0
\(67\) −2.55795 + 3.65313i −0.312504 + 0.446301i −0.944423 0.328733i \(-0.893378\pi\)
0.631919 + 0.775034i \(0.282267\pi\)
\(68\) −3.80189 + 5.42967i −0.461047 + 0.658444i
\(69\) 0 0
\(70\) 0.793385 6.54906i 0.0948277 0.782762i
\(71\) 7.84988 4.53213i 0.931609 0.537865i 0.0442890 0.999019i \(-0.485898\pi\)
0.887320 + 0.461154i \(0.152564\pi\)
\(72\) 0 0
\(73\) 2.15667 + 8.04880i 0.252419 + 0.942041i 0.969508 + 0.245059i \(0.0788074\pi\)
−0.717089 + 0.696982i \(0.754526\pi\)
\(74\) −22.2777 + 8.10840i −2.58972 + 0.942583i
\(75\) 0 0
\(76\) 6.40774 5.37673i 0.735018 0.616754i
\(77\) −3.84116 + 1.79116i −0.437741 + 0.204122i
\(78\) 0 0
\(79\) −1.44073 0.254040i −0.162095 0.0285818i 0.0920115 0.995758i \(-0.470670\pi\)
−0.254107 + 0.967176i \(0.581781\pi\)
\(80\) 4.73394 + 7.26391i 0.529271 + 0.812130i
\(81\) 0 0
\(82\) 1.21391 + 1.21391i 0.134054 + 0.134054i
\(83\) 13.8441 9.69375i 1.51959 1.06403i 0.545431 0.838155i \(-0.316366\pi\)
0.974157 0.225872i \(-0.0725231\pi\)
\(84\) 0 0
\(85\) 6.10932 + 3.80382i 0.662649 + 0.412582i
\(86\) 0.952926 + 1.13565i 0.102757 + 0.122461i
\(87\) 0 0
\(88\) −0.146609 + 0.314404i −0.0156286 + 0.0335156i
\(89\) 3.05075 5.28406i 0.323379 0.560109i −0.657804 0.753189i \(-0.728514\pi\)
0.981183 + 0.193080i \(0.0618477\pi\)
\(90\) 0 0
\(91\) 4.48742 + 7.77244i 0.470410 + 0.814774i
\(92\) −10.3905 + 0.909052i −1.08329 + 0.0947752i
\(93\) 0 0
\(94\) −5.71971 + 1.00854i −0.589943 + 0.104023i
\(95\) −6.20457 6.63207i −0.636575 0.680436i
\(96\) 0 0
\(97\) 1.41304 + 16.1512i 0.143473 + 1.63990i 0.637496 + 0.770453i \(0.279970\pi\)
−0.494023 + 0.869449i \(0.664474\pi\)
\(98\) −2.53222 + 9.45039i −0.255793 + 0.954633i
\(99\) 0 0
\(100\) −8.31119 + 6.07956i −0.831119 + 0.607956i
\(101\) 1.88053 + 5.16673i 0.187120 + 0.514108i 0.997410 0.0719204i \(-0.0229128\pi\)
−0.810290 + 0.586029i \(0.800691\pi\)
\(102\) 0 0
\(103\) 0.342012 3.90922i 0.0336994 0.385186i −0.960551 0.278105i \(-0.910294\pi\)
0.994250 0.107082i \(-0.0341507\pi\)
\(104\) 0.690302 + 0.251249i 0.0676897 + 0.0246370i
\(105\) 0 0
\(106\) −0.0375001 + 0.212674i −0.00364233 + 0.0206567i
\(107\) −10.5329 + 10.5329i −1.01825 + 1.01825i −0.0184189 + 0.999830i \(0.505863\pi\)
−0.999830 + 0.0184189i \(0.994137\pi\)
\(108\) 0 0
\(109\) 9.91447i 0.949634i −0.880085 0.474817i \(-0.842514\pi\)
0.880085 0.474817i \(-0.157486\pi\)
\(110\) 12.0986 + 4.86542i 1.15355 + 0.463899i
\(111\) 0 0
\(112\) 2.39950 + 5.14574i 0.226731 + 0.486227i
\(113\) −15.1732 1.32748i −1.42737 0.124879i −0.652879 0.757462i \(-0.726439\pi\)
−0.774492 + 0.632583i \(0.781995\pi\)
\(114\) 0 0
\(115\) 1.59418 + 11.2117i 0.148658 + 1.04550i
\(116\) 3.78247 + 2.18381i 0.351193 + 0.202762i
\(117\) 0 0
\(118\) 7.35771 + 1.97149i 0.677332 + 0.181491i
\(119\) 3.61015 + 3.02928i 0.330942 + 0.277693i
\(120\) 0 0
\(121\) 0.455341 + 2.58237i 0.0413946 + 0.234761i
\(122\) 7.41172 + 5.18974i 0.671026 + 0.469857i
\(123\) 0 0
\(124\) 4.51362 5.37912i 0.405335 0.483059i
\(125\) 7.07804 + 8.65455i 0.633080 + 0.774087i
\(126\) 0 0
\(127\) −9.62937 + 2.58018i −0.854468 + 0.228954i −0.659360 0.751828i \(-0.729173\pi\)
−0.195109 + 0.980782i \(0.562506\pi\)
\(128\) 0.868604 + 0.405037i 0.0767745 + 0.0358005i
\(129\) 0 0
\(130\) 8.03081 26.4202i 0.704349 2.31720i
\(131\) −3.84111 + 10.5534i −0.335599 + 0.922051i 0.651028 + 0.759054i \(0.274338\pi\)
−0.986627 + 0.162997i \(0.947884\pi\)
\(132\) 0 0
\(133\) −3.41119 4.87168i −0.295787 0.422428i
\(134\) 8.98538 0.776219
\(135\) 0 0
\(136\) 0.385743 0.0330772
\(137\) −11.2752 16.1027i −0.963306 1.37574i −0.926448 0.376424i \(-0.877154\pi\)
−0.0368588 0.999320i \(-0.511735\pi\)
\(138\) 0 0
\(139\) −0.508611 + 1.39740i −0.0431398 + 0.118526i −0.959392 0.282076i \(-0.908977\pi\)
0.916252 + 0.400602i \(0.131199\pi\)
\(140\) −5.94876 + 3.17535i −0.502762 + 0.268366i
\(141\) 0 0
\(142\) −16.5517 7.71820i −1.38899 0.647697i
\(143\) −17.1362 + 4.59162i −1.43300 + 0.383971i
\(144\) 0 0
\(145\) 2.14604 4.22872i 0.178219 0.351176i
\(146\) 10.7917 12.8611i 0.893129 1.06439i
\(147\) 0 0
\(148\) 19.8505 + 13.8995i 1.63170 + 1.14253i
\(149\) 0.861743 + 4.88719i 0.0705968 + 0.400374i 0.999545 + 0.0301644i \(0.00960308\pi\)
−0.928948 + 0.370210i \(0.879286\pi\)
\(150\) 0 0
\(151\) −15.8833 13.3277i −1.29257 1.08459i −0.991379 0.131025i \(-0.958173\pi\)
−0.301186 0.953565i \(-0.597383\pi\)
\(152\) −0.470202 0.125990i −0.0381384 0.0102191i
\(153\) 0 0
\(154\) 7.39525 + 4.26965i 0.595926 + 0.344058i
\(155\) −6.09621 4.57840i −0.489659 0.367746i
\(156\) 0 0
\(157\) 6.76582 + 0.591932i 0.539971 + 0.0472413i 0.353879 0.935291i \(-0.384862\pi\)
0.186092 + 0.982532i \(0.440418\pi\)
\(158\) 1.24571 + 2.67143i 0.0991032 + 0.212528i
\(159\) 0 0
\(160\) 6.71786 16.7049i 0.531093 1.32064i
\(161\) 7.41576i 0.584444i
\(162\) 0 0
\(163\) 14.3864 14.3864i 1.12683 1.12683i 0.136142 0.990689i \(-0.456530\pi\)
0.990689 0.136142i \(-0.0434702\pi\)
\(164\) 0.304716 1.72813i 0.0237943 0.134944i
\(165\) 0 0
\(166\) −31.9979 11.6463i −2.48352 0.903928i
\(167\) −0.0411027 + 0.469806i −0.00318063 + 0.0363547i −0.997619 0.0689639i \(-0.978031\pi\)
0.994439 + 0.105319i \(0.0335862\pi\)
\(168\) 0 0
\(169\) 8.40252 + 23.0857i 0.646348 + 1.77583i
\(170\) −0.782268 14.4790i −0.0599972 1.11049i
\(171\) 0 0
\(172\) 0.392203 1.46372i 0.0299052 0.111608i
\(173\) −1.60708 18.3690i −0.122184 1.39657i −0.771586 0.636125i \(-0.780536\pi\)
0.649402 0.760446i \(-0.275019\pi\)
\(174\) 0 0
\(175\) 3.79104 + 6.26342i 0.286576 + 0.473470i
\(176\) −11.0527 + 1.94888i −0.833126 + 0.146903i
\(177\) 0 0
\(178\) −12.2466 + 1.07144i −0.917925 + 0.0803080i
