Properties

Label 405.2.r.a.332.16
Level $405$
Weight $2$
Character 405.332
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 332.16
Character \(\chi\) \(=\) 405.332
Dual form 405.2.r.a.233.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52658 + 2.18018i) q^{2} +(-1.73870 + 4.77703i) q^{4} +(1.77382 - 1.36146i) q^{5} +(2.78918 + 1.30062i) q^{7} +(-7.92739 + 2.12414i) q^{8} +(5.67609 + 1.78885i) q^{10} +(0.426793 - 0.508631i) q^{11} +(0.384347 + 0.269123i) q^{13} +(1.42232 + 8.06640i) q^{14} +(-8.94423 - 7.50510i) q^{16} +(-4.50051 - 1.20591i) q^{17} +(-4.80938 - 2.77670i) q^{19} +(3.41962 + 10.8407i) q^{20} +(1.76044 + 0.154018i) q^{22} +(-0.0280775 - 0.0602123i) q^{23} +(1.29284 - 4.82997i) q^{25} +1.24878i q^{26} +(-11.0626 + 11.0626i) q^{28} +(0.434735 - 2.46551i) q^{29} +(1.76652 + 0.642961i) q^{31} +(1.27781 - 14.6055i) q^{32} +(-4.24128 - 11.6528i) q^{34} +(6.71823 - 1.49031i) q^{35} +(0.656295 - 2.44933i) q^{37} +(-1.28820 - 14.7241i) q^{38} +(-11.1698 + 14.5607i) q^{40} +(-1.62695 + 0.286875i) q^{41} +(8.36925 - 0.732214i) q^{43} +(1.68769 + 2.92316i) q^{44} +(0.0884111 - 0.153133i) q^{46} +(-1.73166 + 3.71355i) q^{47} +(1.58841 + 1.89299i) q^{49} +(12.5038 - 4.55469i) q^{50} +(-1.95387 + 1.36812i) q^{52} +(7.52870 + 7.52870i) q^{53} +(0.0645683 - 1.48328i) q^{55} +(-24.8736 - 4.38589i) q^{56} +(6.03890 - 2.81598i) q^{58} +(-3.49452 + 2.93225i) q^{59} +(-5.84534 + 2.12753i) q^{61} +(1.29496 + 4.83286i) q^{62} +(13.5701 - 7.83468i) q^{64} +(1.04816 - 0.0459001i) q^{65} +(3.13881 - 4.48268i) q^{67} +(13.5857 - 19.4024i) q^{68} +(13.5050 + 12.3719i) q^{70} +(5.33043 - 3.07752i) q^{71} +(-3.64803 - 13.6146i) q^{73} +(6.34185 - 2.30824i) q^{74} +(21.6264 - 18.1467i) q^{76} +(1.85194 - 0.863572i) q^{77} +(5.34198 + 0.941936i) q^{79} +(-26.0833 - 1.13543i) q^{80} +(-3.10910 - 3.10910i) q^{82} +(-4.64599 + 3.25316i) q^{83} +(-9.62487 + 3.98822i) q^{85} +(14.3727 + 17.1287i) q^{86} +(-2.30295 + 4.93869i) q^{88} +(-3.08131 + 5.33699i) q^{89} +(0.721988 + 1.25052i) q^{91} +(0.336454 - 0.0294359i) q^{92} +(-10.7397 + 1.89370i) q^{94} +(-12.3113 + 1.62244i) q^{95} +(-1.18828 - 13.5821i) q^{97} +(-1.70223 + 6.35281i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.52658 + 2.18018i 1.07945 + 1.54162i 0.816969 + 0.576682i \(0.195653\pi\)
0.262484 + 0.964936i \(0.415458\pi\)
\(3\) 0 0
\(4\) −1.73870 + 4.77703i −0.869348 + 2.38851i
\(5\) 1.77382 1.36146i 0.793274 0.608864i
\(6\) 0 0
\(7\) 2.78918 + 1.30062i 1.05421 + 0.491587i 0.870896 0.491468i \(-0.163539\pi\)
0.183315 + 0.983054i \(0.441317\pi\)
\(8\) −7.92739 + 2.12414i −2.80276 + 0.750996i
\(9\) 0 0
\(10\) 5.67609 + 1.78885i 1.79494 + 0.565686i
\(11\) 0.426793 0.508631i 0.128683 0.153358i −0.697856 0.716238i \(-0.745862\pi\)
0.826538 + 0.562880i \(0.190307\pi\)
\(12\) 0 0
\(13\) 0.384347 + 0.269123i 0.106599 + 0.0746412i 0.625660 0.780096i \(-0.284830\pi\)
−0.519062 + 0.854737i \(0.673718\pi\)
\(14\) 1.42232 + 8.06640i 0.380132 + 2.15584i
\(15\) 0 0
\(16\) −8.94423 7.50510i −2.23606 1.87627i
\(17\) −4.50051 1.20591i −1.09153 0.292476i −0.332221 0.943201i \(-0.607798\pi\)
−0.759313 + 0.650726i \(0.774465\pi\)
\(18\) 0 0
\(19\) −4.80938 2.77670i −1.10335 0.637018i −0.166249 0.986084i \(-0.553166\pi\)
−0.937098 + 0.349066i \(0.886499\pi\)
\(20\) 3.41962 + 10.8407i 0.764650 + 2.42406i
\(21\) 0 0
\(22\) 1.76044 + 0.154018i 0.375327 + 0.0328368i
\(23\) −0.0280775 0.0602123i −0.00585456 0.0125551i 0.903359 0.428886i \(-0.141094\pi\)
−0.909213 + 0.416331i \(0.863316\pi\)
\(24\) 0 0
\(25\) 1.29284 4.82997i 0.258568 0.965993i
\(26\) 1.24878i 0.244906i
\(27\) 0 0
\(28\) −11.0626 + 11.0626i −2.09064 + 2.09064i
\(29\) 0.434735 2.46551i 0.0807283 0.457833i −0.917469 0.397808i \(-0.869771\pi\)
0.998197 0.0600247i \(-0.0191180\pi\)
\(30\) 0 0
\(31\) 1.76652 + 0.642961i 0.317276 + 0.115479i 0.495749 0.868466i \(-0.334893\pi\)
−0.178473 + 0.983945i \(0.557116\pi\)
\(32\) 1.27781 14.6055i 0.225888 2.58191i
\(33\) 0 0
\(34\) −4.24128 11.6528i −0.727373 1.99844i
\(35\) 6.71823 1.49031i 1.13559 0.251909i
\(36\) 0 0
\(37\) 0.656295 2.44933i 0.107894 0.402667i −0.890763 0.454468i \(-0.849830\pi\)
0.998657 + 0.0518010i \(0.0164962\pi\)
\(38\) −1.28820 14.7241i −0.208973 2.38857i
\(39\) 0 0
\(40\) −11.1698 + 14.5607i −1.76610 + 2.30224i
\(41\) −1.62695 + 0.286875i −0.254087 + 0.0448023i −0.299241 0.954178i \(-0.596733\pi\)
0.0451539 + 0.998980i \(0.485622\pi\)
\(42\) 0 0
\(43\) 8.36925 0.732214i 1.27630 0.111662i 0.571224 0.820794i \(-0.306469\pi\)
0.705075 + 0.709133i \(0.250913\pi\)
\(44\) 1.68769 + 2.92316i 0.254428 + 0.440682i
\(45\) 0 0
\(46\) 0.0884111 0.153133i 0.0130355 0.0225782i
\(47\) −1.73166 + 3.71355i −0.252588 + 0.541677i −0.991187 0.132468i \(-0.957710\pi\)
0.738599 + 0.674145i \(0.235488\pi\)
\(48\) 0 0
\(49\) 1.58841 + 1.89299i 0.226916 + 0.270428i
\(50\) 12.5038 4.55469i 1.76830 0.644131i
\(51\) 0 0
\(52\) −1.95387 + 1.36812i −0.270953 + 0.189723i
\(53\) 7.52870 + 7.52870i 1.03415 + 1.03415i 0.999396 + 0.0347509i \(0.0110638\pi\)
0.0347509 + 0.999396i \(0.488936\pi\)
\(54\) 0 0
\(55\) 0.0645683 1.48328i 0.00870639 0.200005i
\(56\) −24.8736 4.38589i −3.32388 0.586089i
\(57\) 0 0
\(58\) 6.03890 2.81598i 0.792946 0.369757i
\(59\) −3.49452 + 2.93225i −0.454948 + 0.381747i −0.841268 0.540618i \(-0.818190\pi\)
0.386320 + 0.922365i \(0.373746\pi\)
\(60\) 0 0
\(61\) −5.84534 + 2.12753i −0.748419 + 0.272402i −0.687940 0.725767i \(-0.741485\pi\)
−0.0604785 + 0.998169i \(0.519263\pi\)
\(62\) 1.29496 + 4.83286i 0.164460 + 0.613773i
\(63\) 0 0
\(64\) 13.5701 7.83468i 1.69626 0.979335i
\(65\) 1.04816 0.0459001i 0.130008 0.00569321i
\(66\) 0 0
\(67\) 3.13881 4.48268i 0.383466 0.547646i −0.580297 0.814405i \(-0.697064\pi\)
0.963763 + 0.266758i \(0.0859525\pi\)
\(68\) 13.5857 19.4024i 1.64751 2.35288i
\(69\) 0 0
\(70\) 13.5050 + 12.3719i 1.61416 + 1.47872i
\(71\) 5.33043 3.07752i 0.632605 0.365235i −0.149155 0.988814i \(-0.547655\pi\)
0.781760 + 0.623579i \(0.214322\pi\)
\(72\) 0 0
\(73\) −3.64803 13.6146i −0.426970 1.59347i −0.759583 0.650410i \(-0.774597\pi\)
0.332613 0.943063i \(-0.392070\pi\)
\(74\) 6.34185 2.30824i 0.737225 0.268328i
\(75\) 0 0
\(76\) 21.6264 18.1467i 2.48072 2.08157i
\(77\) 1.85194 0.863572i 0.211048 0.0984131i
\(78\) 0 0
\(79\) 5.34198 + 0.941936i 0.601020 + 0.105976i 0.465876 0.884850i \(-0.345739\pi\)
