Properties

Label 405.2.r.a.278.9
Level $405$
Weight $2$
Character 405.278
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 278.9
Character \(\chi\) \(=\) 405.278
Dual form 405.2.r.a.287.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.00133058 - 0.0152086i) q^{2} +(1.96939 - 0.347256i) q^{4} +(-0.516124 - 2.17569i) q^{5} +(-0.148030 - 0.211408i) q^{7} +(-0.0158044 - 0.0589827i) q^{8} +(-0.0324025 + 0.0107445i) q^{10} +(-1.49616 - 4.11066i) q^{11} +(2.14258 + 0.187451i) q^{13} +(-0.00301826 + 0.00253263i) q^{14} +(3.75746 - 1.36760i) q^{16} +(-0.456091 + 1.70216i) q^{17} +(-4.91894 - 2.83995i) q^{19} +(-1.77197 - 4.10554i) q^{20} +(-0.0605267 + 0.0282241i) q^{22} +(4.74660 + 3.32360i) q^{23} +(-4.46723 + 2.24585i) q^{25} -0.0328351i q^{26} +(-0.364940 - 0.364940i) q^{28} +(3.59567 + 3.01712i) q^{29} +(-0.912568 - 5.17543i) q^{31} +(-0.0774120 - 0.166010i) q^{32} +(0.0264943 + 0.00467167i) q^{34} +(-0.383557 + 0.431179i) q^{35} +(3.12552 + 0.837479i) q^{37} +(-0.0366467 + 0.0785891i) q^{38} +(-0.120171 + 0.0648277i) q^{40} +(-0.241984 - 0.288386i) q^{41} +(8.25395 + 3.84888i) q^{43} +(-4.37396 - 7.57592i) q^{44} +(0.0442317 - 0.0766116i) q^{46} +(3.28345 - 2.29910i) q^{47} +(2.37136 - 6.51526i) q^{49} +(0.0401003 + 0.0649522i) q^{50} +(4.28465 - 0.374859i) q^{52} +(-8.15900 + 8.15900i) q^{53} +(-8.17131 + 5.37678i) q^{55} +(-0.0101299 + 0.0120724i) q^{56} +(0.0411020 - 0.0586997i) q^{58} +(10.6146 + 3.86341i) q^{59} +(-2.10712 + 11.9501i) q^{61} +(-0.0774969 + 0.0207652i) q^{62} +(6.92336 - 3.99720i) q^{64} +(-0.697999 - 4.75832i) q^{65} +(0.160052 - 1.82940i) q^{67} +(-0.307136 + 3.51058i) q^{68} +(0.00706800 + 0.00525965i) q^{70} +(-4.44360 + 2.56551i) q^{71} +(-13.8702 + 3.71651i) q^{73} +(0.00857816 - 0.0486492i) q^{74} +(-10.6735 - 3.88483i) q^{76} +(-0.647552 + 0.924799i) q^{77} +(-1.98949 + 2.37099i) q^{79} +(-4.91479 - 7.46920i) q^{80} +(-0.00406398 + 0.00406398i) q^{82} +(-4.94812 + 0.432904i) q^{83} +(3.93876 + 0.113789i) q^{85} +(0.0475536 - 0.130653i) q^{86} +(-0.218812 + 0.153214i) q^{88} +(-1.44584 + 2.50426i) q^{89} +(-0.277536 - 0.480707i) q^{91} +(10.5020 + 4.89717i) q^{92} +(-0.0393351 - 0.0468777i) q^{94} +(-3.64006 + 12.1678i) q^{95} +(-1.99162 + 4.27105i) q^{97} +(-0.102243 - 0.0273961i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{13}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.00133058 0.0152086i −0.000940864 0.0107541i 0.995710 0.0925315i \(-0.0294959\pi\)
−0.996651 + 0.0817774i \(0.973940\pi\)
\(3\) 0 0
\(4\) 1.96939 0.347256i 0.984693 0.173628i
\(5\) −0.516124 2.17569i −0.230818 0.972997i
\(6\) 0 0
\(7\) −0.148030 0.211408i −0.0559499 0.0799048i 0.790202 0.612846i \(-0.209975\pi\)
−0.846152 + 0.532941i \(0.821087\pi\)
\(8\) −0.0158044 0.0589827i −0.00558769 0.0208535i
\(9\) 0 0
\(10\) −0.0324025 + 0.0107445i −0.0102466 + 0.00339770i
\(11\) −1.49616 4.11066i −0.451108 1.23941i −0.931945 0.362600i \(-0.881889\pi\)
0.480836 0.876810i \(-0.340333\pi\)
\(12\) 0 0
\(13\) 2.14258 + 0.187451i 0.594244 + 0.0519896i 0.380311 0.924859i \(-0.375817\pi\)
0.213933 + 0.976848i \(0.431373\pi\)
\(14\) −0.00301826 + 0.00253263i −0.000806665 + 0.000676873i
\(15\) 0 0
\(16\) 3.75746 1.36760i 0.939364 0.341901i
\(17\) −0.456091 + 1.70216i −0.110618 + 0.412833i −0.998922 0.0464236i \(-0.985218\pi\)
0.888303 + 0.459257i \(0.151884\pi\)
\(18\) 0 0
\(19\) −4.91894 2.83995i −1.12848 0.651529i −0.184929 0.982752i \(-0.559206\pi\)
−0.943553 + 0.331222i \(0.892539\pi\)
\(20\) −1.77197 4.10554i −0.396224 0.918027i
\(21\) 0 0
\(22\) −0.0605267 + 0.0282241i −0.0129043 + 0.00601740i
\(23\) 4.74660 + 3.32360i 0.989734 + 0.693019i 0.951946 0.306267i \(-0.0990800\pi\)
0.0377879 + 0.999286i \(0.487969\pi\)
\(24\) 0 0
\(25\) −4.46723 + 2.24585i −0.893447 + 0.449170i
\(26\) 0.0328351i 0.00643949i
\(27\) 0 0
\(28\) −0.364940 0.364940i −0.0689672 0.0689672i
\(29\) 3.59567 + 3.01712i 0.667699 + 0.560266i 0.912383 0.409337i \(-0.134240\pi\)
−0.244685 + 0.969603i \(0.578684\pi\)
\(30\) 0 0
\(31\) −0.912568 5.17543i −0.163902 0.929534i −0.950189 0.311673i \(-0.899111\pi\)
0.786287 0.617861i \(-0.212001\pi\)
\(32\) −0.0774120 0.166010i −0.0136846 0.0293468i
\(33\) 0 0
\(34\) 0.0264943 + 0.00467167i 0.00454374 + 0.000801184i
\(35\) −0.383557 + 0.431179i −0.0648329 + 0.0728826i
\(36\) 0 0
\(37\) 3.12552 + 0.837479i 0.513832 + 0.137681i 0.506412 0.862292i \(-0.330972\pi\)
0.00741968 + 0.999972i \(0.497638\pi\)
\(38\) −0.0366467 + 0.0785891i −0.00594488 + 0.0127488i
\(39\) 0 0
\(40\) −0.120171 + 0.0648277i −0.0190007 + 0.0102502i
\(41\) −0.241984 0.288386i −0.0377916 0.0450383i 0.746818 0.665029i \(-0.231581\pi\)
−0.784609 + 0.619991i \(0.787136\pi\)
\(42\) 0 0
\(43\) 8.25395 + 3.84888i 1.25872 + 0.586948i 0.933461 0.358678i \(-0.116772\pi\)
0.325254 + 0.945627i \(0.394550\pi\)
\(44\) −4.37396 7.57592i −0.659400 1.14211i
\(45\) 0 0
\(46\) 0.0442317 0.0766116i 0.00652161 0.0112958i
\(47\) 3.28345 2.29910i 0.478941 0.335358i −0.309049 0.951046i \(-0.600011\pi\)
0.787990 + 0.615688i \(0.211122\pi\)
\(48\) 0 0
\(49\) 2.37136 6.51526i 0.338766 0.930751i
\(50\) 0.0401003 + 0.0649522i 0.00567104 + 0.00918563i
\(51\) 0 0
\(52\) 4.28465 0.374859i 0.594174 0.0519835i
\(53\) −8.15900 + 8.15900i −1.12072 + 1.12072i −0.129092 + 0.991633i \(0.541206\pi\)
−0.991633 + 0.129092i \(0.958794\pi\)
\(54\) 0 0
\(55\) −8.17131 + 5.37678i −1.10182 + 0.725005i
\(56\) −0.0101299 + 0.0120724i −0.00135367 + 0.00161324i
\(57\) 0 0
\(58\) 0.0411020 0.0586997i 0.00539696 0.00770765i
\(59\) 10.6146 + 3.86341i 1.38191 + 0.502973i 0.922756 0.385385i \(-0.125931\pi\)
0.459152 + 0.888358i \(0.348153\pi\)
\(60\) 0 0
\(61\) −2.10712 + 11.9501i −0.269790 + 1.53005i 0.485251 + 0.874375i \(0.338728\pi\)