\(179\) −3.95796 6.85540i −0.295832 0.512396i 0.679346 0.733818i \(-0.262264\pi\)
−0.975178 + 0.221422i \(0.928930\pi\)
\(180\) 0 0
\(181\) 9.86110 17.0799i 0.732970 1.26954i −0.222638 0.974901i \(-0.571467\pi\)
0.955608 0.294640i \(-0.0951998\pi\)
\(182\) 7.64207 16.3885i 0.566468 1.21479i
\(183\) 0 0
\(184\) 0.390166 + 0.464982i 0.0287634 + 0.0342789i
\(185\) 13.9065 22.3353i 1.02243 1.64212i
\(186\) 0 0
\(187\) −7.63096 + 5.34326i −0.558031 + 0.390738i
\(188\) 4.19789 + 4.19789i 0.306162 + 0.306162i
\(189\) 0 0
\(190\) −3.77553 + 17.9046i −0.273905 + 1.29894i
\(191\) 8.60644 + 1.51755i 0.622740 + 0.109806i 0.476110 0.879386i \(-0.342046\pi\)
0.146630 + 0.989191i \(0.453157\pi\)
\(192\) 0 0
\(193\) −7.83132 + 3.65180i −0.563711 + 0.262863i −0.683517 0.729935i \(-0.739550\pi\)
0.119806 + 0.992797i \(0.461773\pi\)
\(194\) 25.0236 20.9973i 1.79659 1.50752i
\(195\) 0 0
\(196\) 9.39756 3.42043i 0.671254 0.244316i
\(197\) −0.519071 1.93720i −0.0369822 0.138020i 0.944966 0.327167i \(-0.106094\pi\)
−0.981949 + 0.189148i \(0.939427\pi\)
\(198\) 0 0
\(199\) −15.5130 + 8.95641i −1.09968 + 0.634903i −0.936138 0.351633i \(-0.885627\pi\)
−0.163546 + 0.986536i \(0.552293\pi\)
\(200\) 0.567243 + 0.193269i 0.0401101 + 0.0136662i
\(201\) 0 0
\(202\) 6.35413 9.07464i 0.447075 0.638490i
\(203\) 1.78114 2.54374i 0.125012 0.178535i
\(204\) 0 0
\(205\) −1.89142 0.229136i −0.132102 0.0160035i
\(206\) −6.84718 + 3.95322i −0.477065 + 0.275434i
\(207\) 0 0
\(208\) 6.15109 + 22.9562i 0.426501 + 1.59172i
\(209\) 11.0470 4.02077i 0.764134 0.278122i
\(210\) 0 0
\(211\) −8.17709 + 6.86139i −0.562934 + 0.472358i −0.879293 0.476282i \(-0.841984\pi\)
0.316359 + 0.948640i \(0.397540\pi\)
\(212\) 0.200061 0.0932898i 0.0137402 0.00640717i
\(213\) 0 0
\(214\) 29.5562 + 5.21155i 2.02042 + 0.356254i
\(215\) −1.60988 0.339474i −0.109793 0.0231519i
\(216\) 0 0
\(217\) −3.53025 3.53025i −0.239649 0.239649i
\(218\) −16.3632 + 11.4577i −1.10826 + 0.776011i
\(219\) 0 0
\(220\) −3.01943 12.9828i −0.203570 0.875303i
\(221\) 12.6801 + 15.1115i 0.852955 + 1.01651i
\(222\) 0 0
\(223\) 5.05016 10.8301i 0.338184 0.725238i −0.661511 0.749936i \(-0.730084\pi\)
0.999695 + 0.0246975i \(0.00786226\pi\)
\(224\) 5.89526 10.2109i 0.393894 0.682244i
\(225\) 0 0
\(226\) 15.3440 + 26.5765i 1.02067 + 1.76784i
\(227\) 1.15273 0.100851i 0.0765092 0.00669369i −0.0488368 0.998807i \(-0.515551\pi\)
0.125346 + 0.992113i \(0.459996\pi\)
\(228\) 0 0
\(229\) 8.62548 1.52090i 0.569988 0.100504i 0.118776 0.992921i \(-0.462103\pi\)
0.451212 + 0.892417i \(0.350992\pi\)
\(230\) 16.6620 15.5879i 1.09866 1.02784i
\(231\) 0 0
\(232\) −0.0221529 0.253208i −0.00145441 0.0166240i
\(233\) 4.23498 15.8052i 0.277443 1.03543i −0.676743 0.736219i \(-0.736609\pi\)
0.954186 0.299213i \(-0.0967240\pi\)
\(234\) 0 0
\(235\) 4.30529 4.79707i 0.280846 0.312927i
\(236\) −2.66302 7.31658i −0.173348 0.476269i
\(237\) 0 0
\(238\) 0.827567 9.45913i 0.0536432 0.613145i
\(239\) −8.07123 2.93769i −0.522085 0.190023i 0.0675160 0.997718i \(-0.478493\pi\)
−0.589601 + 0.807695i \(0.700715\pi\)
\(240\) 0 0
\(241\) 0.358872 2.03527i 0.0231170 0.131103i −0.971065 0.238815i \(-0.923241\pi\)
0.994182 + 0.107712i \(0.0343523\pi\)
\(242\) 3.73583 3.73583i 0.240148 0.240148i
\(243\) 0 0
\(244\) 9.24864i 0.592083i
\(245\) −4.25875 9.98810i −0.272082 0.638116i
\(246\) 0 0
\(247\) −10.5207 22.5618i −0.669417 1.43557i
\(248\) −0.407090 0.0356158i −0.0258503 0.00226161i
\(249\) 0 0
\(250\) 6.10408 21.6835i 0.386056 1.37139i
\(251\) −9.55376 5.51587i −0.603028 0.348158i 0.167204 0.985922i \(-0.446526\pi\)
−0.770232 + 0.637764i \(0.779860\pi\)
\(252\) 0 0
\(253\) −14.1593 3.79398i −0.890189 0.238525i
\(254\) 15.3866 + 12.9109i 0.965443 + 0.810103i
\(255\) 0 0
\(256\) 2.60580 + 14.7782i 0.162862 + 0.923639i
\(257\) 4.73079 + 3.31253i 0.295098 + 0.206630i 0.711744 0.702439i \(-0.247906\pi\)
−0.416646 + 0.909069i \(0.636794\pi\)
\(258\) 0 0
\(259\) 11.0748 13.1985i 0.688157 0.820114i
\(260\) −26.8304 + 8.76566i −1.66395 + 0.543623i
\(261\) 0 0
\(262\) 21.8567 5.85647i 1.35031 0.361814i
\(263\) 16.7213 + 7.79728i 1.03108 + 0.480801i 0.863123 0.504993i \(-0.168505\pi\)
0.167958 + 0.985794i \(0.446283\pi\)
\(264\) 0 0
\(265\) −0.112860 0.211433i −0.00693291 0.0129882i
\(266\) −4.09828 + 11.2599i −0.251281 + 0.690390i
\(267\) 0 0
\(268\) −5.26807 7.52358i −0.321798 0.459576i
\(269\) −15.7262 −0.958842 −0.479421 0.877585i \(-0.659153\pi\)
−0.479421 + 0.877585i \(0.659153\pi\)
\(270\) 0 0
\(271\) −17.4326 −1.05895 −0.529477 0.848324i \(-0.677612\pi\)
−0.529477 + 0.848324i \(0.677612\pi\)
\(272\) 7.15800 + 10.2227i 0.434018 + 0.619841i
\(273\) 0 0
\(274\) −13.5463 + 37.2181i −0.818362 + 2.24843i
\(275\) −13.8986 + 4.03401i −0.838118 + 0.243260i
\(276\) 0 0
\(277\) 13.9179 + 6.49002i 0.836245 + 0.389947i 0.793078 0.609120i \(-0.208477\pi\)
0.0431672 + 0.999068i \(0.486255\pi\)
\(278\) 2.89410 0.775471i 0.173576 0.0465097i
\(279\) 0 0
\(280\) 0.349939 + 0.177591i 0.0209129 + 0.0106131i
\(281\) −4.76302 + 5.67634i −0.284138 + 0.338622i −0.889168 0.457580i \(-0.848716\pi\)
0.605031 + 0.796202i \(0.293161\pi\)
\(282\) 0 0
\(283\) −11.7772 8.24647i −0.700081 0.490202i 0.168530 0.985696i \(-0.446098\pi\)
−0.868611 + 0.495495i \(0.834987\pi\)
\(284\) 3.24161 + 18.3841i 0.192354 + 1.09090i
\(285\) 0 0
\(286\) 27.3816 + 22.9759i 1.61911 + 1.35859i
\(287\) −1.20512 0.322912i −0.0711362 0.0190609i
\(288\) 0 0
\(289\) −5.75165 3.32072i −0.338332 0.195336i
\(290\) −9.45932 + 1.34501i −0.555470 + 0.0789816i
\(291\) 0 0
\(292\) −17.0958 1.49569i −1.00046 0.0875288i
\(293\) 8.51297 + 18.2561i 0.497333 + 1.06653i 0.981483 + 0.191549i \(0.0613510\pi\)
−0.484150 + 0.874985i \(0.660871\pi\)
