Properties

Label 405.2.r.a.332.15
Level $405$
Weight $2$
Character 405.332
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 332.15
Character \(\chi\) \(=\) 405.332
Dual form 405.2.r.a.233.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48477 + 2.12047i) q^{2} +(-1.60780 + 4.41741i) q^{4} +(-1.13563 + 1.92622i) q^{5} +(-2.68394 - 1.25154i) q^{7} +(-6.75336 + 1.80956i) q^{8} +(-5.77064 + 0.451915i) q^{10} +(1.00437 - 1.19696i) q^{11} +(3.28227 + 2.29827i) q^{13} +(-1.33117 - 7.54945i) q^{14} +(-6.66205 - 5.59013i) q^{16} +(-1.82995 - 0.490334i) q^{17} +(2.41262 + 1.39293i) q^{19} +(-6.68303 - 8.11355i) q^{20} +(4.02936 + 0.352524i) q^{22} +(3.16476 + 6.78686i) q^{23} +(-2.42067 - 4.37497i) q^{25} +10.3723i q^{26} +(9.84382 - 9.84382i) q^{28} +(-0.683218 + 3.87472i) q^{29} +(5.45790 + 1.98651i) q^{31} +(0.743366 - 8.49672i) q^{32} +(-1.67731 - 4.60838i) q^{34} +(5.45873 - 3.74857i) q^{35} +(0.0847926 - 0.316450i) q^{37} +(0.628522 + 7.18404i) q^{38} +(4.18374 - 15.0635i) q^{40} +(-6.26389 + 1.10449i) q^{41} +(0.582670 - 0.0509770i) q^{43} +(3.67263 + 6.36118i) q^{44} +(-9.69236 + 16.7877i) q^{46} +(-0.321786 + 0.690071i) q^{47} +(1.13767 + 1.35582i) q^{49} +(5.68285 - 11.6287i) q^{50} +(-15.4296 + 10.8039i) q^{52} +(-5.57112 - 5.57112i) q^{53} +(1.16502 + 3.29395i) q^{55} +(20.3903 + 3.59537i) q^{56} +(-9.23063 + 4.30431i) q^{58} +(7.84000 - 6.57854i) q^{59} +(11.4160 - 4.15507i) q^{61} +(3.89137 + 14.5228i) q^{62} +(4.05760 - 2.34266i) q^{64} +(-8.15444 + 3.71239i) q^{65} +(1.14383 - 1.63356i) q^{67} +(5.10821 - 7.29527i) q^{68} +(16.0536 + 6.00929i) q^{70} +(6.11142 - 3.52843i) q^{71} +(-1.05397 - 3.93347i) q^{73} +(0.796919 - 0.290055i) q^{74} +(-10.0321 + 8.41796i) q^{76} +(-4.19371 + 1.95556i) q^{77} +(12.9467 + 2.28286i) q^{79} +(18.3335 - 6.48426i) q^{80} +(-11.6425 - 11.6425i) q^{82} +(3.33133 - 2.33262i) q^{83} +(3.02265 - 2.96805i) q^{85} +(0.973224 + 1.15984i) q^{86} +(-4.61689 + 9.90096i) q^{88} +(4.23520 - 7.33558i) q^{89} +(-5.93304 - 10.2763i) q^{91} +(-35.0686 + 3.06811i) q^{92} +(-1.94105 + 0.342259i) q^{94} +(-5.42294 + 3.06539i) q^{95} +(0.696015 + 7.95549i) q^{97} +(-1.18580 + 4.42546i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48477 + 2.12047i 1.04989 + 1.49940i 0.855040 + 0.518562i \(0.173533\pi\)
0.194848 + 0.980833i \(0.437579\pi\)
\(3\) 0 0
\(4\) −1.60780 + 4.41741i −0.803902 + 2.20870i
\(5\) −1.13563 + 1.92622i −0.507871 + 0.861433i
\(6\) 0 0
\(7\) −2.68394 1.25154i −1.01443 0.473038i −0.156982 0.987602i \(-0.550176\pi\)
−0.857453 + 0.514563i \(0.827954\pi\)
\(8\) −6.75336 + 1.80956i −2.38767 + 0.639775i
\(9\) 0 0
\(10\) −5.77064 + 0.451915i −1.82484 + 0.142908i
\(11\) 1.00437 1.19696i 0.302828 0.360897i −0.593074 0.805148i \(-0.702086\pi\)
0.895902 + 0.444251i \(0.146530\pi\)
\(12\) 0 0
\(13\) 3.28227 + 2.29827i 0.910338 + 0.637425i 0.932046 0.362339i \(-0.118022\pi\)
−0.0217086 + 0.999764i \(0.506911\pi\)
\(14\) −1.33117 7.54945i −0.355771 2.01768i
\(15\) 0 0
\(16\) −6.66205 5.59013i −1.66551 1.39753i
\(17\) −1.82995 0.490334i −0.443828 0.118923i 0.0299818 0.999550i \(-0.490455\pi\)
−0.473810 + 0.880627i \(0.657122\pi\)
\(18\) 0 0
\(19\) 2.41262 + 1.39293i 0.553493 + 0.319559i 0.750529 0.660837i \(-0.229799\pi\)
−0.197037 + 0.980396i \(0.563132\pi\)
\(20\) −6.68303 8.11355i −1.49437 1.81424i
\(21\) 0 0
\(22\) 4.02936 + 0.352524i 0.859063 + 0.0751583i
\(23\) 3.16476 + 6.78686i 0.659899 + 1.41516i 0.896276 + 0.443496i \(0.146262\pi\)
−0.236377 + 0.971661i \(0.575960\pi\)
\(24\) 0 0
\(25\) −2.42067 4.37497i −0.484133 0.874994i
\(26\) 10.3723i 2.03418i
\(27\) 0 0
\(28\) 9.84382 9.84382i 1.86031 1.86031i
\(29\) −0.683218 + 3.87472i −0.126870 + 0.719518i 0.853309 + 0.521406i \(0.174592\pi\)
−0.980179 + 0.198112i \(0.936519\pi\)
\(30\) 0 0
\(31\) 5.45790 + 1.98651i 0.980267 + 0.356788i 0.781944 0.623348i \(-0.214228\pi\)
0.198323 + 0.980137i \(0.436450\pi\)
\(32\) 0.743366 8.49672i 0.131410 1.50202i
\(33\) 0 0
\(34\) −1.67731 4.60838i −0.287657 0.790331i
\(35\) 5.45873 3.74857i 0.922693 0.633624i
\(36\) 0 0
\(37\) 0.0847926 0.316450i 0.0139398 0.0520241i −0.958606 0.284737i \(-0.908094\pi\)
0.972545 + 0.232713i \(0.0747603\pi\)
\(38\) 0.628522 + 7.18404i 0.101960 + 1.16541i
\(39\) 0 0
\(40\) 4.18374 15.0635i 0.661507 2.38174i
\(41\) −6.26389 + 1.10449i −0.978255 + 0.172493i −0.639843 0.768505i \(-0.721001\pi\)
−0.338412 + 0.940998i \(0.609890\pi\)
\(42\) 0 0
\(43\) 0.582670 0.0509770i 0.0888564 0.00777393i −0.0426408 0.999090i \(-0.513577\pi\)
0.131497 + 0.991317i \(0.458022\pi\)
\(44\) 3.67263 + 6.36118i 0.553670 + 0.958984i
\(45\) 0 0
\(46\) −9.69236 + 16.7877i −1.42906 + 2.47521i
\(47\) −0.321786 + 0.690071i −0.0469372 + 0.100657i −0.928378 0.371638i \(-0.878796\pi\)
0.881441 + 0.472295i \(0.156574\pi\)
\(48\) 0 0
\(49\) 1.13767 + 1.35582i 0.162524 + 0.193688i
\(50\) 5.68285 11.6287i 0.803676 1.64455i
\(51\) 0 0
\(52\) −15.4296 + 10.8039i −2.13971 + 1.49824i
\(53\) −5.57112 5.57112i −0.765253 0.765253i 0.212014 0.977267i \(-0.431998\pi\)
−0.977267 + 0.212014i \(0.931998\pi\)
\(54\) 0 0
\(55\) 1.16502 + 3.29395i 0.157091 + 0.444156i
\(56\) 20.3903 + 3.59537i 2.72477 + 0.480451i
\(57\) 0 0
\(58\) −9.23063 + 4.30431i −1.21204 + 0.565184i
\(59\) 7.84000 6.57854i 1.02068 0.856453i 0.0309682 0.999520i \(-0.490141\pi\)
0.989713 + 0.143067i \(0.0456965\pi\)
\(60\) 0 0
\(61\) 11.4160 4.15507i 1.46166 0.532002i 0.515840 0.856685i \(-0.327480\pi\)
0.945823 + 0.324683i \(0.105258\pi\)
\(62\) 3.89137 + 14.5228i 0.494205 + 1.84440i
\(63\) 0 0
\(64\) 4.05760 2.34266i 0.507201 0.292832i
\(65\) −8.15444 + 3.71239i −1.01143 + 0.460465i
\(66\) 0 0
\(67\) 1.14383 1.63356i 0.139742 0.199572i −0.743181 0.669091i \(-0.766684\pi\)
0.882922 + 0.469519i \(0.155573\pi\)
\(68\) 5.10821 7.29527i 0.619461 0.884682i
\(69\) 0 0
\(70\) 16.0536 + 6.00929i 1.91878 + 0.718247i
\(71\) 6.11142 3.52843i 0.725292 0.418748i −0.0914051 0.995814i \(-0.529136\pi\)
0.816698 + 0.577066i \(0.195802\pi\)
\(72\) 0 0
\(73\) −1.05397 3.93347i −0.123358 0.460378i 0.876418 0.481551i \(-0.159926\pi\)
−0.999776 + 0.0211733i \(0.993260\pi\)
\(74\) 0.796919 0.290055i 0.0926400 0.0337182i
\(75\) 0 0
\(76\) −10.0321 + 8.41796i −1.15076 + 0.965606i
\(77\) −4.19371 + 1.95556i −0.477918 + 0.222857i
\(78\) 0 0
