Properties

Label 405.2.r.a.332.11
Level $405$
Weight $2$
Character 405.332
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 332.11
Character \(\chi\) \(=\) 405.332
Dual form 405.2.r.a.233.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.761943 + 1.08817i) q^{2} +(0.0804885 - 0.221140i) q^{4} +(-1.62191 - 1.53928i) q^{5} +(1.77434 + 0.827388i) q^{7} +(2.86825 - 0.768546i) q^{8} +(0.439192 - 2.93776i) q^{10} +(2.76562 - 3.29594i) q^{11} +(-4.15220 - 2.90740i) q^{13} +(0.451609 + 2.56120i) q^{14} +(2.66120 + 2.23301i) q^{16} +(3.09176 + 0.828434i) q^{17} +(0.776109 + 0.448087i) q^{19} +(-0.470943 + 0.234776i) q^{20} +(5.69379 + 0.498142i) q^{22} +(2.36525 + 5.07230i) q^{23} +(0.261212 + 4.99317i) q^{25} -6.73356i q^{26} +(0.325783 - 0.325783i) q^{28} +(1.14702 - 6.50507i) q^{29} +(2.27652 + 0.828586i) q^{31} +(0.115398 - 1.31900i) q^{32} +(1.45427 + 3.99557i) q^{34} +(-1.60424 - 4.07317i) q^{35} +(-1.86654 + 6.96604i) q^{37} +(0.103757 + 1.18595i) q^{38} +(-5.83507 - 3.16854i) q^{40} +(-8.33680 + 1.47000i) q^{41} +(1.28541 - 0.112459i) q^{43} +(-0.506265 - 0.876877i) q^{44} +(-3.71732 + 6.43859i) q^{46} +(-3.48305 + 7.46943i) q^{47} +(-2.03580 - 2.42617i) q^{49} +(-5.23438 + 4.08876i) q^{50} +(-0.977148 + 0.684206i) q^{52} +(-0.947342 - 0.947342i) q^{53} +(-9.55899 + 1.08866i) q^{55} +(5.72514 + 1.00950i) q^{56} +(7.95258 - 3.70835i) q^{58} +(-3.72879 + 3.12883i) q^{59} +(-7.90101 + 2.87573i) q^{61} +(0.832940 + 3.10857i) q^{62} +(7.54029 - 4.35339i) q^{64} +(2.25919 + 11.1070i) q^{65} +(5.53556 - 7.90560i) q^{67} +(0.432051 - 0.617033i) q^{68} +(3.20995 - 4.84921i) q^{70} +(-4.92123 + 2.84127i) q^{71} +(-1.32285 - 4.93694i) q^{73} +(-9.00242 + 3.27661i) q^{74} +(0.161558 - 0.135563i) q^{76} +(7.63418 - 3.55988i) q^{77} +(0.410612 + 0.0724019i) q^{79} +(-0.879000 - 7.71810i) q^{80} +(-7.95178 - 7.95178i) q^{82} +(7.59392 - 5.31732i) q^{83} +(-3.73937 - 6.10274i) q^{85} +(1.10179 + 1.31306i) q^{86} +(5.39942 - 11.5791i) q^{88} +(-0.974450 + 1.68780i) q^{89} +(-4.96186 - 8.59420i) q^{91} +(1.31207 - 0.114791i) q^{92} +(-10.7819 + 1.90114i) q^{94} +(-0.569049 - 1.92141i) q^{95} +(1.17718 + 13.4552i) q^{97} +(1.08892 - 4.06390i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.761943 + 1.08817i 0.538775 + 0.769451i 0.992573 0.121654i \(-0.0388198\pi\)
−0.453797 + 0.891105i \(0.649931\pi\)
\(3\) 0 0
\(4\) 0.0804885 0.221140i 0.0402443 0.110570i
\(5\) −1.62191 1.53928i −0.725342 0.688389i
\(6\) 0 0
\(7\) 1.77434 + 0.827388i 0.670638 + 0.312723i 0.727947 0.685633i \(-0.240474\pi\)
−0.0573098 + 0.998356i \(0.518252\pi\)
\(8\) 2.86825 0.768546i 1.01408 0.271722i
\(9\) 0 0
\(10\) 0.439192 2.93776i 0.138885 0.929002i
\(11\) 2.76562 3.29594i 0.833867 0.993764i −0.166104 0.986108i \(-0.553119\pi\)
0.999971 0.00765542i \(-0.00243682\pi\)
\(12\) 0 0
\(13\) −4.15220 2.90740i −1.15161 0.806368i −0.167844 0.985814i \(-0.553681\pi\)
−0.983768 + 0.179446i \(0.942569\pi\)
\(14\) 0.451609 + 2.56120i 0.120698 + 0.684510i
\(15\) 0 0
\(16\) 2.66120 + 2.23301i 0.665301 + 0.558253i
\(17\) 3.09176 + 0.828434i 0.749861 + 0.200925i 0.613456 0.789729i \(-0.289779\pi\)
0.136405 + 0.990653i \(0.456445\pi\)
\(18\) 0 0
\(19\) 0.776109 + 0.448087i 0.178052 + 0.102798i 0.586377 0.810038i \(-0.300554\pi\)
−0.408325 + 0.912836i \(0.633887\pi\)
\(20\) −0.470943 + 0.234776i −0.105306 + 0.0524975i
\(21\) 0 0
\(22\) 5.69379 + 0.498142i 1.21392 + 0.106204i
\(23\) 2.36525 + 5.07230i 0.493189 + 1.05765i 0.982624 + 0.185607i \(0.0594253\pi\)
−0.489435 + 0.872040i \(0.662797\pi\)
\(24\) 0 0
\(25\) 0.261212 + 4.99317i 0.0522423 + 0.998634i
\(26\) 6.73356i 1.32056i
\(27\) 0 0
\(28\) 0.325783 0.325783i 0.0615672 0.0615672i
\(29\) 1.14702 6.50507i 0.212996 1.20796i −0.671354 0.741137i \(-0.734287\pi\)
0.884350 0.466825i \(-0.154602\pi\)
\(30\) 0 0
\(31\) 2.27652 + 0.828586i 0.408875 + 0.148818i 0.538266 0.842775i \(-0.319080\pi\)
−0.129390 + 0.991594i \(0.541302\pi\)
\(32\) 0.115398 1.31900i 0.0203996 0.233169i
\(33\) 0 0
\(34\) 1.45427 + 3.99557i 0.249405 + 0.685235i
\(35\) −1.60424 4.07317i −0.271166 0.688491i
\(36\) 0 0
\(37\) −1.86654 + 6.96604i −0.306858 + 1.14521i 0.624476 + 0.781044i \(0.285312\pi\)
−0.931334 + 0.364166i \(0.881354\pi\)
\(38\) 0.103757 + 1.18595i 0.0168317 + 0.192387i
\(39\) 0 0
\(40\) −5.83507 3.16854i −0.922606 0.500990i
\(41\) −8.33680 + 1.47000i −1.30199 + 0.229576i −0.781292 0.624166i \(-0.785439\pi\)
−0.520697 + 0.853742i \(0.674328\pi\)
\(42\) 0 0
\(43\) 1.28541 0.112459i 0.196024 0.0171499i 0.0112790 0.999936i \(-0.496410\pi\)
0.184745 + 0.982787i \(0.440854\pi\)
\(44\) −0.506265 0.876877i −0.0763223 0.132194i
\(45\) 0 0
\(46\) −3.71732 + 6.43859i −0.548090 + 0.949319i
\(47\) −3.48305 + 7.46943i −0.508055 + 1.08953i 0.470283 + 0.882516i \(0.344152\pi\)
−0.978338 + 0.207013i \(0.933626\pi\)
\(48\) 0 0
\(49\) −2.03580 2.42617i −0.290829 0.346596i
\(50\) −5.23438 + 4.08876i −0.740253 + 0.578238i
\(51\) 0 0
\(52\) −0.977148 + 0.684206i −0.135506 + 0.0948823i
\(53\) −0.947342 0.947342i −0.130127 0.130127i 0.639043 0.769171i \(-0.279330\pi\)
−0.769171 + 0.639043i \(0.779330\pi\)
\(54\) 0 0
\(55\) −9.55899 + 1.08866i −1.28893 + 0.146794i
\(56\) 5.72514 + 1.00950i 0.765054 + 0.134900i
\(57\) 0 0
\(58\) 7.95258 3.70835i 1.04422 0.486930i
\(59\) −3.72879 + 3.12883i −0.485447 + 0.407339i −0.852391 0.522904i \(-0.824849\pi\)
0.366944 + 0.930243i \(0.380404\pi\)
\(60\) 0 0
\(61\) −7.90101 + 2.87573i −1.01162 + 0.368200i −0.794055 0.607846i \(-0.792034\pi\)
−0.217566 + 0.976046i \(0.569812\pi\)
\(62\) 0.832940 + 3.10857i 0.105783 + 0.394789i
\(63\) 0 0
\(64\) 7.54029 4.35339i 0.942536 0.544173i
\(65\) 2.25919 + 11.1070i 0.280219 + 1.37765i
\(66\) 0 0
\(67\) 5.53556 7.90560i 0.676276 0.965822i −0.323532 0.946217i \(-0.604870\pi\)
0.999808 0.0196049i \(-0.00624085\pi\)
\(68\) 0.432051 0.617033i 0.0523939 0.0748262i
\(69\) 0 0
\(70\) 3.20995 4.84921i 0.383662 0.579591i
\(71\) −4.92123 + 2.84127i −0.584043 + 0.337197i −0.762738 0.646707i \(-0.776146\pi\)
0.178696 + 0.983904i \(0.442812\pi\)
\(72\) 0 0
\(73\) −1.32285 4.93694i −0.154828 0.577825i −0.999120 0.0419419i \(-0.986646\pi\)
0.844292 0.535883i \(-0.180021\pi\)
\(74\) −9.00242 + 3.27661i −1.04651 + 0.380898i
\(75\) 0 0
\(76\) 0.161558 0.135563i 0.0185320 0.0155502i
\(77\) 7.63418 3.55988i 0.869996 0.405686i
\(78\) 0 0