−0.755040 + 0.655678i \(0.772383\pi\)
\(62\) −0.0774969 + 0.0207652i −0.00984212 + 0.00263719i
\(63\) 0 0
\(64\) 6.92336 3.99720i 0.865420 0.499650i
\(65\) −0.697999 4.75832i −0.0865761 0.590197i
\(66\) 0 0
\(67\) 0.160052 1.82940i 0.0195534 0.223497i −0.980130 0.198354i \(-0.936440\pi\)
0.999684 0.0251426i \(-0.00800398\pi\)
\(68\) −0.307136 + 3.51058i −0.0372457 + 0.425721i
\(69\) 0 0
\(70\) 0.00706800 + 0.00525965i 0.000844787 + 0.000628649i
\(71\) −4.44360 + 2.56551i −0.527358 + 0.304471i −0.739940 0.672673i \(-0.765146\pi\)
0.212582 + 0.977143i \(0.431813\pi\)
\(72\) 0 0
\(73\) −13.8702 + 3.71651i −1.62338 + 0.434984i −0.951993 0.306120i \(-0.900969\pi\)
−0.671390 + 0.741104i \(0.734303\pi\)
\(74\) 0.00857816 0.0486492i 0.000997191 0.00565535i
\(75\) 0 0
\(76\) −10.6735 3.88483i −1.22433 0.445620i
\(77\) −0.647552 + 0.924799i −0.0737953 + 0.105391i
\(78\) 0 0
\(79\) −1.98949 + 2.37099i −0.223835 + 0.266757i −0.866261 0.499591i \(-0.833484\pi\)
0.642426 + 0.766348i \(0.277928\pi\)
\(80\) −4.91479 7.46920i −0.549490 0.835082i
\(81\) 0 0
\(82\) −0.00406398 + 0.00406398i −0.000448791 + 0.000448791i
\(83\) −4.94812 + 0.432904i −0.543127 + 0.0475174i −0.355418 0.934707i \(-0.615662\pi\)
−0.187708 + 0.982225i \(0.560106\pi\)
\(84\) 0 0
\(85\) 3.93876 + 0.113789i 0.427218 + 0.0123422i
\(86\) 0.0475536 0.130653i 0.00512784 0.0140886i
\(87\) 0 0
\(88\) −0.218812 + 0.153214i −0.0233254 + 0.0163326i
\(89\) −1.44584 + 2.50426i −0.153259 + 0.265452i −0.932424 0.361367i \(-0.882310\pi\)
0.779165 + 0.626819i \(0.215643\pi\)
\(90\) 0 0
\(91\) −0.277536 0.480707i −0.0290937 0.0503917i
\(92\) 10.5020 + 4.89717i 1.09491 + 0.510565i
\(93\) 0 0
\(94\) −0.0393351 0.0468777i −0.00405710 0.00483507i
\(95\) −3.64006 + 12.1678i −0.373463 + 1.24839i
\(96\) 0 0
\(97\) −1.99162 + 4.27105i −0.202219 + 0.433659i −0.981097 0.193516i \(-0.938011\pi\)
0.778879 + 0.627175i \(0.215789\pi\)
\(98\) −0.102243 0.0273961i −0.0103282 0.00276742i
\(99\) 0 0
\(100\) −8.01782 + 5.97421i −0.801782 + 0.597421i
\(101\) −2.84523 0.501690i −0.283110 0.0499200i 0.0302897 0.999541i \(-0.490357\pi\)
−0.313400 + 0.949621i \(0.601468\pi\)
\(102\) 0 0
\(103\) 4.26799 + 9.15274i 0.420538 + 0.901846i 0.996438 + 0.0843263i \(0.0268738\pi\)
−0.575900 + 0.817520i \(0.695348\pi\)
\(104\) −0.0228057 0.129337i −0.00223628 0.0126826i
\(105\) 0 0
\(106\) 0.134943 + 0.113231i 0.0131069 + 0.0109980i
\(107\) 10.6261 + 10.6261i 1.02727 + 1.02727i 0.999618 + 0.0276498i \(0.00880233\pi\)
0.0276498 + 0.999618i \(0.491198\pi\)
\(108\) 0 0
\(109\) 12.0030i 1.14968i 0.818265 + 0.574841i \(0.194936\pi\)
−0.818265 + 0.574841i \(0.805064\pi\)
\(110\) 0.0926461 + 0.117120i 0.00883346 + 0.0111670i
\(111\) 0 0
\(112\) −0.845337 0.591912i −0.0798769 0.0559304i
\(113\) −8.41851 + 3.92562i −0.791947 + 0.369291i −0.776121 0.630584i \(-0.782816\pi\)
−0.0158260 + 0.999875i \(0.505038\pi\)
\(114\) 0 0
\(115\) 4.78129 12.0425i 0.445858 1.12297i
\(116\) 8.12897 + 4.69326i 0.754756 + 0.435759i
\(117\) 0 0
\(118\) 0.0446336 0.166575i 0.00410885 0.0153344i
\(119\) 0.427365 0.155548i 0.0391765 0.0142591i
\(120\) 0 0
\(121\) −6.23254 + 5.22972i −0.566595 + 0.475429i
\(122\) 0.184548 + 0.0161459i 0.0167082 + 0.00146178i
\(123\) 0 0
\(124\) −3.59440 9.87552i −0.322786 0.886848i
\(125\) 7.19191 + 8.56017i 0.643264 + 0.765645i
\(126\) 0 0
\(127\) −5.03035 18.7735i −0.446371 1.66588i −0.712290 0.701885i \(-0.752342\pi\)
0.265918 0.963996i \(-0.414325\pi\)
\(128\) −0.280131 0.400068i −0.0247603 0.0353614i
\(129\) 0 0
\(130\) −0.0714389 + 0.0169470i −0.00626560 + 0.00148635i
\(131\) 4.49710 0.792959i 0.392913 0.0692812i 0.0262986 0.999654i \(-0.491628\pi\)
0.366614 + 0.930373i \(0.380517\pi\)
\(132\) 0 0
\(133\) 0.127760 + 1.46030i 0.0110782 + 0.126624i
\(134\) −0.0280356 −0.00242191
\(135\) 0 0
\(136\) 0.107606 0.00922713
\(137\) −0.609750 6.96948i −0.0520945 0.595443i −0.976713 0.214549i \(-0.931172\pi\)
0.924619 0.380894i \(-0.124384\pi\)
\(138\) 0 0
\(139\) 8.03836 1.41738i 0.681805 0.120221i 0.177990 0.984032i \(-0.443041\pi\)
0.503815 + 0.863812i \(0.331929\pi\)
\(140\) −0.605642 + 0.982350i −0.0511861 + 0.0830238i
\(141\) 0 0
\(142\) 0.0449306 + 0.0641675i 0.00377049 + 0.00538482i
\(143\) −2.43508 9.08786i −0.203632 0.759965i
\(144\) 0 0
\(145\) 4.70851 9.38026i 0.391020 0.778988i
\(146\) 0.0749784 + 0.206002i 0.00620526 + 0.0170488i
\(147\) 0 0
\(148\) 6.44617 + 0.563966i 0.529872 + 0.0463578i
\(149\) 14.7726 12.3956i 1.21021 1.01549i 0.210937 0.977500i \(-0.432349\pi\)
0.999278 0.0379911i \(-0.0120959\pi\)
\(150\) 0 0
\(151\) −14.1147 + 5.13734i −1.14864 + 0.418070i −0.845026 0.534725i \(-0.820415\pi\)
−0.303613 + 0.952795i \(0.598193\pi\)
\(152\) −0.0897672 + 0.335016i −0.00728108 + 0.0271734i
\(153\) 0 0
\(154\) 0.0149266 + 0.00861785i 0.00120282 + 0.000694446i
\(155\) −10.7891 + 4.65662i −0.866603 + 0.374029i
\(156\) 0 0
\(157\) 2.11753 0.987420i 0.168997 0.0788047i −0.336279 0.941762i \(-0.609168\pi\)
0.505276 + 0.862958i \(0.331391\pi\)
\(158\) 0.0387066 + 0.0271027i 0.00307933 + 0.00215617i
\(159\) 0 0
\(160\) −0.321233 + 0.254106i −0.0253957 + 0.0200889i
\(161\) 1.49546i 0.117859i
\(162\) 0 0
\(163\) 10.7302 + 10.7302i 0.840451 + 0.840451i 0.988917 0.148467i \(-0.0474338\pi\)
−0.148467 + 0.988917i \(0.547434\pi\)
\(164\) −0.576705 0.483913i −0.0450331 0.0377872i
\(165\) 0 0
\(166\) 0.0131678 + 0.0746781i 0.00102202 + 0.00579615i
\(167\) −8.20013 17.5852i −0.634545 1.36079i −0.915987 0.401208i \(-0.868590\pi\)
0.281442 0.959578i \(-0.409187\pi\)
\(168\) 0 0
\(169\) −8.24701 1.45417i −0.634385 0.111859i
\(170\) −0.00351027 0.0600545i −0.000269225 0.00460597i
\(171\) 0 0