0.135144 + 0.990826i \(0.456850\pi\)
\(80\) −26.0833 1.13543i −2.91620 0.126945i
\(81\) 0 0
\(82\) −3.10910 3.10910i −0.343343 0.343343i
\(83\) −4.64599 + 3.25316i −0.509964 + 0.357081i −0.800063 0.599916i \(-0.795201\pi\)
0.290099 + 0.956997i \(0.406312\pi\)
\(84\) 0 0
\(85\) −9.62487 + 3.98822i −1.04396 + 0.432583i
\(86\) 14.3727 + 17.1287i 1.54984 + 1.84703i
\(87\) 0 0
\(88\) −2.30295 + 4.93869i −0.245495 + 0.526466i
\(89\) −3.08131 + 5.33699i −0.326619 + 0.565720i −0.981839 0.189718i \(-0.939243\pi\)
0.655220 + 0.755438i \(0.272576\pi\)
\(90\) 0 0
\(91\) 0.721988 + 1.25052i 0.0756849 + 0.131090i
\(92\) 0.336454 0.0294359i 0.0350778 0.00306891i
\(93\) 0 0
\(94\) −10.7397 + 1.89370i −1.10772 + 0.195320i
\(95\) −12.3113 + 1.62244i −1.26312 + 0.166459i
\(96\) 0 0
\(97\) −1.18828 13.5821i −0.120652 1.37906i −0.779321 0.626625i \(-0.784436\pi\)
0.658669 0.752433i \(-0.271120\pi\)
\(98\) −1.70223 + 6.35281i −0.171951 + 0.641731i
\(99\) 0 0
\(100\) 20.8250 + 14.5738i 2.08250 + 1.45738i
\(101\) 0.629841 + 1.73048i 0.0626716 + 0.172189i 0.967076 0.254487i \(-0.0819067\pi\)
−0.904405 + 0.426676i \(0.859684\pi\)
\(102\) 0 0
\(103\) −1.42347 + 16.2704i −0.140259 + 1.60317i 0.521368 + 0.853332i \(0.325422\pi\)
−0.661627 + 0.749833i \(0.730134\pi\)
\(104\) −3.61852 1.31704i −0.354826 0.129146i
\(105\) 0 0
\(106\) −4.92077 + 27.9071i −0.477947 + 2.71057i
\(107\) 10.4880 10.4880i 1.01391 1.01391i 0.0140087 0.999902i \(-0.495541\pi\)
0.999902 0.0140087i \(-0.00445924\pi\)
\(108\) 0 0
\(109\) 9.34913i 0.895484i 0.894163 + 0.447742i \(0.147772\pi\)
−0.894163 + 0.447742i \(0.852228\pi\)
\(110\) 3.33238 2.12357i 0.317730 0.202474i
\(111\) 0 0
\(112\) −15.1858 32.5661i −1.43492 3.07721i
\(113\) −20.6993 1.81095i −1.94722 0.170360i −0.955159 0.296094i \(-0.904316\pi\)
−0.992064 + 0.125734i \(0.959871\pi\)
\(114\) 0 0
\(115\) −0.131781 0.0685791i −0.0122886 0.00639504i
\(116\) 11.0219 + 6.36351i 1.02336 + 0.590837i
\(117\) 0 0
\(118\) −11.7275 3.14237i −1.07960 0.289278i
\(119\) −10.9843 9.21693i −1.00693 0.844915i
\(120\) 0 0
\(121\) 1.83358 + 10.3987i 0.166689 + 0.945339i
\(122\) −13.5617 9.49604i −1.22782 0.859731i
\(123\) 0 0
\(124\) −6.14289 + 7.32081i −0.551648 + 0.657428i
\(125\) −4.28256 10.3276i −0.383043 0.923730i
\(126\) 0 0
\(127\) 7.35416 1.97054i 0.652576 0.174857i 0.0826829 0.996576i \(-0.473651\pi\)
0.569893 + 0.821719i \(0.306984\pi\)
\(128\) 11.2214 + 5.23265i 0.991845 + 0.462505i
\(129\) 0 0
\(130\) 1.70017 + 2.21511i 0.149115 + 0.194278i
\(131\) −4.01388 + 11.0280i −0.350694 + 0.963524i 0.631454 + 0.775414i \(0.282459\pi\)
−0.982148 + 0.188111i \(0.939764\pi\)
\(132\) 0 0
\(133\) −9.80281 13.9999i −0.850012 1.21394i
\(134\) 14.5647 1.25820
\(135\) 0 0
\(136\) 38.2388 3.27895
\(137\) −3.85643 5.50755i −0.329477 0.470542i 0.619900 0.784681i \(-0.287173\pi\)
−0.949377 + 0.314139i \(0.898284\pi\)
\(138\) 0 0
\(139\) 0.519349 1.42690i 0.0440506 0.121028i −0.915717 0.401824i \(-0.868376\pi\)
0.959767 + 0.280796i \(0.0905985\pi\)
\(140\) −4.56170 + 34.6844i −0.385534 + 2.93137i
\(141\) 0 0
\(142\) 14.8468 + 6.92320i 1.24592 + 0.580982i
\(143\) 0.300921 0.0806315i 0.0251643 0.00674274i
\(144\) 0 0
\(145\) −2.58555 4.96523i −0.214719 0.412340i
\(146\) 24.1133 28.7372i 1.99563 2.37830i
\(147\) 0 0
\(148\) 10.5594 + 7.39377i 0.867978 + 0.607764i
\(149\) 3.69731 + 20.9685i 0.302895 + 1.71780i 0.633250 + 0.773947i \(0.281720\pi\)
−0.330355 + 0.943857i \(0.607168\pi\)
\(150\) 0 0
\(151\) 6.08208 + 5.10347i 0.494952 + 0.415314i 0.855797 0.517312i \(-0.173067\pi\)
−0.360845 + 0.932626i \(0.617512\pi\)
\(152\) 44.0239 + 11.7962i 3.57081 + 0.956797i
\(153\) 0 0
\(154\) 4.70986 + 2.71924i 0.379531 + 0.219123i
\(155\) 4.00885 1.26456i 0.321998 0.101572i
\(156\) 0 0
\(157\) −13.6200 1.19160i −1.08699 0.0950997i −0.470455 0.882424i \(-0.655910\pi\)
−0.616539 + 0.787324i \(0.711466\pi\)
\(158\) 6.10136 + 13.0844i 0.485398 + 1.04094i
\(159\) 0 0
\(160\) −17.6182 27.6471i −1.39284 2.18570i
\(161\) 0.204461i 0.0161138i
\(162\) 0 0
\(163\) 13.8462 13.8462i 1.08452 1.08452i 0.0884330 0.996082i \(-0.471814\pi\)
0.996082 0.0884330i \(-0.0281859\pi\)
\(164\) 1.45836 8.27077i 0.113879 0.645839i
\(165\) 0 0
\(166\) −14.1849 5.16289i −1.10096 0.400718i
\(167\) 1.91506 21.8892i 0.148192 1.69384i −0.450435 0.892809i \(-0.648731\pi\)
0.598627 0.801028i \(-0.295713\pi\)
\(168\) 0 0
\(169\) −4.37097 12.0091i −0.336228 0.923779i
\(170\) −23.3881 14.8956i −1.79379 1.14244i
\(171\) 0 0
\(172\) −11.0538 + 41.2533i −0.842842 + 3.14553i
\(173\) 0.327061 + 3.73833i 0.0248660 + 0.284220i 0.998439 + 0.0558456i \(0.0177854\pi\)
−0.973573 + 0.228374i \(0.926659\pi\)
\(174\) 0 0
\(175\) 9.88789 11.7902i 0.747455 0.891252i
\(176\) −7.63466 + 1.34620i −0.575484 + 0.101473i
\(177\) 0 0
\(178\) −16.3394 + 1.42952i −1.22469 + 0.107147i
\(179\) −7.21345 12.4941i −0.539158 0.933850i −0.998950 0.0458226i \(-0.985409\pi\)
0.459791 0.888027i \(-0.347924\pi\)
\(180\) 0 0
\(181\) −7.06370 + 12.2347i −0.525041 + 0.909397i 0.474534 + 0.880237i \(0.342617\pi\)
−0.999575 + 0.0291599i \(0.990717\pi\)
\(182\) −1.62419 + 3.48308i −0.120393 + 0.258183i
\(183\) 0 0
\(184\) 0.350480 + 0.417686i 0.0258378 + 0.0307922i
\(185\) −2.17052 5.23817i −0.159580 0.385118i
\(186\) 0 0
\(187\) −2.53415 + 1.77443i −0.185315 + 0.129759i
\(188\) −14.7289 14.7289i −1.07422 1.07422i
\(189\) 0 0
\(190\) −22.3314 24.3641i −1.62009 1.76756i
\(191\) 2.54718 + 0.449136i 0.184307 + 0.0324983i 0.265040 0.964237i \(-0.414615\pi\)
−0.0807326 + 0.996736i \(0.525726\pi\)
\(192\) 0 0
\(193\) −12.9195 + 6.02445i −0.929963 + 0.433649i −0.827740 0.561112i \(-0.810374\pi\)
−0.102224 + 0.994761i \(0.532596\pi\)
\(194\) 27.7975 23.3248i 1.99574 1.67463i
\(195\) 0 0
\(196\) −11.8046 + 4.29654i −0.843189 + 0.306896i
\(197\) 2.16013 + 8.06170i 0.153903 + 0.574372i 0.999197 + 0.0400711i \(0.0127585\pi\)
−0.845294 + 0.534301i \(0.820575\pi\)
\(198\) 0 0
\(199\) −3.27312 + 1.88973i −0.232025 + 0.133960i −0.611506 0.791240i \(-0.709436\pi\)
0.379481 + 0.925200i \(0.376103\pi\)
\(200\) 0.0106623 + 41.0352i 0.000753936 + 2.90163i
\(201\) 0 0
\(202\) −2.81124 + 4.01487i −0.197798 + 0.282485i
\(203\) 4.41923 6.31132i 0.310169 0.442968i
\(204\) 0 0
\(205\) −2.49534 + 2.72389i −0.174282 + 0.190245i
\(206\) −37.6453 + 21.7345i −2.62287 + 1.51432i
\(207\) 0 0