\(79\) 0.410612 + 0.0724019i 0.0461974 + 0.00814585i 0.196699 0.980464i \(-0.436978\pi\)
−0.150502 + 0.988610i \(0.548089\pi\)
\(80\) −0.879000 7.71810i −0.0982752 0.862910i
\(81\) 0 0
\(82\) −7.95178 7.95178i −0.878127 0.878127i
\(83\) 7.59392 5.31732i 0.833541 0.583652i −0.0770185 0.997030i \(-0.524540\pi\)
0.910560 + 0.413378i \(0.135651\pi\)
\(84\) 0 0
\(85\) −3.73937 6.10274i −0.405592 0.661935i
\(86\) 1.10179 + 1.31306i 0.118809 + 0.141591i
\(87\) 0 0
\(88\) 5.39942 11.5791i 0.575580 1.23434i
\(89\) −0.974450 + 1.68780i −0.103292 + 0.178906i −0.913039 0.407872i \(-0.866271\pi\)
0.809747 + 0.586779i \(0.199604\pi\)
\(90\) 0 0
\(91\) −4.96186 8.59420i −0.520144 0.900917i
\(92\) 1.31207 0.114791i 0.136792 0.0119678i
\(93\) 0 0
\(94\) −10.7819 + 1.90114i −1.11207 + 0.196087i
\(95\) −0.569049 1.92141i −0.0583832 0.197132i
\(96\) 0 0
\(97\) 1.17718 + 13.4552i 0.119524 + 1.36617i 0.784883 + 0.619644i \(0.212723\pi\)
−0.665359 + 0.746524i \(0.731721\pi\)
\(98\) 1.08892 4.06390i 0.109997 0.410516i
\(99\) 0 0
\(100\) 1.12522 + 0.344129i 0.112522 + 0.0344129i
\(101\) 1.45521 + 3.99814i 0.144798 + 0.397830i 0.990797 0.135354i \(-0.0432173\pi\)
−0.845999 + 0.533185i \(0.820995\pi\)
\(102\) 0 0
\(103\) −1.16385 + 13.3028i −0.114677 + 1.31077i 0.692912 + 0.721022i \(0.256327\pi\)
−0.807589 + 0.589745i \(0.799228\pi\)
\(104\) −14.1440 5.14800i −1.38694 0.504803i
\(105\) 0 0
\(106\) 0.309046 1.75269i 0.0300172 0.170236i
\(107\) −10.2616 + 10.2616i −0.992026 + 0.992026i −0.999968 0.00794276i \(-0.997472\pi\)
0.00794276 + 0.999968i \(0.497472\pi\)
\(108\) 0 0
\(109\) 14.3459i 1.37409i 0.726615 + 0.687045i \(0.241092\pi\)
−0.726615 + 0.687045i \(0.758908\pi\)
\(110\) −8.46805 9.57229i −0.807397 0.912682i
\(111\) 0 0
\(112\) 2.87431 + 6.16397i 0.271597 + 0.582441i
\(113\) 13.5865 + 1.18867i 1.27811 + 0.111821i 0.705916 0.708295i \(-0.250535\pi\)
0.572198 + 0.820116i \(0.306091\pi\)
\(114\) 0 0
\(115\) 3.97147 11.8676i 0.370341 1.10666i
\(116\) −1.34621 0.777236i −0.124993 0.0721646i
\(117\) 0 0
\(118\) −6.24582 1.67356i −0.574974 0.154064i
\(119\) 4.80039 + 4.02801i 0.440051 + 0.369247i
\(120\) 0 0
\(121\) −1.30443 7.39778i −0.118584 0.672525i
\(122\) −9.14940 6.40648i −0.828348 0.580016i
\(123\) 0 0
\(124\) 0.366468 0.436739i 0.0329098 0.0392204i
\(125\) 7.26225 8.50058i 0.649555 0.760315i
\(126\) 0 0
\(127\) −3.47767 + 0.931838i −0.308593 + 0.0826872i −0.409792 0.912179i \(-0.634399\pi\)
0.101199 + 0.994866i \(0.467732\pi\)
\(128\) 8.08251 + 3.76894i 0.714400 + 0.333130i
\(129\) 0 0
\(130\) −10.3649 + 10.9213i −0.909058 + 0.957858i
\(131\) −0.189922 + 0.521807i −0.0165936 + 0.0455905i −0.947713 0.319124i \(-0.896611\pi\)
0.931119 + 0.364715i \(0.118833\pi\)
\(132\) 0 0
\(133\) 1.00634 + 1.43720i 0.0872607 + 0.124621i
\(134\) 12.8204 1.10751
\(135\) 0 0
\(136\) 9.50463 0.815015
\(137\) 3.46624 + 4.95031i 0.296141 + 0.422934i 0.939457 0.342668i \(-0.111330\pi\)
−0.643315 + 0.765601i \(0.722442\pi\)
\(138\) 0 0
\(139\) 6.33390 17.4022i 0.537234 1.47604i −0.313061 0.949733i \(-0.601354\pi\)
0.850295 0.526306i \(-0.176423\pi\)
\(140\) −1.02986 + 0.0269197i −0.0870395 + 0.00227513i
\(141\) 0 0
\(142\) −6.84148 3.19024i −0.574125 0.267719i
\(143\) −21.0660 + 5.64463i −1.76163 + 0.472027i
\(144\) 0 0
\(145\) −11.8735 + 8.78508i −0.986042 + 0.729561i
\(146\) 4.36428 5.20115i 0.361190 0.430450i
\(147\) 0 0
\(148\) 1.39024 + 0.973455i 0.114277 + 0.0800175i
\(149\) 1.50609 + 8.54145i 0.123384 + 0.699743i 0.982255 + 0.187551i \(0.0600551\pi\)
−0.858871 + 0.512192i \(0.828834\pi\)
\(150\) 0 0
\(151\) −12.2052 10.2414i −0.993244 0.833431i −0.00721007 0.999974i \(-0.502295\pi\)
−0.986034 + 0.166543i \(0.946740\pi\)
\(152\) 2.57045 + 0.688750i 0.208491 + 0.0558650i
\(153\) 0 0
\(154\) 9.69056 + 5.59485i 0.780887 + 0.450846i
\(155\) −2.41689 4.84811i −0.194130 0.389409i
\(156\) 0 0
\(157\) 13.2243 + 1.15698i 1.05541 + 0.0923367i 0.601630 0.798775i \(-0.294518\pi\)
0.453784 + 0.891112i \(0.350074\pi\)
\(158\) 0.234077 + 0.501981i 0.0186222 + 0.0399354i
\(159\) 0 0
\(160\) −2.21748 + 1.96168i −0.175307 + 0.155084i
\(161\) 10.9570i 0.863530i
\(162\) 0 0
\(163\) 5.24760 5.24760i 0.411024 0.411024i −0.471071 0.882095i \(-0.656133\pi\)
0.882095 + 0.471071i \(0.156133\pi\)
\(164\) −0.345940 + 1.96192i −0.0270133 + 0.153200i
\(165\) 0 0
\(166\) 11.5723 + 4.21196i 0.898183 + 0.326912i
\(167\) 0.717512 8.20120i 0.0555227 0.634628i −0.916546 0.399930i \(-0.869034\pi\)
0.972068 0.234698i \(-0.0754101\pi\)
\(168\) 0 0
\(169\) 4.34150 + 11.9282i 0.333962 + 0.917553i
\(170\) 3.79162 8.71900i 0.290804 0.668717i
\(171\) 0 0
\(172\) 0.0785918 0.293309i 0.00599257 0.0223646i
\(173\) −0.677506 7.74393i −0.0515098 0.588760i −0.977461 0.211116i \(-0.932290\pi\)
0.925951 0.377643i \(-0.123265\pi\)
\(174\) 0 0
\(175\) −3.66781 + 9.07571i −0.277261 + 0.686059i
\(176\) 14.7198 2.59549i 1.10954 0.195643i
\(177\) 0 0
\(178\) −2.57908 + 0.225641i −0.193310 + 0.0169125i
\(179\) 2.19929 + 3.80928i 0.164382 + 0.284719i 0.936436 0.350839i \(-0.114104\pi\)
−0.772053 + 0.635558i \(0.780770\pi\)
\(180\) 0 0
\(181\) −2.85830 + 4.95072i −0.212456 + 0.367984i −0.952483 0.304593i \(-0.901479\pi\)
0.740027 + 0.672577i \(0.234813\pi\)
\(182\) 5.57127 11.9476i 0.412970 0.885617i
\(183\) 0 0
\(184\) 10.6824 + 12.7308i 0.787519 + 0.938529i
\(185\) 13.7501 8.42517i 1.01093 0.619431i
\(186\) 0 0
\(187\) 11.2811 7.89911i 0.824956 0.577640i
\(188\) 1.37145 + 1.37145i 0.100023 + 0.100023i
\(189\) 0 0
\(190\) 1.65723 2.08323i 0.120228 0.151133i
\(191\) −14.2067 2.50503i −1.02796 0.181258i −0.365860 0.930670i \(-0.619225\pi\)
−0.662104 + 0.749412i \(0.730336\pi\)
\(192\) 0 0
\(193\) 15.7247 7.33254i 1.13189 0.527808i 0.235852 0.971789i \(-0.424212\pi\)
0.896036 + 0.443981i \(0.146434\pi\)
\(194\) −13.7446 + 11.5331i −0.986802 + 0.828025i
\(195\) 0 0
\(196\) −0.700384 + 0.254919i −0.0500274 + 0.0182085i
\(197\) 3.52289 + 13.1476i 0.250995 + 0.936727i 0.970275 + 0.242006i \(0.0778054\pi\)
−0.719280 + 0.694721i \(0.755528\pi\)
\(198\) 0 0
\(199\) 7.78555 4.49499i 0.551903 0.318641i −0.197986 0.980205i \(-0.563440\pi\)
0.749889 + 0.661564i \(0.230107\pi\)
\(200\) 4.58670 + 14.1209i 0.324329 + 0.998500i
\(201\) 0 0
\(202\) −3.24187 + 4.62987i −0.228097 + 0.325756i
\(203\) 7.41743 10.5932i 0.520601 0.743496i
\(204\) 0 0
\(205\) 15.7843 + 10.4485i 1.10242 + 0.729753i
\(206\) −15.3625 + 8.86955i −1.07036 + 0.617971i