\(172\) 17.5918 + 4.71370i 1.34136 + 0.359416i
\(173\) −2.45707 + 5.26921i −0.186808 + 0.400610i −0.977300 0.211862i \(-0.932047\pi\)
0.790492 + 0.612472i \(0.209825\pi\)
\(174\) 0 0
\(175\) 1.13607 + 0.611958i 0.0858791 + 0.0462597i
\(176\) −11.2435 13.3995i −0.847510 1.01002i
\(177\) 0 0
\(178\) 0.0400103 + 0.0186571i 0.00299890 + 0.00139841i
\(179\) −4.77974 8.27875i −0.357254 0.618783i 0.630247 0.776395i \(-0.282954\pi\)
−0.987501 + 0.157612i \(0.949620\pi\)
\(180\) 0 0
\(181\) 6.93879 12.0183i 0.515756 0.893315i −0.484077 0.875026i \(-0.660844\pi\)
0.999833 0.0182899i \(-0.00582219\pi\)
\(182\) −0.00694161 + 0.00486056i −0.000514546 + 0.000360289i
\(183\) 0 0
\(184\) 0.121018 0.332494i 0.00892157 0.0245118i
\(185\) 0.208941 7.23239i 0.0153616 0.531736i
\(186\) 0 0
\(187\) 7.67937 0.671857i 0.561571 0.0491311i
\(188\) 5.66801 5.66801i 0.413382 0.413382i
\(189\) 0 0
\(190\) 0.189900 + 0.0391701i 0.0137768 + 0.00284170i
\(191\) 7.63489 9.09890i 0.552441 0.658374i −0.415488 0.909599i \(-0.636389\pi\)
0.967929 + 0.251225i \(0.0808335\pi\)
\(192\) 0 0
\(193\) −6.94425 + 9.91741i −0.499858 + 0.713871i −0.987226 0.159325i \(-0.949068\pi\)
0.487368 + 0.873197i \(0.337957\pi\)
\(194\) 0.0676068 + 0.0246069i 0.00485389 + 0.00176667i
\(195\) 0 0
\(196\) 2.40766 13.6545i 0.171976 0.975323i
\(197\) −5.74222 + 1.53862i −0.409116 + 0.109622i −0.457507 0.889206i \(-0.651257\pi\)
0.0483907 + 0.998828i \(0.484591\pi\)
\(198\) 0 0
\(199\) 4.84519 2.79737i 0.343466 0.198300i −0.318337 0.947977i \(-0.603124\pi\)
0.661804 + 0.749677i \(0.269791\pi\)
\(200\) 0.203068 + 0.227995i 0.0143591 + 0.0161217i
\(201\) 0 0
\(202\) −0.00384421 + 0.0439395i −0.000270478 + 0.00309157i
\(203\) 0.105579 1.20678i 0.00741022 0.0846992i
\(204\) 0 0
\(205\) −0.502544 + 0.675325i −0.0350992 + 0.0471668i
\(206\) 0.133522 0.0770888i 0.00930290 0.00537103i
\(207\) 0 0
\(208\) 8.30699 2.22585i 0.575986 0.154335i
\(209\) −4.31456 + 24.4691i −0.298444 + 1.69256i
\(210\) 0 0
\(211\) 5.33826 + 1.94297i 0.367501 + 0.133759i 0.519168 0.854672i \(-0.326242\pi\)
−0.151667 + 0.988432i \(0.548464\pi\)
\(212\) −13.2350 + 18.9015i −0.908980 + 1.29816i
\(213\) 0 0
\(214\) 0.147470 0.175748i 0.0100808 0.0120139i
\(215\) 4.11390 19.9445i 0.280566 1.36020i
\(216\) 0 0
\(217\) −0.959041 + 0.959041i −0.0651039 + 0.0651039i
\(218\) 0.182550 0.0159710i 0.0123638 0.00108169i
\(219\) 0 0
\(220\) −14.2253 + 13.4265i −0.959072 + 0.905214i
\(221\) −1.29628 + 3.56150i −0.0871973 + 0.239573i
\(222\) 0 0
\(223\) 10.8010 7.56295i 0.723289 0.506452i −0.153007 0.988225i \(-0.548896\pi\)
0.876296 + 0.481773i \(0.160007\pi\)
\(224\) −0.0236367 + 0.0409400i −0.00157929 + 0.00273542i
\(225\) 0 0
\(226\) 0.0709048 + 0.122811i 0.00471652 + 0.00816925i
\(227\) −13.2080 6.15899i −0.876646 0.408787i −0.0684181 0.997657i \(-0.521795\pi\)
−0.808228 + 0.588870i \(0.799573\pi\)
\(228\) 0 0
\(229\) −5.35302 6.37948i −0.353738 0.421568i 0.559605 0.828759i \(-0.310953\pi\)
−0.913343 + 0.407191i \(0.866508\pi\)
\(230\) −0.189512 0.0566933i −0.0124960 0.00373825i
\(231\) 0 0
\(232\) 0.121131 0.259766i 0.00795262 0.0170545i
\(233\) 26.7094 + 7.15675i 1.74979 + 0.468854i 0.984581 0.174930i \(-0.0559699\pi\)
0.765207 + 0.643784i \(0.222637\pi\)
\(234\) 0 0
\(235\) −6.69679 5.95715i −0.436850 0.388602i
\(236\) 22.2459 + 3.92255i 1.44808 + 0.255336i
\(237\) 0 0
\(238\) −0.00293432 0.00629266i −0.000190204 0.000407893i
\(239\) −3.76477 21.3510i −0.243522 1.38108i −0.823899 0.566736i \(-0.808206\pi\)
0.580377 0.814348i \(-0.302905\pi\)
\(240\) 0 0
\(241\) 3.99926 + 3.35578i 0.257615 + 0.216165i 0.762443 0.647055i \(-0.224000\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(242\) 0.0878299 + 0.0878299i 0.00564592 + 0.00564592i
\(243\) 0 0
\(244\) 24.2661i 1.55348i
\(245\) −15.3991 1.79666i −0.983811 0.114784i
\(246\) 0 0
\(247\) −10.0068 7.00687i −0.636721 0.445837i
\(248\) −0.290838 + 0.135620i −0.0184682 + 0.00861188i
\(249\) 0 0
\(250\) 0.120619 0.120769i 0.00762862 0.00763811i
\(251\) −12.0778 6.97313i −0.762345 0.440140i 0.0677923 0.997699i \(-0.478404\pi\)
−0.830137 + 0.557560i \(0.811738\pi\)
\(252\) 0 0
\(253\) 6.56054 24.4843i 0.412458 1.53931i
\(254\) −0.278826 + 0.101484i −0.0174951 + 0.00636770i
\(255\) 0 0
\(256\) 12.2424 10.2726i 0.765152 0.642039i
\(257\) 9.33717 + 0.816897i 0.582437 + 0.0509566i 0.374567 0.927200i \(-0.377791\pi\)
0.207870 + 0.978156i \(0.433347\pi\)
\(258\) 0 0
\(259\) −0.285619 0.784731i −0.0177475 0.0487608i
\(260\) −3.02699 9.12859i −0.187726 0.566131i
\(261\) 0 0
\(262\) −0.0180436 0.0673396i −0.00111474 0.00416025i
\(263\) −5.75656 8.22122i −0.354965 0.506942i 0.601467 0.798897i \(-0.294583\pi\)
−0.956432 + 0.291955i \(0.905694\pi\)
\(264\) 0 0
\(265\) 21.9625 + 13.5404i 1.34914 + 0.831779i
\(266\) 0.0220392 0.00388610i 0.00135131 0.000238272i
\(267\) 0 0
\(268\) −0.320066 3.65837i −0.0195511 0.223470i
\(269\) −1.84882 −0.112724 −0.0563622 0.998410i \(-0.517950\pi\)
−0.0563622 + 0.998410i \(0.517950\pi\)
\(270\) 0 0
\(271\) 14.0068 0.850851 0.425426 0.904993i \(-0.360124\pi\)
0.425426 + 0.904993i \(0.360124\pi\)
\(272\) 0.614129 + 7.01953i 0.0372370 + 0.425621i
\(273\) 0 0
\(274\) −0.105185 + 0.0185469i −0.00635445 + 0.00112046i
\(275\) 15.9156 + 15.0031i 0.959747 + 0.904723i
\(276\) 0 0
\(277\) 10.4313 + 14.8975i 0.626758 + 0.895103i 0.999460 0.0328481i \(-0.0104577\pi\)
−0.372703 + 0.927951i \(0.621569\pi\)
\(278\) −0.0322521 0.120367i −0.00193435 0.00721911i
\(279\) 0 0
\(280\) 0.0314940 + 0.0158087i 0.00188212 + 0.000944750i
\(281\) 8.98091 + 24.6748i 0.535756 + 1.47198i 0.852124 + 0.523341i \(0.175314\pi\)
−0.316368 + 0.948637i \(0.602463\pi\)
\(282\) 0 0