\(294\) 0 0
\(295\) −7.77636 + 3.31570i −0.452757 + 0.193048i
\(296\) 1.41025i 0.0819691i
\(297\) 0 0
\(298\) 7.07014 7.07014i 0.409562 0.409562i
\(299\) −5.39025 + 30.5696i −0.311726 + 1.76789i
\(300\) 0 0
\(301\) −1.01243 0.368493i −0.0583553 0.0212396i
\(302\) −3.64098 + 41.6166i −0.209515 + 2.39477i
\(303\) 0 0
\(304\) −5.38635 14.7989i −0.308928 0.848774i
\(305\) −10.0270 + 0.541738i −0.574144 + 0.0310198i
\(306\) 0 0
\(307\) −3.09276 + 11.5423i −0.176513 + 0.658756i 0.819776 + 0.572684i \(0.194098\pi\)
−0.996289 + 0.0860714i \(0.972569\pi\)
\(308\) −0.760749 8.69540i −0.0433477 0.495467i
\(309\) 0 0
\(310\) −0.511289 + 15.3525i −0.0290392 + 0.871962i
\(311\) −2.38442 + 0.420438i −0.135208 + 0.0238408i −0.240843 0.970564i \(-0.577424\pi\)
0.105634 + 0.994405i \(0.466313\pi\)
\(312\) 0 0
\(313\) 12.2121 1.06842i 0.690267 0.0603905i 0.263375 0.964693i \(-0.415164\pi\)
0.426891 + 0.904303i \(0.359609\pi\)
\(314\) −6.84198 11.8506i −0.386115 0.668771i
\(315\) 0 0
\(316\) 1.50647 2.60929i 0.0847457 0.146784i
\(317\) 9.58656 20.5585i 0.538435 1.15468i −0.429405 0.903112i \(-0.641277\pi\)
0.967840 0.251566i \(-0.0809455\pi\)
\(318\) 0 0
\(319\) 3.94565 + 4.70224i 0.220914 + 0.263275i
\(320\) −18.4441 + 4.28956i −1.03106 + 0.239794i
\(321\) 0 0
\(322\) 12.2393 8.57003i 0.682068 0.477589i
\(323\) −9.24330 9.24330i −0.514311 0.514311i
\(324\) 0 0
\(325\) 11.0750 + 28.5750i 0.614329 + 1.58505i
\(326\) −40.3696 7.11825i −2.23587 0.394243i
\(327\) 0 0
\(328\) −0.0925528 + 0.0431581i −0.00511038 + 0.00238301i
\(329\) 3.23343 2.71317i 0.178265 0.149582i
\(330\) 0 0
\(331\) 15.3336 5.58098i 0.842812 0.306758i 0.115706 0.993284i \(-0.463087\pi\)
0.727106 + 0.686525i \(0.240865\pi\)
\(332\) 9.00856 + 33.6204i 0.494409 + 1.84516i
\(333\) 0 0
\(334\) 0.822888 0.475095i 0.0450264 0.0259960i
\(335\) −7.84818 + 6.15212i −0.428792 + 0.336126i
\(336\) 0 0
\(337\) 2.30026 3.28511i 0.125303 0.178951i −0.751599 0.659620i \(-0.770717\pi\)
0.876902 + 0.480669i \(0.159606\pi\)
\(338\) 28.3913 40.5469i 1.54428 2.20546i
\(339\) 0 0
\(340\) −11.6648 + 9.14391i −0.632612 + 0.495898i
\(341\) 8.54661 4.93439i 0.462825 0.267212i
\(342\) 0 0
\(343\) −4.49317 16.7687i −0.242608 0.905427i
\(344\) −0.0828686 + 0.0301617i −0.00446798 + 0.00162621i
\(345\) 0 0
\(346\) −28.4598 + 23.8806i −1.53001 + 1.28383i
\(347\) −11.2479 + 5.24496i −0.603816 + 0.281564i −0.700389 0.713762i \(-0.746990\pi\)
0.0965722 + 0.995326i \(0.469212\pi\)
\(348\) 0 0
\(349\) 7.52479 + 1.32682i 0.402793 + 0.0710232i 0.371375 0.928483i \(-0.378887\pi\)
0.0314181 + 0.999506i \(0.489998\pi\)
\(350\) 5.95628 13.4952i 0.318377 0.721349i
\(351\) 0 0
\(352\) 16.4801 + 16.4801i 0.878395 + 0.878395i
\(353\) −14.6661 + 10.2693i −0.780595 + 0.546579i −0.894582 0.446904i \(-0.852527\pi\)
0.113987 + 0.993482i \(0.463638\pi\)
\(354\) 0 0
\(355\) 19.7414 4.59127i 1.04777 0.243680i
\(356\) 8.07725 + 9.62609i 0.428093 + 0.510182i
\(357\) 0 0
\(358\) −6.74040 + 14.4548i −0.356241 + 0.763962i
\(359\) 6.26521 10.8517i 0.330665 0.572729i −0.651977 0.758239i \(-0.726060\pi\)
0.982642 + 0.185510i \(0.0593936\pi\)
\(360\) 0 0
\(361\) −1.25189 2.16834i −0.0658891 0.114123i
\(362\) −39.5854 + 3.46328i −2.08056 + 0.182026i
\(363\) 0 0
\(364\) −18.2028 + 3.20964i −0.954084 + 0.168231i
\(365\) −0.620182 + 18.6222i −0.0324618 + 0.974732i
\(366\) 0 0
\(367\) −1.19292 13.6352i −0.0622701 0.711750i −0.961596 0.274470i \(-0.911497\pi\)
0.899325 0.437280i \(-0.144058\pi\)
\(368\) −5.08254 + 18.9683i −0.264946 + 0.988790i
\(369\) 0 0
\(370\) −52.9341 + 2.85992i −2.75191 + 0.148680i
\(371\) −0.0536785 0.147481i −0.00278685 0.00765681i
\(372\) 0 0
\(373\) −1.05518 + 12.0608i −0.0546353 + 0.624485i 0.918678 + 0.395006i \(0.129258\pi\)
−0.973314 + 0.229478i \(0.926298\pi\)
\(374\) 17.6375 + 6.41951i 0.912011 + 0.331945i
\(375\) 0 0
\(376\) 0.0599937 0.340241i 0.00309394 0.0175466i
\(377\) 9.19128 9.19128i 0.473375 0.473375i
\(378\) 0 0
\(379\) 22.5213i 1.15684i −0.815738 0.578421i \(-0.803669\pi\)
0.815738 0.578421i \(-0.196331\pi\)
\(380\) 17.2054 7.33607i 0.882616 0.376332i
\(381\) 0 0
\(382\) −7.44142 15.9582i −0.380736 0.816491i
\(383\) 14.4118 + 1.26087i 0.736410 + 0.0644275i 0.449189 0.893437i \(-0.351713\pi\)
0.287221 + 0.957864i \(0.407269\pi\)
\(384\) 0 0
\(385\) −9.38265 + 1.33411i −0.478184 + 0.0679923i
\(386\) 15.0774 + 8.70492i 0.767417 + 0.443069i
\(387\) 0 0
\(388\) −32.2524 8.64201i −1.63737 0.438731i
\(389\) −9.68308 8.12507i −0.490951 0.411957i 0.363416 0.931627i \(-0.381610\pi\)
−0.854367 + 0.519670i \(0.826055\pi\)
\(390\) 0 0
\(391\) 2.83044 + 16.0522i 0.143141 + 0.811795i
\(392\) −0.476742 0.333818i −0.0240791 0.0168604i
\(393\) 0 0
\(394\) −2.59737 + 3.09542i −0.130853 + 0.155945i
\(395\) −2.91713 1.48042i −0.146777 0.0744879i
\(396\) 0 0
\(397\) −14.5205 + 3.89075i −0.728761 + 0.195271i −0.604077 0.796926i \(-0.706458\pi\)
−0.124684 + 0.992197i \(0.539792\pi\)
\(398\) 32.7096 + 15.2527i 1.63958 + 0.764550i
\(399\) 0 0
\(400\) 5.40409 + 18.6190i 0.270205 + 0.930952i
\(401\) 8.96818 24.6399i 0.447849 1.23046i −0.486369 0.873754i \(-0.661679\pi\)
0.934218 0.356703i \(-0.116099\pi\)
\(402\) 0 0
\(403\) −11.9866 17.1186i −0.597094 0.852738i
\(404\) −11.3237 −0.563375
\(405\) 0 0
\(406\) −6.25667 −0.310513
\(407\) 19.5346 + 27.8983i 0.968294 + 1.38287i
\(408\) 0 0
\(409\) 2.57831 7.08384i 0.127489 0.350273i −0.859483 0.511164i \(-0.829214\pi\)
0.986972 + 0.160891i \(0.0514367\pi\)
\(410\) 1.80764 + 3.38647i 0.0892731 + 0.167246i
\(411\) 0 0
\(412\) 7.32453 + 3.41549i 0.360854 + 0.168269i
\(413\) −5.34723 + 1.43279i −0.263120 + 0.0705028i
\(414\) 0 0