\(207\) 0 0
\(208\) −4.55757 17.0091i −0.316011 1.17937i
\(209\) 3.62329 1.31877i 0.250628 0.0912212i
\(210\) 0 0
\(211\) −14.3607 + 12.0500i −0.988631 + 0.829559i −0.985369 0.170435i \(-0.945483\pi\)
−0.00326162 + 0.999995i \(0.501038\pi\)
\(212\) −0.285746 + 0.133245i −0.0196251 + 0.00915134i
\(213\) 0 0
\(214\) −18.9851 3.34758i −1.29779 0.228836i
\(215\) −2.25794 1.79622i −0.153990 0.122501i
\(216\) 0 0
\(217\) 3.35376 + 3.35376i 0.227668 + 0.227668i
\(218\) −15.6108 + 10.9308i −1.05729 + 0.740326i
\(219\) 0 0
\(220\) −0.528643 + 2.20150i −0.0356411 + 0.148425i
\(221\) −10.4290 12.4288i −0.701530 0.836051i
\(222\) 0 0
\(223\) −7.00968 + 15.0323i −0.469403 + 1.00664i 0.518999 + 0.854775i \(0.326305\pi\)
−0.988402 + 0.151862i \(0.951473\pi\)
\(224\) 1.29608 2.24488i 0.0865981 0.149992i
\(225\) 0 0
\(226\) 9.05870 + 15.6901i 0.602576 + 1.04369i
\(227\) −18.0248 + 1.57696i −1.19634 + 0.104667i −0.667867 0.744281i \(-0.732793\pi\)
−0.528478 + 0.848947i \(0.677237\pi\)
\(228\) 0 0
\(229\) −18.7074 + 3.29862i −1.23622 + 0.217979i −0.753294 0.657684i \(-0.771536\pi\)
−0.482924 + 0.875662i \(0.660425\pi\)
\(230\) 15.9400 4.72083i 1.05105 0.311282i
\(231\) 0 0
\(232\) −1.70951 19.5397i −0.112235 1.28285i
\(233\) 1.95750 7.30551i 0.128240 0.478600i −0.871694 0.490050i \(-0.836978\pi\)
0.999934 + 0.0114509i \(0.00364501\pi\)
\(234\) 0 0
\(235\) 17.1468 6.75337i 1.11853 0.440541i
\(236\) 0.391785 + 1.07642i 0.0255031 + 0.0700691i
\(237\) 0 0
\(238\) −0.725521 + 8.29275i −0.0470286 + 0.537539i
\(239\) 11.7518 + 4.27731i 0.760162 + 0.276676i 0.692875 0.721057i \(-0.256344\pi\)
0.0672867 + 0.997734i \(0.478566\pi\)
\(240\) 0 0
\(241\) 2.97320 16.8619i 0.191521 1.08617i −0.725766 0.687942i \(-0.758514\pi\)
0.917287 0.398227i \(-0.130374\pi\)
\(242\) 7.05612 7.05612i 0.453585 0.453585i
\(243\) 0 0
\(244\) 1.97870i 0.126673i
\(245\) −0.432674 + 7.06872i −0.0276425 + 0.451604i
\(246\) 0 0
\(247\) −1.91979 4.11700i −0.122153 0.261958i
\(248\) 7.16645 + 0.626983i 0.455070 + 0.0398134i
\(249\) 0 0
\(250\) 14.7835 + 1.42558i 0.934989 + 0.0901619i
\(251\) −4.66370 2.69259i −0.294370 0.169955i 0.345541 0.938404i \(-0.387696\pi\)
−0.639911 + 0.768449i \(0.721029\pi\)
\(252\) 0 0
\(253\) 23.2594 + 6.23233i 1.46231 + 0.391823i
\(254\) −3.66378 3.07428i −0.229886 0.192897i
\(255\) 0 0
\(256\) −0.966651 5.48215i −0.0604157 0.342634i
\(257\) 10.0445 + 7.03325i 0.626560 + 0.438722i 0.843252 0.537518i \(-0.180638\pi\)
−0.216692 + 0.976240i \(0.569527\pi\)
\(258\) 0 0
\(259\) −9.07550 + 10.8158i −0.563924 + 0.672059i
\(260\) 2.63804 + 0.394384i 0.163604 + 0.0244586i
\(261\) 0 0
\(262\) −0.712524 + 0.190920i −0.0440199 + 0.0117951i
\(263\) −12.3505 5.75913i −0.761563 0.355123i 0.00272594 0.999996i \(-0.499132\pi\)
−0.764289 + 0.644873i \(0.776910\pi\)
\(264\) 0 0
\(265\) 0.0782794 + 2.99474i 0.00480867 + 0.183965i
\(266\) −0.797143 + 2.19013i −0.0488760 + 0.134286i
\(267\) 0 0
\(268\) −1.30270 1.86045i −0.0795749 0.113645i
\(269\) 12.3342 0.752028 0.376014 0.926614i \(-0.377294\pi\)
0.376014 + 0.926614i \(0.377294\pi\)
\(270\) 0 0
\(271\) 19.7578 1.20020 0.600099 0.799926i \(-0.295128\pi\)
0.600099 + 0.799926i \(0.295128\pi\)
\(272\) 6.37789 + 9.10856i 0.386716 + 0.552288i
\(273\) 0 0
\(274\) −2.74569 + 7.54371i −0.165873 + 0.455732i
\(275\) 17.1796 + 12.9483i 1.03597 + 0.780811i
\(276\) 0 0
\(277\) −1.83776 0.856962i −0.110420 0.0514898i 0.366623 0.930370i \(-0.380514\pi\)
−0.477044 + 0.878880i \(0.658292\pi\)
\(278\) 23.7626 6.36718i 1.42519 0.381878i
\(279\) 0 0
\(280\) −7.73179 10.4499i −0.462063 0.624503i
\(281\) 16.8041 20.0263i 1.00245 1.19467i 0.0216244 0.999766i \(-0.493116\pi\)
0.980822 0.194903i \(-0.0624393\pi\)
\(282\) 0 0
\(283\) −1.89971 1.33019i −0.112926 0.0790717i 0.515749 0.856740i \(-0.327514\pi\)
−0.628675 + 0.777668i \(0.716403\pi\)
\(284\) 0.232218 + 1.31697i 0.0137796 + 0.0781480i
\(285\) 0 0
\(286\) −22.1934 18.6225i −1.31232 1.10117i
\(287\) −16.0086 4.28949i −0.944956 0.253200i
\(288\) 0 0
\(289\) −5.84978 3.37737i −0.344105 0.198669i
\(290\) −18.6066 6.22665i −1.09262 0.365642i
\(291\) 0 0
\(292\) −1.19823 0.104832i −0.0701211 0.00613480i
\(293\) −5.09445 10.9251i −0.297621 0.638250i 0.699454 0.714677i \(-0.253426\pi\)
−0.997075 + 0.0764274i \(0.975649\pi\)
\(294\) 0 0
\(295\) 10.8639 + 0.664978i 0.632523 + 0.0387165i
\(296\) 21.4149i 1.24471i
\(297\) 0 0
\(298\) −8.14698 + 8.14698i −0.471942 + 0.471942i
\(299\) 4.92621 27.9379i 0.284890 1.61569i
\(300\) 0 0
\(301\) 2.37381 + 0.863996i 0.136824 + 0.0497999i
\(302\) 1.84467 21.0846i 0.106149 1.21328i
\(303\) 0 0
\(304\) 1.06480 + 2.92551i 0.0610704 + 0.167790i
\(305\) 17.2413 + 7.49771i 0.987236 + 0.429317i
\(306\) 0 0
\(307\) −6.08202 + 22.6984i −0.347119 + 1.29547i 0.542998 + 0.839734i \(0.317289\pi\)
−0.890117 + 0.455732i \(0.849378\pi\)
\(308\) −0.172769 1.97476i −0.00984441 0.112522i
\(309\) 0 0
\(310\) 3.43402 6.32397i 0.195039 0.359177i
\(311\) −3.91683 + 0.690642i −0.222103 + 0.0391627i −0.283592 0.958945i \(-0.591526\pi\)
0.0614891 + 0.998108i \(0.480415\pi\)
\(312\) 0 0
\(313\) −0.911077 + 0.0797089i −0.0514971 + 0.00450541i −0.112875 0.993609i \(-0.536006\pi\)
0.0613781 + 0.998115i \(0.480450\pi\)
\(314\) 8.81718 + 15.2718i 0.497582 + 0.861838i
\(315\) 0 0
\(316\) 0.0490605 0.0849753i 0.00275987 0.00478023i
\(317\) 11.1443 23.8990i 0.625924 1.34230i −0.296096 0.955158i \(-0.595685\pi\)
0.922021 0.387141i \(-0.126537\pi\)
\(318\) 0 0
\(319\) −18.2681 21.7711i −1.02282 1.21895i
\(320\) −18.9308 4.54582i −1.05826 0.254119i
\(321\) 0 0
\(322\) −11.9230 + 8.34859i −0.664444 + 0.465249i
\(323\) 2.02833 + 2.02833i 0.112859 + 0.112859i
\(324\) 0 0
\(325\) 13.4325 21.4921i 0.745103 1.19217i
\(326\) 9.70865 + 1.71190i 0.537712 + 0.0948132i
\(327\) 0 0
\(328\) −22.7823 + 10.6235i −1.25794 + 0.586587i
\(329\) −12.3602 + 10.3715i −0.681442 + 0.571798i
\(330\) 0 0
\(331\) −12.0746 + 4.39481i −0.663682 + 0.241561i −0.651825 0.758369i \(-0.725996\pi\)
−0.0118569 + 0.999930i \(0.503774\pi\)
\(332\) −0.564651 2.10731i −0.0309893 0.115653i
\(333\) 0 0
\(334\) 9.47099 5.46808i 0.518229 0.299200i
\(335\) −21.1472 + 4.30140i −1.15539 + 0.235011i
\(336\) 0 0
\(337\) 4.87543 6.96283i 0.265581 0.379290i −0.664106 0.747638i \(-0.731188\pi\)
0.929688 + 0.368349i \(0.120077\pi\)
\(338\) −9.67189 + 13.8129i −0.526081 + 0.751322i