\(208\) −1.41790 5.29166i −0.0983134 0.366911i
\(209\) −3.46492 + 1.26113i −0.239674 + 0.0872341i
\(210\) 0 0
\(211\) −13.6392 + 11.4447i −0.938964 + 0.787885i −0.977405 0.211376i \(-0.932205\pi\)
0.0384403 + 0.999261i \(0.487761\pi\)
\(212\) −49.0550 + 22.8747i −3.36911 + 1.57104i
\(213\) 0 0
\(214\) 38.8763 + 6.85495i 2.65753 + 0.468594i
\(215\) 13.8486 12.6932i 0.944468 0.865671i
\(216\) 0 0
\(217\) 4.09090 + 4.09090i 0.277708 + 0.277708i
\(218\) −20.3828 + 14.2722i −1.38049 + 0.966633i
\(219\) 0 0
\(220\) 6.97341 + 2.88742i 0.470147 + 0.194670i
\(221\) −1.40522 1.67468i −0.0945254 0.112651i
\(222\) 0 0
\(223\) −8.09113 + 17.3515i −0.541822 + 1.16194i 0.424694 + 0.905337i \(0.360382\pi\)
−0.966516 + 0.256605i \(0.917396\pi\)
\(224\) 22.5602 39.0754i 1.50737 2.61083i
\(225\) 0 0
\(226\) −27.6508 47.8926i −1.83930 3.18577i
\(227\) −0.480953 + 0.0420779i −0.0319220 + 0.00279281i −0.103106 0.994670i \(-0.532878\pi\)
0.0711836 + 0.997463i \(0.477322\pi\)
\(228\) 0 0
\(229\) −14.7979 + 2.60927i −0.977875 + 0.172426i −0.639672 0.768648i \(-0.720930\pi\)
−0.338203 + 0.941073i \(0.609819\pi\)
\(230\) −0.0516592 0.391997i −0.00340631 0.0258475i
\(231\) 0 0
\(232\) 1.79076 + 20.4685i 0.117569 + 1.34382i
\(233\) 0.143242 0.534587i 0.00938411 0.0350220i −0.961075 0.276287i \(-0.910896\pi\)
0.970459 + 0.241266i \(0.0775625\pi\)
\(234\) 0 0
\(235\) 1.98422 + 8.94473i 0.129436 + 0.583490i
\(236\) −7.93154 21.7917i −0.516299 1.41852i
\(237\) 0 0
\(238\) 3.32615 38.0181i 0.215602 2.46435i
\(239\) −5.32354 1.93761i −0.344351 0.125334i 0.164054 0.986451i \(-0.447543\pi\)
−0.508406 + 0.861118i \(0.669765\pi\)
\(240\) 0 0
\(241\) 0.317967 1.80328i 0.0204821 0.116160i −0.972853 0.231426i \(-0.925661\pi\)
0.993335 + 0.115266i \(0.0367721\pi\)
\(242\) −19.8720 + 19.8720i −1.27742 + 1.27742i
\(243\) 0 0
\(244\) 31.6225i 2.02442i
\(245\) 5.39478 + 1.19526i 0.344660 + 0.0763623i
\(246\) 0 0
\(247\) −1.10120 2.36153i −0.0700677 0.150261i
\(248\) −15.3696 1.34467i −0.975973 0.0853866i
\(249\) 0 0
\(250\) 15.9784 25.1026i 1.01056 1.58763i
\(251\) 16.8470 + 9.72663i 1.06337 + 0.613939i 0.926364 0.376630i \(-0.122917\pi\)
0.137011 + 0.990570i \(0.456251\pi\)
\(252\) 0 0
\(253\) −0.0426091 0.0114171i −0.00267881 0.000717786i
\(254\) 15.5228 + 13.0252i 0.973988 + 0.817273i
\(255\) 0 0
\(256\) 0.280392 + 1.59018i 0.0175245 + 0.0993864i
\(257\) 24.5109 + 17.1627i 1.52895 + 1.07058i 0.970518 + 0.241027i \(0.0774842\pi\)
0.558428 + 0.829553i \(0.311405\pi\)
\(258\) 0 0
\(259\) 5.01616 5.97802i 0.311689 0.371456i
\(260\) −1.60317 + 5.08690i −0.0994243 + 0.315476i
\(261\) 0 0
\(262\) −30.1706 + 8.08418i −1.86394 + 0.499442i
\(263\) −7.60797 3.54766i −0.469128 0.218758i 0.173655 0.984807i \(-0.444442\pi\)
−0.642782 + 0.766049i \(0.722220\pi\)
\(264\) 0 0
\(265\) 23.6046 + 3.10448i 1.45002 + 0.190707i
\(266\) 15.5574 42.7437i 0.953888 2.62079i
\(267\) 0 0
\(268\) 15.9565 + 22.7882i 0.974696 + 1.39201i
\(269\) −2.21545 −0.135079 −0.0675393 0.997717i \(-0.521515\pi\)
−0.0675393 + 0.997717i \(0.521515\pi\)
\(270\) 0 0
\(271\) −5.87725 −0.357017 −0.178509 0.983938i \(-0.557127\pi\)
−0.178509 + 0.983938i \(0.557127\pi\)
\(272\) 31.2031 + 44.5627i 1.89197 + 2.70201i
\(273\) 0 0
\(274\) 6.12031 16.8154i 0.369741 1.01586i
\(275\) −1.90490 2.71897i −0.114870 0.163960i
\(276\) 0 0
\(277\) 10.2541 + 4.78156i 0.616108 + 0.287296i 0.705510 0.708700i \(-0.250718\pi\)
−0.0894020 + 0.995996i \(0.528496\pi\)
\(278\) 3.90372 1.04600i 0.234130 0.0627348i
\(279\) 0 0
\(280\) −50.0924 + 26.0847i −2.99359 + 1.55886i
\(281\) −13.9719 + 16.6511i −0.833496 + 0.993322i 0.166478 + 0.986045i \(0.446761\pi\)
−0.999974 + 0.00727642i \(0.997684\pi\)
\(282\) 0 0
\(283\) 10.7514 + 7.52820i 0.639103 + 0.447505i 0.847685 0.530500i \(-0.177996\pi\)
−0.208582 + 0.978005i \(0.566885\pi\)
\(284\) 5.43342 + 30.8145i 0.322414 + 1.82850i
\(285\) 0 0
\(286\) 0.635170 + 0.532971i 0.0375584 + 0.0315152i
\(287\) −4.91097 1.31589i −0.289885 0.0776745i
\(288\) 0 0
\(289\) 4.07794 + 2.35440i 0.239879 + 0.138494i
\(290\) 6.87803 13.2168i 0.403892 0.776115i
\(291\) 0 0
\(292\) 71.3804 + 6.24497i 4.17722 + 0.365460i
\(293\) −1.80181 3.86399i −0.105263 0.225736i 0.846621 0.532196i \(-0.178633\pi\)
−0.951884 + 0.306460i \(0.900855\pi\)
\(294\) 0 0
\(295\) −2.20648 + 9.95893i −0.128466 + 0.579831i
\(296\) 20.8108i 1.20960i
\(297\) 0 0
\(298\) −40.0708 + 40.0708i −2.32124 + 2.32124i
\(299\) 0.00541301 0.0306987i 0.000313043 0.00177535i
\(300\) 0 0
\(301\) 24.2957 + 8.84290i 1.40038 + 0.509696i
\(302\) −1.84171 + 21.0508i −0.105978 + 1.21134i
\(303\) 0 0
\(304\) 22.1768 + 60.9303i 1.27193 + 3.49459i
\(305\) −7.47200 + 11.7320i −0.427845 + 0.671775i
\(306\) 0 0
\(307\) −4.82189 + 17.9955i −0.275200 + 1.02706i 0.680508 + 0.732741i \(0.261759\pi\)
−0.955707 + 0.294318i \(0.904907\pi\)
\(308\) 0.905354 + 10.3482i 0.0515873 + 0.589646i
\(309\) 0 0
\(310\) 8.87677 + 6.80956i 0.504167 + 0.386757i
\(311\) 8.07539 1.42391i 0.457913 0.0807425i 0.0600667 0.998194i \(-0.480869\pi\)
0.397847 + 0.917452i \(0.369758\pi\)
\(312\) 0 0
\(313\) −18.9940 + 1.66176i −1.07360 + 0.0939283i −0.610222 0.792230i \(-0.708920\pi\)
−0.463382 + 0.886158i \(0.653364\pi\)
\(314\) −18.1941 31.5131i −1.02675 1.77839i
\(315\) 0 0
\(316\) −13.7877 + 23.8811i −0.775621 + 1.34342i
\(317\) 7.17642 15.3899i 0.403068 0.864382i −0.595087 0.803661i \(-0.702882\pi\)
0.998155 0.0607206i \(-0.0193399\pi\)
\(318\) 0 0
\(319\) −1.06849 1.27338i −0.0598241 0.0712956i
\(320\) 13.4042 32.3724i 0.749315 1.80967i
\(321\) 0 0
\(322\) 0.445761 0.312125i 0.0248413 0.0173941i
\(323\) 18.2962 + 18.2962i 1.01803 + 1.01803i
\(324\) 0 0
\(325\) 1.79675 1.50845i 0.0996659 0.0836738i
\(326\) 51.3243 + 9.04986i 2.84259 + 0.501225i
\(327\) 0 0
\(328\) 12.2881 5.73003i 0.678497 0.316388i
\(329\) −9.65980 + 8.10554i −0.532562 + 0.446873i
\(330\) 0 0
\(331\) 13.3657 4.86470i 0.734643 0.267388i 0.0525142 0.998620i \(-0.483277\pi\)
0.682129 + 0.731232i \(0.261054\pi\)
\(332\) −7.46247 27.8503i −0.409556 1.52848i
\(333\) 0 0
\(334\) 50.6458 29.2404i 2.77122 1.59996i
\(335\) −0.535338 12.2248i −0.0292486 0.667913i
\(336\) 0 0
\(337\) −3.90887 + 5.58245i −0.212930 + 0.304095i −0.911382 0.411561i \(-0.864984\pi\)
0.698452 + 0.715657i \(0.253872\pi\)
\(338\) 19.5094 27.8623i 1.06117 1.51551i
\(339\) 0 0