\(415\) 35.9222 11.7360i 1.76335 0.576099i
\(416\) 31.7237 37.8068i 1.55538 1.85363i
\(417\) 0 0
\(418\) −19.4025 13.5858i −0.949006 0.664501i
\(419\) 3.59622 + 20.3952i 0.175687 + 0.996370i 0.937348 + 0.348394i \(0.113273\pi\)
−0.761661 + 0.647975i \(0.775616\pi\)
\(420\) 0 0
\(421\) −5.26964 4.42176i −0.256827 0.215503i 0.505279 0.862956i \(-0.331390\pi\)
−0.762105 + 0.647453i \(0.775834\pi\)
\(422\) 20.7742 + 5.56643i 1.01127 + 0.270969i
\(423\) 0 0
\(424\) −0.0111251 0.00642311i −0.000540285 0.000311934i
\(425\) 10.5967 + 12.1109i 0.514017 + 0.587464i
\(426\) 0 0
\(427\) −6.55066 0.573108i −0.317009 0.0277347i
\(428\) −12.9649 27.8032i −0.626680 1.34392i
\(429\) 0 0
\(430\) 1.30018 + 3.04933i 0.0627003 + 0.147052i
\(431\) 2.91928i 0.140617i −0.997525 0.0703084i \(-0.977602\pi\)
0.997525 0.0703084i \(-0.0223983\pi\)
\(432\) 0 0
\(433\) 3.01763 3.01763i 0.145018 0.145018i −0.630870 0.775888i \(-0.717302\pi\)
0.775888 + 0.630870i \(0.217302\pi\)
\(434\) −1.74673 + 9.90621i −0.0838458 + 0.475513i
\(435\) 0 0
\(436\) 19.1873 + 6.98361i 0.918905 + 0.334454i
\(437\) 1.79276 20.4913i 0.0857593 0.980233i
\(438\) 0 0
\(439\) 1.28129 + 3.52030i 0.0611524 + 0.168015i 0.966506 0.256643i \(-0.0826165\pi\)
−0.905354 + 0.424658i \(0.860394\pi\)
\(440\) −0.518118 + 0.577301i −0.0247003 + 0.0275217i
\(441\) 0 0
\(442\) 10.2870 38.3914i 0.489300 1.82609i
\(443\) −2.43927 27.8809i −0.115893 1.32466i −0.802070 0.597229i \(-0.796268\pi\)
0.686177 0.727434i \(-0.259287\pi\)
\(444\) 0 0
\(445\) 9.96310 9.32088i 0.472296 0.441852i
\(446\) −23.7107 + 4.18083i −1.12273 + 0.197968i
\(447\) 0 0
\(448\) −12.3531 + 1.08076i −0.583631 + 0.0510611i
\(449\) 4.77256 + 8.26631i 0.225231 + 0.390111i 0.956389 0.292097i \(-0.0943530\pi\)
−0.731158 + 0.682208i \(0.761020\pi\)
\(450\) 0 0
\(451\) 1.23311 2.13580i 0.0580647 0.100571i
\(452\) 13.2568 28.4293i 0.623548 1.33720i
\(453\) 0 0
\(454\) −1.49860 1.78596i −0.0703328 0.0838193i
\(455\) 4.54598 + 19.5467i 0.213119 + 0.916363i
\(456\) 0 0
\(457\) −29.0265 + 20.3246i −1.35780 + 0.950745i −0.357949 + 0.933741i \(0.616524\pi\)
−0.999855 + 0.0170039i \(0.994587\pi\)
\(458\) −12.4782 12.4782i −0.583068 0.583068i
\(459\) 0 0
\(460\) −22.8208 4.81219i −1.06402 0.224369i
\(461\) −24.4088 4.30393i −1.13683 0.200454i −0.426612 0.904435i \(-0.640293\pi\)
−0.710219 + 0.703981i \(0.751404\pi\)
\(462\) 0 0
\(463\) −4.90609 + 2.28775i −0.228005 + 0.106321i −0.533264 0.845949i \(-0.679035\pi\)
0.305259 + 0.952269i \(0.401257\pi\)
\(464\) 6.29927 5.28572i 0.292436 0.245383i
\(465\) 0 0
\(466\) −30.9797 + 11.2757i −1.43511 + 0.522336i
\(467\) −10.5998 39.5591i −0.490502 1.83058i −0.553891 0.832589i \(-0.686857\pi\)
0.0633888 0.997989i \(-0.479809\pi\)
\(468\) 0 0
\(469\) −5.65527 + 3.26507i −0.261136 + 0.150767i
\(470\) −12.8927 1.56189i −0.594696 0.0720444i
\(471\) 0 0
\(472\) −0.259898 + 0.371173i −0.0119628 + 0.0170846i
\(473\) 1.22155 1.74456i 0.0561671 0.0802149i
\(474\) 0 0
\(475\) −8.96127 18.2236i −0.411171 0.836158i
\(476\) −8.40545 + 4.85289i −0.385263 + 0.222432i
\(477\) 0 0
\(478\) 4.47905 + 16.7160i 0.204867 + 0.764574i
\(479\) −25.9636 + 9.44996i −1.18631 + 0.431780i −0.858425 0.512940i \(-0.828556\pi\)
−0.327880 + 0.944719i \(0.606334\pi\)
\(480\) 0 0
\(481\) 55.2468 46.3576i 2.51904 2.11372i
\(482\) −3.77382 + 1.75976i −0.171893 + 0.0801549i
\(483\) 0 0
\(484\) −5.31835 0.937769i −0.241743 0.0426258i
\(485\) −7.48013 + 35.4730i −0.339655 + 1.61074i
\(486\) 0 0
\(487\) 28.3122 + 28.3122i 1.28295 + 1.28295i 0.938981 + 0.343969i \(0.111772\pi\)
0.343969 + 0.938981i \(0.388228\pi\)
\(488\) −0.440891 + 0.308715i −0.0199582 + 0.0139749i
\(489\) 0 0
\(490\) −11.5631 + 18.5716i −0.522369 + 0.838979i
\(491\) −15.4259 18.3839i −0.696161 0.829652i 0.295925 0.955211i \(-0.404372\pi\)
−0.992086 + 0.125559i \(0.959928\pi\)
\(492\) 0 0
\(493\) 2.88459 6.18602i 0.129915 0.278604i
\(494\) −25.0786 + 43.4374i −1.12834 + 1.95434i
\(495\) 0 0
\(496\) −6.61027 11.4493i −0.296810 0.514090i
\(497\) 13.2220 1.15678i 0.593089 0.0518886i
\(498\) 0 0
\(499\) 31.1017 5.48406i 1.39230 0.245500i 0.573325 0.819328i \(-0.305653\pi\)
0.818976 + 0.573828i \(0.194542\pi\)
\(500\) −21.7347 + 7.60188i −0.972005 + 0.339966i
\(501\) 0 0
\(502\) 1.93720 + 22.1423i 0.0864616 + 0.988261i
\(503\) 0.730168 2.72503i 0.0325566 0.121503i −0.947735 0.319058i \(-0.896634\pi\)
0.980292 + 0.197555i \(0.0633002\pi\)
\(504\) 0 0
\(505\) 0.663284 + 12.2767i 0.0295158 + 0.546306i
\(506\) 10.1015 + 27.7536i 0.449066 + 1.23380i
\(507\) 0 0
\(508\) 1.78941 20.4530i 0.0793920 0.907455i
\(509\) 20.7599 + 7.55598i 0.920166 + 0.334913i 0.758304 0.651901i \(-0.226028\pi\)
0.161861 + 0.986814i \(0.448250\pi\)
\(510\) 0 0
\(511\) −2.11875 + 12.0160i −0.0937279 + 0.531557i
\(512\) 22.7346 22.7346i 1.00474 1.00474i
\(513\) 0 0
\(514\) 11.6360i 0.513243i
\(515\) 3.27390 8.14102i 0.144265 0.358736i
\(516\) 0 0
\(517\) 3.52615 + 7.56184i 0.155080 + 0.332569i
\(518\) −34.5820 3.02553i −1.51944 0.132934i
\(519\) 0 0
\(520\) 1.31345 + 0.986435i 0.0575987 + 0.0432581i
\(521\) 7.62484 + 4.40220i 0.334050 + 0.192864i 0.657638 0.753334i \(-0.271556\pi\)
−0.323588 + 0.946198i \(0.604889\pi\)
\(522\) 0 0
\(523\) 1.24254 + 0.332937i 0.0543324 + 0.0145583i 0.285883 0.958265i \(-0.407713\pi\)
−0.231550 + 0.972823i \(0.574380\pi\)
\(524\) −17.7181 14.8673i −0.774019 0.649479i
\(525\) 0 0
\(526\) −6.45507 36.6085i −0.281454 1.59621i
\(527\) −8.98903 6.29419i −0.391568 0.274179i
\(528\) 0 0
\(529\) −1.70263 + 2.02911i −0.0740274 + 0.0882224i
\(530\) −0.218532 + 0.430611i −0.00949241 + 0.0187046i
\(531\) 0 0
\(532\) 11.8309 3.17007i 0.512933 0.137440i
\(533\) −4.73311 2.20709i −0.205014 0.0955995i