\(339\) 0 0
\(340\) −1.65054 + 0.335725i −0.0895130 + 0.0182073i
\(341\) 9.02697 5.21173i 0.488838 0.282231i
\(342\) 0 0
\(343\) −5.15177 19.2267i −0.278169 1.03814i
\(344\) 3.60046 1.31046i 0.194124 0.0706553i
\(345\) 0 0
\(346\) 7.91047 6.63767i 0.425270 0.356844i
\(347\) −4.76851 + 2.22359i −0.255987 + 0.119369i −0.546376 0.837540i \(-0.683993\pi\)
0.290389 + 0.956909i \(0.406215\pi\)
\(348\) 0 0
\(349\) 20.3047 + 3.58026i 1.08688 + 0.191647i 0.688258 0.725466i \(-0.258376\pi\)
0.398627 + 0.917113i \(0.369487\pi\)
\(350\) −12.6706 + 2.92398i −0.677270 + 0.156293i
\(351\) 0 0
\(352\) −4.02821 4.02821i −0.214704 0.214704i
\(353\) −23.6027 + 16.5268i −1.25624 + 0.879631i −0.996296 0.0859911i \(-0.972594\pi\)
−0.259948 + 0.965623i \(0.583705\pi\)
\(354\) 0 0
\(355\) 12.3553 + 2.96687i 0.655754 + 0.157465i
\(356\) 0.294808 + 0.351339i 0.0156248 + 0.0186209i
\(357\) 0 0
\(358\) −2.46940 + 5.29565i −0.130512 + 0.279884i
\(359\) 8.91393 15.4394i 0.470459 0.814860i −0.528970 0.848641i \(-0.677422\pi\)
0.999429 + 0.0337810i \(0.0107549\pi\)
\(360\) 0 0
\(361\) −9.09844 15.7590i −0.478865 0.829419i
\(362\) −7.56508 + 0.661859i −0.397612 + 0.0347865i
\(363\) 0 0
\(364\) −2.29990 + 0.405534i −0.120547 + 0.0212558i
\(365\) −5.45380 + 10.0435i −0.285465 + 0.525702i
\(366\) 0 0
\(367\) −1.91117 21.8448i −0.0997623 1.14029i −0.866790 0.498674i \(-0.833821\pi\)
0.767028 0.641614i \(-0.221735\pi\)
\(368\) −5.03210 + 18.7800i −0.262316 + 0.978978i
\(369\) 0 0
\(370\) 19.6448 + 8.54289i 1.02128 + 0.444124i
\(371\) −0.897087 2.46473i −0.0465744 0.127962i
\(372\) 0 0
\(373\) −1.50421 + 17.1932i −0.0778848 + 0.890228i 0.852280 + 0.523086i \(0.175219\pi\)
−0.930165 + 0.367142i \(0.880336\pi\)
\(374\) 17.1911 + 6.25706i 0.888932 + 0.323545i
\(375\) 0 0
\(376\) −4.24967 + 24.1011i −0.219160 + 1.24292i
\(377\) −23.6755 + 23.6755i −1.21935 + 1.21935i
\(378\) 0 0
\(379\) 27.1687i 1.39556i −0.716312 0.697780i \(-0.754171\pi\)
0.716312 0.697780i \(-0.245829\pi\)
\(380\) −0.470703 0.0288116i −0.0241466 0.00147800i
\(381\) 0 0
\(382\) −8.09883 17.3680i −0.414372 0.888624i
\(383\) −7.32022 0.640436i −0.374046 0.0327248i −0.101417 0.994844i \(-0.532338\pi\)
−0.272629 + 0.962119i \(0.587893\pi\)
\(384\) 0 0
\(385\) −17.8616 5.97735i −0.910314 0.304634i
\(386\) 19.9604 + 11.5241i 1.01596 + 0.586562i
\(387\) 0 0
\(388\) 3.07024 + 0.822667i 0.155868 + 0.0417646i
\(389\) −23.9421 20.0898i −1.21391 1.01859i −0.999120 0.0419334i \(-0.986648\pi\)
−0.214792 0.976660i \(-0.568907\pi\)
\(390\) 0 0
\(391\) 3.11072 + 17.6418i 0.157316 + 0.892182i
\(392\) −7.70382 5.39427i −0.389102 0.272452i
\(393\) 0 0
\(394\) −11.6225 + 13.8512i −0.585535 + 0.697814i
\(395\) −0.554530 0.749477i −0.0279014 0.0377103i
\(396\) 0 0
\(397\) −15.9305 + 4.26857i −0.799531 + 0.214234i −0.635378 0.772201i \(-0.719156\pi\)
−0.164153 + 0.986435i \(0.552489\pi\)
\(398\) 10.8234 + 5.04706i 0.542530 + 0.252986i
\(399\) 0 0
\(400\) −10.4547 + 13.8711i −0.522734 + 0.693557i
\(401\) 0.517022 1.42051i 0.0258188 0.0709367i −0.926114 0.377245i \(-0.876872\pi\)
0.951932 + 0.306308i \(0.0990938\pi\)
\(402\) 0 0
\(403\) −7.04354 10.0592i −0.350864 0.501085i
\(404\) 1.00128 0.0498155
\(405\) 0 0
\(406\) 17.1788 0.852571
\(407\) 17.7975 + 25.4175i 0.882189 + 1.25990i
\(408\) 0 0
\(409\) 8.02778 22.0561i 0.396948 1.09061i −0.566815 0.823845i \(-0.691825\pi\)
0.963763 0.266760i \(-0.0859532\pi\)
\(410\) 0.657060 + 25.1371i 0.0324499 + 1.24143i
\(411\) 0 0
\(412\) 2.84812 + 1.32810i 0.140317 + 0.0654308i
\(413\) −9.20490 + 2.46645i −0.452944 + 0.121366i
\(414\) 0 0
\(415\) −20.5016 3.06496i −1.00638 0.150453i
\(416\) −4.31402 + 5.14125i −0.211512 + 0.252070i
\(417\) 0 0
\(418\) 4.19579 + 2.93792i 0.205223 + 0.143698i
\(419\) −2.76242 15.6665i −0.134953 0.765357i −0.974892 0.222677i \(-0.928521\pi\)
0.839939 0.542680i \(-0.182591\pi\)
\(420\) 0 0
\(421\) 27.8051 + 23.3312i 1.35514 + 1.13709i 0.977452 + 0.211160i \(0.0677241\pi\)
0.377685 + 0.925934i \(0.376720\pi\)
\(422\) −24.0545 6.44539i −1.17096 0.313756i
\(423\) 0 0
\(424\) −3.44529 1.98914i −0.167318 0.0966012i
\(425\) −3.32891 + 15.6541i −0.161476 + 0.759334i
\(426\) 0 0
\(427\) −16.3984 1.43468i −0.793576 0.0694289i
\(428\) 1.44331 + 3.09519i 0.0697652 + 0.149612i
\(429\) 0 0
\(430\) 0.234166 3.82563i 0.0112925 0.184488i
\(431\) 10.7570i 0.518146i −0.965858 0.259073i \(-0.916583\pi\)
0.965858 0.259073i \(-0.0834169\pi\)
\(432\) 0 0
\(433\) −25.8369 + 25.8369i −1.24164 + 1.24164i −0.282321 + 0.959320i \(0.591104\pi\)
−0.959320 + 0.282321i \(0.908896\pi\)
\(434\) −1.09408 + 6.20483i −0.0525175 + 0.297842i
\(435\) 0 0
\(436\) 3.17246 + 1.15468i 0.151933 + 0.0552992i
\(437\) −0.437136 + 4.99649i −0.0209111 + 0.239015i
\(438\) 0 0
\(439\) −4.76440 13.0901i −0.227393 0.624756i 0.772556 0.634947i \(-0.218978\pi\)
−0.999948 + 0.0101913i \(0.996756\pi\)
\(440\) −26.5809 + 10.4691i −1.26720 + 0.499093i
\(441\) 0 0
\(442\) 5.57831 20.8185i 0.265333 0.990237i
\(443\) −0.993879 11.3601i −0.0472206 0.539734i −0.982555 0.185970i \(-0.940457\pi\)
0.935335 0.353764i \(-0.115098\pi\)
\(444\) 0 0
\(445\) 4.17847 1.23751i 0.198079 0.0586635i
\(446\) −21.6986 + 3.82606i −1.02746 + 0.181169i
\(447\) 0 0
\(448\) 16.9810 1.48564i 0.802276 0.0701900i
\(449\) 0.807925 + 1.39937i 0.0381283 + 0.0660402i 0.884460 0.466616i \(-0.154527\pi\)
−0.846332 + 0.532657i \(0.821194\pi\)
\(450\) 0 0
\(451\) −18.2114 + 31.5431i −0.857541 + 1.48530i
\(452\) 1.35642 2.90886i 0.0638008 0.136821i
\(453\) 0 0
\(454\) −15.4498 18.4124i −0.725097 0.864137i
\(455\) −5.18119 + 21.5768i −0.242898 + 1.01153i
\(456\) 0 0
\(457\) 4.53775 3.17737i 0.212267 0.148631i −0.462608 0.886563i \(-0.653086\pi\)
0.674875 + 0.737932i \(0.264197\pi\)
\(458\) −17.8434 17.8434i −0.833768 0.833768i
\(459\) 0 0
\(460\) −2.30475 1.83346i −0.107460 0.0854855i
\(461\) −14.9666 2.63902i −0.697065 0.122911i −0.186123 0.982527i \(-0.559592\pi\)
−0.510942 + 0.859615i \(0.670703\pi\)
\(462\) 0 0
\(463\) −29.9580 + 13.9696i −1.39226 + 0.649224i −0.966749 0.255727i \(-0.917685\pi\)
−0.425516 + 0.904951i \(0.639907\pi\)
\(464\) 17.5784 14.7500i 0.816056 0.684752i
\(465\) 0 0
\(466\) 9.44112 3.43629i 0.437352 0.159183i
\(467\) −5.87822 21.9378i −0.272012 1.01516i −0.957818 0.287377i \(-0.907217\pi\)
0.685806 0.727784i \(-0.259450\pi\)
\(468\) 0 0
\(469\) 16.3630 9.44716i 0.755571 0.436229i