\(79\) 12.9467 + 2.28286i 1.45662 + 0.256842i 0.845194 0.534460i \(-0.179485\pi\)
0.611427 + 0.791301i \(0.290596\pi\)
\(80\) 18.3335 6.48426i 2.04975 0.724962i
\(81\) 0 0
\(82\) −11.6425 11.6425i −1.28569 1.28569i
\(83\) 3.33133 2.33262i 0.365661 0.256038i −0.376277 0.926507i \(-0.622796\pi\)
0.741938 + 0.670469i \(0.233907\pi\)
\(84\) 0 0
\(85\) 3.02265 2.96805i 0.327852 0.321931i
\(86\) 0.973224 + 1.15984i 0.104945 + 0.125069i
\(87\) 0 0
\(88\) −4.61689 + 9.90096i −0.492162 + 1.05545i
\(89\) 4.23520 7.33558i 0.448930 0.777570i −0.549386 0.835569i \(-0.685138\pi\)
0.998317 + 0.0579982i \(0.0184718\pi\)
\(90\) 0 0
\(91\) −5.93304 10.2763i −0.621951 1.07725i
\(92\) −35.0686 + 3.06811i −3.65616 + 0.319872i
\(93\) 0 0
\(94\) −1.94105 + 0.342259i −0.200204 + 0.0353013i
\(95\) −5.42294 + 3.06539i −0.556382 + 0.314502i
\(96\) 0 0
\(97\) 0.696015 + 7.95549i 0.0706696 + 0.807758i 0.945986 + 0.324207i \(0.105097\pi\)
−0.875317 + 0.483550i \(0.839347\pi\)
\(98\) −1.18580 + 4.42546i −0.119784 + 0.447039i
\(99\) 0 0
\(100\) 23.2180 3.65897i 2.32180 0.365897i
\(101\) −5.32423 14.6282i −0.529781 1.45556i −0.859330 0.511422i \(-0.829119\pi\)
0.329549 0.944139i \(-0.393103\pi\)
\(102\) 0 0
\(103\) −0.690517 + 7.89264i −0.0680387 + 0.777685i 0.883153 + 0.469085i \(0.155416\pi\)
−0.951192 + 0.308601i \(0.900139\pi\)
\(104\) −26.3252 9.58158i −2.58140 0.939552i
\(105\) 0 0
\(106\) 3.54156 20.0852i 0.343987 1.95085i
\(107\) −3.95377 + 3.95377i −0.382225 + 0.382225i −0.871903 0.489678i \(-0.837114\pi\)
0.489678 + 0.871903i \(0.337114\pi\)
\(108\) 0 0
\(109\) 6.56334i 0.628654i 0.949315 + 0.314327i \(0.101779\pi\)
−0.949315 + 0.314327i \(0.898221\pi\)
\(110\) −5.25492 + 7.36111i −0.501037 + 0.701855i
\(111\) 0 0
\(112\) 10.8843 + 23.3414i 1.02847 + 2.20556i
\(113\) 2.27035 + 0.198630i 0.213577 + 0.0186855i 0.193442 0.981112i \(-0.438035\pi\)
0.0201349 + 0.999797i \(0.493590\pi\)
\(114\) 0 0
\(115\) −16.6670 1.61135i −1.55421 0.150259i
\(116\) −16.0177 9.24784i −1.48721 0.858641i
\(117\) 0 0
\(118\) 25.5901 + 6.85686i 2.35576 + 0.631225i
\(119\) 4.29781 + 3.60629i 0.393979 + 0.330588i
\(120\) 0 0
\(121\) 1.48617 + 8.42851i 0.135107 + 0.766228i
\(122\) 25.7607 + 18.0378i 2.33226 + 1.63307i
\(123\) 0 0
\(124\) −17.5505 + 20.9158i −1.57608 + 1.87830i
\(125\) 11.1762 + 0.305624i 0.999626 + 0.0273359i
\(126\) 0 0
\(127\) −2.08725 + 0.559276i −0.185213 + 0.0496277i −0.350233 0.936662i \(-0.613898\pi\)
0.165020 + 0.986290i \(0.447231\pi\)
\(128\) −4.46799 2.08346i −0.394918 0.184153i
\(129\) 0 0
\(130\) −19.9794 11.7792i −1.75231 1.03310i
\(131\) −0.329501 + 0.905296i −0.0287886 + 0.0790961i −0.953254 0.302169i \(-0.902289\pi\)
0.924466 + 0.381265i \(0.124512\pi\)
\(132\) 0 0
\(133\) −4.73202 6.75802i −0.410318 0.585995i
\(134\) 5.16224 0.445950
\(135\) 0 0
\(136\) 13.2456 1.13580
\(137\) −1.39561 1.99313i −0.119235 0.170285i 0.755098 0.655612i \(-0.227589\pi\)
−0.874333 + 0.485327i \(0.838700\pi\)
\(138\) 0 0
\(139\) 3.32712 9.14118i 0.282202 0.775345i −0.714897 0.699230i \(-0.753526\pi\)
0.997099 0.0761146i \(-0.0242515\pi\)
\(140\) 7.78240 + 30.1404i 0.657733 + 2.54733i
\(141\) 0 0
\(142\) 16.5560 + 7.72017i 1.38934 + 0.647862i
\(143\) 6.04754 1.62043i 0.505721 0.135508i
\(144\) 0 0
\(145\) −6.68769 5.71630i −0.555382 0.474713i
\(146\) 6.77589 8.07519i 0.560777 0.668308i
\(147\) 0 0
\(148\) 1.26156 + 0.883353i 0.103700 + 0.0726112i
\(149\) 2.43445 + 13.8064i 0.199438 + 1.13107i 0.905956 + 0.423373i \(0.139154\pi\)
−0.706518 + 0.707695i \(0.749735\pi\)
\(150\) 0 0
\(151\) −13.9585 11.7126i −1.13593 0.953156i −0.136630 0.990622i \(-0.543627\pi\)
−0.999298 + 0.0374659i \(0.988071\pi\)
\(152\) −18.8139 5.04116i −1.52600 0.408892i
\(153\) 0 0
\(154\) −10.3734 5.98907i −0.835910 0.482613i
\(155\) −10.0246 + 8.25717i −0.805199 + 0.663232i
\(156\) 0 0
\(157\) −3.03267 0.265324i −0.242033 0.0211752i −0.0345064 0.999404i \(-0.510986\pi\)
−0.207527 + 0.978229i \(0.566541\pi\)
\(158\) 14.3821 + 30.8426i 1.14418 + 2.45371i
\(159\) 0 0
\(160\) 15.5224 + 11.0811i 1.22715 + 0.876034i
\(161\) 22.1764i 1.74774i
\(162\) 0 0
\(163\) −16.0133 + 16.0133i −1.25426 + 1.25426i −0.300465 + 0.953793i \(0.597142\pi\)
−0.953793 + 0.300465i \(0.902858\pi\)
\(164\) 5.19212 29.4459i 0.405436 2.29934i
\(165\) 0 0
\(166\) 9.89249 + 3.60057i 0.767806 + 0.279459i
\(167\) 0.457294 5.22689i 0.0353865 0.404469i −0.957758 0.287576i \(-0.907151\pi\)
0.993144 0.116894i \(-0.0372937\pi\)
\(168\) 0 0
\(169\) 1.04499 + 2.87108i 0.0803837 + 0.220852i
\(170\) 10.7816 + 2.00256i 0.826909 + 0.153589i
\(171\) 0 0
\(172\) −0.711633 + 2.65585i −0.0542615 + 0.202507i
\(173\) −0.712745 8.14671i −0.0541890 0.619383i −0.973929 0.226854i \(-0.927156\pi\)
0.919740 0.392529i \(-0.128400\pi\)
\(174\) 0 0
\(175\) 1.02147 + 14.7717i 0.0772157 + 1.11664i
\(176\) −13.3823 + 2.35966i −1.00873 + 0.177866i
\(177\) 0 0
\(178\) 21.8431 1.91103i 1.63721 0.143238i
\(179\) 2.65400 + 4.59686i 0.198369 + 0.343585i 0.948000 0.318271i \(-0.103102\pi\)
−0.749631 + 0.661856i \(0.769769\pi\)
\(180\) 0 0
\(181\) 11.5435 19.9940i 0.858023 1.48614i −0.0157880 0.999875i \(-0.505026\pi\)
0.873811 0.486265i \(-0.161641\pi\)
\(182\) 12.9814 27.8387i 0.962246 2.06354i
\(183\) 0 0
\(184\) −33.6540 40.1073i −2.48100 2.95675i
\(185\) 0.513260 + 0.522701i 0.0377356 + 0.0384298i
\(186\) 0 0
\(187\) −2.42486 + 1.69790i −0.177323 + 0.124163i
\(188\) −2.53096 2.53096i −0.184589 0.184589i
\(189\) 0 0
\(190\) −14.5518 6.94778i −1.05570 0.504045i
\(191\) 3.74191 + 0.659800i 0.270755 + 0.0477414i 0.307377 0.951588i \(-0.400549\pi\)
−0.0366221 + 0.999329i \(0.511660\pi\)
\(192\) 0 0
\(193\) −11.2015 + 5.22336i −0.806305 + 0.375986i −0.781656 0.623710i \(-0.785625\pi\)
−0.0246489 + 0.999696i \(0.507847\pi\)
\(194\) −15.8359 + 13.2879i −1.13695 + 0.954017i
\(195\) 0 0
\(196\) −7.81835 + 2.84565i −0.558453 + 0.203260i
\(197\) −6.21326 23.1882i −0.442676 1.65209i −0.722000 0.691893i \(-0.756777\pi\)
0.279324 0.960197i \(-0.409890\pi\)
\(198\) 0 0
\(199\) 5.73533 3.31129i 0.406566 0.234731i −0.282747 0.959195i \(-0.591246\pi\)
0.689313 + 0.724463i \(0.257912\pi\)
\(200\) 24.2644 + 25.1654i 1.71575 + 1.77946i
\(201\) 0 0
\(202\) 23.1134 33.0093i 1.62625 2.32253i
\(203\) 6.68309 9.54445i 0.469061 0.669889i
\(204\) 0 0
\(205\) 4.98599 13.3199i 0.348237 0.930305i