\(283\) −18.2738 1.59875i −1.08627 0.0950360i −0.470071 0.882629i \(-0.655772\pi\)
−0.616196 + 0.787593i \(0.711327\pi\)
\(284\) −7.86028 + 6.59556i −0.466422 + 0.391374i
\(285\) 0 0
\(286\) −0.134974 + 0.0491264i −0.00798117 + 0.00290491i
\(287\) −0.0251463 + 0.0938472i −0.00148434 + 0.00553962i
\(288\) 0 0
\(289\) 12.0331 + 6.94732i 0.707830 + 0.408666i
\(290\) −0.148926 0.0591288i −0.00874523 0.00347216i
\(291\) 0 0
\(292\) −26.0252 + 12.1357i −1.52301 + 0.710191i
\(293\) −8.60861 6.02781i −0.502920 0.352149i 0.294422 0.955675i \(-0.404873\pi\)
−0.797343 + 0.603527i \(0.793762\pi\)
\(294\) 0 0
\(295\) 2.92711 25.0881i 0.170423 1.46069i
\(296\) 0.197587i 0.0114845i
\(297\) 0 0
\(298\) −0.208177 0.208177i −0.0120594 0.0120594i
\(299\) 9.54693 + 8.01082i 0.552113 + 0.463278i
\(300\) 0 0
\(301\) −0.408144 2.31470i −0.0235250 0.133417i
\(302\) 0.0969127 + 0.207830i 0.00557670 + 0.0119593i
\(303\) 0 0
\(304\) −22.3666 3.94384i −1.28281 0.226195i
\(305\) 27.0872 1.58328i 1.55101 0.0906586i
\(306\) 0 0
\(307\) −12.3714 3.31491i −0.706074 0.189192i −0.112124 0.993694i \(-0.535765\pi\)
−0.593949 + 0.804502i \(0.702432\pi\)
\(308\) −0.954137 + 2.04615i −0.0543670 + 0.116590i
\(309\) 0 0
\(310\) 0.0851767 + 0.157892i 0.00483771 + 0.00896765i
\(311\) −13.5014 16.0903i −0.765592 0.912397i 0.232596 0.972573i \(-0.425278\pi\)
−0.998188 + 0.0601768i \(0.980834\pi\)
\(312\) 0 0
\(313\) −26.7887 12.4918i −1.51419 0.706078i −0.524781 0.851237i \(-0.675853\pi\)
−0.989408 + 0.145159i \(0.953631\pi\)
\(314\) −0.0178349 0.0308909i −0.00100648 0.00174327i
\(315\) 0 0
\(316\) −3.09474 + 5.36025i −0.174093 + 0.301538i
\(317\) 21.7523 15.2311i 1.22173 0.855465i 0.228720 0.973492i \(-0.426546\pi\)
0.993010 + 0.118027i \(0.0376571\pi\)
\(318\) 0 0
\(319\) 7.02268 19.2947i 0.393195 1.08029i
\(320\) −12.2700 13.0000i −0.685912 0.726723i
\(321\) 0 0
\(322\) −0.0227439 + 0.00198984i −0.00126747 + 0.000110889i
\(323\) 7.07752 7.07752i 0.393804 0.393804i
\(324\) 0 0
\(325\) −9.99237 + 3.97451i −0.554277 + 0.220466i
\(326\) 0.148914 0.177468i 0.00824756 0.00982906i
\(327\) 0 0
\(328\) −0.0131854 + 0.0188306i −0.000728040 + 0.00103975i
\(329\) −0.972097 0.353814i −0.0535934 0.0195064i
\(330\) 0 0
\(331\) −1.72647 + 9.79132i −0.0948956 + 0.538179i 0.899884 + 0.436130i \(0.143651\pi\)
−0.994779 + 0.102050i \(0.967460\pi\)
\(332\) −9.59443 + 2.57082i −0.526563 + 0.141092i
\(333\) 0 0
\(334\) −0.256536 + 0.148111i −0.0140371 + 0.00810430i
\(335\) −4.06280 + 0.595973i −0.221975 + 0.0325615i
\(336\) 0 0
\(337\) −1.22264 + 13.9748i −0.0666015 + 0.761258i 0.887311 + 0.461172i \(0.152571\pi\)
−0.953912 + 0.300086i \(0.902985\pi\)
\(338\) −0.0111426 + 0.127361i −0.000606078 + 0.00692750i
\(339\) 0 0
\(340\) 7.79645 1.14366i 0.422822 0.0620238i
\(341\) −19.9091 + 11.4945i −1.07814 + 0.622463i
\(342\) 0 0
\(343\) −3.47343 + 0.930702i −0.187547 + 0.0502532i
\(344\) 0.0965688 0.547669i 0.00520664 0.0295283i
\(345\) 0 0
\(346\) 0.0834068 + 0.0303576i 0.00448397 + 0.00163203i
\(347\) −3.50208 + 5.00149i −0.188001 + 0.268494i −0.902077 0.431574i \(-0.857958\pi\)
0.714076 + 0.700068i \(0.246847\pi\)
\(348\) 0 0
\(349\) −2.45708 + 2.92823i −0.131524 + 0.156745i −0.827787 0.561042i \(-0.810400\pi\)
0.696263 + 0.717787i \(0.254845\pi\)
\(350\) 0.00779540 0.0180924i 0.000416682 0.000967079i
\(351\) 0 0
\(352\) −0.566592 + 0.566592i −0.0301995 + 0.0301995i
\(353\) 2.21879 0.194119i 0.118094 0.0103319i −0.0279554 0.999609i \(-0.508900\pi\)
0.146050 + 0.989277i \(0.453344\pi\)
\(354\) 0 0
\(355\) 7.87521 + 8.34377i 0.417973 + 0.442841i
\(356\) −1.97779 + 5.43394i −0.104823 + 0.287998i
\(357\) 0 0
\(358\) −0.119549 + 0.0837088i −0.00631834 + 0.00442415i
\(359\) −5.90045 + 10.2199i −0.311414 + 0.539385i −0.978669 0.205445i \(-0.934136\pi\)
0.667255 + 0.744829i \(0.267469\pi\)
\(360\) 0 0
\(361\) 6.63064 + 11.4846i 0.348981 + 0.604453i
\(362\) −0.192015 0.0895381i −0.0100921 0.00470602i
\(363\) 0 0
\(364\) −0.713504 0.850321i −0.0373978 0.0445689i
\(365\) 15.2447 + 28.2590i 0.797944 + 1.47915i
\(366\) 0 0
\(367\) −0.896047 + 1.92158i −0.0467733 + 0.100306i −0.928306 0.371818i \(-0.878735\pi\)
0.881532 + 0.472123i \(0.156512\pi\)
\(368\) 22.3805 + 5.99683i 1.16666 + 0.312607i
\(369\) 0 0
\(370\) −0.110273 + 0.00644559i −0.00573281 + 0.000335090i
\(371\) 2.93265 + 0.517106i 0.152256 + 0.0268468i
\(372\) 0 0
\(373\) 1.40277 + 3.00825i 0.0726328 + 0.155762i 0.939272 0.343174i \(-0.111502\pi\)
−0.866639 + 0.498936i \(0.833724\pi\)
\(374\) −0.0204361 0.115899i −0.00105672 0.00599298i
\(375\) 0 0
\(376\) −0.187500 0.157331i −0.00966957 0.00811373i
\(377\) 7.13843 + 7.13843i 0.367648 + 0.367648i
\(378\) 0 0
\(379\) 15.7634i 0.809713i 0.914380 + 0.404856i \(0.132678\pi\)
−0.914380 + 0.404856i \(0.867322\pi\)
\(380\) −2.94334 + 25.2272i −0.150990 + 1.29413i
\(381\) 0 0
\(382\) −0.148541 0.104009i −0.00760001 0.00532158i
\(383\) −24.9622 + 11.6401i −1.27551 + 0.594781i −0.938031 0.346552i \(-0.887352\pi\)
−0.337480 + 0.941333i \(0.609575\pi\)
\(384\) 0 0
\(385\) 2.34629 + 0.931559i 0.119578 + 0.0474766i
\(386\) 0.160070 + 0.0924166i 0.00814736 + 0.00470388i
\(387\) 0 0
\(388\) −2.43913 + 9.10294i −0.123828 + 0.462132i
\(389\) −28.2091 + 10.2673i −1.43026 + 0.520571i −0.937005 0.349315i \(-0.886414\pi\)
−0.493252 + 0.869886i \(0.664192\pi\)
\(390\) 0 0
\(391\) −7.82217 + 6.56358i −0.395584 + 0.331934i
\(392\) −0.421765 0.0368997i −0.0213024 0.00186372i
\(393\) 0 0
\(394\) 0.0310408 + 0.0852840i 0.00156382 + 0.00429655i
\(395\) 6.18535 + 3.10479i 0.311219 + 0.156219i
\(396\) 0 0
\(397\) −1.23812 4.62074i −0.0621397 0.231908i 0.927871 0.372902i \(-0.121637\pi\)
−0.990011 + 0.140993i \(0.954970\pi\)