\(470\) 20.4137 + 13.5129i 0.941613 + 0.623303i
\(471\) 0 0
\(472\) −8.29047 + 11.8400i −0.381600 + 0.544981i
\(473\) 3.18431 4.54767i 0.146415 0.209102i
\(474\) 0 0
\(475\) −2.03464 + 3.99229i −0.0933559 + 0.183179i
\(476\) 1.27713 0.737352i 0.0585372 0.0337965i
\(477\) 0 0
\(478\) 4.29979 + 16.0470i 0.196668 + 0.733974i
\(479\) 21.4594 7.81060i 0.980507 0.356875i 0.198470 0.980107i \(-0.436403\pi\)
0.782037 + 0.623232i \(0.214181\pi\)
\(480\) 0 0
\(481\) 28.0033 23.4976i 1.27684 1.07140i
\(482\) 20.6140 9.61245i 0.938941 0.437835i
\(483\) 0 0
\(484\) −1.74094 0.306975i −0.0791336 0.0139534i
\(485\) 18.8021 23.6352i 0.853758 1.07322i
\(486\) 0 0
\(487\) 13.1004 + 13.1004i 0.593634 + 0.593634i 0.938611 0.344977i \(-0.112113\pi\)
−0.344977 + 0.938611i \(0.612113\pi\)
\(488\) −20.4520 + 14.3206i −0.925817 + 0.648264i
\(489\) 0 0
\(490\) −8.02163 + 4.91514i −0.362380 + 0.222044i
\(491\) 5.95862 + 7.10121i 0.268909 + 0.320473i 0.883553 0.468332i \(-0.155145\pi\)
−0.614644 + 0.788805i \(0.710700\pi\)
\(492\) 0 0
\(493\) 8.93533 19.1619i 0.402427 0.863007i
\(494\) 3.01722 5.22597i 0.135751 0.235128i
\(495\) 0 0
\(496\) 4.20804 + 7.28854i 0.188947 + 0.327265i
\(497\) −11.0828 + 0.969617i −0.497131 + 0.0434933i
\(498\) 0 0
\(499\) 20.3482 3.58794i 0.910911 0.160618i 0.301494 0.953468i \(-0.402515\pi\)
0.609417 + 0.792850i \(0.291404\pi\)
\(500\) −1.29529 2.29018i −0.0579273 0.102420i
\(501\) 0 0
\(502\) −0.623488 7.12650i −0.0278276 0.318071i
\(503\) −1.21585 + 4.53760i −0.0542119 + 0.202322i −0.987720 0.156235i \(-0.950064\pi\)
0.933508 + 0.358557i \(0.116731\pi\)
\(504\) 0 0
\(505\) 3.79406 8.72462i 0.168833 0.388241i
\(506\) 10.9405 + 30.0588i 0.486365 + 1.33628i
\(507\) 0 0
\(508\) −0.0738452 + 0.844055i −0.00327635 + 0.0374489i
\(509\) −30.3526 11.0475i −1.34536 0.489670i −0.433862 0.900979i \(-0.642849\pi\)
−0.911496 + 0.411309i \(0.865072\pi\)
\(510\) 0 0
\(511\) 1.73758 9.85432i 0.0768661 0.435929i
\(512\) 17.8410 17.8410i 0.788469 0.788469i
\(513\) 0 0
\(514\) 16.2891i 0.718480i
\(515\) 22.3645 19.7846i 0.985497 0.871812i
\(516\) 0 0
\(517\) 14.9860 + 32.1376i 0.659083 + 1.41341i
\(518\) −18.6844 1.63467i −0.820945 0.0718234i
\(519\) 0 0
\(520\) 15.0162 + 30.1213i 0.658502 + 1.32091i
\(521\) 2.29310 + 1.32392i 0.100463 + 0.0580021i 0.549390 0.835566i \(-0.314860\pi\)
−0.448927 + 0.893568i \(0.648194\pi\)
\(522\) 0 0
\(523\) −12.5901 3.37351i −0.550527 0.147513i −0.0271764 0.999631i \(-0.508652\pi\)
−0.523351 + 0.852117i \(0.675318\pi\)
\(524\) 0.100106 + 0.0839990i 0.00437316 + 0.00366951i
\(525\) 0 0
\(526\) −3.14347 17.8275i −0.137062 0.777317i
\(527\) 6.35202 + 4.44773i 0.276698 + 0.193746i
\(528\) 0 0
\(529\) −5.34967 + 6.37549i −0.232594 + 0.277195i
\(530\) −3.19913 + 2.36700i −0.138961 + 0.102816i
\(531\) 0 0
\(532\) 0.398822 0.106864i 0.0172911 0.00463314i
\(533\) 38.8899 + 18.1347i 1.68451 + 0.785499i
\(534\) 0 0
\(535\) 32.4389 0.847922i 1.40246 0.0366589i
\(536\) 9.80156 26.9296i 0.423363 1.16318i
\(537\) 0 0
\(538\) 9.39794 + 13.4217i 0.405174 + 0.578649i
\(539\) −13.6268 −0.586947
\(540\) 0 0
\(541\) −42.0435 −1.80759 −0.903796 0.427963i \(-0.859231\pi\)
−0.903796 + 0.427963i \(0.859231\pi\)
\(542\) 15.0543 + 21.4998i 0.646637 + 0.923494i
\(543\) 0 0
\(544\) 1.44949 3.98243i 0.0621463 0.170745i
\(545\) 22.0824 23.2678i 0.945908 0.996685i
\(546\) 0 0
\(547\) −20.8870 9.73975i −0.893062 0.416442i −0.0787671 0.996893i \(-0.525098\pi\)
−0.814295 + 0.580451i \(0.802876\pi\)
\(548\) 1.37371 0.368084i 0.0586818 0.0157238i
\(549\) 0 0
\(550\) −1.00002 + 28.5602i −0.0426412 + 1.21781i
\(551\) 3.80505 4.53468i 0.162101 0.193184i
\(552\) 0 0
\(553\) 0.668660 + 0.468201i 0.0284343 + 0.0199099i
\(554\) −0.467751 2.65275i −0.0198728 0.112704i
\(555\) 0 0
\(556\) −3.33853 2.80136i −0.141585 0.118804i
\(557\) 34.3132 + 9.19419i 1.45390 + 0.389570i 0.897377 0.441265i \(-0.145470\pi\)
0.556519 + 0.830835i \(0.312137\pi\)
\(558\) 0 0
\(559\) −5.66426 3.27026i −0.239572 0.138317i
\(560\) 4.82622 14.4218i 0.203945 0.609433i
\(561\) 0 0
\(562\) 34.5957 + 3.02674i 1.45933 + 0.127675i
\(563\) −1.97748 4.24073i −0.0833410 0.178725i 0.860221 0.509922i \(-0.170326\pi\)
−0.943562 + 0.331196i \(0.892548\pi\)
\(564\) 0 0
\(565\) −20.2065 22.8415i −0.850094 0.960947i
\(566\) 3.08073i 0.129493i
\(567\) 0 0
\(568\) −11.9317 + 11.9317i −0.500642 + 0.500642i
\(569\) 1.37633 7.80556i 0.0576988 0.327226i −0.942272 0.334848i \(-0.891315\pi\)
0.999971 + 0.00762185i \(0.00242613\pi\)
\(570\) 0 0
\(571\) 4.65824 + 1.69546i 0.194941 + 0.0709528i 0.437646 0.899147i \(-0.355812\pi\)
−0.242705 + 0.970100i \(0.578035\pi\)
\(572\) −0.447319 + 5.11288i −0.0187033 + 0.213780i
\(573\) 0 0
\(574\) −7.52995 20.6884i −0.314294 0.863516i
\(575\) −24.7090 + 13.1350i −1.03044 + 0.547769i
\(576\) 0 0
\(577\) −5.90200 + 22.0266i −0.245703 + 0.916977i 0.727325 + 0.686293i \(0.240763\pi\)
−0.973029 + 0.230684i \(0.925904\pi\)
\(578\) −0.782053 8.93890i −0.0325291 0.371809i
\(579\) 0 0
\(580\) 0.987055 + 3.33281i 0.0409852 + 0.138388i
\(581\) 17.8737 3.15161i 0.741526 0.130751i
\(582\) 0 0
\(583\) −5.74237 + 0.502393i −0.237825 + 0.0208070i
\(584\) −7.58853 13.1437i −0.314015 0.543891i
\(585\) 0 0
\(586\) 8.00664 13.8679i 0.330751 0.572878i
\(587\) 15.8151 33.9155i 0.652758 1.39984i −0.249384 0.968405i \(-0.580228\pi\)
0.902142 0.431439i \(-0.141994\pi\)
\(588\) 0 0
\(589\) 1.39555 + 1.66315i 0.0575026 + 0.0685290i
\(590\) 7.55410 + 12.3285i 0.310997 + 0.507555i
\(591\) 0 0
\(592\) −20.5225 + 14.3700i −0.843470 + 0.590604i
\(593\) −5.46266 5.46266i −0.224324 0.224324i 0.585992 0.810317i \(-0.300705\pi\)
−0.810317 + 0.585992i \(0.800705\pi\)
\(594\) 0 0
\(595\) −1.58558 13.9222i −0.0650024 0.570756i
\(596\) 2.01008 + 0.354432i 0.0823362 + 0.0145181i
\(597\) 0 0
\(598\) 34.1546 15.9266i 1.39669 0.651286i
\(599\) −1.79656 + 1.50749i −0.0734055 + 0.0615946i −0.678752 0.734367i \(-0.737479\pi\)
0.605347 + 0.795962i \(0.293035\pi\)
\(600\) 0 0
\(601\) 38.1639 13.8905i 1.55674 0.566607i 0.586753 0.809766i \(-0.300406\pi\)
0.969987 + 0.243159i \(0.0781836\pi\)
\(602\) 0.868536 + 3.24142i 0.0353989 + 0.132110i
\(603\) 0 0
\(604\) −3.24716 + 1.87475i −0.132125 + 0.0762824i
\(605\) −9.27161 + 14.0064i −0.376944 + 0.569443i
\(606\) 0 0
\(607\) 1.07501 1.53527i 0.0436332 0.0623147i −0.796743 0.604319i \(-0.793445\pi\)