\(206\) −17.7613 + 10.2545i −1.23749 + 0.714466i
\(207\) 0 0
\(208\) −9.01904 33.6595i −0.625358 2.33387i
\(209\) 4.09043 1.48880i 0.282941 0.102982i
\(210\) 0 0
\(211\) −2.13311 + 1.78989i −0.146849 + 0.123221i −0.713253 0.700907i \(-0.752779\pi\)
0.566404 + 0.824128i \(0.308334\pi\)
\(212\) 33.5672 15.6526i 2.30540 1.07503i
\(213\) 0 0
\(214\) −14.2542 2.51341i −0.974400 0.171813i
\(215\) −0.563508 + 1.18024i −0.0384309 + 0.0804920i
\(216\) 0 0
\(217\) −12.1625 12.1625i −0.825642 0.825642i
\(218\) −13.9173 + 9.74502i −0.942601 + 0.660016i
\(219\) 0 0
\(220\) −16.4238 0.149676i −1.10729 0.0100911i
\(221\) −4.87947 5.81513i −0.328229 0.391168i
\(222\) 0 0
\(223\) 9.32189 19.9909i 0.624240 1.33869i −0.298923 0.954277i \(-0.596627\pi\)
0.923163 0.384410i \(-0.125595\pi\)
\(224\) −12.6291 + 21.8743i −0.843821 + 1.46154i
\(225\) 0 0
\(226\) 2.94975 + 5.10912i 0.196215 + 0.339854i
\(227\) 7.40612 0.647951i 0.491561 0.0430060i 0.161319 0.986902i \(-0.448425\pi\)
0.330242 + 0.943896i \(0.392870\pi\)
\(228\) 0 0
\(229\) 4.57594 0.806861i 0.302386 0.0533189i −0.0203963 0.999792i \(-0.506493\pi\)
0.322783 + 0.946473i \(0.395382\pi\)
\(230\) −21.3298 37.7343i −1.40645 2.48813i
\(231\) 0 0
\(232\) −2.39751 27.4037i −0.157404 1.79914i
\(233\) −3.69557 + 13.7921i −0.242105 + 0.903549i 0.732711 + 0.680540i \(0.238255\pi\)
−0.974816 + 0.223009i \(0.928412\pi\)
\(234\) 0 0
\(235\) −0.963800 1.40350i −0.0628714 0.0915542i
\(236\) 16.4549 + 45.2095i 1.07112 + 2.94289i
\(237\) 0 0
\(238\) −1.26577 + 14.4678i −0.0820478 + 0.937811i
\(239\) −19.1398 6.96633i −1.23805 0.450614i −0.361705 0.932293i \(-0.617805\pi\)
−0.876348 + 0.481678i \(0.840027\pi\)
\(240\) 0 0
\(241\) −2.82578 + 16.0258i −0.182024 + 1.03231i 0.747695 + 0.664043i \(0.231161\pi\)
−0.929719 + 0.368269i \(0.879950\pi\)
\(242\) −15.6657 + 15.6657i −1.00703 + 1.00703i
\(243\) 0 0
\(244\) 57.1094i 3.65606i
\(245\) −3.90358 + 0.651685i −0.249391 + 0.0416346i
\(246\) 0 0
\(247\) 4.71754 + 10.1168i 0.300170 + 0.643717i
\(248\) −40.4538 3.53925i −2.56882 0.224743i
\(249\) 0 0
\(250\) 15.9459 + 24.1524i 1.00851 + 1.52753i
\(251\) 8.96649 + 5.17681i 0.565960 + 0.326757i 0.755534 0.655109i \(-0.227377\pi\)
−0.189574 + 0.981866i \(0.560711\pi\)
\(252\) 0 0
\(253\) 11.3022 + 3.02841i 0.710562 + 0.190395i
\(254\) −4.28500 3.59554i −0.268865 0.225604i
\(255\) 0 0
\(256\) −3.84321 21.7959i −0.240201 1.36225i
\(257\) −4.65492 3.25941i −0.290366 0.203316i 0.419313 0.907842i \(-0.362271\pi\)
−0.709679 + 0.704525i \(0.751160\pi\)
\(258\) 0 0
\(259\) −0.623629 + 0.743212i −0.0387504 + 0.0461810i
\(260\) −3.28838 41.9903i −0.203937 2.60412i
\(261\) 0 0
\(262\) −2.40888 + 0.645458i −0.148821 + 0.0398765i
\(263\) 17.6574 + 8.23378i 1.08880 + 0.507717i 0.882280 0.470725i \(-0.156008\pi\)
0.206522 + 0.978442i \(0.433785\pi\)
\(264\) 0 0
\(265\) 17.0580 4.40446i 1.04786 0.270564i
\(266\) 7.30422 20.0682i 0.447850 1.23046i
\(267\) 0 0
\(268\) 5.37706 + 7.67923i 0.328456 + 0.469084i
\(269\) −21.8628 −1.33300 −0.666501 0.745505i \(-0.732209\pi\)
−0.666501 + 0.745505i \(0.732209\pi\)
\(270\) 0 0
\(271\) 25.6697 1.55933 0.779663 0.626200i \(-0.215391\pi\)
0.779663 + 0.626200i \(0.215391\pi\)
\(272\) 9.45020 + 13.4963i 0.573003 + 0.818333i
\(273\) 0 0
\(274\) 2.15422 5.91867i 0.130141 0.357560i
\(275\) −7.66791 1.49664i −0.462392 0.0902509i
\(276\) 0 0
\(277\) −4.80726 2.24166i −0.288841 0.134689i 0.272798 0.962071i \(-0.412051\pi\)
−0.561638 + 0.827383i \(0.689829\pi\)
\(278\) 24.3235 6.51747i 1.45883 0.390892i
\(279\) 0 0
\(280\) −30.0815 + 35.1933i −1.79771 + 2.10320i
\(281\) 0.950287 1.13251i 0.0566894 0.0675598i −0.736955 0.675942i \(-0.763737\pi\)
0.793644 + 0.608382i \(0.208181\pi\)
\(282\) 0 0
\(283\) −4.14980 2.90572i −0.246680 0.172727i 0.443697 0.896177i \(-0.353667\pi\)
−0.690377 + 0.723449i \(0.742556\pi\)
\(284\) 5.76054 + 32.6697i 0.341825 + 1.93859i
\(285\) 0 0
\(286\) 12.4153 + 10.4176i 0.734130 + 0.616008i
\(287\) 18.1942 + 4.87513i 1.07397 + 0.287770i
\(288\) 0 0
\(289\) −11.6141 6.70543i −0.683185 0.394437i
\(290\) 2.19156 22.6684i 0.128693 1.33113i
\(291\) 0 0
\(292\) 19.0703 + 1.66844i 1.11601 + 0.0976379i
\(293\) 9.70762 + 20.8181i 0.567125 + 1.21620i 0.955579 + 0.294736i \(0.0952316\pi\)
−0.388453 + 0.921468i \(0.626991\pi\)
\(294\) 0 0
\(295\) 3.76836 + 22.5724i 0.219402 + 1.31422i
\(296\) 2.29054i 0.133135i
\(297\) 0 0
\(298\) −25.6615 + 25.6615i −1.48653 + 1.48653i
\(299\) −5.21042 + 29.5498i −0.301327 + 1.70891i
\(300\) 0 0
\(301\) −1.62765 0.592417i −0.0938163 0.0341464i
\(302\) 4.11100 46.9890i 0.236562 2.70391i
\(303\) 0 0
\(304\) −8.28636 22.7666i −0.475255 1.30575i
\(305\) −4.96077 + 26.7083i −0.284053 + 1.52931i
\(306\) 0 0
\(307\) −6.03527 + 22.5239i −0.344451 + 1.28551i 0.548801 + 0.835953i \(0.315084\pi\)
−0.893252 + 0.449556i \(0.851582\pi\)
\(308\) −1.89583 21.6695i −0.108025 1.23473i
\(309\) 0 0
\(310\) −32.3933 8.99694i −1.83982 0.510992i
\(311\) −9.32616 + 1.64445i −0.528838 + 0.0932485i −0.431691 0.902022i \(-0.642083\pi\)
−0.0971473 + 0.995270i \(0.530972\pi\)
\(312\) 0 0
\(313\) −30.8225 + 2.69662i −1.74219 + 0.152422i −0.913380 0.407109i \(-0.866537\pi\)
−0.828810 + 0.559530i \(0.810982\pi\)
\(314\) −3.94019 6.82461i −0.222358 0.385135i
\(315\) 0 0
\(316\) −30.9001 + 53.5206i −1.73827 + 3.01077i
\(317\) −8.89049 + 19.0657i −0.499340 + 1.07084i 0.481576 + 0.876404i \(0.340064\pi\)
−0.980916 + 0.194433i \(0.937713\pi\)
\(318\) 0 0
\(319\) 3.95168 + 4.70943i 0.221252 + 0.263678i
\(320\) −0.0954738 + 10.4763i −0.00533715 + 0.585640i
\(321\) 0 0
\(322\) 47.0242 32.9267i 2.62056 1.83493i
\(323\) −3.73198 3.73198i −0.207653 0.207653i
\(324\) 0 0
\(325\) 2.10958 19.9232i 0.117018 1.10514i
\(326\) −57.7316 10.1796i −3.19746 0.563798i
\(327\) 0 0
\(328\) 40.3036 18.7939i 2.22540 1.03772i
\(329\) 1.72731 1.44938i 0.0952295 0.0799070i
\(330\) 0 0
\(331\) 0.225624 0.0821205i 0.0124014 0.00451375i −0.335812 0.941929i \(-0.609011\pi\)
0.348213 + 0.937415i \(0.386788\pi\)
\(332\) 4.94801 + 18.4662i 0.271557 + 1.01347i
\(333\) 0 0
\(334\) 11.7624 6.79104i 0.643611 0.371589i
\(335\) 1.84763 + 4.05841i 0.100947 + 0.221735i
\(336\) 0 0
\(337\) −9.82568 + 14.0325i −0.535239 + 0.764400i −0.992142 0.125116i \(-0.960070\pi\)
0.456903 + 0.889516i \(0.348959\pi\)
\(338\) −4.53646 + 6.47874i −0.246751 + 0.352397i