\(340\) −2.31710 52.9126i −0.125662 2.86959i
\(341\) 1.08097 0.624097i 0.0585377 0.0337968i
\(342\) 0 0
\(343\) −3.60734 13.4628i −0.194778 0.726922i
\(344\) −64.7910 + 23.5820i −3.49330 + 1.27146i
\(345\) 0 0
\(346\) −7.65094 + 6.41990i −0.411317 + 0.345136i
\(347\) 12.4642 5.81216i 0.669114 0.312013i −0.0582130 0.998304i \(-0.518540\pi\)
0.727327 + 0.686291i \(0.240762\pi\)
\(348\) 0 0
\(349\) −26.3484 4.64594i −1.41040 0.248691i −0.583990 0.811761i \(-0.698509\pi\)
−0.826409 + 0.563070i \(0.809620\pi\)
\(350\) 40.7993 + 3.55879i 2.18081 + 0.190225i
\(351\) 0 0
\(352\) −6.88345 6.88345i −0.366889 0.366889i
\(353\) 0.0387563 0.0271374i 0.00206279 0.00144438i −0.572545 0.819874i \(-0.694044\pi\)
0.574607 + 0.818429i \(0.305155\pi\)
\(354\) 0 0
\(355\) 5.26526 12.7161i 0.279451 0.674902i
\(356\) −20.1375 23.9989i −1.06729 1.27194i
\(357\) 0 0
\(358\) 16.2274 34.7997i 0.857644 1.83922i
\(359\) −9.42597 + 16.3263i −0.497484 + 0.861667i −0.999996 0.00290290i \(-0.999076\pi\)
0.502512 + 0.864570i \(0.332409\pi\)
\(360\) 0 0
\(361\) 5.92010 + 10.2539i 0.311584 + 0.539680i
\(362\) −37.4571 + 3.27707i −1.96870 + 0.172239i
\(363\) 0 0
\(364\) −7.22909 + 1.27468i −0.378907 + 0.0668116i
\(365\) −25.0068 19.1832i −1.30891 1.00409i
\(366\) 0 0
\(367\) −1.72794 19.7504i −0.0901977 1.03096i −0.897555 0.440902i \(-0.854659\pi\)
0.807357 0.590063i \(-0.200897\pi\)
\(368\) −0.200768 + 0.749277i −0.0104658 + 0.0390588i
\(369\) 0 0
\(370\) 8.10668 12.7286i 0.421446 0.661728i
\(371\) 11.2070 + 30.7909i 0.581836 + 1.59858i
\(372\) 0 0
\(373\) 1.84840 21.1273i 0.0957063 1.09393i −0.784754 0.619808i \(-0.787211\pi\)
0.880460 0.474120i \(-0.157234\pi\)
\(374\) −7.73714 2.81609i −0.400078 0.145616i
\(375\) 0 0
\(376\) 5.83943 33.1170i 0.301145 1.70788i
\(377\) 0.830613 0.830613i 0.0427788 0.0427788i
\(378\) 0 0
\(379\) 4.95221i 0.254378i 0.991878 + 0.127189i \(0.0405955\pi\)
−0.991878 + 0.127189i \(0.959405\pi\)
\(380\) 13.6552 61.6325i 0.700497 3.16168i
\(381\) 0 0
\(382\) 2.90926 + 6.23894i 0.148851 + 0.319212i
\(383\) 28.1753 + 2.46502i 1.43969 + 0.125957i 0.780093 0.625663i \(-0.215172\pi\)
0.659596 + 0.751620i \(0.270727\pi\)
\(384\) 0 0
\(385\) 2.10927 4.05316i 0.107498 0.206568i
\(386\) −32.8569 18.9699i −1.67237 0.965545i
\(387\) 0 0
\(388\) 66.9484 + 17.9388i 3.39879 + 0.910703i
\(389\) 22.5434 + 18.9162i 1.14300 + 0.959088i 0.999533 0.0305681i \(-0.00973165\pi\)
0.143463 + 0.989656i \(0.454176\pi\)
\(390\) 0 0
\(391\) 0.0537524 + 0.304845i 0.00271838 + 0.0154167i
\(392\) −16.6129 11.6325i −0.839080 0.587530i
\(393\) 0 0
\(394\) −14.2783 + 17.0163i −0.719332 + 0.857267i
\(395\) 10.7581 5.60209i 0.541299 0.281872i
\(396\) 0 0
\(397\) 18.9334 5.07320i 0.950242 0.254616i 0.249777 0.968303i \(-0.419643\pi\)
0.700465 + 0.713687i \(0.252976\pi\)
\(398\) −9.11662 4.25115i −0.456975 0.213091i
\(399\) 0 0
\(400\) −47.8128 + 33.4974i −2.39064 + 1.67487i
\(401\) 0.0115561 0.0317502i 0.000577086 0.00158553i −0.939404 0.342813i \(-0.888620\pi\)
0.939981 + 0.341227i \(0.110843\pi\)
\(402\) 0 0
\(403\) 0.505922 + 0.722531i 0.0252018 + 0.0359918i
\(404\) −9.36163 −0.465759
\(405\) 0 0
\(406\) 20.5061 1.01770
\(407\) −0.965702 1.37917i −0.0478681 0.0683627i
\(408\) 0 0
\(409\) −3.01485 + 8.28322i −0.149075 + 0.409579i −0.991643 0.129010i \(-0.958820\pi\)
0.842569 + 0.538589i \(0.181042\pi\)
\(410\) −9.74789 1.28205i −0.481414 0.0633157i
\(411\) 0 0
\(412\) −75.2490 35.0892i −3.70725 1.72872i
\(413\) −13.5606 + 3.63355i −0.667272 + 0.178795i
\(414\) 0 0
\(415\) −3.81208 + 12.0959i −0.187128 + 0.593762i
\(416\) 4.42180 5.26969i 0.216796 0.258368i
\(417\) 0 0
\(418\) −8.03896 5.62894i −0.393198 0.275320i
\(419\) −5.75122 32.6168i −0.280966 1.59344i −0.719350 0.694648i \(-0.755560\pi\)
0.438384 0.898788i \(-0.355551\pi\)
\(420\) 0 0
\(421\) 12.7180 + 10.6716i 0.619835 + 0.520104i 0.897752 0.440502i \(-0.145199\pi\)
−0.277916 + 0.960605i \(0.589644\pi\)
\(422\) −45.7728 12.2648i −2.22819 0.597040i
\(423\) 0 0
\(424\) −75.6750 43.6910i −3.67510 2.12182i
\(425\) −11.6429 + 20.1783i −0.564765 + 0.978789i
\(426\) 0 0
\(427\) −19.0708 1.66848i −0.922901 0.0807433i
\(428\) 31.8660 + 68.3368i 1.54030 + 3.30318i
\(429\) 0 0
\(430\) 48.8145 + 10.8153i 2.35404 + 0.521558i
\(431\) 14.4385i 0.695480i −0.937591 0.347740i \(-0.886949\pi\)
0.937591 0.347740i \(-0.113051\pi\)
\(432\) 0 0
\(433\) 16.4822 16.4822i 0.792085 0.792085i −0.189748 0.981833i \(-0.560767\pi\)
0.981833 + 0.189748i \(0.0607670\pi\)
\(434\) −2.67381 + 15.1640i −0.128347 + 0.727893i
\(435\) 0 0
\(436\) −44.6611 16.2553i −2.13888 0.778488i
\(437\) −0.0321562 + 0.367547i −0.00153824 + 0.0175821i
\(438\) 0 0
\(439\) 10.9388 + 30.0541i 0.522080 + 1.43440i 0.868201 + 0.496213i \(0.165277\pi\)
−0.346121 + 0.938190i \(0.612501\pi\)
\(440\) 2.63883 + 11.8957i 0.125801 + 0.567105i
\(441\) 0 0
\(442\) 1.50592 5.62015i 0.0716291 0.267323i
\(443\) 1.56526 + 17.8910i 0.0743677 + 0.850027i 0.938165 + 0.346188i \(0.112524\pi\)
−0.863798 + 0.503839i \(0.831920\pi\)
\(444\) 0 0
\(445\) 1.80043 + 13.6619i 0.0853487 + 0.647638i
\(446\) −50.1811 + 8.84827i −2.37614 + 0.418978i
\(447\) 0 0
\(448\) 48.0392 4.20289i 2.26964 0.198568i
\(449\) −6.63475 11.4917i −0.313113 0.542328i 0.665921 0.746022i \(-0.268039\pi\)
−0.979035 + 0.203694i \(0.934705\pi\)
\(450\) 0 0
\(451\) −0.548456 + 0.949953i −0.0258258 + 0.0447316i
\(452\) 44.6407 95.7323i 2.09972 4.50287i
\(453\) 0 0
\(454\) −0.825948 0.984327i −0.0387637 0.0461968i
\(455\) 2.98321 + 1.23523i 0.139855 + 0.0579086i
\(456\) 0 0
\(457\) 6.59496 4.61784i 0.308499 0.216013i −0.409066 0.912505i \(-0.634145\pi\)
0.717565 + 0.696491i \(0.245257\pi\)
\(458\) −28.2789 28.2789i −1.32138 1.32138i
\(459\) 0 0
\(460\) 0.556732 0.510284i 0.0259578 0.0237921i
\(461\) 14.1578 + 2.49640i 0.659393 + 0.116269i 0.493324 0.869846i \(-0.335782\pi\)
0.166068 + 0.986114i \(0.446893\pi\)
\(462\) 0 0
\(463\) 18.8558 8.79261i 0.876304 0.408627i 0.0682032 0.997671i \(-0.478273\pi\)
0.808101 + 0.589044i \(0.200496\pi\)
\(464\) −22.3922 + 18.7893i −1.03953 + 0.872272i
\(465\) 0 0
\(466\) 1.38417 0.503795i 0.0641202 0.0233378i
\(467\) 6.38314 + 23.8222i 0.295376 + 1.10236i 0.940918 + 0.338635i \(0.109965\pi\)
−0.645542 + 0.763725i \(0.723368\pi\)
\(468\) 0 0
\(469\) 14.5849 8.42062i 0.673470 0.388828i
\(470\) −16.4720 + 17.9808i −0.759799 + 0.829391i