\(534\) 0 0
\(535\) −29.3837 + 15.6846i −1.27037 + 0.678103i
\(536\) −0.182810 + 0.502268i −0.00789621 + 0.0216947i
\(537\) 0 0
\(538\) 18.1740 + 25.9551i 0.783535 + 1.11900i
\(539\) 14.0551 0.605398
\(540\) 0 0
\(541\) −9.16794 −0.394160 −0.197080 0.980387i \(-0.563146\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(542\) 20.1460 + 28.7714i 0.865344 + 1.23584i
\(543\) 0 0
\(544\) 8.86365 24.3527i 0.380026 1.04411i
\(545\) 6.44745 21.2112i 0.276179 0.908587i
\(546\) 0 0
\(547\) 4.18752 + 1.95267i 0.179046 + 0.0834904i 0.510074 0.860130i \(-0.329618\pi\)
−0.331029 + 0.943621i \(0.607396\pi\)
\(548\) 39.1053 10.4782i 1.67050 0.447608i
\(549\) 0 0
\(550\) 22.7199 + 18.2769i 0.968778 + 0.779331i
\(551\) −5.53663 + 6.59830i −0.235868 + 0.281097i
\(552\) 0 0
\(553\) −1.75476 1.22870i −0.0746202 0.0522496i
\(554\) −5.37283 30.4709i −0.228270 1.29458i
\(555\) 0 0
\(556\) −2.34610 1.96861i −0.0994968 0.0834878i
\(557\) −9.73354 2.60809i −0.412423 0.110509i 0.0466405 0.998912i \(-0.485148\pi\)
−0.459064 + 0.888403i \(0.651815\pi\)
\(558\) 0 0
\(559\) −3.90564 2.25492i −0.165191 0.0953730i
\(560\) 1.78721 + 12.5693i 0.0755235 + 0.531150i
\(561\) 0 0
\(562\) 14.8729 + 1.30121i 0.627373 + 0.0548881i
\(563\) −6.99817 15.0076i −0.294938 0.632496i 0.701873 0.712302i \(-0.252348\pi\)
−0.996810 + 0.0798064i \(0.974570\pi\)
\(564\) 0 0
\(565\) −31.5984 12.7073i −1.32936 0.534598i
\(566\) 28.9676i 1.21760i
\(567\) 0 0
\(568\) 0.768184 0.768184i 0.0322323 0.0322323i
\(569\) 1.89828 10.7657i 0.0795799 0.451320i −0.918815 0.394688i \(-0.870853\pi\)
0.998395 0.0566320i \(-0.0180362\pi\)
\(570\) 0 0
\(571\) 15.2515 + 5.55110i 0.638256 + 0.232306i 0.640821 0.767691i \(-0.278594\pi\)
−0.00256475 + 0.999997i \(0.500816\pi\)
\(572\) 3.18438 36.3976i 0.133146 1.52186i
\(573\) 0 0
\(574\) 0.859755 + 2.36216i 0.0358855 + 0.0985946i
\(575\) −3.88045 + 25.0232i −0.161826 + 1.04354i
\(576\) 0 0
\(577\) −4.56140 + 17.0234i −0.189894 + 0.708693i 0.803636 + 0.595121i \(0.202896\pi\)
−0.993530 + 0.113572i \(0.963771\pi\)
\(578\) 1.16625 + 13.3304i 0.0485098 + 0.554469i
\(579\) 0 0
\(580\) 6.67212 + 7.13184i 0.277045 + 0.296134i
\(581\) 24.3710 4.29727i 1.01108 0.178281i
\(582\) 0 0
\(583\) 0.309055 0.0270388i 0.0127998 0.00111983i
\(584\) 0.499351 + 0.864901i 0.0206633 + 0.0357898i
\(585\) 0 0
\(586\) 20.2926 35.1479i 0.838280 1.45194i
\(587\) −3.45411 + 7.40736i −0.142566 + 0.305734i −0.964606 0.263696i \(-0.915058\pi\)
0.822040 + 0.569430i \(0.192836\pi\)
\(588\) 0 0
\(589\) 8.90140 + 10.6083i 0.366776 + 0.437106i
\(590\) 14.4591 + 9.00262i 0.595273 + 0.370632i
\(591\) 0 0
\(592\) 37.3735 26.1692i 1.53604 1.07555i
\(593\) 28.1239 + 28.1239i 1.15491 + 1.15491i 0.985555 + 0.169357i \(0.0541692\pi\)
0.169357 + 0.985555i \(0.445831\pi\)
\(594\) 0 0
\(595\) 5.75366 + 8.82860i 0.235877 + 0.361937i
\(596\) −10.0651 1.77475i −0.412282 0.0726965i
\(597\) 0 0
\(598\) 56.6826 26.4315i 2.31793 1.08087i
\(599\) −27.5968 + 23.1564i −1.12757 + 0.946147i −0.998962 0.0455483i \(-0.985496\pi\)
−0.128612 + 0.991695i \(0.541052\pi\)
\(600\) 0 0
\(601\) −21.4617 + 7.81141i −0.875440 + 0.318634i −0.740368 0.672202i \(-0.765349\pi\)
−0.135072 + 0.990836i \(0.543126\pi\)
\(602\) 0.561836 + 2.09680i 0.0228987 + 0.0854593i
\(603\) 0 0
\(604\) 36.9808 21.3509i 1.50473 0.868755i
\(605\) −0.705169 + 5.82087i −0.0286692 + 0.236652i
\(606\) 0 0
\(607\) 4.90539 7.00562i 0.199104 0.284349i −0.707168 0.707046i \(-0.750027\pi\)
0.906271 + 0.422696i \(0.138916\pi\)
\(608\) −18.7583 + 26.7897i −0.760751 + 1.08647i
\(609\) 0 0
\(610\) 12.4818 + 15.9229i 0.505374 + 0.644700i
\(611\) 15.3011 8.83410i 0.619017 0.357389i
\(612\) 0 0
\(613\) 9.58796 + 35.7827i 0.387254 + 1.44525i 0.834583 + 0.550882i \(0.185709\pi\)
−0.447329 + 0.894369i \(0.647625\pi\)
\(614\) 22.6241 8.23450i 0.913034 0.332317i
\(615\) 0 0
\(616\) −0.389125 + 0.326514i −0.0156783 + 0.0131556i
\(617\) −11.1077 + 5.17963i −0.447181 + 0.208524i −0.633146 0.774032i \(-0.718237\pi\)
0.185965 + 0.982556i \(0.440459\pi\)
\(618\) 0 0
\(619\) −8.63834 1.52317i −0.347204 0.0612215i −0.00267331 0.999996i \(-0.500851\pi\)
−0.344531 + 0.938775i \(0.611962\pi\)
\(620\) 13.1546 8.57294i 0.528301 0.344297i
\(621\) 0 0
\(622\) 3.44947 + 3.44947i 0.138311 + 0.138311i
\(623\) 7.31853 5.12449i 0.293211 0.205308i
\(624\) 0 0
\(625\) 9.51476 + 23.1186i 0.380590 + 0.924744i
\(626\) −15.8763 18.9206i −0.634543 0.756218i
\(627\) 0 0
\(628\) −5.91130 + 12.6768i −0.235887 + 0.505860i
\(629\) 18.9351 32.7966i 0.754992 1.30769i
\(630\) 0 0
\(631\) 16.1540 + 27.9796i 0.643083 + 1.11385i 0.984741 + 0.174027i \(0.0556781\pi\)
−0.341658 + 0.939824i \(0.610989\pi\)
\(632\) −0.174673 + 0.0152819i −0.00694810 + 0.000607880i
\(633\) 0 0
\(634\) −45.0092 + 7.93634i −1.78755 + 0.315192i
\(635\) −22.2791 0.741969i −0.884121 0.0294442i
\(636\) 0 0
\(637\) −2.59401 29.6497i −0.102778 1.17476i
\(638\) 3.20098 11.9462i 0.126728 0.472955i
\(639\) 0 0
\(640\) 1.59491 + 1.43140i 0.0630442 + 0.0565811i
\(641\) 3.35944 + 9.23000i 0.132690 + 0.364563i 0.988189 0.153242i \(-0.0489715\pi\)
−0.855499 + 0.517805i \(0.826749\pi\)
\(642\) 0 0
\(643\) 1.62110 18.5293i 0.0639299 0.730723i −0.894812 0.446444i \(-0.852690\pi\)
0.958742 0.284279i \(-0.0917541\pi\)
\(644\) −14.3516 5.22355i −0.565532 0.205837i
\(645\) 0 0
\(646\) −4.57349 + 25.9375i −0.179942 + 1.02050i
\(647\) −14.2018 + 14.2018i −0.558331 + 0.558331i −0.928832 0.370501i \(-0.879186\pi\)
0.370501 + 0.928832i \(0.379186\pi\)
\(648\) 0 0
\(649\) 10.9428i 0.429542i
\(650\) 34.3625 51.3013i 1.34781 2.01220i
\(651\) 0 0
\(652\) 17.7082 + 37.9754i 0.693507 + 1.48723i