\(339\) 0 0
\(340\) 8.25127 + 18.1243i 0.447488 + 0.982929i
\(341\) 7.85952 4.53769i 0.425617 0.245730i
\(342\) 0 0
\(343\) 4.00870 + 14.9607i 0.216450 + 0.807801i
\(344\) −3.84273 + 1.39864i −0.207186 + 0.0754097i
\(345\) 0 0
\(346\) 16.2166 13.6073i 0.871808 0.731534i
\(347\) −24.5967 + 11.4696i −1.32042 + 0.615723i −0.949741 0.313038i \(-0.898653\pi\)
−0.370681 + 0.928760i \(0.620876\pi\)
\(348\) 0 0
\(349\) −18.8404 3.32208i −1.00851 0.177827i −0.355095 0.934830i \(-0.615551\pi\)
−0.653411 + 0.757003i \(0.726663\pi\)
\(350\) −29.8063 + 24.0985i −1.59321 + 1.28812i
\(351\) 0 0
\(352\) −9.42361 9.42361i −0.502280 0.502280i
\(353\) 24.9423 17.4648i 1.32755 0.929558i 0.327663 0.944795i \(-0.393739\pi\)
0.999884 + 0.0152364i \(0.00485008\pi\)
\(354\) 0 0
\(355\) −0.143799 + 15.7790i −0.00763207 + 0.837461i
\(356\) 25.5949 + 30.5028i 1.35653 + 1.61664i
\(357\) 0 0
\(358\) −5.80691 + 12.4530i −0.306905 + 0.658160i
\(359\) 15.6146 27.0453i 0.824108 1.42740i −0.0784904 0.996915i \(-0.525010\pi\)
0.902599 0.430483i \(-0.141657\pi\)
\(360\) 0 0
\(361\) −5.61951 9.73329i −0.295764 0.512278i
\(362\) 59.5360 5.20872i 3.12914 0.273764i
\(363\) 0 0
\(364\) 54.9338 9.68632i 2.87931 0.507701i
\(365\) 8.77367 + 2.43681i 0.459235 + 0.127548i
\(366\) 0 0
\(367\) 0.124058 + 1.41799i 0.00647576 + 0.0740183i 0.998745 0.0500864i \(-0.0159497\pi\)
−0.992269 + 0.124105i \(0.960394\pi\)
\(368\) 16.8556 62.9058i 0.878657 3.27919i
\(369\) 0 0
\(370\) −0.346299 + 1.86444i −0.0180032 + 0.0969276i
\(371\) 7.98007 + 21.9251i 0.414305 + 1.13829i
\(372\) 0 0
\(373\) 0.857201 9.79785i 0.0443842 0.507313i −0.941168 0.337940i \(-0.890270\pi\)
0.985552 0.169374i \(-0.0541745\pi\)
\(374\) −7.20068 2.62083i −0.372339 0.135520i
\(375\) 0 0
\(376\) 0.924409 5.24259i 0.0476728 0.270366i
\(377\) −11.1477 + 11.1477i −0.574134 + 0.574134i
\(378\) 0 0
\(379\) 5.76488i 0.296122i −0.988978 0.148061i \(-0.952697\pi\)
0.988978 0.148061i \(-0.0473032\pi\)
\(380\) −4.82203 28.8839i −0.247365 1.48171i
\(381\) 0 0
\(382\) 4.15678 + 8.91424i 0.212679 + 0.456092i
\(383\) 2.84641 + 0.249029i 0.145445 + 0.0127248i 0.159646 0.987174i \(-0.448965\pi\)
−0.0142007 + 0.999899i \(0.504520\pi\)
\(384\) 0 0
\(385\) 0.995681 10.2988i 0.0507446 0.524877i
\(386\) −27.7076 15.9970i −1.41028 0.814226i
\(387\) 0 0
\(388\) −36.2617 9.71629i −1.84091 0.493270i
\(389\) 9.76677 + 8.19530i 0.495195 + 0.415518i 0.855884 0.517168i \(-0.173014\pi\)
−0.360689 + 0.932686i \(0.617458\pi\)
\(390\) 0 0
\(391\) −2.46354 13.9714i −0.124586 0.706565i
\(392\) −10.1365 7.09766i −0.511971 0.358486i
\(393\) 0 0
\(394\) 39.9445 47.6040i 2.01238 2.39826i
\(395\) −19.1000 + 22.3458i −0.961028 + 1.12434i
\(396\) 0 0
\(397\) −3.46941 + 0.929625i −0.174125 + 0.0466565i −0.344828 0.938666i \(-0.612063\pi\)
0.170703 + 0.985322i \(0.445396\pi\)
\(398\) 15.5371 + 7.24507i 0.778804 + 0.363162i
\(399\) 0 0
\(400\) −8.33002 + 42.6781i −0.416501 + 2.13391i
\(401\) 7.04392 19.3530i 0.351756 0.966443i −0.630049 0.776555i \(-0.716965\pi\)
0.981806 0.189888i \(-0.0608124\pi\)
\(402\) 0 0
\(403\) 13.3488 + 19.0640i 0.664949 + 0.949645i
\(404\) 73.1790 3.64079
\(405\) 0 0
\(406\) 30.1615 1.49689
\(407\) −0.293615 0.419326i −0.0145540 0.0207852i
\(408\) 0 0
\(409\) 5.75785 15.8196i 0.284707 0.782226i −0.712078 0.702101i \(-0.752246\pi\)
0.996785 0.0801257i \(-0.0255322\pi\)
\(410\) 35.6475 9.20438i 1.76051 0.454572i
\(411\) 0 0
\(412\) −33.7548 15.7401i −1.66298 0.775460i
\(413\) −29.2754 + 7.84432i −1.44055 + 0.385994i
\(414\) 0 0
\(415\) 0.709976 + 9.06589i 0.0348513 + 0.445027i
\(416\) 21.9677 26.1801i 1.07705 1.28358i
\(417\) 0 0
\(418\) 9.23028 + 6.46311i 0.451468 + 0.316121i
\(419\) −0.0944911 0.535886i −0.00461619 0.0261797i 0.982413 0.186723i \(-0.0597866\pi\)
−0.987029 + 0.160543i \(0.948675\pi\)
\(420\) 0 0
\(421\) −5.72762 4.80604i −0.279147 0.234232i 0.492455 0.870338i \(-0.336100\pi\)
−0.771602 + 0.636106i \(0.780544\pi\)
\(422\) −6.96256 1.86561i −0.338932 0.0908166i
\(423\) 0 0
\(424\) 47.7050 + 27.5425i 2.31676 + 1.33758i
\(425\) 2.28451 + 9.19292i 0.110815 + 0.445922i
\(426\) 0 0
\(427\) −35.8400 3.13559i −1.73442 0.151742i
\(428\) −11.1085 23.8223i −0.536950 1.15149i
\(429\) 0 0
\(430\) −3.33934 + 0.557488i −0.161037 + 0.0268845i
\(431\) 14.9683i 0.720998i 0.932760 + 0.360499i \(0.117394\pi\)
−0.932760 + 0.360499i \(0.882606\pi\)
\(432\) 0 0
\(433\) 24.8822 24.8822i 1.19576 1.19576i 0.220337 0.975424i \(-0.429284\pi\)
0.975424 0.220337i \(-0.0707157\pi\)
\(434\) 7.73168 43.8485i 0.371132 2.10480i
\(435\) 0 0
\(436\) −28.9929 10.5526i −1.38851 0.505376i
\(437\) −1.81822 + 20.7824i −0.0869774 + 0.994156i
\(438\) 0 0
\(439\) 13.0228 + 35.7799i 0.621545 + 1.70768i 0.703174 + 0.711017i \(0.251765\pi\)
−0.0816297 + 0.996663i \(0.526012\pi\)
\(440\) −13.8283 20.1370i −0.659240 0.959995i
\(441\) 0 0
\(442\) 5.08591 18.9809i 0.241912 0.902828i
\(443\) −2.49320 28.4974i −0.118456 1.35395i −0.790053 0.613038i \(-0.789947\pi\)
0.671597 0.740916i \(-0.265608\pi\)
\(444\) 0 0
\(445\) 9.32033 + 16.4885i 0.441826 + 0.781629i
\(446\) 56.2308 9.91500i 2.66260 0.469489i
\(447\) 0 0
\(448\) −13.8223 + 1.20930i −0.653043 + 0.0571338i
\(449\) 12.4470 + 21.5588i 0.587409 + 1.01742i 0.994570 + 0.104066i \(0.0331852\pi\)
−0.407162 + 0.913356i \(0.633481\pi\)
\(450\) 0 0
\(451\) −4.96922 + 8.60694i −0.233991 + 0.405285i
\(452\) −4.52771 + 9.70971i −0.212966 + 0.456706i
\(453\) 0 0
\(454\) 12.3703 + 14.7424i 0.580567 + 0.691893i
\(455\) 26.5322 + 0.241798i 1.24385 + 0.0113356i
\(456\) 0 0
\(457\) 3.01872 2.11373i 0.141210 0.0988761i −0.500837 0.865542i \(-0.666974\pi\)
0.642047 + 0.766666i \(0.278086\pi\)
\(458\) 8.50512 + 8.50512i 0.397418 + 0.397418i
\(459\) 0 0
\(460\) 33.9153 71.0342i 1.58131 3.31199i
\(461\) 15.0276 + 2.64977i 0.699905 + 0.123412i 0.512267 0.858826i \(-0.328806\pi\)
0.187638 + 0.982238i \(0.439917\pi\)
\(462\) 0 0
\(463\) 10.2029 4.75770i 0.474170 0.221109i −0.170817 0.985303i \(-0.554641\pi\)
0.644987 + 0.764194i \(0.276863\pi\)
\(464\) 26.2118 21.9943i 1.21685 1.02106i
\(465\) 0 0
\(466\) −34.7327 + 12.6417i −1.60896 + 0.585614i
\(467\) −4.51835 16.8627i −0.209084 0.780313i −0.988166 0.153390i \(-0.950981\pi\)
0.779082 0.626923i \(-0.215686\pi\)
\(468\) 0 0
\(469\) −5.11446 + 2.95283i −0.236164 + 0.136349i