\(471\) 0 0
\(472\) 21.4739 30.6679i 0.988418 1.41161i
\(473\) 3.19951 4.56937i 0.147113 0.210100i
\(474\) 0 0
\(475\) −19.6291 + 19.6393i −0.900646 + 0.901114i
\(476\) 63.1279 36.4469i 2.89346 1.67054i
\(477\) 0 0
\(478\) −3.90246 14.5642i −0.178494 0.666150i
\(479\) 25.2593 9.19362i 1.15412 0.420067i 0.307130 0.951668i \(-0.400632\pi\)
0.846995 + 0.531601i \(0.178409\pi\)
\(480\) 0 0
\(481\) 0.911414 0.764768i 0.0415569 0.0348704i
\(482\) 4.41687 2.05962i 0.201183 0.0938132i
\(483\) 0 0
\(484\) −52.8631 9.32118i −2.40287 0.423690i
\(485\) −20.5994 22.4744i −0.935369 1.02051i
\(486\) 0 0
\(487\) 1.39406 + 1.39406i 0.0631711 + 0.0631711i 0.737987 0.674815i \(-0.235777\pi\)
−0.674815 + 0.737987i \(0.735777\pi\)
\(488\) 41.8191 29.2821i 1.89306 1.32554i
\(489\) 0 0
\(490\) 5.62967 + 13.5862i 0.254323 + 0.613764i
\(491\) 15.2423 + 18.1651i 0.687875 + 0.819777i 0.991097 0.133143i \(-0.0425068\pi\)
−0.303222 + 0.952920i \(0.598062\pi\)
\(492\) 0 0
\(493\) −4.92970 + 10.5718i −0.222023 + 0.476129i
\(494\) 3.46749 6.00587i 0.156010 0.270217i
\(495\) 0 0
\(496\) −10.9747 19.0087i −0.492778 0.853516i
\(497\) 18.8702 1.65093i 0.846444 0.0740542i
\(498\) 0 0
\(499\) −30.8900 + 5.44673i −1.38282 + 0.243829i −0.815067 0.579366i \(-0.803300\pi\)
−0.567758 + 0.823196i \(0.692189\pi\)
\(500\) 56.7814 2.50130i 2.53934 0.111862i
\(501\) 0 0
\(502\) 4.51248 + 51.5779i 0.201402 + 2.30204i
\(503\) 1.59547 5.95437i 0.0711385 0.265492i −0.921192 0.389109i \(-0.872783\pi\)
0.992330 + 0.123617i \(0.0394495\pi\)
\(504\) 0 0
\(505\) 3.47320 + 2.21204i 0.154555 + 0.0984344i
\(506\) −0.0401548 0.110325i −0.00178510 0.00490452i
\(507\) 0 0
\(508\) −3.37332 + 38.5572i −0.149667 + 1.71070i
\(509\) 18.3832 + 6.69092i 0.814819 + 0.296570i 0.715613 0.698497i \(-0.246147\pi\)
0.0992061 + 0.995067i \(0.468370\pi\)
\(510\) 0 0
\(511\) 7.53240 42.7184i 0.333214 1.88975i
\(512\) 14.4712 14.4712i 0.639545 0.639545i
\(513\) 0 0
\(514\) 79.6382i 3.51269i
\(515\) 19.6265 + 30.7986i 0.864847 + 1.35715i
\(516\) 0 0
\(517\) 1.14977 + 2.46569i 0.0505668 + 0.108441i
\(518\) 20.6907 + 1.81020i 0.909097 + 0.0795357i
\(519\) 0 0
\(520\) −8.21169 + 2.59031i −0.360106 + 0.113593i
\(521\) −1.02507 0.591824i −0.0449091 0.0259283i 0.477377 0.878698i \(-0.341587\pi\)
−0.522286 + 0.852770i \(0.674921\pi\)
\(522\) 0 0
\(523\) 43.1925 + 11.5734i 1.88868 + 0.506069i 0.998751 + 0.0499636i \(0.0159105\pi\)
0.889926 + 0.456106i \(0.150756\pi\)
\(524\) −45.7023 38.3488i −1.99652 1.67528i
\(525\) 0 0
\(526\) −3.87963 22.0025i −0.169160 0.959354i
\(527\) −7.17489 5.02391i −0.312543 0.218845i
\(528\) 0 0
\(529\) 14.7813 17.6156i 0.642664 0.765897i
\(530\) 29.2659 + 56.2014i 1.27123 + 2.44123i
\(531\) 0 0
\(532\) 83.9219 22.4868i 3.63848 0.974927i
\(533\) −0.702518 0.327589i −0.0304294 0.0141895i
\(534\) 0 0
\(535\) 4.32474 32.8827i 0.186975 1.42164i
\(536\) −15.3607 + 42.2032i −0.663482 + 1.82290i
\(537\) 0 0
\(538\) −3.38206 4.83008i −0.145811 0.208240i
\(539\) 1.64076 0.0706724
\(540\) 0 0
\(541\) −0.781277 −0.0335897 −0.0167949 0.999859i \(-0.505346\pi\)
−0.0167949 + 0.999859i \(0.505346\pi\)
\(542\) −8.97207 12.8134i −0.385383 0.550384i
\(543\) 0 0
\(544\) −23.3637 + 64.1912i −1.00171 + 2.75218i
\(545\) 12.7285 + 16.5836i 0.545229 + 0.710365i
\(546\) 0 0
\(547\) −10.0522 4.68743i −0.429802 0.200420i 0.195665 0.980671i \(-0.437314\pi\)
−0.625467 + 0.780251i \(0.715091\pi\)
\(548\) 33.0149 8.84632i 1.41033 0.377896i
\(549\) 0 0
\(550\) 3.01987 8.30373i 0.128768 0.354072i
\(551\) −8.93677 + 10.6504i −0.380719 + 0.453724i
\(552\) 0 0
\(553\) 13.6747 + 9.57510i 0.581505 + 0.407175i
\(554\) 5.22900 + 29.6551i 0.222159 + 1.25993i
\(555\) 0 0
\(556\) 5.91335 + 4.96189i 0.250782 + 0.210431i
\(557\) −13.0192 3.48849i −0.551642 0.147812i −0.0277782 0.999614i \(-0.508843\pi\)
−0.523864 + 0.851802i \(0.675510\pi\)
\(558\) 0 0
\(559\) 3.41375 + 1.97093i 0.144386 + 0.0833615i
\(560\) −71.2743 37.0913i −3.01189 1.56739i
\(561\) 0 0
\(562\) −57.6316 5.04211i −2.43104 0.212689i
\(563\) −15.8881 34.0720i −0.669601 1.43596i −0.887878 0.460078i \(-0.847821\pi\)
0.218277 0.975887i \(-0.429956\pi\)
\(564\) 0 0
\(565\) −39.1822 + 24.9690i −1.64841 + 1.05045i
\(566\) 34.9323i 1.46831i
\(567\) 0 0
\(568\) −35.7193 + 35.7193i −1.49875 + 1.49875i
\(569\) 2.09817 11.8993i 0.0879598 0.498845i −0.908719 0.417409i \(-0.862938\pi\)
0.996679 0.0814360i \(-0.0259506\pi\)
\(570\) 0 0
\(571\) 0.672547 + 0.244787i 0.0281452 + 0.0102440i 0.356054 0.934465i \(-0.384122\pi\)
−0.327909 + 0.944709i \(0.606344\pi\)
\(572\) −0.138031 + 1.57770i −0.00577137 + 0.0659670i
\(573\) 0 0
\(574\) −4.62809 12.7156i −0.193173 0.530738i
\(575\) −0.327123 + 0.0577683i −0.0136420 + 0.00240910i
\(576\) 0 0
\(577\) 9.67417 36.1045i 0.402741 1.50305i −0.405443 0.914120i \(-0.632883\pi\)
0.808184 0.588930i \(-0.200451\pi\)
\(578\) 1.09228 + 12.4848i 0.0454328 + 0.519300i
\(579\) 0 0
\(580\) 28.2145 3.71824i 1.17154 0.154392i
\(581\) −17.1896 + 3.03100i −0.713146 + 0.125747i
\(582\) 0 0
\(583\) 7.04253 0.616142i 0.291672 0.0255180i
\(584\) 57.8388 + 100.180i 2.39339 + 4.14547i
\(585\) 0 0
\(586\) 5.67358 9.82693i 0.234373 0.405947i
\(587\) −3.89170 + 8.34577i −0.160628 + 0.344467i −0.970106 0.242683i \(-0.921972\pi\)
0.809478 + 0.587150i \(0.199750\pi\)
\(588\) 0 0
\(589\) −6.71056 7.99734i −0.276504 0.329525i
\(590\) −25.0806 + 10.3925i −1.03255 + 0.427854i
\(591\) 0 0
\(592\) −24.2525 + 16.9818i −0.996771 + 0.697946i
\(593\) 9.96484 + 9.96484i 0.409207 + 0.409207i 0.881462 0.472255i \(-0.156560\pi\)
−0.472255 + 0.881462i \(0.656560\pi\)
\(594\) 0 0
\(595\) −32.0326 1.39441i −1.31321 0.0571651i
\(596\) −106.595 18.7957i −4.36632 0.769900i
\(597\) 0 0
\(598\) 0.0751920 0.0350626i 0.00307483 0.00143382i
\(599\) −5.73610 + 4.81316i −0.234371 + 0.196660i −0.752407 0.658698i \(-0.771107\pi\)
0.518037 + 0.855358i \(0.326663\pi\)
\(600\) 0 0
\(601\) −20.4882 + 7.45708i −0.835730 + 0.304181i −0.724208 0.689581i \(-0.757795\pi\)
−0.111522 + 0.993762i \(0.535572\pi\)
\(602\) 17.8101 + 66.4682i 0.725886 + 2.70904i
\(603\) 0 0
\(604\) −34.9543 + 20.1809i −1.42227 + 0.821148i
\(605\) 17.4099 + 15.9491i 0.707813 + 0.648422i
\(606\) 0 0
\(607\) 13.1267 18.7469i 0.532796 0.760912i −0.459042 0.888415i \(-0.651807\pi\)
0.991838 + 0.127503i \(0.0406961\pi\)