\(653\) 19.8693 + 1.73834i 0.777546 + 0.0680265i 0.469018 0.883189i \(-0.344608\pi\)
0.308528 + 0.951215i \(0.400164\pi\)
\(654\) 0 0
\(655\) −15.0806 + 20.0801i −0.589250 + 0.784595i
\(656\) −2.86119 1.65191i −0.111711 0.0644963i
\(657\) 0 0
\(658\) −8.21463 2.20110i −0.320240 0.0858080i
\(659\) 0.815140 + 0.683983i 0.0317533 + 0.0266442i 0.658526 0.752558i \(-0.271180\pi\)
−0.626773 + 0.779202i \(0.715625\pi\)
\(660\) 0 0
\(661\) −5.78183 32.7904i −0.224887 1.27540i −0.862901 0.505373i \(-0.831355\pi\)
0.638014 0.770025i \(-0.279756\pi\)
\(662\) −26.9314 18.8576i −1.04672 0.732920i
\(663\) 0 0
\(664\) 1.30202 1.55168i 0.0505280 0.0602169i
\(665\) −4.12986 12.6409i −0.160149 0.490192i
\(666\) 0 0
\(667\) 10.3744 2.77981i 0.401699 0.107635i
\(668\) −0.880256 0.410470i −0.0340581 0.0158816i
\(669\) 0 0
\(670\) 19.2235 + 5.84326i 0.742668 + 0.225745i
\(671\) 4.44565 12.2143i 0.171622 0.471529i
\(672\) 0 0
\(673\) 14.0367 + 20.0466i 0.541077 + 0.772738i 0.992847 0.119397i \(-0.0380961\pi\)
−0.451770 + 0.892135i \(0.649207\pi\)
\(674\) −8.08017 −0.311236
\(675\) 0 0
\(676\) −50.5961 −1.94600
\(677\) 11.7412 + 16.7682i 0.451252 + 0.644455i 0.978739 0.205108i \(-0.0657546\pi\)
−0.527487 + 0.849563i \(0.676866\pi\)
\(678\) 0 0
\(679\) −8.11957 + 22.3083i −0.311601 + 0.856115i
\(680\) 0.825265 + 0.250852i 0.0316474 + 0.00961972i
\(681\) 0 0
\(682\) −18.0208 8.40325i −0.690053 0.321777i
\(683\) 21.3380 5.71751i 0.816477 0.218774i 0.173671 0.984804i \(-0.444437\pi\)
0.642806 + 0.766029i \(0.277770\pi\)
\(684\) 0 0
\(685\) −13.6507 41.7827i −0.521566 1.59643i
\(686\) −22.4833 + 26.7945i −0.858416 + 1.02302i
\(687\) 0 0
\(688\) −2.33707 1.63643i −0.0890999 0.0623884i
\(689\) −0.114078 0.646969i −0.00434603 0.0246476i
\(690\) 0 0
\(691\) 13.7398 + 11.5291i 0.522688 + 0.438587i 0.865568 0.500792i \(-0.166958\pi\)
−0.342880 + 0.939379i \(0.611402\pi\)
\(692\) 36.6813 + 9.82872i 1.39441 + 0.373632i
\(693\) 0 0
\(694\) 21.6551 + 12.5026i 0.822016 + 0.474591i
\(695\) −1.99687 + 2.65886i −0.0757455 + 0.100856i
\(696\) 0 0
\(697\) −2.73187 0.239008i −0.103477 0.00905306i
\(698\) −6.50619 13.9526i −0.246263 0.528112i
\(699\) 0 0
\(700\) −14.7918 + 2.92487i −0.559079 + 0.110550i
\(701\) 11.4005i 0.430590i −0.976549 0.215295i \(-0.930929\pi\)
0.976549 0.215295i \(-0.0690713\pi\)
\(702\) 0 0
\(703\) −33.7929 + 33.7929i −1.27452 + 1.27452i
\(704\) 4.25644 24.1395i 0.160421 0.909791i
\(705\) 0 0
\(706\) 33.8977 + 12.3377i 1.27576 + 0.464337i
\(707\) −0.701693 + 8.02039i −0.0263899 + 0.301638i
\(708\) 0 0
\(709\) −5.28444 14.5189i −0.198461 0.545268i 0.800043 0.599943i \(-0.204810\pi\)
−0.998504 + 0.0546749i \(0.982588\pi\)
\(710\) −30.3918 27.2762i −1.14059 1.02366i
\(711\) 0 0
\(712\) 0.189270 0.706365i 0.00709319 0.0264722i
\(713\) −1.50497 17.2019i −0.0563616 0.644216i
\(714\) 0 0
\(715\) −39.6474 1.32039i −1.48273 0.0493798i
\(716\) 16.0551 2.83094i 0.600006 0.105797i
\(717\) 0 0
\(718\) −25.1504 + 2.20038i −0.938606 + 0.0821174i
\(719\) 4.71157 + 8.16068i 0.175712 + 0.304342i 0.940407 0.340050i \(-0.110444\pi\)
−0.764695 + 0.644392i \(0.777111\pi\)
\(720\) 0 0
\(721\) 2.87301 4.97620i 0.106997 0.185323i
\(722\) −2.13197 + 4.57202i −0.0793437 + 0.170153i
\(723\) 0 0
\(724\) 26.1085 + 31.1149i 0.970315 + 1.15638i
\(725\) 7.34124 7.65140i 0.272647 0.284166i
\(726\) 0 0
\(727\) 35.1712 24.6272i 1.30443 0.913371i 0.305186 0.952293i \(-0.401281\pi\)
0.999242 + 0.0389219i \(0.0123924\pi\)
\(728\) 0.760607 + 0.760607i 0.0281900 + 0.0281900i
\(729\) 0 0
\(730\) 31.4516 20.4972i 1.16408 0.758636i
\(731\) −2.33216 0.411222i −0.0862579 0.0152096i
\(732\) 0 0
\(733\) 0.567513 0.264636i 0.0209616 0.00977454i −0.412109 0.911134i \(-0.635208\pi\)
0.433071 + 0.901360i \(0.357430\pi\)
\(734\) −21.1255 + 17.7264i −0.779755 + 0.654292i
\(735\) 0 0
\(736\) 38.3205 13.9475i 1.41251 0.514112i
\(737\) −3.34089 12.4684i −0.123063 0.459278i
\(738\) 0 0
\(739\) −23.6846 + 13.6743i −0.871251 + 0.503017i −0.867764 0.496977i \(-0.834443\pi\)
−0.00348723 + 0.999994i \(0.501110\pi\)
\(740\) 33.4295 + 42.6457i 1.22889 + 1.56769i
\(741\) 0 0
\(742\) −0.181374 + 0.259029i −0.00665846 + 0.00950927i
\(743\) −20.5718 + 29.3796i −0.754706 + 1.07783i 0.239558 + 0.970882i \(0.422997\pi\)
−0.994264 + 0.106950i \(0.965891\pi\)
\(744\) 0 0
\(745\) −1.33455 + 11.0161i −0.0488941 + 0.403600i
\(746\) 21.1251 12.1966i 0.773444 0.446548i
\(747\) 0 0
\(748\) −4.96558 18.5318i −0.181559 0.677589i
\(749\) −20.4960 + 7.45993i −0.748907 + 0.272580i
\(750\) 0 0
\(751\) −27.0935 + 22.7342i −0.988657 + 0.829582i −0.985373 0.170413i \(-0.945490\pi\)
−0.00328459 + 0.999995i \(0.501046\pi\)
\(752\) 10.1301 4.72374i 0.369407 0.172257i
\(753\) 0 0
\(754\) −25.7916 4.54775i −0.939274 0.165619i
\(755\) −25.3139 38.8425i −0.921267 1.41362i
\(756\) 0 0
\(757\) −26.1262 26.1262i −0.949573 0.949573i 0.0492153 0.998788i \(-0.484328\pi\)
−0.998788 + 0.0492153i \(0.984328\pi\)
\(758\) −37.1701 + 26.0268i −1.35008 + 0.945336i
\(759\) 0 0
\(760\) −0.924024 0.575321i −0.0335179 0.0208691i
\(761\) −5.19201 6.18759i −0.188210 0.224300i 0.663685 0.748012i \(-0.268991\pi\)
−0.851896 + 0.523712i \(0.824547\pi\)
\(762\) 0 0
\(763\) 6.13535 13.1573i 0.222115 0.476326i
\(764\) −8.99914 + 15.5870i −0.325577 + 0.563917i
\(765\) 0 0
\(766\) −14.5740 25.2430i −0.526582 0.912066i
\(767\) −23.0841 + 2.01960i −0.833519 + 0.0729234i
\(768\) 0 0
\(769\) 16.0619 2.83215i 0.579208 0.102130i 0.123634 0.992328i \(-0.460545\pi\)
0.455574 + 0.890198i \(0.349434\pi\)
\(770\) 13.0449 + 13.9437i 0.470107 + 0.502498i
\(771\) 0 0
\(772\) −1.55101 17.7281i −0.0558220 0.638048i
\(773\) −3.06271 + 11.4302i −0.110158 + 0.411116i −0.998879 0.0473325i \(-0.984928\pi\)