\(470\) 1.54505 4.12757i 0.0712681 0.190391i
\(471\) 0 0
\(472\) −41.0421 + 58.6142i −1.88911 + 2.69794i
\(473\) 0.524198 0.748633i 0.0241027 0.0344222i
\(474\) 0 0
\(475\) 0.253863 13.9269i 0.0116480 0.639012i
\(476\) −22.8405 + 13.1870i −1.04689 + 0.604423i
\(477\) 0 0
\(478\) −13.6463 50.9287i −0.624168 2.32943i
\(479\) 21.5176 7.83178i 0.983166 0.357843i 0.200096 0.979776i \(-0.435875\pi\)
0.783070 + 0.621933i \(0.213652\pi\)
\(480\) 0 0
\(481\) 1.00560 0.843799i 0.0458514 0.0384739i
\(482\) −38.1778 + 17.8026i −1.73895 + 0.810885i
\(483\) 0 0
\(484\) −39.6216 6.98636i −1.80098 0.317562i
\(485\) −16.1145 7.69385i −0.731720 0.349360i
\(486\) 0 0
\(487\) 25.6571 + 25.6571i 1.16264 + 1.16264i 0.983896 + 0.178740i \(0.0572021\pi\)
0.178740 + 0.983896i \(0.442798\pi\)
\(488\) −69.5772 + 48.7185i −3.14961 + 2.20538i
\(489\) 0 0
\(490\) −7.17778 7.30981i −0.324259 0.330224i
\(491\) 8.85005 + 10.5471i 0.399397 + 0.475983i 0.927836 0.372988i \(-0.121667\pi\)
−0.528439 + 0.848971i \(0.677222\pi\)
\(492\) 0 0
\(493\) 3.15016 6.75555i 0.141876 0.304255i
\(494\) −14.4479 + 25.0245i −0.650041 + 1.12590i
\(495\) 0 0
\(496\) −25.2560 43.7446i −1.13403 1.96419i
\(497\) −20.8187 + 1.82140i −0.933845 + 0.0817009i
\(498\) 0 0
\(499\) −16.6957 + 2.94390i −0.747401 + 0.131787i −0.534361 0.845256i \(-0.679448\pi\)
−0.213040 + 0.977043i \(0.568337\pi\)
\(500\) −19.3191 + 48.8783i −0.863978 + 2.18590i
\(501\) 0 0
\(502\) 2.33590 + 26.6995i 0.104256 + 1.19166i
\(503\) −3.19471 + 11.9228i −0.142445 + 0.531612i 0.857411 + 0.514633i \(0.172072\pi\)
−0.999856 + 0.0169795i \(0.994595\pi\)
\(504\) 0 0
\(505\) 34.2236 + 6.35664i 1.52293 + 0.282867i
\(506\) 10.3595 + 28.4624i 0.460534 + 1.26531i
\(507\) 0 0
\(508\) 0.885334 10.1194i 0.0392803 0.448976i
\(509\) −1.17560 0.427885i −0.0521077 0.0189657i 0.315835 0.948814i \(-0.397715\pi\)
−0.367943 + 0.929849i \(0.619938\pi\)
\(510\) 0 0
\(511\) −2.09411 + 11.8763i −0.0926380 + 0.525376i
\(512\) 33.5394 33.5394i 1.48224 1.48224i
\(513\) 0 0
\(514\) 14.7101i 0.648833i
\(515\) −14.4188 10.2933i −0.635369 0.453575i
\(516\) 0 0
\(517\) 0.502796 + 1.07825i 0.0221130 + 0.0474214i
\(518\) −2.50190 0.218888i −0.109927 0.00961738i
\(519\) 0 0
\(520\) 48.3521 39.8270i 2.12038 1.74653i
\(521\) 25.5030 + 14.7242i 1.11731 + 0.645078i 0.940712 0.339206i \(-0.110158\pi\)
0.176595 + 0.984284i \(0.443492\pi\)
\(522\) 0 0
\(523\) 10.8910 + 2.91822i 0.476228 + 0.127605i 0.488946 0.872314i \(-0.337382\pi\)
−0.0127175 + 0.999919i \(0.504048\pi\)
\(524\) −3.46929 2.91108i −0.151556 0.127171i
\(525\) 0 0
\(526\) 8.75766 + 49.6671i 0.381852 + 2.16559i
\(527\) −9.01363 6.31141i −0.392640 0.274929i
\(528\) 0 0
\(529\) −21.2616 + 25.3386i −0.924417 + 1.10168i
\(530\) 34.6666 + 29.6313i 1.50582 + 1.28710i
\(531\) 0 0
\(532\) 37.4611 10.0377i 1.62414 0.435188i
\(533\) −23.0982 10.7709i −1.00049 0.466538i
\(534\) 0 0
\(535\) −3.12580 12.1059i −0.135140 0.523383i
\(536\) −4.76869 + 13.1019i −0.205976 + 0.565915i
\(537\) 0 0
\(538\) −32.4612 46.3594i −1.39950 1.99870i
\(539\) 2.76550 0.119118
\(540\) 0 0
\(541\) −2.55842 −0.109995 −0.0549975 0.998486i \(-0.517515\pi\)
−0.0549975 + 0.998486i \(0.517515\pi\)
\(542\) 38.1136 + 54.4318i 1.63712 + 2.33805i
\(543\) 0 0
\(544\) −5.52655 + 15.1841i −0.236949 + 0.651012i
\(545\) −12.6424 7.45355i −0.541543 0.319275i
\(546\) 0 0
\(547\) 3.81919 + 1.78092i 0.163297 + 0.0761465i 0.502548 0.864549i \(-0.332396\pi\)
−0.339251 + 0.940696i \(0.610174\pi\)
\(548\) 11.0483 2.96039i 0.471961 0.126462i
\(549\) 0 0
\(550\) −8.21147 18.4817i −0.350138 0.788062i
\(551\) −7.04554 + 8.39655i −0.300150 + 0.357705i
\(552\) 0 0
\(553\) −31.8912 22.3304i −1.35615 0.949586i
\(554\) −2.38429 13.5220i −0.101299 0.574494i
\(555\) 0 0
\(556\) 35.0309 + 29.3944i 1.48564 + 1.24660i
\(557\) −19.0860 5.11407i −0.808698 0.216690i −0.169299 0.985565i \(-0.554150\pi\)
−0.639399 + 0.768875i \(0.720817\pi\)
\(558\) 0 0
\(559\) 2.02964 + 1.17181i 0.0858446 + 0.0495624i
\(560\) −57.3213 5.54177i −2.42227 0.234183i
\(561\) 0 0
\(562\) 3.81240 + 0.333542i 0.160816 + 0.0140696i
\(563\) −11.2154 24.0516i −0.472675 1.01365i −0.987683 0.156469i \(-0.949989\pi\)
0.515008 0.857185i \(-0.327789\pi\)
\(564\) 0 0
\(565\) −2.96090 + 4.14763i −0.124566 + 0.174492i
\(566\) 13.1138i 0.551216i
\(567\) 0 0
\(568\) −34.8877 + 34.8877i −1.46386 + 1.46386i
\(569\) 7.42425 42.1050i 0.311241 1.76513i −0.281327 0.959612i \(-0.590774\pi\)
0.592567 0.805521i \(-0.298114\pi\)
\(570\) 0 0
\(571\) 9.01463 + 3.28106i 0.377251 + 0.137308i 0.523684 0.851912i \(-0.324557\pi\)
−0.146433 + 0.989221i \(0.546779\pi\)
\(572\) −2.56515 + 29.3198i −0.107254 + 1.22592i
\(573\) 0 0
\(574\) 16.6766 + 45.8187i 0.696069 + 1.91243i
\(575\) 22.0315 30.2745i 0.918776 1.26253i
\(576\) 0 0
\(577\) −3.87943 + 14.4782i −0.161503 + 0.602737i 0.836958 + 0.547268i \(0.184332\pi\)
−0.998460 + 0.0554690i \(0.982335\pi\)
\(578\) −3.02565 34.5834i −0.125851 1.43848i
\(579\) 0 0
\(580\) 36.0037 20.3516i 1.49497 0.845052i
\(581\) −11.8605 + 2.09132i −0.492055 + 0.0867626i
\(582\) 0 0
\(583\) −12.2639 + 1.07295i −0.507918 + 0.0444370i
\(584\) 14.2357 + 24.6569i 0.589077 + 1.02031i
\(585\) 0 0
\(586\) −29.7304 + 51.4946i −1.22815 + 2.12722i
\(587\) 1.70173 3.64938i 0.0702381 0.150626i −0.868054 0.496470i \(-0.834629\pi\)
0.938292 + 0.345844i \(0.112407\pi\)
\(588\) 0 0
\(589\) 10.4008 + 12.3951i 0.428556 + 0.510733i
\(590\) −42.2689 + 41.5054i −1.74018 + 1.70875i
\(591\) 0 0
\(592\) −2.33389 + 1.63421i −0.0959223 + 0.0671655i
\(593\) −6.31053 6.31053i −0.259142 0.259142i 0.565563 0.824705i \(-0.308659\pi\)
−0.824705 + 0.565563i \(0.808659\pi\)
\(594\) 0 0
\(595\) −11.8273 + 4.18311i −0.484870 + 0.171491i
\(596\) −64.9028 11.4441i −2.65852 0.468769i
\(597\) 0 0
\(598\) −70.3955 + 32.8260i −2.87869 + 1.34235i
\(599\) −25.4844 + 21.3840i −1.04127 + 0.873726i −0.992148 0.125067i \(-0.960085\pi\)
−0.0491180 + 0.998793i \(0.515641\pi\)
\(600\) 0 0
\(601\) −16.7184 + 6.08500i −0.681958 + 0.248212i −0.659688 0.751540i \(-0.729312\pi\)
−0.0222700 + 0.999752i \(0.507089\pi\)
\(602\) −1.16048 4.33098i −0.0472978 0.176518i
\(603\) 0 0
\(604\) 74.1818 42.8289i 3.01841 1.74268i
\(605\) −17.9229 6.70901i −0.728671 0.272760i
\(606\) 0 0
\(607\) 26.0280 37.1718i 1.05644 1.50876i 0.208966 0.977923i \(-0.432990\pi\)