\(398\) −0.0489911 0.0699666i −0.00245570 0.00350711i
\(399\) 0 0
\(400\) −13.7140 + 14.5481i −0.685700 + 0.727404i
\(401\) 8.47214 1.49387i 0.423078 0.0746001i 0.0419444 0.999120i \(-0.486645\pi\)
0.381134 + 0.924520i \(0.375534\pi\)
\(402\) 0 0
\(403\) −0.985106 11.2598i −0.0490716 0.560891i
\(404\) −5.77756 −0.287444
\(405\) 0 0
\(406\) −0.0184939 −0.000917838
\(407\) −1.23367 14.1009i −0.0611508 0.698957i
\(408\) 0 0
\(409\) 8.33076 1.46894i 0.411930 0.0726343i 0.0361568 0.999346i \(-0.488488\pi\)
0.375773 + 0.926712i \(0.377377\pi\)
\(410\) 0.0109395 + 0.00674443i 0.000540261 + 0.000333083i
\(411\) 0 0
\(412\) 11.5837 + 16.5432i 0.570686 + 0.815024i
\(413\) −0.754524 2.81592i −0.0371277 0.138562i
\(414\) 0 0
\(415\) 3.49571 + 10.5421i 0.171597 + 0.517493i
\(416\) −0.134742 0.370201i −0.00660628 0.0181506i
\(417\) 0 0
\(418\) 0.377882 + 0.0330604i 0.0184828 + 0.00161704i
\(419\) −6.72816 + 5.64560i −0.328692 + 0.275806i −0.792167 0.610305i \(-0.791047\pi\)
0.463475 + 0.886110i \(0.346603\pi\)
\(420\) 0 0
\(421\) 0.538899 0.196143i 0.0262643 0.00955944i −0.328855 0.944381i \(-0.606663\pi\)
0.355119 + 0.934821i \(0.384440\pi\)
\(422\) 0.0224469 0.0837730i 0.00109270 0.00407800i
\(423\) 0 0
\(424\) 0.610187 + 0.352292i 0.0296333 + 0.0171088i
\(425\) −1.78532 8.62824i −0.0866006 0.418531i
\(426\) 0 0
\(427\) 2.83827 1.32351i 0.137353 0.0640489i
\(428\) 24.6170 + 17.2370i 1.18991 + 0.833181i
\(429\) 0 0
\(430\) −0.308803 0.0360290i −0.0148918 0.00173747i
\(431\) 25.0117i 1.20477i 0.798205 + 0.602386i \(0.205783\pi\)
−0.798205 + 0.602386i \(0.794217\pi\)
\(432\) 0 0
\(433\) −24.9892 24.9892i −1.20090 1.20090i −0.973892 0.227011i \(-0.927105\pi\)
−0.227011 0.973892i \(-0.572895\pi\)
\(434\) 0.0158618 + 0.0133096i 0.000761390 + 0.000638882i
\(435\) 0 0
\(436\) 4.16812 + 23.6386i 0.199617 + 1.13208i
\(437\) −13.9093 29.8287i −0.665374 1.42690i
\(438\) 0 0
\(439\) −4.64923 0.819785i −0.221896 0.0391262i 0.0615948 0.998101i \(-0.480381\pi\)
−0.283491 + 0.958975i \(0.591492\pi\)
\(440\) 0.446279 + 0.396989i 0.0212755 + 0.0189257i
\(441\) 0 0
\(442\) 0.0558904 + 0.0149758i 0.00265844 + 0.000712326i
\(443\) 12.4959 26.7976i 0.593700 1.27319i −0.348238 0.937406i \(-0.613220\pi\)
0.941938 0.335787i \(-0.109002\pi\)
\(444\) 0 0
\(445\) 6.19473 + 1.85318i 0.293658 + 0.0878492i
\(446\) −0.129394 0.154205i −0.00612697 0.00730184i
\(447\) 0 0
\(448\) −1.86990 0.871951i −0.0883447 0.0411958i
\(449\) −3.36725 5.83225i −0.158910 0.275241i 0.775566 0.631267i \(-0.217465\pi\)
−0.934476 + 0.356026i \(0.884131\pi\)
\(450\) 0 0
\(451\) −0.823409 + 1.42619i −0.0387728 + 0.0671565i
\(452\) −15.2161 + 10.6544i −0.715706 + 0.501142i
\(453\) 0 0
\(454\) −0.0760955 + 0.209071i −0.00357134 + 0.00981217i
\(455\) −0.902624 + 0.851936i −0.0423157 + 0.0399394i
\(456\) 0 0
\(457\) −36.1208 + 3.16016i −1.68966 + 0.147826i −0.891015 0.453974i \(-0.850006\pi\)
−0.798647 + 0.601800i \(0.794450\pi\)
\(458\) −0.0899006 + 0.0899006i −0.00420078 + 0.00420078i
\(459\) 0 0
\(460\) 5.23438 25.3767i 0.244054 1.18319i
\(461\) −16.9825 + 20.2390i −0.790956 + 0.942625i −0.999373 0.0354156i \(-0.988725\pi\)
0.208417 + 0.978040i \(0.433169\pi\)
\(462\) 0 0
\(463\) 6.89825 9.85172i 0.320589 0.457848i −0.626219 0.779647i \(-0.715399\pi\)
0.946808 + 0.321799i \(0.104287\pi\)
\(464\) 17.6368 + 6.41927i 0.818767 + 0.298007i
\(465\) 0 0
\(466\) 0.0733054 0.415735i 0.00339581 0.0192586i
\(467\) 10.6775 2.86104i 0.494098 0.132393i −0.00316149 0.999995i \(-0.501006\pi\)
0.497260 + 0.867602i \(0.334340\pi\)
\(468\) 0 0
\(469\) −0.410442 + 0.236969i −0.0189525 + 0.0109422i
\(470\) −0.0816895 + 0.109775i −0.00376805 + 0.00506357i
\(471\) 0 0
\(472\) 0.0601168 0.687138i 0.00276710 0.0316281i
\(473\) 3.47222 39.6877i 0.159653 1.82484i
\(474\) 0 0
\(475\) 28.3521 + 1.63953i 1.30089 + 0.0752269i
\(476\) 0.787631 0.454739i 0.0361010 0.0208429i
\(477\) 0 0
\(478\) −0.319711 + 0.0856663i −0.0146232 + 0.00391828i
\(479\) 0.735877 4.17337i 0.0336231 0.190686i −0.963370 0.268175i \(-0.913579\pi\)
0.996993 + 0.0774895i \(0.0246904\pi\)
\(480\) 0 0
\(481\) 6.53967 + 2.38024i 0.298183 + 0.108530i
\(482\) 0.0457155 0.0652884i 0.00208228 0.00297381i
\(483\) 0 0
\(484\) −10.4582 + 12.4636i −0.475374 + 0.566529i
\(485\) 10.3204 + 2.12876i 0.468625 + 0.0966619i
\(486\) 0 0
\(487\) 16.7646 16.7646i 0.759676 0.759676i −0.216587 0.976263i \(-0.569493\pi\)
0.976263 + 0.216587i \(0.0694925\pi\)
\(488\) 0.738151 0.0645798i 0.0334145 0.00292339i
\(489\) 0 0
\(490\) −0.00683498 + 0.236590i −0.000308773 + 0.0106880i
\(491\) −0.697417 + 1.91614i −0.0314740 + 0.0864740i −0.954434 0.298421i \(-0.903540\pi\)
0.922960 + 0.384895i \(0.125762\pi\)
\(492\) 0 0
\(493\) −6.77556 + 4.74430i −0.305156 + 0.213673i
\(494\) −0.0932500 + 0.161514i −0.00419552 + 0.00726685i
\(495\) 0 0
\(496\) −10.5069 18.1984i −0.471772 0.817133i
\(497\) 1.20016 + 0.559642i 0.0538343 + 0.0251034i
\(498\) 0 0
\(499\) 8.77600 + 10.4588i 0.392868 + 0.468202i 0.925832 0.377937i \(-0.123366\pi\)
−0.532964 + 0.846138i \(0.678922\pi\)
\(500\) 17.1362 + 14.3608i 0.766355 + 0.642236i
\(501\) 0 0
\(502\) −0.0899812 + 0.192965i −0.00401606 + 0.00861246i
\(503\) −42.9050 11.4964i −1.91304 0.512597i −0.992552 0.121825i \(-0.961125\pi\)
−0.920487 0.390772i \(-0.872208\pi\)
\(504\) 0 0
\(505\) 0.376968 + 6.44926i 0.0167748 + 0.286988i
\(506\) −0.381102 0.0671985i −0.0169420 0.00298734i
\(507\) 0 0
\(508\) −16.4259 35.2255i −0.728782 1.56288i
\(509\) −0.883595 5.01112i −0.0391647 0.222114i 0.958943 0.283597i \(-0.0915279\pi\)
−0.998108 + 0.0614836i \(0.980417\pi\)
\(510\) 0 0
\(511\) 2.83890 + 2.38212i 0.125586 + 0.105379i
\(512\) −0.863214 0.863214i −0.0381490 0.0381490i
\(513\) 0 0