0.840376 + 0.542004i \(0.182334\pi\)
\(608\) 0.680588 0.971981i 0.0276015 0.0394190i
\(609\) 0 0
\(610\) 4.97816 + 24.4743i 0.201560 + 0.990935i
\(611\) 36.1789 20.8879i 1.46364 0.845035i
\(612\) 0 0
\(613\) 4.71349 + 17.5910i 0.190376 + 0.710494i 0.993415 + 0.114568i \(0.0365482\pi\)
−0.803039 + 0.595926i \(0.796785\pi\)
\(614\) −29.3338 + 10.6766i −1.18382 + 0.430874i
\(615\) 0 0
\(616\) 19.1608 16.0778i 0.772012 0.647795i
\(617\) −16.8885 + 7.87526i −0.679907 + 0.317046i −0.731715 0.681611i \(-0.761280\pi\)
0.0518073 + 0.998657i \(0.483502\pi\)
\(618\) 0 0
\(619\) 28.0130 + 4.93945i 1.12594 + 0.198533i 0.705447 0.708763i \(-0.250746\pi\)
0.420492 + 0.907296i \(0.361858\pi\)
\(620\) −1.26665 + 0.144256i −0.0508697 + 0.00579345i
\(621\) 0 0
\(622\) −3.73594 3.73594i −0.149797 0.149797i
\(623\) −3.12547 + 2.18848i −0.125219 + 0.0876795i
\(624\) 0 0
\(625\) −24.8635 + 2.60855i −0.994541 + 0.104342i
\(626\) −0.780926 0.930671i −0.0312121 0.0371971i
\(627\) 0 0
\(628\) 1.32026 2.83130i 0.0526840 0.112981i
\(629\) −11.5418 + 19.9910i −0.460202 + 0.797093i
\(630\) 0 0
\(631\) −16.2016 28.0619i −0.644974 1.11713i −0.984307 0.176462i \(-0.943535\pi\)
0.339333 0.940666i \(-0.389799\pi\)
\(632\) 1.23338 0.107907i 0.0490613 0.00429231i
\(633\) 0 0
\(634\) 34.4974 6.08282i 1.37007 0.241580i
\(635\) 7.07484 + 3.84175i 0.280756 + 0.152455i
\(636\) 0 0
\(637\) 1.39919 + 15.9928i 0.0554380 + 0.633659i
\(638\) 9.77134 36.4671i 0.386851 1.44375i
\(639\) 0 0
\(640\) −7.30768 18.5542i −0.288861 0.733418i
\(641\) 7.10695 + 19.5262i 0.280708 + 0.771238i 0.997279 + 0.0737239i \(0.0234884\pi\)
−0.716571 + 0.697514i \(0.754289\pi\)
\(642\) 0 0
\(643\) 3.44122 39.3334i 0.135709 1.55116i −0.557351 0.830277i \(-0.688182\pi\)
0.693060 0.720880i \(-0.256262\pi\)
\(644\) 2.42303 + 0.881910i 0.0954807 + 0.0347521i
\(645\) 0 0
\(646\) −0.661691 + 3.75263i −0.0260339 + 0.147645i
\(647\) 27.7872 27.7872i 1.09243 1.09243i 0.0971593 0.995269i \(-0.469024\pi\)
0.995269 0.0971593i \(-0.0309756\pi\)
\(648\) 0 0
\(649\) 20.9430i 0.822086i
\(650\) 33.6218 1.75888i 1.31876 0.0689891i
\(651\) 0 0
\(652\) −0.738085 1.58283i −0.0289056 0.0619884i
\(653\) −16.8852 1.47726i −0.660770 0.0578098i −0.248162 0.968719i \(-0.579826\pi\)
−0.412608 + 0.910909i \(0.635382\pi\)
\(654\) 0 0
\(655\) 1.11125 0.553982i 0.0434200 0.0216459i
\(656\) −25.4684 14.7042i −0.994375 0.574103i
\(657\) 0 0
\(658\) −20.7037 5.54754i −0.807115 0.216266i
\(659\) 36.7210 + 30.8125i 1.43045 + 1.20029i 0.945449 + 0.325770i \(0.105624\pi\)
0.484997 + 0.874516i \(0.338821\pi\)
\(660\) 0 0
\(661\) −0.726513 4.12026i −0.0282581 0.160259i 0.967413 0.253202i \(-0.0814838\pi\)
−0.995671 + 0.0929427i \(0.970373\pi\)
\(662\) −13.9825 9.79064i −0.543445 0.380524i
\(663\) 0 0
\(664\) 17.6947 21.0877i 0.686687 0.818361i
\(665\) 0.580065 3.88006i 0.0224939 0.150462i
\(666\) 0 0
\(667\) 35.7087 9.56811i 1.38264 0.370479i
\(668\) −1.75587 0.818774i −0.0679365 0.0316793i
\(669\) 0 0
\(670\) −20.7936 19.7342i −0.803326 0.762400i
\(671\) −12.3730 + 33.9945i −0.477653 + 1.31234i
\(672\) 0 0
\(673\) 13.6940 + 19.5570i 0.527863 + 0.753867i 0.991208 0.132311i \(-0.0422398\pi\)
−0.463345 + 0.886178i \(0.653351\pi\)
\(674\) 11.2915 0.434933
\(675\) 0 0
\(676\) 2.98725 0.114894
\(677\) 12.6903 + 18.1236i 0.487727 + 0.696547i 0.985292 0.170880i \(-0.0546611\pi\)
−0.497565 + 0.867427i \(0.665772\pi\)
\(678\) 0 0
\(679\) −9.04396 + 24.8481i −0.347075 + 0.953581i
\(680\) −15.4157 14.6303i −0.591165 0.561047i
\(681\) 0 0
\(682\) 12.5493 + 5.85182i 0.480537 + 0.224078i
\(683\) −24.3829 + 6.53337i −0.932985 + 0.249993i −0.693127 0.720815i \(-0.743768\pi\)
−0.239858 + 0.970808i \(0.577101\pi\)
\(684\) 0 0
\(685\) 1.99798 13.3645i 0.0763389 0.510632i
\(686\) 16.9965 20.2556i 0.648929 0.773363i
\(687\) 0 0
\(688\) 3.67187 + 2.57107i 0.139989 + 0.0980212i
\(689\) 1.17925 + 6.68785i 0.0449258 + 0.254787i
\(690\) 0 0
\(691\) 25.5999 + 21.4808i 0.973865 + 0.817170i 0.983153 0.182787i \(-0.0585118\pi\)
−0.00928734 + 0.999957i \(0.502956\pi\)
\(692\) −1.76703 0.473473i −0.0671723 0.0179988i
\(693\) 0 0
\(694\) −6.05298 3.49469i −0.229768 0.132657i
\(695\) −37.0600 + 18.4753i −1.40577 + 0.700807i
\(696\) 0 0
\(697\) −26.9931 2.36159i −1.02244 0.0894517i
\(698\) 11.5751 + 24.8229i 0.438124 + 0.939559i
\(699\) 0 0
\(700\) 1.71179 + 1.54159i 0.0646996 + 0.0582667i
\(701\) 12.4042i 0.468499i 0.972177 + 0.234249i \(0.0752632\pi\)
−0.972177 + 0.234249i \(0.924737\pi\)
\(702\) 0 0
\(703\) −4.57003 + 4.57003i −0.172362 + 0.172362i
\(704\) 6.50508 36.8922i 0.245170 1.39043i
\(705\) 0 0
\(706\) −35.9678 13.0912i −1.35367 0.492694i
\(707\) −0.725989 + 8.29809i −0.0273036 + 0.312082i
\(708\) 0 0
\(709\) 4.29127 + 11.7902i 0.161162 + 0.442789i 0.993821 0.110998i \(-0.0354046\pi\)
−0.832659 + 0.553786i \(0.813182\pi\)
\(710\) 6.18562 + 15.7053i 0.232142 + 0.589408i
\(711\) 0 0
\(712\) −1.49782 + 5.58994i −0.0561332 + 0.209492i
\(713\) 1.18171 + 13.5070i 0.0442554 + 0.505842i
\(714\) 0 0
\(715\) 42.8560 + 23.2715i 1.60272 + 0.870305i
\(716\) 1.01940 0.179748i 0.0380969 0.00671750i
\(717\) 0 0
\(718\) 23.5926 2.06408i 0.880466 0.0770308i
\(719\) 9.10268 + 15.7663i 0.339473 + 0.587984i 0.984334 0.176316i \(-0.0564181\pi\)
−0.644861 + 0.764300i \(0.723085\pi\)
\(720\) 0 0
\(721\) −13.0717 + 22.6408i −0.486815 + 0.843188i
\(722\) 10.2159 21.9081i 0.380196 0.815334i
\(723\) 0 0
\(724\) 0.864744 + 1.03056i 0.0321380 + 0.0383005i
\(725\) 32.7806 + 4.02807i 1.21744 + 0.149599i
\(726\) 0 0
\(727\) 8.06014 5.64377i 0.298934 0.209316i −0.414480 0.910058i \(-0.636037\pi\)
0.713414 + 0.700742i \(0.247148\pi\)
\(728\) −20.8369 20.8369i −0.772267 0.772267i
\(729\) 0 0
\(730\) −15.0845 + 1.71795i −0.558304 + 0.0635841i
\(731\) 4.06735 + 0.717184i 0.150436 + 0.0265260i
\(732\) 0 0
\(733\) −33.5024 + 15.6224i −1.23744 + 0.577027i −0.927533 0.373740i \(-0.878075\pi\)
−0.309905 + 0.950767i \(0.600297\pi\)
\(734\) 22.3146 18.7242i 0.823646 0.691121i
\(735\) 0 0
\(736\) 6.96332 2.53444i 0.256671 0.0934207i
\(737\) −10.7471 40.1088i −0.395875 1.47743i
\(738\) 0 0
\(739\) 7.02338 4.05495i 0.258359 0.149164i −0.365227 0.930919i \(-0.619009\pi\)
0.623586 + 0.781755i \(0.285675\pi\)
\(740\) −0.756423 3.71883i −0.0278067 0.136707i
\(741\) 0 0
\(742\) 1.99851 2.85416i 0.0733675 0.104780i
\(743\) −17.8592 + 25.5056i −0.655190 + 0.935709i −0.999996 0.00296531i \(-0.999056\pi\)