0.847477 0.530833i \(-0.178121\pi\)
\(608\) 13.6288 19.4639i 0.552719 0.789365i
\(609\) 0 0
\(610\) −63.9996 + 29.1364i −2.59127 + 1.17970i
\(611\) −2.64216 + 1.52545i −0.106890 + 0.0617131i
\(612\) 0 0
\(613\) 9.48053 + 35.3818i 0.382915 + 1.42906i 0.841427 + 0.540370i \(0.181716\pi\)
−0.458512 + 0.888688i \(0.651617\pi\)
\(614\) −56.7222 + 20.6452i −2.28912 + 0.833172i
\(615\) 0 0
\(616\) 24.7829 20.7953i 0.998533 0.837868i
\(617\) 32.8468 15.3167i 1.32236 0.616628i 0.372134 0.928179i \(-0.378626\pi\)
0.950229 + 0.311551i \(0.100848\pi\)
\(618\) 0 0
\(619\) 33.7534 + 5.95163i 1.35666 + 0.239216i 0.804218 0.594334i \(-0.202584\pi\)
0.552444 + 0.833550i \(0.313695\pi\)
\(620\) −20.3576 57.5588i −0.817582 2.31162i
\(621\) 0 0
\(622\) −17.3342 17.3342i −0.695037 0.695037i
\(623\) −20.5478 + 14.3877i −0.823231 + 0.576433i
\(624\) 0 0
\(625\) −13.2807 + 21.1807i −0.531230 + 0.847228i
\(626\) −51.4823 61.3542i −2.05764 2.45221i
\(627\) 0 0
\(628\) 6.04798 12.9699i 0.241341 0.517557i
\(629\) −0.310333 + 0.537512i −0.0123738 + 0.0214320i
\(630\) 0 0
\(631\) −15.6392 27.0879i −0.622587 1.07835i −0.989002 0.147901i \(-0.952748\pi\)
0.366415 0.930451i \(-0.380585\pi\)
\(632\) −91.5648 + 8.01088i −3.64225 + 0.318656i
\(633\) 0 0
\(634\) −53.6285 + 9.45615i −2.12986 + 0.375552i
\(635\) 1.29306 4.65563i 0.0513135 0.184753i
\(636\) 0 0
\(637\) 0.618092 + 7.06483i 0.0244897 + 0.279919i
\(638\) −4.11886 + 15.3718i −0.163067 + 0.608576i
\(639\) 0 0
\(640\) 9.08721 6.24029i 0.359203 0.246669i
\(641\) −1.87972 5.16450i −0.0742446 0.203985i 0.897019 0.441992i \(-0.145728\pi\)
−0.971263 + 0.238007i \(0.923506\pi\)
\(642\) 0 0
\(643\) 3.93539 44.9817i 0.155197 1.77390i −0.375965 0.926634i \(-0.622689\pi\)
0.531161 0.847271i \(-0.321756\pi\)
\(644\) 97.9620 + 35.6552i 3.86024 + 1.40501i
\(645\) 0 0
\(646\) 2.37242 13.4546i 0.0933414 0.529366i
\(647\) 18.1400 18.1400i 0.713158 0.713158i −0.254037 0.967195i \(-0.581758\pi\)
0.967195 + 0.254037i \(0.0817584\pi\)
\(648\) 0 0
\(649\) 15.9914i 0.627719i
\(650\) 45.3787 25.1080i 1.77990 0.984816i
\(651\) 0 0
\(652\) −44.9910 96.4835i −1.76198 3.77858i
\(653\) 7.25864 + 0.635049i 0.284052 + 0.0248514i 0.228292 0.973593i \(-0.426686\pi\)
0.0557608 + 0.998444i \(0.482242\pi\)
\(654\) 0 0
\(655\) −1.36961 1.66278i −0.0535151 0.0649701i
\(656\) 47.9046 + 27.6577i 1.87036 + 1.07985i
\(657\) 0 0
\(658\) 5.63801 + 1.51070i 0.219793 + 0.0588932i
\(659\) 20.4475 + 17.1575i 0.796520 + 0.668360i 0.947350 0.320200i \(-0.103750\pi\)
−0.150830 + 0.988560i \(0.548195\pi\)
\(660\) 0 0
\(661\) −3.17425 18.0020i −0.123464 0.700198i −0.982208 0.187794i \(-0.939866\pi\)
0.858745 0.512404i \(-0.171245\pi\)
\(662\) 0.509133 + 0.356499i 0.0197880 + 0.0138557i
\(663\) 0 0
\(664\) −18.2766 + 21.7813i −0.709271 + 0.845277i
\(665\) 18.3913 1.44028i 0.713184 0.0558515i
\(666\) 0 0
\(667\) −28.4594 + 7.62568i −1.10195 + 0.295267i
\(668\) 22.3541 + 10.4239i 0.864905 + 0.403312i
\(669\) 0 0
\(670\) −5.86242 + 9.94363i −0.226485 + 0.384156i
\(671\) 6.49238 17.8377i 0.250635 0.688615i
\(672\) 0 0
\(673\) 12.4963 + 17.8466i 0.481697 + 0.687934i 0.984284 0.176592i \(-0.0565074\pi\)
−0.502587 + 0.864526i \(0.667618\pi\)
\(674\) −44.3443 −1.70808
\(675\) 0 0
\(676\) −14.3629 −0.552418
\(677\) 6.04776 + 8.63710i 0.232434 + 0.331951i 0.918378 0.395704i \(-0.129499\pi\)
−0.685944 + 0.727654i \(0.740610\pi\)
\(678\) 0 0
\(679\) 8.08857 22.2232i 0.310411 0.852846i
\(680\) −15.0422 + 25.5140i −0.576841 + 0.978416i
\(681\) 0 0
\(682\) 21.2916 + 9.92842i 0.815296 + 0.380179i
\(683\) −22.9581 + 6.15162i −0.878469 + 0.235385i −0.669746 0.742590i \(-0.733597\pi\)
−0.208723 + 0.977975i \(0.566931\pi\)
\(684\) 0 0
\(685\) 5.42411 0.424778i 0.207245 0.0162299i
\(686\) −25.7716 + 30.7134i −0.983965 + 1.17264i
\(687\) 0 0
\(688\) −4.16675 2.91759i −0.158856 0.111232i
\(689\) −5.48198 31.0899i −0.208847 1.18443i
\(690\) 0 0
\(691\) 29.8109 + 25.0143i 1.13406 + 0.951591i 0.999228 0.0392778i \(-0.0125057\pi\)
0.134833 + 0.990868i \(0.456950\pi\)
\(692\) 37.1333 + 9.94983i 1.41160 + 0.378236i
\(693\) 0 0
\(694\) −60.8414 35.1268i −2.30951 1.33339i
\(695\) 13.8296 + 16.7898i 0.524585 + 0.636874i
\(696\) 0 0
\(697\) 12.0042 + 1.05023i 0.454691 + 0.0397803i
\(698\) −20.9293 44.8830i −0.792185 1.69885i
\(699\) 0 0
\(700\) −66.8950 19.2378i −2.52839 0.727121i
\(701\) 37.4202i 1.41334i 0.707542 + 0.706671i \(0.249804\pi\)
−0.707542 + 0.706671i \(0.750196\pi\)
\(702\) 0 0
\(703\) 0.645364 0.645364i 0.0243404 0.0243404i
\(704\) 1.27126 7.20968i 0.0479125 0.271725i
\(705\) 0 0
\(706\) 74.0671 + 26.9582i 2.78755 + 1.01459i
\(707\) −4.01789 + 45.9247i −0.151108 + 1.72718i
\(708\) 0 0
\(709\) −10.2864 28.2616i −0.386313 1.06139i −0.968648 0.248437i \(-0.920083\pi\)
0.582335 0.812949i \(-0.302139\pi\)
\(710\) −33.6723 + 23.1232i −1.26370 + 0.867797i
\(711\) 0 0
\(712\) −15.3277 + 57.2037i −0.574429 + 2.14380i
\(713\) 3.79078 + 43.3288i 0.141966 + 1.62268i
\(714\) 0 0
\(715\) −3.74648 + 13.4891i −0.140111 + 0.504465i
\(716\) −24.5733 + 4.33293i −0.918347 + 0.161929i
\(717\) 0 0
\(718\) 80.5327 7.04570i 3.00546 0.262943i
\(719\) −1.80566 3.12750i −0.0673399 0.116636i 0.830390 0.557183i \(-0.188118\pi\)
−0.897730 + 0.440547i \(0.854785\pi\)
\(720\) 0 0
\(721\) 11.7313 20.3192i 0.436896 0.756726i
\(722\) 12.2954 26.3676i 0.457589 0.981302i
\(723\) 0 0
\(724\) 69.7617 + 83.1388i 2.59268 + 3.08983i
\(725\) 18.6056 6.39035i 0.690996 0.237332i
\(726\) 0 0
\(727\) 24.6477 17.2585i 0.914133 0.640083i −0.0189200 0.999821i \(-0.506023\pi\)
0.933053 + 0.359738i \(0.117134\pi\)
\(728\) 58.6635 + 58.6635i 2.17421 + 2.17421i
\(729\) 0 0
\(730\) 7.85968 + 22.2223i 0.290900 + 0.822486i
\(731\) −1.09125 0.192418i −0.0403615 0.00711682i
\(732\) 0 0
\(733\) −37.0978 + 17.2990i −1.37024 + 0.638953i −0.961780 0.273824i \(-0.911712\pi\)
−0.408459 + 0.912777i \(0.633934\pi\)
\(734\) −2.82259 + 2.36844i −0.104184 + 0.0874206i
\(735\) 0 0
\(736\) 60.0186 21.8450i 2.21231 0.805217i
\(737\) −0.806480 3.00982i −0.0297071 0.110868i
\(738\) 0 0
\(739\) 7.88425 4.55198i 0.290027 0.167447i −0.347927 0.937522i \(-0.613114\pi\)
0.637954 + 0.770074i \(0.279781\pi\)
\(740\) −3.13421 + 1.42688i −0.115216 + 0.0524530i
\(741\) 0 0
\(742\) −34.6428 + 49.4750i −1.27178 + 1.81629i