\(514\) 0.143093i 0.00631155i
\(515\) 17.7107 14.0098i 0.780426 0.617344i
\(516\) 0 0
\(517\) −14.3634 10.0573i −0.631700 0.442321i
\(518\) −0.0115547 + 0.00538802i −0.000507682 + 0.000236736i
\(519\) 0 0
\(520\) −0.269627 + 0.116372i −0.0118239 + 0.00510326i
\(521\) 14.9219 + 8.61518i 0.653742 + 0.377438i 0.789888 0.613251i \(-0.210138\pi\)
−0.136146 + 0.990689i \(0.543472\pi\)
\(522\) 0 0
\(523\) −3.45799 + 12.9054i −0.151207 + 0.564314i 0.848193 + 0.529688i \(0.177691\pi\)
−0.999400 + 0.0346265i \(0.988976\pi\)
\(524\) 8.58116 3.12329i 0.374870 0.136441i
\(525\) 0 0
\(526\) −0.117374 + 0.0984884i −0.00511775 + 0.00429430i
\(527\) 9.22560 + 0.807135i 0.401873 + 0.0351594i
\(528\) 0 0
\(529\) 3.61738 + 9.93866i 0.157277 + 0.432116i
\(530\) 0.176708 0.352036i 0.00767569 0.0152915i
\(531\) 0 0
\(532\) 0.758707 + 2.83153i 0.0328941 + 0.122762i
\(533\) −0.464412 0.663249i −0.0201159 0.0287285i
\(534\) 0 0
\(535\) 17.6348 28.6036i 0.762417 1.23664i
\(536\) −0.110432 + 0.0194722i −0.00476995 + 0.000841071i
\(537\) 0 0
\(538\) 0.00246001 + 0.0281180i 0.000106058 + 0.00121225i
\(539\) −30.3299 −1.30640
\(540\) 0 0
\(541\) 7.10549 0.305489 0.152745 0.988266i \(-0.451189\pi\)
0.152745 + 0.988266i \(0.451189\pi\)
\(542\) −0.0186372 0.213024i −0.000800535 0.00915016i
\(543\) 0 0
\(544\) 0.317883 0.0560513i 0.0136291 0.00240318i
\(545\) 26.1148 6.19505i 1.11864 0.265367i
\(546\) 0 0
\(547\) −5.89172 8.41425i −0.251912 0.359767i 0.673201 0.739459i \(-0.264919\pi\)
−0.925113 + 0.379692i \(0.876030\pi\)
\(548\) −3.62103 13.5139i −0.154683 0.577283i
\(549\) 0 0
\(550\) 0.207000 0.262017i 0.00882651 0.0111725i
\(551\) −9.11839 25.0526i −0.388456 1.06728i
\(552\) 0 0
\(553\) 0.795750 + 0.0696191i 0.0338387 + 0.00296050i
\(554\) 0.212691 0.178469i 0.00903636 0.00758240i
\(555\) 0 0
\(556\) 15.3384 5.58274i 0.650495 0.236761i
\(557\) 1.48759 5.55174i 0.0630310 0.235235i −0.927223 0.374511i \(-0.877811\pi\)
0.990254 + 0.139276i \(0.0444774\pi\)
\(558\) 0 0
\(559\) 16.9632 + 9.79373i 0.717468 + 0.414230i
\(560\) −0.851516 + 2.14469i −0.0359831 + 0.0906297i
\(561\) 0 0
\(562\) 0.363321 0.169419i 0.0153258 0.00714652i
\(563\) 20.2152 + 14.1548i 0.851969 + 0.596555i 0.915903 0.401399i \(-0.131476\pi\)
−0.0639343 + 0.997954i \(0.520365\pi\)
\(564\) 0 0
\(565\) 12.8859 + 16.2900i 0.542114 + 0.685323i
\(566\) 0.280047i 0.0117713i
\(567\) 0 0
\(568\) 0.221549 + 0.221549i 0.00929600 + 0.00929600i
\(569\) 1.46173 + 1.22654i 0.0612790 + 0.0514192i 0.672913 0.739722i \(-0.265043\pi\)
−0.611634 + 0.791141i \(0.709487\pi\)
\(570\) 0 0
\(571\) −7.82276 44.3651i −0.327372 1.85662i −0.492452 0.870340i \(-0.663899\pi\)
0.165080 0.986280i \(-0.447212\pi\)
\(572\) −7.95143 17.0519i −0.332466 0.712976i
\(573\) 0 0
\(574\) 0.00146075 0.000257569i 6.09704e−5 1.07507e-5i
\(575\) −28.6685 4.18717i −1.19556 0.174617i
\(576\) 0 0
\(577\) −21.9121 5.87132i −0.912211 0.244426i −0.227958 0.973671i \(-0.573205\pi\)
−0.684253 + 0.729245i \(0.739872\pi\)
\(578\) 0.0896482 0.192251i 0.00372888 0.00799660i
\(579\) 0 0
\(580\) 6.01552 20.1084i 0.249781 0.834956i
\(581\) 0.823988 + 0.981990i 0.0341848 + 0.0407398i
\(582\) 0 0
\(583\) 45.7460 + 21.3317i 1.89461 + 0.883469i
\(584\) 0.438419 + 0.759364i 0.0181419 + 0.0314227i
\(585\) 0 0
\(586\) −0.0802204 + 0.138946i −0.00331387 + 0.00573980i
\(587\) −7.01492 + 4.91190i −0.289537 + 0.202736i −0.709316 0.704890i \(-0.750996\pi\)
0.419780 + 0.907626i \(0.362107\pi\)
\(588\) 0 0
\(589\) −10.2091 + 28.0493i −0.420659 + 1.15575i
\(590\) −0.385451 0.0111355i −0.0158688 0.000458442i
\(591\) 0 0
\(592\) 12.8893 1.12767i 0.529748 0.0463469i
\(593\) 4.26261 4.26261i 0.175044 0.175044i −0.614147 0.789192i \(-0.710500\pi\)
0.789192 + 0.614147i \(0.210500\pi\)
\(594\) 0 0
\(595\) −0.558997 0.849530i −0.0229166 0.0348273i
\(596\) 24.7884 29.5417i 1.01537 1.21007i
\(597\) 0 0
\(598\) 0.109131 0.155855i 0.00446269 0.00637338i
\(599\) 13.5981 + 4.94929i 0.555602 + 0.202223i 0.604534 0.796580i \(-0.293359\pi\)
−0.0489318 + 0.998802i \(0.515582\pi\)
\(600\) 0 0
\(601\) −2.11215 + 11.9786i −0.0861565 + 0.488618i 0.910944 + 0.412529i \(0.135354\pi\)
−0.997101 + 0.0760891i \(0.975757\pi\)
\(602\) −0.0346604 + 0.00928722i −0.00141265 + 0.000378519i
\(603\) 0 0
\(604\) −26.0133 + 15.0188i −1.05847 + 0.611107i
\(605\) 14.5950 + 10.8609i 0.593371 + 0.441557i
\(606\) 0 0
\(607\) 1.69592 19.3845i 0.0688354 0.786792i −0.880811 0.473468i \(-0.843002\pi\)
0.949646 0.313324i \(-0.101443\pi\)
\(608\) −0.0906769 + 1.03644i −0.00367743 + 0.0420333i
\(609\) 0 0
\(610\) −0.0601214 0.409853i −0.00243424 0.0165945i
\(611\) 7.46602 4.31051i 0.302043 0.174384i
\(612\) 0 0
\(613\) −13.0162 + 3.48768i −0.525720 + 0.140866i −0.511911 0.859038i \(-0.671062\pi\)
−0.0138088 + 0.999905i \(0.504396\pi\)
\(614\) −0.0339541 + 0.192563i −0.00137027 + 0.00777121i
\(615\) 0 0
\(616\) 0.0647813 + 0.0235785i 0.00261011 + 0.000950003i
\(617\) −26.0454 + 37.1967i −1.04855 + 1.49748i −0.192014 + 0.981392i \(0.561502\pi\)
−0.856535 + 0.516090i \(0.827387\pi\)
\(618\) 0 0
\(619\) 0.765342 0.912099i 0.0307617 0.0366604i −0.750444 0.660934i \(-0.770160\pi\)
0.781206 + 0.624273i \(0.214605\pi\)
\(620\) −19.6309 + 12.9173i −0.788396 + 0.518770i
\(621\) 0 0
\(622\) −0.226747 + 0.226747i −0.00909171 + 0.00909171i
\(623\) 0.743449 0.0650434i 0.0297857 0.00260591i
\(624\) 0 0
\(625\) 14.9123 20.0654i 0.596493 0.802618i
\(626\) −0.154339 + 0.424042i −0.00616861 + 0.0169481i
\(627\) 0 0
\(628\) 3.82734 2.67993i 0.152728 0.106941i
\(629\) −2.85104 + 4.93815i −0.113678 + 0.196897i
\(630\) 0 0
\(631\) 10.8669 + 18.8220i 0.432605 + 0.749293i 0.997097 0.0761454i \(-0.0242613\pi\)
−0.564492 + 0.825438i \(0.690928\pi\)