\(608\) −46.7005 + 66.6953i −1.89396 + 2.70485i
\(609\) 0 0
\(610\) −36.9845 + 1.61959i −1.49746 + 0.0655754i
\(611\) −1.66496 + 0.961264i −0.0673570 + 0.0388886i
\(612\) 0 0
\(613\) 3.87633 + 14.4667i 0.156564 + 0.584303i 0.998966 + 0.0454549i \(0.0144737\pi\)
−0.842403 + 0.538848i \(0.818860\pi\)
\(614\) −46.5944 + 16.9590i −1.88040 + 0.684409i
\(615\) 0 0
\(616\) −12.8467 + 10.7796i −0.517607 + 0.434324i
\(617\) 0.430054 0.200538i 0.0173133 0.00807334i −0.413942 0.910303i \(-0.635848\pi\)
0.431256 + 0.902230i \(0.358071\pi\)
\(618\) 0 0
\(619\) 10.1152 + 1.78359i 0.406565 + 0.0716885i 0.373191 0.927754i \(-0.378264\pi\)
0.0333743 + 0.999443i \(0.489375\pi\)
\(620\) −0.929342 + 21.3491i −0.0373233 + 0.857399i
\(621\) 0 0
\(622\) 15.4321 + 15.4321i 0.618770 + 0.618770i
\(623\) −15.5357 + 10.8782i −0.622425 + 0.435827i
\(624\) 0 0
\(625\) −21.6571 12.4887i −0.866285 0.499550i
\(626\) −32.6187 38.8735i −1.30371 1.55370i
\(627\) 0 0
\(628\) 29.3733 62.9913i 1.17212 2.51363i
\(629\) −5.90732 + 10.2318i −0.235540 + 0.407968i
\(630\) 0 0
\(631\) −6.48152 11.2263i −0.258025 0.446913i 0.707688 0.706526i \(-0.249738\pi\)
−0.965713 + 0.259613i \(0.916405\pi\)
\(632\) −44.3488 + 3.88002i −1.76410 + 0.154339i
\(633\) 0 0
\(634\) 44.5080 7.84797i 1.76764 0.311683i
\(635\) 10.3621 13.5078i 0.411208 0.536040i
\(636\) 0 0
\(637\) 0.101053 + 1.15504i 0.00400388 + 0.0457645i
\(638\) 1.14506 4.27341i 0.0453333 0.169186i
\(639\) 0 0
\(640\) 27.0288 5.99583i 1.06841 0.237006i
\(641\) −16.0051 43.9737i −0.632164 1.73686i −0.675045 0.737777i \(-0.735876\pi\)
0.0428806 0.999080i \(-0.486347\pi\)
\(642\) 0 0
\(643\) −1.93250 + 22.0886i −0.0762103 + 0.871088i 0.857833 + 0.513928i \(0.171810\pi\)
−0.934043 + 0.357160i \(0.883745\pi\)
\(644\) 0.976716 + 0.355496i 0.0384880 + 0.0140085i
\(645\) 0 0
\(646\) −11.9584 + 67.8196i −0.470498 + 2.66833i
\(647\) −23.9696 + 23.9696i −0.942341 + 0.942341i −0.998426 0.0560849i \(-0.982138\pi\)
0.0560849 + 0.998426i \(0.482138\pi\)
\(648\) 0 0
\(649\) 3.02889i 0.118894i
\(650\) 6.03157 + 1.61448i 0.236578 + 0.0633249i
\(651\) 0 0
\(652\) 42.0693 + 90.2178i 1.64756 + 3.53320i
\(653\) −9.67068 0.846075i −0.378443 0.0331095i −0.103652 0.994614i \(-0.533053\pi\)
−0.274791 + 0.961504i \(0.588609\pi\)
\(654\) 0 0
\(655\) 7.89438 + 25.0264i 0.308459 + 0.977864i
\(656\) 16.7048 + 9.64453i 0.652214 + 0.376556i
\(657\) 0 0
\(658\) −32.4179 8.68636i −1.26378 0.338629i
\(659\) −15.9731 13.4030i −0.622224 0.522108i 0.276278 0.961078i \(-0.410899\pi\)
−0.898502 + 0.438970i \(0.855343\pi\)
\(660\) 0 0
\(661\) −6.68365 37.9049i −0.259964 1.47433i −0.783002 0.622020i \(-0.786312\pi\)
0.523038 0.852310i \(-0.324799\pi\)
\(662\) 31.0096 + 21.7132i 1.20522 + 0.843906i
\(663\) 0 0
\(664\) 29.9205 35.6578i 1.16114 1.38379i
\(665\) −36.4487 11.4870i −1.41342 0.445447i
\(666\) 0 0
\(667\) −0.160660 + 0.0430488i −0.00622079 + 0.00166685i
\(668\) 101.236 + 47.2070i 3.91693 + 1.82649i
\(669\) 0 0
\(670\) 25.8350 19.8292i 0.998094 0.766070i
\(671\) −1.41262 + 3.88114i −0.0545335 + 0.149830i
\(672\) 0 0
\(673\) −11.8077 16.8631i −0.455153 0.650026i 0.524339 0.851510i \(-0.324313\pi\)
−0.979492 + 0.201484i \(0.935424\pi\)
\(674\) −18.1379 −0.698646
\(675\) 0 0
\(676\) 64.9678 2.49876
\(677\) −13.0007 18.5670i −0.499659 0.713588i 0.487536 0.873103i \(-0.337896\pi\)
−0.987195 + 0.159515i \(0.949007\pi\)
\(678\) 0 0
\(679\) 14.3508 39.4285i 0.550734 1.51313i
\(680\) 67.8286 52.0607i 2.60111 1.99644i
\(681\) 0 0
\(682\) 3.01082 + 1.40397i 0.115290 + 0.0537608i
\(683\) −7.91835 + 2.12172i −0.302987 + 0.0811852i −0.407110 0.913379i \(-0.633463\pi\)
0.104122 + 0.994564i \(0.466797\pi\)
\(684\) 0 0
\(685\) −14.3389 4.51900i −0.547862 0.172662i
\(686\) 23.8444 28.4166i 0.910382 1.08495i
\(687\) 0 0
\(688\) −80.3518 56.2630i −3.06338 2.14500i
\(689\) 0.867490 + 4.91978i 0.0330487 + 0.187429i
\(690\) 0 0
\(691\) 2.09562 + 1.75844i 0.0797212 + 0.0668941i 0.681777 0.731560i \(-0.261207\pi\)
−0.602056 + 0.798454i \(0.705652\pi\)
\(692\) −18.4268 4.93744i −0.700481 0.187693i
\(693\) 0 0
\(694\) 31.6991 + 18.3015i 1.20328 + 0.694715i
\(695\) −1.02144 3.23813i −0.0387455 0.122829i
\(696\) 0 0
\(697\) 7.66804 + 0.670867i 0.290448 + 0.0254109i
\(698\) −30.0939 64.5366i −1.13907 2.44275i
\(699\) 0 0
\(700\) 39.1299 + 67.7343i 1.47897 + 2.56011i
\(701\) 45.2015i 1.70724i −0.520899 0.853618i \(-0.674403\pi\)
0.520899 0.853618i \(-0.325597\pi\)
\(702\) 0 0
\(703\) −9.95741 + 9.95741i −0.375551 + 0.375551i
\(704\) 1.80664 10.2459i 0.0680901 0.386158i
\(705\) 0 0
\(706\) 0.118329 + 0.0430682i 0.00445337 + 0.00162089i
\(707\) −0.493942 + 5.64579i −0.0185766 + 0.212332i
\(708\) 0 0
\(709\) 6.90171 + 18.9623i 0.259199 + 0.712144i 0.999217 + 0.0395569i \(0.0125946\pi\)
−0.740018 + 0.672587i \(0.765183\pi\)
\(710\) 35.7612 7.93295i 1.34210 0.297718i
\(711\) 0 0
\(712\) 13.0903 48.8536i 0.490579 1.83086i
\(713\) −0.0108853 0.124419i −0.000407656 0.00465953i
\(714\) 0 0
\(715\) 0.424001 0.552718i 0.0158567 0.0206705i
\(716\) 72.2265 12.7355i 2.69923 0.475947i
\(717\) 0 0
\(718\) −49.9836 + 4.37300i −1.86537 + 0.163199i
\(719\) 18.2157 + 31.5505i 0.679331 + 1.17664i 0.975183 + 0.221402i \(0.0710631\pi\)
−0.295852 + 0.955234i \(0.595604\pi\)
\(720\) 0 0
\(721\) −25.1318 + 43.5295i −0.935957 + 1.62113i
\(722\) −13.3179 + 28.5603i −0.495640 + 1.06290i
\(723\) 0 0
\(724\) −46.1638 55.0159i −1.71566 2.04465i
\(725\) −11.3463 5.28726i −0.421390 0.196364i
\(726\) 0 0
\(727\) 10.9561 7.67153i 0.406338 0.284521i −0.352485 0.935817i \(-0.614663\pi\)
0.758824 + 0.651296i \(0.225774\pi\)
\(728\) −8.37976 8.37976i −0.310575 0.310575i
\(729\) 0 0
\(730\) 3.64805 83.8038i 0.135020 3.10172i
\(731\) −38.5489 6.79721i −1.42578 0.251404i
\(732\) 0 0
\(733\) −38.0568 + 17.7462i −1.40566 + 0.655470i −0.969656 0.244474i \(-0.921385\pi\)
−0.436005 + 0.899944i \(0.643607\pi\)
\(734\) 40.4216 33.9178i 1.49199 1.25193i
\(735\) 0 0
\(736\) −0.915308 + 0.333145i −0.0337387 + 0.0122799i
\(737\) −0.940413 3.50967i −0.0346406 0.129280i
\(738\) 0 0
\(739\) −34.0711 + 19.6709i −1.25332 + 0.723607i −0.971768 0.235938i \(-0.924184\pi\)
−0.281556 + 0.959545i \(0.590850\pi\)
\(740\) 28.7968 1.26104i 1.05859 0.0463569i
\(741\) 0 0
\(742\) −50.0213 + 71.4378i −1.83634 + 2.62256i
\(743\) −7.43173 + 10.6136i −0.272644 + 0.389376i −0.932002 0.362453i \(-0.881939\pi\)