\(743\) 27.8074 39.7131i 1.02016 1.45693i 0.135449 0.990784i \(-0.456752\pi\)
0.884706 0.466149i \(-0.154359\pi\)
\(744\) 0 0
\(745\) −29.3589 10.9898i −1.07563 0.402635i
\(746\) 22.0487 12.7298i 0.807262 0.466073i
\(747\) 0 0
\(748\) −3.60163 13.4415i −0.131689 0.491468i
\(749\) 15.5600 5.66337i 0.568550 0.206935i
\(750\) 0 0
\(751\) −31.7068 + 26.6051i −1.15700 + 0.970835i −0.999860 0.0167415i \(-0.994671\pi\)
−0.157137 + 0.987577i \(0.550226\pi\)
\(752\) 6.00134 2.79847i 0.218846 0.102050i
\(753\) 0 0
\(754\) −40.1899 7.08656i −1.46363 0.258077i
\(755\) 38.4128 13.5860i 1.39799 0.494445i
\(756\) 0 0
\(757\) −27.0538 27.0538i −0.983288 0.983288i 0.0165746 0.999863i \(-0.494724\pi\)
−0.999863 + 0.0165746i \(0.994724\pi\)
\(758\) 12.2242 8.55950i 0.444004 0.310895i
\(759\) 0 0
\(760\) 31.0761 30.5148i 1.12725 1.10689i
\(761\) −22.5010 26.8156i −0.815660 0.972066i 0.184281 0.982874i \(-0.441004\pi\)
−0.999942 + 0.0108074i \(0.996560\pi\)
\(762\) 0 0
\(763\) 8.21429 17.6156i 0.297377 0.637728i
\(764\) −8.93086 + 15.4687i −0.323107 + 0.559638i
\(765\) 0 0
\(766\) 3.69820 + 6.40547i 0.133621 + 0.231439i
\(767\) 40.8523 3.57411i 1.47509 0.129054i
\(768\) 0 0
\(769\) −6.45291 + 1.13782i −0.232698 + 0.0410309i −0.288781 0.957395i \(-0.593250\pi\)
0.0560832 + 0.998426i \(0.482139\pi\)
\(770\) 23.3166 13.1800i 0.840274 0.474975i
\(771\) 0 0
\(772\) −5.06383 57.8799i −0.182251 2.08314i
\(773\) −1.43767 + 5.36547i −0.0517095 + 0.192983i −0.986949 0.161033i \(-0.948517\pi\)
0.935239 + 0.354016i \(0.115184\pi\)
\(774\) 0 0
\(775\) −4.52082 28.6868i −0.162393 1.03046i
\(776\) −19.0963 52.4668i −0.685519 1.88345i
\(777\) 0 0
\(778\) −2.87647 + 32.8782i −0.103126 + 1.17874i
\(779\) −16.6509 6.06042i −0.596579 0.217137i
\(780\) 0 0
\(781\) 1.91473 10.8590i 0.0685144 0.388565i
\(782\) 25.9681 25.9681i 0.928618 0.928618i
\(783\) 0 0
\(784\) 15.3922i 0.549723i
\(785\) 3.95508 5.54028i 0.141163 0.197741i
\(786\) 0 0
\(787\) −13.1429 28.1849i −0.468492 1.00468i −0.988597 0.150582i \(-0.951885\pi\)
0.520105 0.854102i \(-0.325893\pi\)
\(788\) 112.421 + 9.83559i 4.00484 + 0.350378i
\(789\) 0 0
\(790\) −75.7426 7.32272i −2.69480 0.260531i
\(791\) −5.84490 3.37455i −0.207821 0.119985i
\(792\) 0 0
\(793\) 47.0197 + 12.5989i 1.66972 + 0.447400i
\(794\) −7.12249 5.97648i −0.252768 0.212097i
\(795\) 0 0
\(796\) 5.40604 + 30.6592i 0.191612 + 1.08669i
\(797\) 3.95902 + 2.77214i 0.140236 + 0.0981941i 0.641589 0.767049i \(-0.278275\pi\)
−0.501353 + 0.865243i \(0.667164\pi\)
\(798\) 0 0
\(799\) 0.927217 1.10501i 0.0328026 0.0390926i
\(800\) −38.9723 + 17.3155i −1.37788 + 0.612196i
\(801\) 0 0
\(802\) 51.4959 13.7983i 1.81838 0.487235i
\(803\) −5.76678 2.68909i −0.203505 0.0948961i
\(804\) 0 0
\(805\) 42.7166 + 25.1842i 1.50556 + 0.887628i
\(806\) −20.6048 + 56.6111i −0.725772 + 1.99404i
\(807\) 0 0
\(808\) 62.4270 + 89.1550i 2.19617 + 3.13646i
\(809\) −27.0458 −0.950881 −0.475440 0.879748i \(-0.657711\pi\)
−0.475440 + 0.879748i \(0.657711\pi\)
\(810\) 0 0
\(811\) −47.9089 −1.68231 −0.841154 0.540795i \(-0.818123\pi\)
−0.841154 + 0.540795i \(0.818123\pi\)
\(812\) 31.4166 + 44.8675i 1.10251 + 1.57454i
\(813\) 0 0
\(814\) 0.453216 1.24520i 0.0158852 0.0436443i
\(815\) −12.6599 49.0304i −0.443458 1.71746i
\(816\) 0 0
\(817\) 1.47677 + 0.688628i 0.0516656 + 0.0240921i
\(818\) 42.0939 11.2790i 1.47178 0.394362i
\(819\) 0 0
\(820\) 50.8231 + 43.4410i 1.77482 + 1.51703i
\(821\) 27.5109 32.7862i 0.960137 1.14425i −0.0293416 0.999569i \(-0.509341\pi\)
0.989479 0.144678i \(-0.0462145\pi\)
\(822\) 0 0
\(823\) −9.96073 6.97458i −0.347209 0.243119i 0.386943 0.922104i \(-0.373531\pi\)
−0.734152 + 0.678985i \(0.762420\pi\)
\(824\) −9.61888 54.5514i −0.335090 1.90039i
\(825\) 0 0
\(826\) −60.1008 50.4305i −2.09117 1.75470i
\(827\) −13.0585 3.49901i −0.454088 0.121673i 0.0245234 0.999699i \(-0.492193\pi\)
−0.478612 + 0.878027i \(0.658860\pi\)
\(828\) 0 0
\(829\) −22.0957 12.7570i −0.767415 0.443068i 0.0645364 0.997915i \(-0.479443\pi\)
−0.831952 + 0.554848i \(0.812776\pi\)
\(830\) −18.1698 + 14.9662i −0.630681 + 0.519484i
\(831\) 0 0
\(832\) 18.7022 + 1.63623i 0.648383 + 0.0567261i
\(833\) −1.41707 3.03892i −0.0490986 0.105292i
\(834\) 0 0
\(835\) 9.54884 + 6.81669i 0.330451 + 0.235901i
\(836\) 20.4628i 0.707721i
\(837\) 0 0
\(838\) 0.996030 0.996030i 0.0344073 0.0344073i
\(839\) −6.29080 + 35.6769i −0.217183 + 1.23170i 0.659896 + 0.751357i \(0.270600\pi\)
−0.877078 + 0.480347i \(0.840511\pi\)
\(840\) 0 0
\(841\) 12.7044 + 4.62403i 0.438083 + 0.159449i
\(842\) 1.68687 19.2811i 0.0581335 0.664469i
\(843\) 0 0
\(844\) −4.47705 12.3006i −0.154106 0.423404i
\(845\) −6.71706 1.24762i −0.231074 0.0429194i
\(846\) 0 0
\(847\) 6.55983 24.4816i 0.225398 0.841199i
\(848\) 5.97184 + 68.2584i 0.205074 + 2.34400i
\(849\) 0 0
\(850\) −16.1013 + 18.4935i −0.552270 + 0.634324i
\(851\) 2.41605 0.426015i 0.0828212 0.0146036i
\(852\) 0 0
\(853\) 12.1293 1.06118i 0.415300 0.0363341i 0.122409 0.992480i \(-0.460938\pi\)
0.292891 + 0.956146i \(0.405383\pi\)
\(854\) −46.5651 80.6531i −1.59342 2.75989i
\(855\) 0 0
\(856\) 19.5466 33.8558i 0.668090 1.15717i
\(857\) 17.7690 38.1058i 0.606978 1.30167i −0.327232 0.944944i \(-0.606116\pi\)
0.934210 0.356724i \(-0.116106\pi\)
\(858\) 0 0
\(859\) −16.1180 19.2086i −0.549938 0.655390i 0.417447 0.908701i \(-0.362925\pi\)
−0.967385 + 0.253311i \(0.918480\pi\)
\(860\) −4.30761 4.38684i −0.146888 0.149590i
\(861\) 0 0
\(862\) −31.7398 + 22.2244i −1.08106 + 0.756967i
\(863\) −16.2331 16.2331i −0.552582 0.552582i 0.374603 0.927185i \(-0.377779\pi\)
−0.927185 + 0.374603i \(0.877779\pi\)
\(864\) 0 0
\(865\) 16.5018 + 7.87879i 0.561078 + 0.267887i
\(866\) 89.7060 + 15.8176i 3.04833 + 0.537503i
\(867\) 0 0
\(868\) 73.2814 34.1717i 2.48733 1.15986i
\(869\) 15.7358 13.2039i 0.533800 0.447911i
\(870\) 0 0
\(871\) 7.50875 2.73296i 0.254424 0.0926028i
\(872\) −11.8767 44.3246i −0.402197 1.50102i
\(873\) 0 0
\(874\) −46.7680 + 27.0015i −1.58195 + 0.913339i
\(875\) −29.6137 14.8077i −1.00112 0.500592i
\(876\) 0 0
\(877\) 31.8721 45.5180i 1.07624 1.53703i 0.254588 0.967049i \(-0.418060\pi\)
0.821655 0.569985i \(-0.193051\pi\)
\(878\) −56.5342 + 80.7392i −1.90794 + 2.72481i
\(879\) 0 0
\(880\) 10.6522 28.4570i 0.359085 0.959286i
\(881\) −20.5994 + 11.8931i −0.694013 + 0.400688i −0.805114 0.593121i \(-0.797896\pi\)