0.888721 + 0.458448i \(0.151595\pi\)
\(774\) 0 0
\(775\) −10.0650 13.7595i −0.361544 0.494256i
\(776\) 0.664599 + 1.82597i 0.0238577 + 0.0655485i
\(777\) 0 0
\(778\) −2.21968 + 25.3711i −0.0795795 + 0.909598i
\(779\) 3.25195 + 1.18361i 0.116513 + 0.0424073i
\(780\) 0 0
\(781\) −4.55583 + 25.8374i −0.163020 + 0.924534i
\(782\) 23.2222 23.2222i 0.830425 0.830425i
\(783\) 0 0
\(784\) 18.8287i 0.672455i
\(785\) 14.0900 + 5.66625i 0.502892 + 0.202237i
\(786\) 0 0
\(787\) −20.1245 43.1572i −0.717361 1.53839i −0.837988 0.545689i \(-0.816268\pi\)
0.120627 0.992698i \(-0.461510\pi\)
\(788\) 4.11465 + 0.359985i 0.146578 + 0.0128240i
\(789\) 0 0
\(790\) 0.927837 + 6.52539i 0.0330110 + 0.232163i
\(791\) −19.3145 11.1513i −0.686746 0.396493i
\(792\) 0 0
\(793\) −26.5869 7.12394i −0.944129 0.252979i
\(794\) 23.2020 + 19.4688i 0.823409 + 0.690922i
\(795\) 0 0
\(796\) −6.40609 36.3307i −0.227058 1.28771i
\(797\) −13.5475 9.48608i −0.479878 0.336014i 0.308480 0.951231i \(-0.400180\pi\)
−0.788358 + 0.615216i \(0.789069\pi\)
\(798\) 0 0
\(799\) 5.96354 7.10708i 0.210975 0.251430i
\(800\) 25.2356 31.3701i 0.892215 1.10910i
\(801\) 0 0
\(802\) −51.0307 + 13.6736i −1.80196 + 0.482833i
\(803\) −21.8589 10.1930i −0.771383 0.359702i
\(804\) 0 0
\(805\) −4.82252 + 15.8654i −0.169972 + 0.559182i
\(806\) −14.4009 + 39.5663i −0.507252 + 1.39366i
\(807\) 0 0
\(808\) 0.377980 + 0.539812i 0.0132973 + 0.0189905i
\(809\) −21.1013 −0.741881 −0.370941 0.928657i \(-0.620965\pi\)
−0.370941 + 0.928657i \(0.620965\pi\)
\(810\) 0 0
\(811\) 3.03312 0.106507 0.0532537 0.998581i \(-0.483041\pi\)
0.0532537 + 0.998581i \(0.483041\pi\)
\(812\) 3.66824 + 5.23879i 0.128730 + 0.183845i
\(813\) 0 0
\(814\) 23.4693 64.4814i 0.822599 2.26007i
\(815\) 40.1341 21.4229i 1.40584 0.750412i
\(816\) 0 0
\(817\) 2.70847 + 1.26298i 0.0947574 + 0.0441861i
\(818\) −14.6711 + 3.93110i −0.512962 + 0.137448i
\(819\) 0 0
\(820\) 1.77573 3.49903i 0.0620111 0.122191i
\(821\) −7.72326 + 9.20422i −0.269544 + 0.321230i −0.883789 0.467885i \(-0.845016\pi\)
0.614246 + 0.789115i \(0.289460\pi\)
\(822\) 0 0
\(823\) −19.4859 13.6442i −0.679237 0.475607i 0.182339 0.983236i \(-0.441633\pi\)
−0.861576 + 0.507629i \(0.830522\pi\)
\(824\) −0.0816702 0.463175i −0.00284512 0.0161355i
\(825\) 0 0
\(826\) 8.54427 + 7.16949i 0.297293 + 0.249459i
\(827\) 44.8353 + 12.0136i 1.55907 + 0.417753i 0.932370 0.361504i \(-0.117737\pi\)
0.626704 + 0.779257i \(0.284403\pi\)
\(828\) 0 0
\(829\) 27.8169 + 16.0601i 0.966123 + 0.557791i 0.898052 0.439889i \(-0.144982\pi\)
0.0680706 + 0.997681i \(0.478316\pi\)
\(830\) −60.8832 45.7248i −2.11329 1.58713i
\(831\) 0 0
\(832\) −51.7084 4.52390i −1.79267 0.156838i
\(833\) −6.60493 14.1643i −0.228847 0.490765i
\(834\) 0 0
\(835\) −0.393455 + 0.978382i −0.0136161 + 0.0338583i
\(836\) 24.2112i 0.837361i
\(837\) 0 0
\(838\) 29.5051 29.5051i 1.01924 1.01924i
\(839\) 8.77845 49.7851i 0.303066 1.71877i −0.329406 0.944188i \(-0.606849\pi\)
0.632472 0.774583i \(-0.282040\pi\)
\(840\) 0 0
\(841\) 23.0248 + 8.38035i 0.793959 + 0.288977i
\(842\) −1.20798 + 13.8072i −0.0416296 + 0.475829i
\(843\) 0 0
\(844\) −7.51891 20.6580i −0.258812 0.711079i
\(845\) 2.96366 + 54.8542i 0.101953 + 1.88704i
\(846\) 0 0
\(847\) −0.993767 + 3.70879i −0.0341463 + 0.127436i
\(848\) −0.0362221 0.414021i −0.00124387 0.0142175i
\(849\) 0 0
\(850\) 7.74218 31.4852i 0.265555 1.07993i
\(851\) 58.6858 10.3479i 2.01172 0.354721i
\(852\) 0 0
\(853\) 50.7794 4.44262i 1.73865 0.152112i 0.826763 0.562550i \(-0.190180\pi\)
0.911889 + 0.410438i \(0.134624\pi\)
\(854\) 6.62440 + 11.4738i 0.226682 + 0.392625i
\(855\) 0 0
\(856\) −0.892646 + 1.54611i −0.0305100 + 0.0528449i
\(857\) −4.25654 + 9.12817i −0.145400 + 0.311812i −0.965498 0.260412i \(-0.916142\pi\)
0.820097 + 0.572224i \(0.193919\pi\)
\(858\) 0 0
\(859\) 8.01487 + 9.55175i 0.273464 + 0.325902i 0.885245 0.465126i \(-0.153991\pi\)
−0.611781 + 0.791027i \(0.709547\pi\)
\(860\) 1.79096 2.87646i 0.0610711 0.0980864i
\(861\) 0 0
\(862\) −4.81810 + 3.37367i −0.164105 + 0.114908i
\(863\) 23.9621 + 23.9621i 0.815678 + 0.815678i 0.985479 0.169800i \(-0.0543122\pi\)
−0.169800 + 0.985479i \(0.554312\pi\)
\(864\) 0 0
\(865\) 8.50730 40.3441i 0.289257 1.37174i
\(866\) −8.46774 1.49309i −0.287745 0.0507373i
\(867\) 0 0
\(868\) 9.31869 4.34538i 0.316297 0.147492i
\(869\) 3.24378 2.72185i 0.110038 0.0923326i
\(870\) 0 0
\(871\) −25.6857 + 9.34885i −0.870328 + 0.316774i
\(872\) −0.307549 1.14779i −0.0104149 0.0388690i
\(873\) 0 0
\(874\) −35.8915 + 20.7220i −1.21405 + 0.700932i
\(875\) 4.03746 + 15.8654i 0.136491 + 0.536348i
\(876\) 0 0
\(877\) −26.9320 + 38.4629i −0.909430 + 1.29880i 0.0445739 + 0.999006i \(0.485807\pi\)
−0.954004 + 0.299794i \(0.903082\pi\)
\(878\) 4.32933 6.18293i 0.146108 0.208664i
\(879\) 0 0
\(880\) −24.9136 3.01816i −0.839838 0.101742i
\(881\) −20.2756 + 11.7061i −0.683103 + 0.394390i −0.801023 0.598633i \(-0.795711\pi\)
0.117920 + 0.993023i \(0.462377\pi\)
\(882\) 0 0
\(883\) −1.63802 6.11319i −0.0551239 0.205725i 0.932871 0.360210i \(-0.117295\pi\)
−0.987995 + 0.154485i \(0.950628\pi\)
\(884\) −38.1768 + 13.8952i −1.28402 + 0.467347i
\(885\) 0 0
\(886\) −43.1969 + 36.2465i −1.45123 + 1.21773i
\(887\) −29.6855 + 13.8426i −0.996741 + 0.464788i −0.851357 0.524587i \(-0.824220\pi\)
−0.145384 + 0.989375i \(0.546442\pi\)
\(888\) 0 0
\(889\) −14.3756 2.53481i −0.482144 0.0850149i
\(890\) −26.8974 5.67182i −0.901604 0.190120i
\(891\) 0 0
\(892\) 17.4021 + 17.4021i 0.582665 + 0.582665i
\(893\) −9.59056 + 6.71538i −0.320936 + 0.224722i
\(894\) 0 0
\(895\) −4.00962 17.2404i −0.134027 0.576284i