\(632\) 0.171290 + 0.0798737i 0.00681354 + 0.00317721i
\(633\) 0 0
\(634\) −0.260588 0.310556i −0.0103493 0.0123338i
\(635\) −38.2490 + 20.6339i −1.51787 + 0.818833i
\(636\) 0 0
\(637\) 6.30211 13.5149i 0.249699 0.535481i
\(638\) −0.302790 0.0811322i −0.0119876 0.00321206i
\(639\) 0 0
\(640\) −0.725841 + 0.815962i −0.0286914 + 0.0322537i
\(641\) −11.0540 1.94912i −0.436606 0.0769855i −0.0489751 0.998800i \(-0.515595\pi\)
−0.387631 + 0.921815i \(0.626707\pi\)
\(642\) 0 0
\(643\) 10.0815 + 21.6198i 0.397575 + 0.852602i 0.998576 + 0.0533535i \(0.0169910\pi\)
−0.601001 + 0.799248i \(0.705231\pi\)
\(644\) −0.519308 2.94514i −0.0204636 0.116055i
\(645\) 0 0
\(646\) −0.117057 0.0982222i −0.00460553 0.00386450i
\(647\) −17.7336 17.7336i −0.697179 0.697179i 0.266622 0.963801i \(-0.414092\pi\)
−0.963801 + 0.266622i \(0.914092\pi\)
\(648\) 0 0
\(649\) 49.4134i 1.93965i
\(650\) 0.0737426 + 0.146682i 0.00289242 + 0.00575334i
\(651\) 0 0
\(652\) 24.8579 + 17.4057i 0.973511 + 0.681660i
\(653\) 16.5274 7.70684i 0.646766 0.301592i −0.0714165 0.997447i \(-0.522752\pi\)
0.718183 + 0.695855i \(0.244974\pi\)
\(654\) 0 0
\(655\) −4.04629 9.37501i −0.158102 0.366312i
\(656\) −1.30364 0.752659i −0.0508987 0.0293864i
\(657\) 0 0
\(658\) −0.00408758 + 0.0152550i −0.000159350 + 0.000594704i
\(659\) 32.1808 11.7129i 1.25359 0.456269i 0.371975 0.928243i \(-0.378681\pi\)
0.881612 + 0.471974i \(0.156458\pi\)
\(660\) 0 0
\(661\) 3.43935 2.88596i 0.133775 0.112251i −0.573445 0.819244i \(-0.694393\pi\)
0.707220 + 0.706993i \(0.249949\pi\)
\(662\) 0.151210 + 0.0132291i 0.00587693 + 0.000514165i
\(663\) 0 0
\(664\) 0.103736 + 0.285012i 0.00402573 + 0.0110606i
\(665\) 3.11122 1.03166i 0.120648 0.0400061i
\(666\) 0 0
\(667\) 7.03946 + 26.2716i 0.272569 + 1.01724i
\(668\) −22.2558 31.7846i −0.861103 1.22978i
\(669\) 0 0
\(670\) 0.0144698 + 0.0609967i 0.000559019 + 0.00235651i
\(671\) 52.2754 9.21756i 2.01807 0.355840i
\(672\) 0 0
\(673\) 1.31952 + 15.0821i 0.0508636 + 0.581374i 0.978272 + 0.207324i \(0.0664755\pi\)
−0.927409 + 0.374050i \(0.877969\pi\)
\(674\) 0.214165 0.00824933
\(675\) 0 0
\(676\) −16.7465 −0.644096
\(677\) −0.848465 9.69800i −0.0326092 0.372724i −0.994912 0.100745i \(-0.967877\pi\)
0.962303 0.271979i \(-0.0876782\pi\)
\(678\) 0 0
\(679\) 1.19775 0.211196i 0.0459656 0.00810497i
\(680\) −0.0555380 0.234117i −0.00212978 0.00897797i
\(681\) 0 0
\(682\) 0.201306 + 0.287495i 0.00770842 + 0.0110088i
\(683\) 6.02595 + 22.4891i 0.230577 + 0.860523i 0.980093 + 0.198538i \(0.0636193\pi\)
−0.749517 + 0.661985i \(0.769714\pi\)
\(684\) 0 0
\(685\) −14.8487 + 4.92374i −0.567340 + 0.188126i
\(686\) 0.0187764 + 0.0515877i 0.000716886 + 0.00196963i
\(687\) 0 0
\(688\) 36.2776 + 3.17388i 1.38307 + 0.121003i
\(689\) −19.0107 + 15.9519i −0.724249 + 0.607717i
\(690\) 0 0
\(691\) −4.24724 + 1.54587i −0.161573 + 0.0588077i −0.421540 0.906810i \(-0.638510\pi\)
0.259968 + 0.965617i \(0.416288\pi\)
\(692\) −3.00916 + 11.2303i −0.114391 + 0.426913i
\(693\) 0 0
\(694\) 0.0807256 + 0.0466069i 0.00306430 + 0.00176918i
\(695\) −7.23256 16.7574i −0.274347 0.635645i
\(696\) 0 0
\(697\) 0.601245 0.280365i 0.0227738 0.0106196i
\(698\) 0.0478038 + 0.0334725i 0.00180940 + 0.00126695i
\(699\) 0 0
\(700\) 2.44987 + 0.810673i 0.0925965 + 0.0306405i
\(701\) 28.3612i 1.07119i −0.844476 0.535593i \(-0.820088\pi\)
0.844476 0.535593i \(-0.179912\pi\)
\(702\) 0 0
\(703\) −12.9958 12.9958i −0.490147 0.490147i
\(704\) −26.7896 22.4791i −1.00967 0.847214i
\(705\) 0 0
\(706\) −0.00590457 0.0334865i −0.000222221 0.00126028i
\(707\) 0.315116 + 0.675769i 0.0118512 + 0.0254149i
\(708\) 0 0
\(709\) 27.9978 + 4.93677i 1.05148 + 0.185404i 0.672574 0.740030i \(-0.265189\pi\)
0.378907 + 0.925435i \(0.376300\pi\)
\(710\) 0.116419 0.130873i 0.00436911 0.00491158i
\(711\) 0 0
\(712\) 0.170559 + 0.0457011i 0.00639196 + 0.00171272i
\(713\) 12.8695 27.5987i 0.481966 1.03358i
\(714\) 0 0
\(715\) −18.5155 + 9.98844i −0.692442 + 0.373546i
\(716\) −12.2880 14.6443i −0.459224 0.547282i
\(717\) 0 0
\(718\) 0.163281 + 0.0761394i 0.00609361 + 0.00284150i
\(719\) −8.97949 15.5529i −0.334878 0.580026i 0.648583 0.761144i \(-0.275362\pi\)
−0.983461 + 0.181118i \(0.942029\pi\)
\(720\) 0 0
\(721\) 1.30318 2.25717i 0.0485328 0.0840612i
\(722\) 0.165843 0.116124i 0.00617202 0.00432170i
\(723\) 0 0
\(724\) 9.49171 26.0783i 0.352757 0.969191i
\(725\) −22.8387 5.40287i −0.848207 0.200658i
\(726\) 0 0
\(727\) 28.2887 2.47494i 1.04917 0.0917905i 0.450492 0.892780i \(-0.351249\pi\)
0.598678 + 0.800990i \(0.295693\pi\)
\(728\) −0.0239671 + 0.0239671i −0.000888279 + 0.000888279i
\(729\) 0 0
\(730\) 0.409497 0.269452i 0.0151562 0.00997286i
\(731\) −10.3159 + 12.2941i −0.381549 + 0.454712i
\(732\) 0 0
\(733\) 5.80448 8.28966i 0.214393 0.306185i −0.697522 0.716563i \(-0.745714\pi\)
0.911916 + 0.410378i \(0.134603\pi\)
\(734\) 0.0304169 + 0.0110708i 0.00112271 + 0.000408632i
\(735\) 0 0
\(736\) 0.184310 1.04527i 0.00679374 0.0385292i
\(737\) −7.75949 + 2.07915i −0.285825 + 0.0765865i
\(738\) 0 0
\(739\) −35.8294 + 20.6861i −1.31801 + 0.760951i −0.983408 0.181410i \(-0.941934\pi\)
−0.334598 + 0.942361i \(0.608601\pi\)
\(740\) −2.10000 14.3159i −0.0771977 0.526264i
\(741\) 0 0
\(742\) 0.00396233 0.0452897i 0.000145462 0.00166264i
\(743\) −0.674496 + 7.70953i −0.0247449 + 0.282835i 0.973734 + 0.227691i \(0.0731175\pi\)
−0.998478 + 0.0551445i \(0.982438\pi\)
\(744\) 0 0
\(745\) −34.5935 25.7428i −1.26741 0.943142i
\(746\) 0.0438849 0.0253370i 0.00160674 0.000927653i
\(747\) 0 0
\(748\) 14.8903 3.98985i 0.544444 0.145883i
\(749\) 0.673470 3.81944i 0.0246080 0.139559i
\(750\) 0 0
\(751\) −38.8916 14.1554i −1.41918 0.516537i −0.485367 0.874311i \(-0.661314\pi\)