0.344805 + 0.938674i \(0.387945\pi\)
\(744\) 0 0
\(745\) 10.7050 16.1718i 0.392200 0.592489i
\(746\) −19.8552 + 11.4634i −0.726949 + 0.419704i
\(747\) 0 0
\(748\) −0.838814 3.13050i −0.0306701 0.114462i
\(749\) −26.6979 + 9.71724i −0.975519 + 0.355060i
\(750\) 0 0
\(751\) −13.4156 + 11.2570i −0.489541 + 0.410774i −0.853862 0.520500i \(-0.825746\pi\)
0.364321 + 0.931273i \(0.381301\pi\)
\(752\) −25.9484 + 12.1000i −0.946243 + 0.441240i
\(753\) 0 0
\(754\) −43.8023 7.72353i −1.59519 0.281274i
\(755\) 4.03140 + 35.3979i 0.146718 + 1.28826i
\(756\) 0 0
\(757\) −20.1777 20.1777i −0.733371 0.733371i 0.237915 0.971286i \(-0.423536\pi\)
−0.971286 + 0.237915i \(0.923536\pi\)
\(758\) 29.5641 20.7010i 1.07381 0.751893i
\(759\) 0 0
\(760\) −3.10887 5.07375i −0.112771 0.184044i
\(761\) −23.7584 28.3141i −0.861240 1.02639i −0.999353 0.0359689i \(-0.988548\pi\)
0.138113 0.990416i \(-0.455896\pi\)
\(762\) 0 0
\(763\) −11.8696 + 25.4545i −0.429710 + 0.921516i
\(764\) −1.69744 + 2.94006i −0.0614113 + 0.106368i
\(765\) 0 0
\(766\) −4.88069 8.45360i −0.176346 0.305441i
\(767\) 24.5794 2.15042i 0.887512 0.0776472i
\(768\) 0 0
\(769\) −8.53754 + 1.50540i −0.307872 + 0.0542861i −0.325450 0.945559i \(-0.605516\pi\)
0.0175779 + 0.999845i \(0.494405\pi\)
\(770\) −7.10520 23.9909i −0.256054 0.864571i
\(771\) 0 0
\(772\) −0.355865 4.06755i −0.0128078 0.146394i
\(773\) −3.05417 + 11.3983i −0.109851 + 0.409969i −0.998850 0.0479396i \(-0.984734\pi\)
0.889000 + 0.457908i \(0.151401\pi\)
\(774\) 0 0
\(775\) −3.54262 + 11.5835i −0.127255 + 0.416092i
\(776\) 13.7174 + 37.6882i 0.492425 + 1.35293i
\(777\) 0 0
\(778\) 3.61856 41.3603i 0.129732 1.48284i
\(779\) −7.12895 2.59472i −0.255421 0.0929657i
\(780\) 0 0
\(781\) −4.24560 + 24.0780i −0.151919 + 0.861578i
\(782\) −16.8270 + 16.8270i −0.601733 + 0.601733i
\(783\) 0 0
\(784\) 11.0025i 0.392947i
\(785\) −19.6678 22.2325i −0.701972 0.793510i
\(786\) 0 0
\(787\) 7.93722 + 17.0214i 0.282931 + 0.606748i 0.995490 0.0948643i \(-0.0302417\pi\)
−0.712559 + 0.701612i \(0.752464\pi\)
\(788\) 3.19101 + 0.279178i 0.113675 + 0.00994529i
\(789\) 0 0
\(790\) 0.393037 1.17448i 0.0139836 0.0417862i
\(791\) 23.1237 + 13.3505i 0.822183 + 0.474687i
\(792\) 0 0
\(793\) 41.1675 + 11.0308i 1.46190 + 0.391715i
\(794\) −16.7831 14.0827i −0.595610 0.499776i
\(795\) 0 0
\(796\) −0.367376 2.08349i −0.0130213 0.0738475i
\(797\) −17.6670 12.3706i −0.625797 0.438188i 0.217184 0.976131i \(-0.430313\pi\)
−0.842981 + 0.537943i \(0.819202\pi\)
\(798\) 0 0
\(799\) −16.9567 + 20.2082i −0.599884 + 0.714914i
\(800\) 6.61615 + 0.231662i 0.233916 + 0.00819049i
\(801\) 0 0
\(802\) 1.93969 0.519739i 0.0684929 0.0183526i
\(803\) −19.9304 9.29368i −0.703327 0.327967i
\(804\) 0 0
\(805\) 16.8659 17.7713i 0.594444 0.626354i
\(806\) 5.57934 15.3291i 0.196524 0.539945i
\(807\) 0 0
\(808\) 7.24665 + 10.3493i 0.254936 + 0.364087i
\(809\) −4.46938 −0.157135 −0.0785676 0.996909i \(-0.525035\pi\)
−0.0785676 + 0.996909i \(0.525035\pi\)
\(810\) 0 0
\(811\) 37.9099 1.33120 0.665598 0.746311i \(-0.268177\pi\)
0.665598 + 0.746311i \(0.268177\pi\)
\(812\) −1.74556 2.49292i −0.0612573 0.0874845i
\(813\) 0 0
\(814\) −14.0978 + 38.7333i −0.494127 + 1.35760i
\(815\) −16.5887 + 0.433612i −0.581077 + 0.0151888i
\(816\) 0 0
\(817\) 1.04801 + 0.488696i 0.0366653 + 0.0170973i
\(818\) 30.1175 8.06996i 1.05303 0.282159i
\(819\) 0 0
\(820\) 3.58104 2.64957i 0.125055 0.0925269i
\(821\) −23.1674 + 27.6099i −0.808549 + 0.963591i −0.999839 0.0179428i \(-0.994288\pi\)
0.191290 + 0.981533i \(0.438733\pi\)
\(822\) 0 0
\(823\) −2.18095 1.52711i −0.0760230 0.0532319i 0.534947 0.844886i \(-0.320332\pi\)
−0.610970 + 0.791654i \(0.709220\pi\)
\(824\) 6.88563 + 39.0504i 0.239872 + 1.36038i
\(825\) 0 0
\(826\) −9.69752 8.13719i −0.337420 0.283129i
\(827\) −39.8859 10.6874i −1.38697 0.371637i −0.513321 0.858197i \(-0.671585\pi\)
−0.873647 + 0.486560i \(0.838252\pi\)
\(828\) 0 0
\(829\) −19.6326 11.3349i −0.681869 0.393677i 0.118690 0.992931i \(-0.462131\pi\)
−0.800559 + 0.599254i \(0.795464\pi\)
\(830\) −12.2858 24.6445i −0.426447 0.855422i
\(831\) 0 0
\(832\) −43.9658 3.84651i −1.52424 0.133354i
\(833\) −4.28428 9.18766i −0.148441 0.318334i
\(834\) 0 0
\(835\) −13.7877 + 12.1972i −0.477144 + 0.422101i
\(836\) 0.907402i 0.0313832i
\(837\) 0 0
\(838\) 14.9429 14.9429i 0.516195 0.516195i
\(839\) −1.44230 + 8.17971i −0.0497938 + 0.282395i −0.999530 0.0306567i \(-0.990240\pi\)
0.949736 + 0.313052i \(0.101351\pi\)
\(840\) 0 0
\(841\) −13.7493 5.00432i −0.474112 0.172563i
\(842\) −4.20240 + 48.0337i −0.144824 + 1.65535i
\(843\) 0 0
\(844\) 1.50888 + 4.14562i 0.0519379 + 0.142698i
\(845\) 11.3193 26.0293i 0.389396 0.895435i
\(846\) 0 0
\(847\) 3.80634 14.2054i 0.130787 0.488105i
\(848\) −0.405641 4.63650i −0.0139298 0.159218i
\(849\) 0 0
\(850\) −19.5707 + 8.30510i −0.671269 + 0.284863i
\(851\) −39.7487 + 7.00876i −1.36257 + 0.240257i
\(852\) 0 0
\(853\) −6.11455 + 0.534954i −0.209358 + 0.0183165i −0.191352 0.981521i \(-0.561287\pi\)
−0.0180058 + 0.999838i \(0.505732\pi\)
\(854\) −10.9335 18.9374i −0.374137 0.648024i
\(855\) 0 0
\(856\) −21.5463 + 37.3193i −0.736439 + 1.27555i
\(857\) −14.6042 + 31.3187i −0.498869 + 1.06983i 0.482181 + 0.876072i \(0.339845\pi\)
−0.981050 + 0.193756i \(0.937933\pi\)
\(858\) 0 0
\(859\) 14.4078 + 17.1705i 0.491587 + 0.585850i 0.953620 0.301012i \(-0.0973245\pi\)
−0.462034 + 0.886862i \(0.652880\pi\)
\(860\) −0.578954 + 0.354746i −0.0197422 + 0.0120968i
\(861\) 0 0
\(862\) 11.7054 8.19621i 0.398688 0.279164i
\(863\) 34.4337 + 34.4337i 1.17214 + 1.17214i 0.981700 + 0.190436i \(0.0609900\pi\)
0.190436 + 0.981700i \(0.439010\pi\)
\(864\) 0 0
\(865\) −10.8212 + 13.6029i −0.367933 + 0.462511i
\(866\) −47.8011 8.42862i −1.62435 0.286416i
\(867\) 0 0
\(868\) 1.01159 0.471713i 0.0343357 0.0160110i
\(869\) 1.37423 1.15312i 0.0466175 0.0391168i
\(870\) 0 0
\(871\) −45.9694 + 16.7315i −1.55762 + 0.566926i
\(872\) 11.0255 + 41.1477i 0.373370 + 1.39344i
\(873\) 0 0
\(874\) −5.77009 + 3.33137i −0.195176 + 0.112685i
\(875\) 19.9190 9.07422i 0.673384 0.306765i
\(876\) 0 0
\(877\) −7.94910 + 11.3525i −0.268422 + 0.383347i −0.930623 0.365980i \(-0.880734\pi\)
0.662201 + 0.749327i \(0.269623\pi\)
\(878\) 10.6140 15.1584i 0.358206 0.511571i
\(879\) 0 0
\(880\) −27.8694 18.4482i −0.939477 0.621890i