0.659358 + 0.751829i \(0.270828\pi\)
\(744\) 0 0
\(745\) 35.1061 + 32.1604i 1.28619 + 1.17827i
\(746\) 48.8829 28.2225i 1.78973 1.03330i
\(747\) 0 0
\(748\) −4.07039 15.1909i −0.148828 0.555434i
\(749\) 42.8937 15.6120i 1.56730 0.570451i
\(750\) 0 0
\(751\) 30.6700 25.7352i 1.11916 0.939089i 0.120601 0.992701i \(-0.461518\pi\)
0.998562 + 0.0536119i \(0.0170734\pi\)
\(752\) 43.3589 20.2186i 1.58114 0.737296i
\(753\) 0 0
\(754\) 3.07888 + 0.542889i 0.112126 + 0.0197709i
\(755\) 17.7367 + 0.772091i 0.645503 + 0.0280993i
\(756\) 0 0
\(757\) 0.846964 + 0.846964i 0.0307834 + 0.0307834i 0.722331 0.691548i \(-0.243071\pi\)
−0.691548 + 0.722331i \(0.743071\pi\)
\(758\) −10.7967 + 7.55993i −0.392154 + 0.274589i
\(759\) 0 0
\(760\) 94.1504 39.0127i 3.41519 1.41514i
\(761\) 3.25980 + 3.88488i 0.118168 + 0.140827i 0.821885 0.569653i \(-0.192922\pi\)
−0.703718 + 0.710480i \(0.748478\pi\)
\(762\) 0 0
\(763\) −12.1596 + 26.0764i −0.440208 + 0.944029i
\(764\) −6.57430 + 11.3870i −0.237850 + 0.411968i
\(765\) 0 0
\(766\) 37.6375 + 65.1901i 1.35990 + 2.35542i
\(767\) −2.13224 + 0.186547i −0.0769909 + 0.00673583i
\(768\) 0 0
\(769\) −26.0795 + 4.59852i −0.940451 + 0.165827i −0.622800 0.782381i \(-0.714005\pi\)
−0.317651 + 0.948208i \(0.602894\pi\)
\(770\) 12.0566 1.58887i 0.434488 0.0572589i
\(771\) 0 0
\(772\) −6.31593 72.1914i −0.227315 2.59822i
\(773\) 2.81189 10.4941i 0.101137 0.377447i −0.896742 0.442555i \(-0.854072\pi\)
0.997878 + 0.0651074i \(0.0207390\pi\)
\(774\) 0 0
\(775\) 5.38931 7.70099i 0.193590 0.276628i
\(776\) 38.2703 + 105.147i 1.37383 + 3.77455i
\(777\) 0 0
\(778\) −6.82635 + 78.0256i −0.244737 + 2.79735i
\(779\) 8.62118 + 3.13785i 0.308886 + 0.112425i
\(780\) 0 0
\(781\) 0.709661 4.02469i 0.0253937 0.144015i
\(782\) −0.582559 + 0.582559i −0.0208323 + 0.0208323i
\(783\) 0 0
\(784\) 28.8525i 1.03045i
\(785\) −25.7817 + 16.4294i −0.920187 + 0.586392i
\(786\) 0 0
\(787\) 3.36829 + 7.22332i 0.120067 + 0.257484i 0.957151 0.289591i \(-0.0935192\pi\)
−0.837084 + 0.547074i \(0.815741\pi\)
\(788\) −42.2668 3.69786i −1.50569 0.131731i
\(789\) 0 0
\(790\) 28.6366 + 14.9025i 1.01884 + 0.530209i
\(791\) −55.3786 31.9729i −1.96904 1.13682i
\(792\) 0 0
\(793\) −2.81921 0.755404i −0.100113 0.0268252i
\(794\) 39.9638 + 33.5336i 1.41826 + 1.19006i
\(795\) 0 0
\(796\) −3.33636 18.9215i −0.118254 0.670653i
\(797\) 0.621792 + 0.435383i 0.0220250 + 0.0154221i 0.584537 0.811367i \(-0.301276\pi\)
−0.562512 + 0.826789i \(0.690165\pi\)
\(798\) 0 0
\(799\) 12.2715 14.6246i 0.434136 0.517383i
\(800\) −68.8920 25.0544i −2.43570 0.885806i
\(801\) 0 0
\(802\) 0.0868625 0.0232747i 0.00306722 0.000821859i
\(803\) −8.48179 3.95512i −0.299316 0.139573i
\(804\) 0 0
\(805\) −0.278366 0.362676i −0.00981111 0.0127827i
\(806\) −0.802918 + 2.20600i −0.0282816 + 0.0777030i
\(807\) 0 0
\(808\) −8.66877 12.3803i −0.304966 0.435537i
\(809\) −3.88327 −0.136528 −0.0682642 0.997667i \(-0.521746\pi\)
−0.0682642 + 0.997667i \(0.521746\pi\)
\(810\) 0 0
\(811\) −22.9810 −0.806974 −0.403487 0.914985i \(-0.632202\pi\)
−0.403487 + 0.914985i \(0.632202\pi\)
\(812\) 22.4656 + 32.0843i 0.788390 + 1.12594i
\(813\) 0 0
\(814\) 1.53261 4.21081i 0.0537179 0.147589i
\(815\) 5.70950 43.4116i 0.199995 1.52064i
\(816\) 0 0
\(817\) −42.2840 19.7174i −1.47933 0.689824i
\(818\) −22.6613 + 6.07207i −0.792333 + 0.212305i
\(819\) 0 0
\(820\) −8.67348 16.6563i −0.302891 0.581664i
\(821\) 1.59034 1.89529i 0.0555031 0.0661461i −0.737579 0.675261i \(-0.764031\pi\)
0.793082 + 0.609115i \(0.208475\pi\)
\(822\) 0 0
\(823\) 26.9245 + 18.8527i 0.938528 + 0.657164i 0.939396 0.342835i \(-0.111387\pi\)
−0.000867529 1.00000i \(0.500276\pi\)
\(824\) −23.2761 132.005i −0.810860 4.59862i
\(825\) 0 0
\(826\) −28.6230 24.0176i −0.995923 0.835678i
\(827\) −8.32126 2.22968i −0.289359 0.0775334i 0.111220 0.993796i \(-0.464524\pi\)
−0.400579 + 0.916262i \(0.631191\pi\)
\(828\) 0 0
\(829\) 7.38409 + 4.26321i 0.256460 + 0.148067i 0.622719 0.782446i \(-0.286028\pi\)
−0.366259 + 0.930513i \(0.619361\pi\)
\(830\) −32.1905 + 10.1542i −1.11735 + 0.352459i
\(831\) 0 0
\(832\) 7.32410 + 0.640776i 0.253918 + 0.0222149i
\(833\) −4.86588 10.4349i −0.168593 0.361548i
\(834\) 0 0
\(835\) −26.4044 41.4347i −0.913761 1.43391i
\(836\) 18.7448i 0.648301i
\(837\) 0 0
\(838\) 62.3307 62.3307i 2.15318 2.15318i
\(839\) 8.06541 45.7412i 0.278449 1.57916i −0.449340 0.893361i \(-0.648341\pi\)
0.727789 0.685802i \(-0.240548\pi\)
\(840\) 0 0
\(841\) 21.3614 + 7.77490i 0.736599 + 0.268100i
\(842\) −3.85112 + 44.0185i −0.132718 + 1.51698i
\(843\) 0 0
\(844\) −30.9571 85.0539i −1.06559 2.92768i
\(845\) −24.1033 15.3511i −0.829178 0.528093i
\(846\) 0 0
\(847\) −8.41058 + 31.3887i −0.288991 + 1.07853i
\(848\) −10.8348 123.842i −0.372068 4.25276i
\(849\) 0 0
\(850\) −61.7660 + 5.42000i −2.11856 + 0.185904i
\(851\) −0.165907 + 0.0292538i −0.00568721 + 0.00100281i
\(852\) 0 0
\(853\) 20.6498 1.80662i 0.707035 0.0618575i 0.272034 0.962288i \(-0.412304\pi\)
0.435001 + 0.900430i \(0.356748\pi\)
\(854\) −25.4755 44.1248i −0.871752 1.50992i
\(855\) 0 0
\(856\) −60.8644 + 105.420i −2.08030 + 3.60319i
\(857\) 1.85929 3.98725i 0.0635120 0.136202i −0.871990 0.489524i \(-0.837170\pi\)
0.935502 + 0.353322i \(0.114948\pi\)
\(858\) 0 0
\(859\) 27.5782 + 32.8664i 0.940956 + 1.12139i 0.992442 + 0.122714i \(0.0391598\pi\)
−0.0514862 + 0.998674i \(0.516396\pi\)
\(860\) 36.5574 + 88.2249i 1.24660 + 3.00845i
\(861\) 0 0
\(862\) 31.4786 22.0415i 1.07217 0.750738i
\(863\) 29.7115 + 29.7115i 1.01139 + 1.01139i 0.999934 + 0.0114553i \(0.00364642\pi\)
0.0114553 + 0.999934i \(0.496354\pi\)
\(864\) 0 0
\(865\) 5.66974 + 6.18582i 0.192777 + 0.210324i
\(866\) 61.0955 + 10.7728i 2.07611 + 0.366074i
\(867\) 0 0
\(868\) −26.6552 + 12.4295i −0.904736 + 0.421885i
\(869\) 2.75902 2.31509i 0.0935932 0.0785340i
\(870\) 0 0
\(871\) 2.41278 0.878181i 0.0817540 0.0297560i
\(872\) −19.8588 74.1142i −0.672505 2.50982i
\(873\) 0 0
\(874\) −0.850406 + 0.490982i −0.0287654 + 0.0166077i
\(875\) 1.48745 34.3755i 0.0502848 1.16211i
\(876\) 0 0
\(877\) 6.63310 9.47306i 0.223984 0.319882i −0.691394 0.722478i \(-0.743003\pi\)
0.915378 + 0.402596i \(0.131892\pi\)
\(878\) −48.8243 + 69.7284i −1.64774 + 2.35322i
\(879\) 0 0
\(880\) −11.7097 + 12.7822i −0.394733 + 0.430888i
\(881\) −12.7653 + 7.37007i −0.430075 + 0.248304i −0.699379 0.714751i \(-0.746540\pi\)