\(896\) 0.902060 + 1.07503i 0.0301357 + 0.0359143i
\(897\) 0 0
\(898\) 8.12765 17.4298i 0.271223 0.581640i
\(899\) −3.61538 + 6.26203i −0.120580 + 0.208850i
\(900\) 0 0
\(901\) −0.172483 0.298750i −0.00574625 0.00995280i
\(902\) −4.95006 + 0.433074i −0.164819 + 0.0144198i
\(903\) 0 0
\(904\) −1.79776 + 0.316994i −0.0597926 + 0.0105430i
\(905\) 32.2042 30.1283i 1.07050 1.00150i
\(906\) 0 0
\(907\) 2.49616 + 28.5313i 0.0828837 + 0.947365i 0.917814 + 0.397010i \(0.129952\pi\)
−0.834931 + 0.550355i \(0.814492\pi\)
\(908\) −0.616790 + 2.30189i −0.0204689 + 0.0763910i
\(909\) 0 0
\(910\) 27.0071 30.0920i 0.895277 0.997542i
\(911\) 6.61616 + 18.1777i 0.219203 + 0.602255i 0.999739 0.0228557i \(-0.00727584\pi\)
−0.780536 + 0.625111i \(0.785054\pi\)
\(912\) 0 0
\(913\) −4.26345 + 48.7315i −0.141100 + 1.61278i
\(914\) 67.0891 + 24.4184i 2.21911 + 0.807690i
\(915\) 0 0
\(916\) −3.13228 + 17.7641i −0.103493 + 0.586941i
\(917\) −11.6282 + 11.6282i −0.383996 + 0.383996i
\(918\) 0 0
\(919\) 44.6775i 1.47377i 0.676016 + 0.736887i \(0.263705\pi\)
−0.676016 + 0.736887i \(0.736295\pi\)
\(920\) 0.532346 + 1.24852i 0.0175509 + 0.0411624i
\(921\) 0 0
\(922\) 21.1047 + 45.2591i 0.695046 + 1.49053i
\(923\) 55.3454 + 4.84210i 1.82172 + 0.159380i
\(924\) 0 0
\(925\) 44.2766 38.7409i 1.45581 1.27379i
\(926\) 9.44552 + 5.45337i 0.310399 + 0.179209i
\(927\) 0 0
\(928\) −16.4946 4.41970i −0.541461 0.145084i
\(929\) 40.3230 + 33.8350i 1.32296 + 1.11009i 0.985669 + 0.168689i \(0.0539535\pi\)
0.337286 + 0.941402i \(0.390491\pi\)
\(930\) 0 0
\(931\) 3.42478 + 19.4229i 0.112243 + 0.636560i
\(932\) 27.6044 + 19.3288i 0.904213 + 0.633137i
\(933\) 0 0
\(934\) −53.0403 + 63.2110i −1.73553 + 2.06833i
\(935\) −19.8006 + 6.46898i −0.647547 + 0.211558i
\(936\) 0 0
\(937\) −13.8557 + 3.71263i −0.452647 + 0.121286i −0.477938 0.878394i \(-0.658616\pi\)
0.0252908 + 0.999680i \(0.491949\pi\)
\(938\) 11.9243 + 5.56041i 0.389343 + 0.181554i
\(939\) 0 0
\(940\) 6.25111 + 11.7109i 0.203889 + 0.381969i
\(941\) 0.0906224 0.248983i 0.00295420 0.00811661i −0.938207 0.346075i \(-0.887514\pi\)
0.941161 + 0.337959i \(0.109736\pi\)
\(942\) 0 0
\(943\) −2.47509 3.53479i −0.0806000 0.115109i
\(944\) −14.6593 −0.477121
\(945\) 0 0
\(946\) −4.29098 −0.139512
\(947\) 19.5534 + 27.9252i 0.635401 + 0.907446i 0.999716 0.0238294i \(-0.00758584\pi\)
−0.364315 + 0.931276i \(0.618697\pi\)
\(948\) 0 0
\(949\) −17.4680 + 47.9930i −0.567037 + 1.55792i
\(950\) −19.7209 + 35.8502i −0.639832 + 1.16313i
\(951\) 0 0
\(952\) 0.511912 + 0.238709i 0.0165912 + 0.00773659i
\(953\) −25.8211 + 6.91874i −0.836427 + 0.224120i −0.651516 0.758635i \(-0.725867\pi\)
−0.184912 + 0.982755i \(0.559200\pi\)
\(954\) 0 0
\(955\) 17.4259 + 8.84350i 0.563888 + 0.286169i
\(956\) 11.3705 13.5509i 0.367749 0.438266i
\(957\) 0 0
\(958\) 45.6014 + 31.9305i 1.47331 + 1.03163i
\(959\) −4.99834 28.3470i −0.161405 0.915372i
\(960\) 0 0
\(961\) −14.8420 12.4539i −0.478775 0.401740i
\(962\) −140.356 37.6084i −4.52528 1.21254i
\(963\) 0 0
\(964\) 3.68603 + 2.12813i 0.118719 + 0.0685425i
\(965\) −19.1292 + 2.71996i −0.615792 + 0.0875587i
\(966\) 0 0
\(967\) −20.2788 1.77416i −0.652121 0.0570532i −0.243706 0.969849i \(-0.578363\pi\)
−0.408416 + 0.912796i \(0.633919\pi\)
\(968\) 0.132820 + 0.284833i 0.00426899 + 0.00915488i
\(969\) 0 0
\(970\) 67.1905 28.6489i 2.15736 0.919859i
\(971\) 40.5268i 1.30057i −0.759692 0.650284i \(-0.774650\pi\)
0.759692 0.650284i \(-0.225350\pi\)
\(972\) 0 0
\(973\) −1.53972 + 1.53972i −0.0493610 + 0.0493610i
\(974\) 14.0086 79.4468i 0.448865 2.54564i
\(975\) 0 0
\(976\) −16.3627 5.95554i −0.523758 0.190632i
\(977\) −3.10305 + 35.4680i −0.0992752 + 1.13472i 0.769207 + 0.639000i \(0.220652\pi\)
−0.868482 + 0.495721i \(0.834904\pi\)
\(978\) 0 0
\(979\) 6.04024 + 16.5954i 0.193047 + 0.530392i
\(980\) 22.3296 1.20642i 0.713293 0.0385377i
\(981\) 0 0
\(982\) −12.5145 + 46.7049i −0.399355 + 1.49041i
\(983\) 3.20046 + 36.5814i 0.102079 + 1.16677i 0.858547 + 0.512735i \(0.171368\pi\)
−0.756468 + 0.654030i \(0.773077\pi\)
\(984\) 0 0
\(985\) 0.149266 4.48203i 0.00475602 0.142809i
\(986\) −13.5432 + 2.38804i −0.431305 + 0.0760507i
\(987\) 0 0
\(988\) 51.0740 4.46840i 1.62488 0.142159i
\(989\) −1.86320 3.22716i −0.0592464 0.102618i
\(990\) 0 0
\(991\) 6.40763 11.0983i 0.203545 0.352550i −0.746123 0.665808i \(-0.768087\pi\)
0.949668 + 0.313258i \(0.101420\pi\)
\(992\) −11.6027 + 24.8820i −0.368385 + 0.790005i
\(993\) 0 0
\(994\) −17.1893 20.4854i −0.545210 0.649756i
\(995\) −39.0131 + 9.07329i −1.23680 + 0.287643i
\(996\) 0 0
\(997\) −45.2647 + 31.6947i −1.43355 + 1.00378i −0.439113 + 0.898432i \(0.644707\pi\)
−0.994435 + 0.105349i \(0.966404\pi\)
\(998\) −44.9938 44.9938i −1.42425 1.42425i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.332.3 192
3.2 odd 2 135.2.q.a.2.14 192
5.3 odd 4 inner 405.2.r.a.8.3 192
15.2 even 4 675.2.ba.b.218.3 192
15.8 even 4 135.2.q.a.83.14 yes 192
15.14 odd 2 675.2.ba.b.407.3 192
27.13 even 9 135.2.q.a.122.14 yes 192
27.14 odd 18 inner 405.2.r.a.152.3 192
135.13 odd 36 135.2.q.a.68.14 yes 192
135.67 odd 36 675.2.ba.b.68.3 192
135.68 even 36 inner 405.2.r.a.233.3 192
135.94 even 18 675.2.ba.b.257.3 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.14 192 3.2 odd 2
135.2.q.a.68.14 yes 192 135.13 odd 36
135.2.q.a.83.14 yes 192 15.8 even 4
135.2.q.a.122.14 yes 192 27.13 even 9
405.2.r.a.8.3 192 5.3 odd 4 inner
405.2.r.a.152.3 192 27.14 odd 18 inner
405.2.r.a.233.3 192 135.68 even 36 inner
405.2.r.a.332.3 192 1.1 even 1 trivial
675.2.ba.b.68.3 192 135.67 odd 36
675.2.ba.b.218.3 192 15.2 even 4
675.2.ba.b.257.3 192 135.94 even 18
675.2.ba.b.407.3 192 15.14 odd 2