\(881\) 20.3929 11.7738i 0.687054 0.396671i −0.115453 0.993313i \(-0.536832\pi\)
0.802507 + 0.596642i \(0.203499\pi\)
\(882\) 0 0
\(883\) 4.25489 + 15.8795i 0.143188 + 0.534386i 0.999829 + 0.0184733i \(0.00588057\pi\)
−0.856641 + 0.515913i \(0.827453\pi\)
\(884\) −3.58792 + 1.30590i −0.120675 + 0.0439221i
\(885\) 0 0
\(886\) 11.6044 9.73725i 0.389857 0.327129i
\(887\) −9.29073 + 4.33234i −0.311952 + 0.145466i −0.572289 0.820052i \(-0.693944\pi\)
0.260336 + 0.965518i \(0.416167\pi\)
\(888\) 0 0
\(889\) −6.94156 1.22398i −0.232812 0.0410511i
\(890\) 4.53038 + 3.60397i 0.151859 + 0.120805i
\(891\) 0 0
\(892\) 2.76005 + 2.76005i 0.0924133 + 0.0924133i
\(893\) −6.05018 + 4.23638i −0.202461 + 0.141765i
\(894\) 0 0
\(895\) 2.29650 9.56364i 0.0767636 0.319677i
\(896\) 11.2227 + 13.3748i 0.374926 + 0.446819i
\(897\) 0 0
\(898\) −0.907153 + 1.94540i −0.0302721 + 0.0649187i
\(899\) 8.00123 13.8585i 0.266856 0.462208i
\(900\) 0 0
\(901\) −2.14414 3.71376i −0.0714317 0.123723i
\(902\) −48.2002 + 4.21697i −1.60489 + 0.140410i
\(903\) 0 0
\(904\) 39.8832 7.03248i 1.32649 0.233897i
\(905\) 12.2565 3.62991i 0.407419 0.120662i
\(906\) 0 0
\(907\) −1.17717 13.4551i −0.0390872 0.446769i −0.990370 0.138448i \(-0.955789\pi\)
0.951283 0.308321i \(-0.0997669\pi\)
\(908\) −1.10206 + 4.11293i −0.0365730 + 0.136492i
\(909\) 0 0
\(910\) −27.4269 + 10.8023i −0.909193 + 0.358092i
\(911\) −4.95701 13.6193i −0.164233 0.451227i 0.830090 0.557629i \(-0.188289\pi\)
−0.994323 + 0.106403i \(0.966067\pi\)
\(912\) 0 0
\(913\) 3.47635 39.7348i 0.115050 1.31503i
\(914\) 6.91502 + 2.51686i 0.228729 + 0.0832504i
\(915\) 0 0
\(916\) −0.776272 + 4.40246i −0.0256488 + 0.145461i
\(917\) −0.768724 + 0.768724i −0.0253855 + 0.0253855i
\(918\) 0 0
\(919\) 11.7599i 0.387925i −0.981009 0.193962i \(-0.937866\pi\)
0.981009 0.193962i \(-0.0621340\pi\)
\(920\) 2.27036 37.0916i 0.0748517 1.22287i
\(921\) 0 0
\(922\) −8.53202 18.2970i −0.280987 0.602579i
\(923\) 28.6946 + 2.51046i 0.944496 + 0.0826327i
\(924\) 0 0
\(925\) −35.2702 7.50037i −1.15968 0.246610i
\(926\) −38.0276 21.9552i −1.24966 0.721494i
\(927\) 0 0
\(928\) −8.44784 2.26359i −0.277314 0.0743061i
\(929\) 36.0388 + 30.2401i 1.18239 + 0.992146i 0.999960 + 0.00892776i \(0.00284183\pi\)
0.182433 + 0.983218i \(0.441603\pi\)
\(930\) 0 0
\(931\) −0.492867 2.79519i −0.0161531 0.0916086i
\(932\) −1.45799 1.02089i −0.0477579 0.0334405i
\(933\) 0 0
\(934\) 19.3932 23.1119i 0.634563 0.756243i
\(935\) −30.4560 4.55313i −0.996016 0.148903i
\(936\) 0 0
\(937\) 36.6017 9.80740i 1.19573 0.320394i 0.394580 0.918862i \(-0.370890\pi\)
0.801147 + 0.598468i \(0.204224\pi\)
\(938\) 22.7477 + 10.6074i 0.742740 + 0.346346i
\(939\) 0 0
\(940\) −0.113324 4.33542i −0.00369621 0.141406i
\(941\) 3.79401 10.4240i 0.123681 0.339811i −0.862364 0.506289i \(-0.831017\pi\)
0.986045 + 0.166477i \(0.0532392\pi\)
\(942\) 0 0
\(943\) −27.1749 38.8098i −0.884937 1.26382i
\(944\) −16.9098 −0.550367
\(945\) 0 0
\(946\) 7.37489 0.239778
\(947\) 9.12331 + 13.0294i 0.296468 + 0.423400i 0.939558 0.342391i \(-0.111237\pi\)
−0.643090 + 0.765791i \(0.722348\pi\)
\(948\) 0 0
\(949\) −8.86092 + 24.3452i −0.287638 + 0.790278i
\(950\) −5.89457 + 0.827864i −0.191245 + 0.0268594i
\(951\) 0 0
\(952\) 16.8644 + 7.86402i 0.546580 + 0.254874i
\(953\) 35.2746 9.45180i 1.14266 0.306174i 0.362638 0.931930i \(-0.381876\pi\)
0.780019 + 0.625756i \(0.215210\pi\)
\(954\) 0 0
\(955\) 19.1862 + 25.9311i 0.620849 + 0.839112i
\(956\) 1.89177 2.25453i 0.0611843 0.0729167i
\(957\) 0 0
\(958\) 24.8501 + 17.4002i 0.802871 + 0.562176i
\(959\) 2.05447 + 11.6515i 0.0663422 + 0.376245i
\(960\) 0 0
\(961\) −19.2514 16.1538i −0.621012 0.521091i
\(962\) 46.9062 + 12.5685i 1.51232 + 0.405224i
\(963\) 0 0
\(964\) −3.48953 2.01468i −0.112390 0.0648886i
\(965\) −36.7910 12.3120i −1.18434 0.396337i
\(966\) 0 0
\(967\) −1.95128 0.170714i −0.0627488 0.00548981i 0.0557381 0.998445i \(-0.482249\pi\)
−0.118487 + 0.992956i \(0.537804\pi\)
\(968\) −9.42696 20.2162i −0.302994 0.649773i
\(969\) 0 0
\(970\) 40.0452 + 2.45115i 1.28577 + 0.0787017i
\(971\) 27.5442i 0.883934i −0.897031 0.441967i \(-0.854281\pi\)
0.897031 0.441967i \(-0.145719\pi\)
\(972\) 0 0
\(973\) 25.6369 25.6369i 0.821881 0.821881i
\(974\) −4.27366 + 24.2371i −0.136937 + 0.776607i
\(975\) 0 0
\(976\) −27.4477 9.99016i −0.878581 0.319777i
\(977\) −2.84484 + 32.5167i −0.0910146 + 1.04030i 0.804108 + 0.594483i \(0.202643\pi\)
−0.895123 + 0.445819i \(0.852912\pi\)
\(978\) 0 0
\(979\) 2.86792 + 7.87954i 0.0916591 + 0.251831i
\(980\) 1.52835 + 0.664633i 0.0488215 + 0.0212309i
\(981\) 0 0
\(982\) −3.18718 + 11.8947i −0.101707 + 0.379575i
\(983\) −2.79155 31.9076i −0.0890367 1.01769i −0.900952 0.433919i \(-0.857130\pi\)
0.811915 0.583775i \(-0.198425\pi\)
\(984\) 0 0
\(985\) 14.5240 26.7470i 0.462775 0.852230i
\(986\) 27.6596 4.87713i 0.880860 0.155319i
\(987\) 0 0
\(988\) −1.06496 + 0.0931716i −0.0338808 + 0.00296418i
\(989\) 3.61075 + 6.25401i 0.114815 + 0.198866i
\(990\) 0 0
\(991\) 24.5859 42.5840i 0.780995 1.35272i −0.150367 0.988630i \(-0.548046\pi\)
0.931362 0.364094i \(-0.118621\pi\)
\(992\) 1.35561 2.90712i 0.0430407 0.0923012i
\(993\) 0 0
\(994\) −9.49956 11.3211i −0.301308 0.359084i
\(995\) −19.5466 4.69368i −0.619667 0.148800i
\(996\) 0 0
\(997\) 25.7299 18.0163i 0.814874 0.570581i −0.0901563 0.995928i \(-0.528737\pi\)
0.905031 + 0.425347i \(0.139848\pi\)
\(998\) 19.4085 + 19.4085i 0.614364 + 0.614364i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.332.11 192
3.2 odd 2 135.2.q.a.2.6 192
5.3 odd 4 inner 405.2.r.a.8.11 192
15.2 even 4 675.2.ba.b.218.11 192
15.8 even 4 135.2.q.a.83.6 yes 192
15.14 odd 2 675.2.ba.b.407.11 192
27.13 even 9 135.2.q.a.122.6 yes 192
27.14 odd 18 inner 405.2.r.a.152.11 192
135.13 odd 36 135.2.q.a.68.6 yes 192
135.67 odd 36 675.2.ba.b.68.11 192
135.68 even 36 inner 405.2.r.a.233.11 192
135.94 even 18 675.2.ba.b.257.11 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.6 192 3.2 odd 2
135.2.q.a.68.6 yes 192 135.13 odd 36
135.2.q.a.83.6 yes 192 15.8 even 4
135.2.q.a.122.6 yes 192 27.13 even 9
405.2.r.a.8.11 192 5.3 odd 4 inner
405.2.r.a.152.11 192 27.14 odd 18 inner
405.2.r.a.233.11 192 135.68 even 36 inner
405.2.r.a.332.11 192 1.1 even 1 trivial
675.2.ba.b.68.11 192 135.67 odd 36
675.2.ba.b.218.11 192 15.2 even 4
675.2.ba.b.257.11 192 135.94 even 18
675.2.ba.b.407.11 192 15.14 odd 2