0.269304 + 0.963055i \(0.413206\pi\)
\(882\) 0 0
\(883\) 4.11349 + 15.3517i 0.138430 + 0.516627i 0.999960 + 0.00892106i \(0.00283970\pi\)
−0.861530 + 0.507706i \(0.830494\pi\)
\(884\) 10.4432 3.80103i 0.351244 0.127842i
\(885\) 0 0
\(886\) −36.6160 + 30.7245i −1.23014 + 1.03221i
\(887\) 6.76369 3.15396i 0.227102 0.105900i −0.305737 0.952116i \(-0.598903\pi\)
0.532839 + 0.846216i \(0.321125\pi\)
\(888\) 0 0
\(889\) 23.0750 + 4.06875i 0.773911 + 0.136461i
\(890\) −27.0369 + 24.7812i −0.906280 + 0.830669i
\(891\) 0 0
\(892\) −68.8206 68.8206i −2.30428 2.30428i
\(893\) 18.6396 13.0516i 0.623750 0.436755i
\(894\) 0 0
\(895\) −29.8055 12.3413i −0.996288 0.412524i
\(896\) 24.4930 + 29.1896i 0.818253 + 0.975156i
\(897\) 0 0
\(898\) 14.9255 32.0079i 0.498072 1.06812i
\(899\) 2.35319 4.07585i 0.0784834 0.135937i
\(900\) 0 0
\(901\) −24.8041 42.9619i −0.826344 1.43127i
\(902\) −2.90833 + 0.254446i −0.0968367 + 0.00847211i
\(903\) 0 0
\(904\) 167.938 29.6120i 5.58553 0.984880i
\(905\) 4.12737 + 31.3190i 0.137198 + 1.04108i
\(906\) 0 0
\(907\) 1.42792 + 16.3212i 0.0474134 + 0.541937i 0.982341 + 0.187099i \(0.0599085\pi\)
−0.934928 + 0.354838i \(0.884536\pi\)
\(908\) 0.635223 2.37069i 0.0210806 0.0786740i
\(909\) 0 0
\(910\) 1.86107 + 8.38960i 0.0616940 + 0.278113i
\(911\) 0.825532 + 2.26813i 0.0273511 + 0.0751465i 0.952617 0.304173i \(-0.0983802\pi\)
−0.925266 + 0.379320i \(0.876158\pi\)
\(912\) 0 0
\(913\) −0.328216 + 3.75152i −0.0108624 + 0.124157i
\(914\) 20.1354 + 7.32869i 0.666020 + 0.242412i
\(915\) 0 0
\(916\) 13.2645 75.2269i 0.438273 2.48557i
\(917\) −25.5387 + 25.5387i −0.843361 + 0.843361i
\(918\) 0 0
\(919\) 5.68243i 0.187446i −0.995598 0.0937230i \(-0.970123\pi\)
0.995598 0.0937230i \(-0.0298768\pi\)
\(920\) 1.19035 + 0.263732i 0.0392447 + 0.00869500i
\(921\) 0 0
\(922\) 16.1703 + 34.6774i 0.532541 + 1.14204i
\(923\) 2.87697 + 0.251702i 0.0946965 + 0.00828487i
\(924\) 0 0
\(925\) −10.9817 6.33647i −0.361075 0.208342i
\(926\) 47.9543 + 27.6864i 1.57588 + 0.909832i
\(927\) 0 0
\(928\) −35.4544 9.49998i −1.16385 0.311852i
\(929\) −31.5686 26.4892i −1.03573 0.869082i −0.0442093 0.999022i \(-0.514077\pi\)
−0.991522 + 0.129941i \(0.958521\pi\)
\(930\) 0 0
\(931\) −2.38300 13.5147i −0.0780996 0.442925i
\(932\) 2.30468 + 1.61376i 0.0754924 + 0.0528604i
\(933\) 0 0
\(934\) −42.1923 + 50.2828i −1.38057 + 1.64530i
\(935\) −2.07929 + 6.59765i −0.0680001 + 0.215766i
\(936\) 0 0
\(937\) 7.80116 2.09031i 0.254853 0.0682876i −0.129131 0.991628i \(-0.541219\pi\)
0.383983 + 0.923340i \(0.374552\pi\)
\(938\) 40.6235 + 18.9430i 1.32640 + 0.618512i
\(939\) 0 0
\(940\) −46.1792 6.07350i −1.50620 0.198096i
\(941\) −17.0461 + 46.8337i −0.555686 + 1.52673i 0.270147 + 0.962819i \(0.412928\pi\)
−0.825833 + 0.563915i \(0.809294\pi\)
\(942\) 0 0
\(943\) 0.0629540 + 0.0899076i 0.00205006 + 0.00292780i
\(944\) 53.2626 1.73355
\(945\) 0 0
\(946\) 14.8463 0.482696
\(947\) 27.9030 + 39.8496i 0.906726 + 1.29494i 0.955153 + 0.296112i \(0.0956901\pi\)
−0.0484276 + 0.998827i \(0.515421\pi\)
\(948\) 0 0
\(949\) 2.26190 6.21452i 0.0734244 0.201732i
\(950\) −72.7825 12.8140i −2.36138 0.415742i
\(951\) 0 0
\(952\) 106.655 + 49.7340i 3.45671 + 1.61189i
\(953\) 48.5541 13.0100i 1.57282 0.421436i 0.636127 0.771584i \(-0.280535\pi\)
0.936694 + 0.350148i \(0.113869\pi\)
\(954\) 0 0
\(955\) 5.12970 2.67120i 0.165993 0.0864380i
\(956\) 18.5120 22.0618i 0.598722 0.713529i
\(957\) 0 0
\(958\) 58.6039 + 41.0349i 1.89341 + 1.32578i
\(959\) −3.59307 20.3773i −0.116026 0.658017i
\(960\) 0 0
\(961\) −21.0402 17.6548i −0.678716 0.569510i
\(962\) 3.05867 + 0.819569i 0.0986156 + 0.0264240i
\(963\) 0 0
\(964\) 8.06148 + 4.65430i 0.259643 + 0.149905i
\(965\) −14.7147 + 28.2756i −0.473683 + 0.910224i
\(966\) 0 0
\(967\) −49.5607 4.33600i −1.59377 0.139436i −0.744581 0.667533i \(-0.767350\pi\)
−0.849185 + 0.528096i \(0.822906\pi\)
\(968\) −36.6238 78.5400i −1.17713 2.52437i
\(969\) 0 0
\(970\) 17.5517 79.2192i 0.563550 2.54357i
\(971\) 40.2818i 1.29270i −0.763039 0.646352i \(-0.776294\pi\)
0.763039 0.646352i \(-0.223706\pi\)
\(972\) 0 0
\(973\) 3.30441 3.30441i 0.105934 0.105934i
\(974\) −0.911162 + 5.16745i −0.0291955 + 0.165576i
\(975\) 0 0
\(976\) 68.2493 + 24.8407i 2.18461 + 0.795132i
\(977\) −3.30670 + 37.7958i −0.105791 + 1.20919i 0.738854 + 0.673866i \(0.235367\pi\)
−0.844644 + 0.535328i \(0.820188\pi\)
\(978\) 0 0
\(979\) 1.39948 + 3.84504i 0.0447276 + 0.122888i
\(980\) −15.0897 + 23.6929i −0.482022 + 0.756840i
\(981\) 0 0
\(982\) −16.3345 + 60.9612i −0.521255 + 1.94535i
\(983\) −3.12235 35.6886i −0.0995874 1.13829i −0.867399 0.497614i \(-0.834210\pi\)
0.767811 0.640676i \(-0.221346\pi\)
\(984\) 0 0
\(985\) 14.8074 + 11.3590i 0.471802 + 0.361929i
\(986\) −30.5739 + 5.39101i −0.973672 + 0.171685i
\(987\) 0 0
\(988\) 13.1958 1.15448i 0.419813 0.0367289i
\(989\) −0.279076 0.483373i −0.00887409 0.0153704i
\(990\) 0 0
\(991\) 21.8850 37.9060i 0.695201 1.20412i −0.274912 0.961469i \(-0.588649\pi\)
0.970113 0.242654i \(-0.0780179\pi\)
\(992\) 11.6480 24.9793i 0.369826 0.793094i
\(993\) 0 0
\(994\) 32.4061 + 38.6201i 1.02786 + 1.22495i
\(995\) −3.23310 + 7.80827i −0.102496 + 0.247539i
\(996\) 0 0
\(997\) −19.9603 + 13.9764i −0.632150 + 0.442636i −0.845233 0.534398i \(-0.820538\pi\)
0.213083 + 0.977034i \(0.431649\pi\)
\(998\) −59.0307 59.0307i −1.86859 1.86859i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.332.16 192
3.2 odd 2 135.2.q.a.2.1 192
5.3 odd 4 inner 405.2.r.a.8.16 192
15.2 even 4 675.2.ba.b.218.16 192
15.8 even 4 135.2.q.a.83.1 yes 192
15.14 odd 2 675.2.ba.b.407.16 192
27.13 even 9 135.2.q.a.122.1 yes 192
27.14 odd 18 inner 405.2.r.a.152.16 192
135.13 odd 36 135.2.q.a.68.1 yes 192
135.67 odd 36 675.2.ba.b.68.16 192
135.68 even 36 inner 405.2.r.a.233.16 192
135.94 even 18 675.2.ba.b.257.16 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.1 192 3.2 odd 2
135.2.q.a.68.1 yes 192 135.13 odd 36
135.2.q.a.83.1 yes 192 15.8 even 4
135.2.q.a.122.1 yes 192 27.13 even 9
405.2.r.a.8.16 192 5.3 odd 4 inner
405.2.r.a.152.16 192 27.14 odd 18 inner
405.2.r.a.233.16 192 135.68 even 36 inner
405.2.r.a.332.16 192 1.1 even 1 trivial
675.2.ba.b.68.16 192 135.67 odd 36
675.2.ba.b.218.16 192 15.2 even 4
675.2.ba.b.257.16 192 135.94 even 18
675.2.ba.b.407.16 192 15.14 odd 2