0.111101 + 0.993809i \(0.464562\pi\)
\(882\) 0 0
\(883\) −6.72963 25.1153i −0.226470 0.845198i −0.981810 0.189865i \(-0.939195\pi\)
0.755340 0.655333i \(-0.227472\pi\)
\(884\) 33.5330 12.2050i 1.12784 0.410499i
\(885\) 0 0
\(886\) 56.7260 47.5988i 1.90575 1.59911i
\(887\) −11.8712 + 5.53565i −0.398597 + 0.185869i −0.611572 0.791189i \(-0.709463\pi\)
0.212975 + 0.977058i \(0.431685\pi\)
\(888\) 0 0
\(889\) 6.30200 + 1.11121i 0.211362 + 0.0372689i
\(890\) −21.1248 + 44.2450i −0.708104 + 1.48309i
\(891\) 0 0
\(892\) 73.3199 + 73.3199i 2.45493 + 2.45493i
\(893\) −1.73756 + 1.21666i −0.0581454 + 0.0407138i
\(894\) 0 0
\(895\) −11.8685 0.108162i −0.396722 0.00361546i
\(896\) 9.38428 + 11.1838i 0.313507 + 0.373623i
\(897\) 0 0
\(898\) −27.2338 + 58.4031i −0.908804 + 1.94894i
\(899\) −11.4261 + 19.7906i −0.381082 + 0.660054i
\(900\) 0 0
\(901\) 7.46317 + 12.9266i 0.248634 + 0.430647i
\(902\) −25.6289 + 2.24223i −0.853347 + 0.0746582i
\(903\) 0 0
\(904\) −15.6919 + 2.76691i −0.521906 + 0.0920261i
\(905\) 25.4036 + 44.9412i 0.844445 + 1.49390i
\(906\) 0 0
\(907\) −3.65873 41.8194i −0.121486 1.38859i −0.775136 0.631795i \(-0.782319\pi\)
0.653650 0.756797i \(-0.273237\pi\)
\(908\) −9.04532 + 33.7576i −0.300180 + 1.12029i
\(909\) 0 0
\(910\) 38.8814 + 56.6197i 1.28891 + 1.87693i
\(911\) −18.7788 51.5943i −0.622169 1.70940i −0.701614 0.712557i \(-0.747537\pi\)
0.0794445 0.996839i \(-0.474685\pi\)
\(912\) 0 0
\(913\) 0.553828 6.33028i 0.0183290 0.209502i
\(914\) 8.96418 + 3.26269i 0.296509 + 0.107920i
\(915\) 0 0
\(916\) −3.79298 + 21.5110i −0.125323 + 0.710745i
\(917\) 2.01738 2.01738i 0.0666196 0.0666196i
\(918\) 0 0
\(919\) 38.4394i 1.26800i 0.773333 + 0.634000i \(0.218588\pi\)
−0.773333 + 0.634000i \(0.781412\pi\)
\(920\) 115.474 19.2779i 3.80707 0.635573i
\(921\) 0 0
\(922\) 16.6937 + 35.7998i 0.549778 + 1.17900i
\(923\) 28.1686 + 2.46444i 0.927182 + 0.0811179i
\(924\) 0 0
\(925\) −1.58972 + 0.395056i −0.0522695 + 0.0129894i
\(926\) 25.2375 + 14.5709i 0.829356 + 0.478829i
\(927\) 0 0
\(928\) 32.4145 + 8.68545i 1.06406 + 0.285114i
\(929\) −17.4189 14.6162i −0.571497 0.479543i 0.310645 0.950526i \(-0.399455\pi\)
−0.882142 + 0.470983i \(0.843899\pi\)
\(930\) 0 0
\(931\) 0.856201 + 4.85576i 0.0280609 + 0.159141i
\(932\) −54.9834 38.4998i −1.80104 1.26110i
\(933\) 0 0
\(934\) 29.0481 34.6182i 0.950482 1.13274i
\(935\) −0.516787 6.59901i −0.0169007 0.215811i
\(936\) 0 0
\(937\) 2.08398 0.558400i 0.0680806 0.0182421i −0.224618 0.974447i \(-0.572113\pi\)
0.292699 + 0.956205i \(0.405447\pi\)
\(938\) −13.8552 6.46077i −0.452387 0.210951i
\(939\) 0 0
\(940\) 7.74943 2.00094i 0.252758 0.0652636i
\(941\) −15.3914 + 42.2876i −0.501747 + 1.37854i 0.387821 + 0.921735i \(0.373228\pi\)
−0.889568 + 0.456803i \(0.848994\pi\)
\(942\) 0 0
\(943\) −27.3198 39.0167i −0.889654 1.27056i
\(944\) −89.0054 −2.89688
\(945\) 0 0
\(946\) 2.36576 0.0769175
\(947\) −9.56806 13.6646i −0.310920 0.444040i 0.633030 0.774127i \(-0.281811\pi\)
−0.943950 + 0.330087i \(0.892922\pi\)
\(948\) 0 0
\(949\) 5.58076 15.3330i 0.181159 0.497731i
\(950\) 29.9085 20.1399i 0.970361 0.653426i
\(951\) 0 0
\(952\) −35.5504 16.5774i −1.15220 0.537277i
\(953\) −17.5554 + 4.70396i −0.568676 + 0.152376i −0.531689 0.846940i \(-0.678443\pi\)
−0.0369865 + 0.999316i \(0.511776\pi\)
\(954\) 0 0
\(955\) −5.52036 + 6.45846i −0.178635 + 0.208991i
\(956\) 61.5462 73.3479i 1.99055 2.37224i
\(957\) 0 0
\(958\) 48.5557 + 33.9991i 1.56876 + 1.09846i
\(959\) 1.25123 + 7.09611i 0.0404045 + 0.229145i
\(960\) 0 0
\(961\) 2.09504 + 1.75795i 0.0675821 + 0.0567081i
\(962\) 3.28233 + 0.879497i 0.105826 + 0.0283561i
\(963\) 0 0
\(964\) −66.2491 38.2489i −2.13374 1.23192i
\(965\) 2.65950 27.5085i 0.0856122 0.885530i
\(966\) 0 0
\(967\) 33.4211 + 2.92397i 1.07475 + 0.0940285i 0.610763 0.791813i \(-0.290863\pi\)
0.463988 + 0.885842i \(0.346418\pi\)
\(968\) −25.2885 54.2314i −0.812804 1.74306i
\(969\) 0 0
\(970\) −7.61166 45.5937i −0.244396 1.46393i
\(971\) 23.4452i 0.752393i 0.926540 + 0.376196i \(0.122768\pi\)
−0.926540 + 0.376196i \(0.877232\pi\)
\(972\) 0 0
\(973\) −20.3704 + 20.3704i −0.653044 + 0.653044i
\(974\) −16.3102 + 92.5000i −0.522614 + 2.96389i
\(975\) 0 0
\(976\) −99.2811 36.1353i −3.17791 1.15666i
\(977\) 1.95075 22.2971i 0.0624099 0.713349i −0.898949 0.438052i \(-0.855668\pi\)
0.961359 0.275297i \(-0.0887760\pi\)
\(978\) 0 0
\(979\) −4.52670 12.4370i −0.144674 0.397488i
\(980\) 3.39744 18.2915i 0.108527 0.584300i
\(981\) 0 0
\(982\) −9.22446 + 34.4262i −0.294365 + 1.09858i
\(983\) −0.218640 2.49907i −0.00697353 0.0797078i 0.991910 0.126940i \(-0.0405155\pi\)
−0.998884 + 0.0472321i \(0.984960\pi\)
\(984\) 0 0
\(985\) 51.7216 + 14.3652i 1.64799 + 0.457713i
\(986\) 19.0022 3.35059i 0.605152 0.106705i
\(987\) 0 0
\(988\) −52.2749 + 4.57346i −1.66309 + 0.145501i
\(989\) 2.18999 + 3.79317i 0.0696376 + 0.120616i
\(990\) 0 0
\(991\) −11.7772 + 20.3987i −0.374116 + 0.647987i −0.990194 0.139697i \(-0.955387\pi\)
0.616079 + 0.787685i \(0.288720\pi\)
\(992\) 20.9361 44.8975i 0.664720 1.42550i
\(993\) 0 0
\(994\) −34.7731 41.4409i −1.10294 1.31443i
\(995\) −0.134950 + 14.8079i −0.00427820 + 0.469443i
\(996\) 0 0
\(997\) −12.8042 + 8.96558i −0.405512 + 0.283943i −0.758484 0.651691i \(-0.774060\pi\)
0.352972 + 0.935634i \(0.385171\pi\)
\(998\) −31.0316 31.0316i −0.982289 0.982289i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.332.15 192
3.2 odd 2 135.2.q.a.2.2 192
5.3 odd 4 inner 405.2.r.a.8.15 192
15.2 even 4 675.2.ba.b.218.15 192
15.8 even 4 135.2.q.a.83.2 yes 192
15.14 odd 2 675.2.ba.b.407.15 192
27.13 even 9 135.2.q.a.122.2 yes 192
27.14 odd 18 inner 405.2.r.a.152.15 192
135.13 odd 36 135.2.q.a.68.2 yes 192
135.67 odd 36 675.2.ba.b.68.15 192
135.68 even 36 inner 405.2.r.a.233.15 192
135.94 even 18 675.2.ba.b.257.15 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.2 192 3.2 odd 2
135.2.q.a.68.2 yes 192 135.13 odd 36
135.2.q.a.83.2 yes 192 15.8 even 4
135.2.q.a.122.2 yes 192 27.13 even 9
405.2.r.a.8.15 192 5.3 odd 4 inner
405.2.r.a.152.15 192 27.14 odd 18 inner
405.2.r.a.233.15 192 135.68 even 36 inner
405.2.r.a.332.15 192 1.1 even 1 trivial
675.2.ba.b.68.15 192 135.67 odd 36
675.2.ba.b.218.15 192 15.2 even 4
675.2.ba.b.257.15 192 135.94 even 18
675.2.ba.b.407.15 192 15.14 odd 2