−0.933808 + 0.357773i \(0.883536\pi\)
\(752\) 9.19318 13.1292i 0.335241 0.478773i
\(753\) 0 0
\(754\) 0.0990675 0.118064i 0.00360782 0.00429964i
\(755\) 18.4622 + 28.0577i 0.671907 + 1.02112i
\(756\) 0 0
\(757\) −10.7021 + 10.7021i −0.388975 + 0.388975i −0.874322 0.485347i \(-0.838693\pi\)
0.485347 + 0.874322i \(0.338693\pi\)
\(758\) 0.239740 0.0209745i 0.00870775 0.000761830i
\(759\) 0 0
\(760\) 0.775221 + 0.0223958i 0.0281202 + 0.000812382i
\(761\) −16.8761 + 46.3666i −0.611756 + 1.68079i 0.114551 + 0.993417i \(0.463457\pi\)
−0.726308 + 0.687370i \(0.758765\pi\)
\(762\) 0 0
\(763\) 2.53754 1.77680i 0.0918651 0.0643246i
\(764\) 11.8764 20.5705i 0.429673 0.744215i
\(765\) 0 0
\(766\) 0.210244 + 0.364154i 0.00759643 + 0.0131574i
\(767\) 22.0185 + 10.2674i 0.795040 + 0.370733i
\(768\) 0 0
\(769\) 4.55804 + 5.43206i 0.164367 + 0.195885i 0.841941 0.539570i \(-0.181413\pi\)
−0.677574 + 0.735455i \(0.736969\pi\)
\(770\) 0.0110458 0.0369234i 0.000398063 0.00133063i
\(771\) 0 0
\(772\) −10.2320 + 21.9426i −0.368259 + 0.789733i
\(773\) −8.62644 2.31145i −0.310272 0.0831370i 0.100323 0.994955i \(-0.468012\pi\)
−0.410595 + 0.911818i \(0.634679\pi\)
\(774\) 0 0
\(775\) 15.6999 + 21.0704i 0.563956 + 0.756869i
\(776\) 0.283394 + 0.0499700i 0.0101733 + 0.00179382i
\(777\) 0 0
\(778\) 0.193686 + 0.415360i 0.00694397 + 0.0148914i
\(779\) 0.371305 + 2.10578i 0.0133034 + 0.0754473i
\(780\) 0 0
\(781\) 17.1943 + 14.4277i 0.615260 + 0.516264i
\(782\) 0.110231 + 0.110231i 0.00394186 + 0.00394186i
\(783\) 0 0
\(784\) 27.7239i 0.990139i
\(785\) −3.24122 4.09745i −0.115684 0.146244i
\(786\) 0 0
\(787\) −0.568328 0.397947i −0.0202587 0.0141853i 0.563403 0.826182i \(-0.309492\pi\)
−0.583662 + 0.811997i \(0.698381\pi\)
\(788\) −10.7743 + 5.02416i −0.383820 + 0.178978i
\(789\) 0 0
\(790\) 0.0389895 0.0982019i 0.00138719 0.00349387i
\(791\) 2.07610 + 1.19864i 0.0738175 + 0.0426186i
\(792\) 0 0
\(793\) −6.75473 + 25.2090i −0.239868 + 0.895198i
\(794\) −0.0686278 + 0.0249785i −0.00243551 + 0.000886453i
\(795\) 0 0
\(796\) 8.57065 7.19163i 0.303778 0.254900i
\(797\) 37.0354 + 3.24018i 1.31186 + 0.114773i 0.721528 0.692385i \(-0.243440\pi\)
0.590335 + 0.807158i \(0.298996\pi\)
\(798\) 0 0
\(799\) 2.41587 + 6.63755i 0.0854673 + 0.234820i
\(800\) 0.718651 + 0.567752i 0.0254082 + 0.0200731i
\(801\) 0 0
\(802\) −0.0339926 0.126862i −0.00120032 0.00447965i
\(803\) 36.0293 + 51.4551i 1.27145 + 1.81581i
\(804\) 0 0
\(805\) −3.25366 + 0.771843i −0.114676 + 0.0272039i
\(806\) −0.169936 + 0.0299642i −0.00598573 + 0.00105544i
\(807\) 0 0
\(808\) 0.0153759 + 0.175748i 0.000540924 + 0.00618279i
\(809\) 9.19706 0.323351 0.161676 0.986844i \(-0.448310\pi\)
0.161676 + 0.986844i \(0.448310\pi\)
\(810\) 0 0
\(811\) −3.49413 −0.122695 −0.0613477 0.998116i \(-0.519540\pi\)
−0.0613477 + 0.998116i \(0.519540\pi\)
\(812\) −0.211134 2.41327i −0.00740935 0.0846893i
\(813\) 0 0
\(814\) −0.212814 + 0.0375249i −0.00745914 + 0.00131525i
\(815\) 17.8074 28.8835i 0.623765 1.01175i
\(816\) 0 0
\(817\) −29.6700 42.3732i −1.03802 1.48245i
\(818\) −0.0334253 0.124745i −0.00116869 0.00436160i
\(819\) 0 0
\(820\) −0.755192 + 1.50449i −0.0263724 + 0.0525390i
\(821\) 5.34053 + 14.6730i 0.186386 + 0.512091i 0.997329 0.0730336i \(-0.0232680\pi\)
−0.810944 + 0.585124i \(0.801046\pi\)
\(822\) 0 0
\(823\) −29.7914 2.60641i −1.03846 0.0908536i −0.444850 0.895605i \(-0.646743\pi\)
−0.593612 + 0.804752i \(0.702298\pi\)
\(824\) 0.472400 0.396391i 0.0164568 0.0138089i
\(825\) 0 0
\(826\) −0.0418223 + 0.0152221i −0.00145519 + 0.000529644i
\(827\) −9.64511 + 35.9960i −0.335393 + 1.25171i 0.568049 + 0.822995i \(0.307699\pi\)
−0.903442 + 0.428710i \(0.858968\pi\)
\(828\) 0 0
\(829\) −6.82502 3.94043i −0.237043 0.136857i 0.376774 0.926305i \(-0.377033\pi\)
−0.613817 + 0.789448i \(0.710367\pi\)
\(830\) 0.155680 0.0671921i 0.00540373 0.00233227i
\(831\) 0 0
\(832\) 15.5831 7.26652i 0.540247 0.251921i
\(833\) 10.0084 + 7.00798i 0.346771 + 0.242812i
\(834\) 0 0
\(835\) −34.0277 + 26.9171i −1.17758 + 0.931504i
\(836\) 49.6874i 1.71847i
\(837\) 0 0
\(838\) 0.0948142 + 0.0948142i 0.00327530 + 0.00327530i
\(839\) 26.9906 + 22.6478i 0.931819 + 0.781889i 0.976143 0.217128i \(-0.0696689\pi\)
−0.0443239 + 0.999017i \(0.514113\pi\)
\(840\) 0 0
\(841\) −1.21001 6.86229i −0.0417244 0.236631i
\(842\) −0.00370012 0.00793494i −0.000127515 0.000273456i
\(843\) 0 0
\(844\) 11.1878 + 1.97271i 0.385100 + 0.0679035i
\(845\) 1.09266 + 18.6934i 0.0375885 + 0.643074i
\(846\) 0 0
\(847\) 2.02821 + 0.543456i 0.0696900 + 0.0186734i
\(848\) −19.4988 + 41.8153i −0.669592 + 1.43594i
\(849\) 0 0
\(850\) −0.128848 + 0.0386328i −0.00441946 + 0.00132509i
\(851\) 12.0521 + 14.3631i 0.413141 + 0.492362i
\(852\) 0 0
\(853\) −22.1725 10.3392i −0.759171 0.354007i 0.00417979 0.999991i \(-0.498670\pi\)
−0.763351 + 0.645984i \(0.776447\pi\)
\(854\) −0.0239053 0.0414051i −0.000818021 0.00141685i
\(855\) 0 0
\(856\) 0.458819 0.794697i 0.0156821 0.0271622i
\(857\) −3.70630 + 2.59518i −0.126605 + 0.0886496i −0.635164 0.772378i \(-0.719067\pi\)
0.508559 + 0.861027i \(0.330178\pi\)
\(858\) 0 0
\(859\) −3.10612 + 8.53399i −0.105979 + 0.291176i −0.981336 0.192302i \(-0.938405\pi\)
0.875356 + 0.483478i \(0.160627\pi\)
\(860\) 1.17601 40.7070i 0.0401016 1.38810i
\(861\) 0 0
\(862\) 0.380394 0.0332801i 0.0129563 0.00113353i
\(863\) −21.0851 + 21.0851i −0.717746 + 0.717746i −0.968143 0.250398i \(-0.919439\pi\)
0.250398 + 0.968143i \(0.419439\pi\)
\(864\) 0 0
\(865\) 12.7323 + 2.62626i 0.432911 + 0.0892954i
\(866\) −0.346801 + 0.413302i −0.0117848 + 0.0140446i
\(867\) 0 0
\(868\) −1.55569 + 2.22175i −0.0528035 + 0.0754113i
\(869\) 12.7229 + 4.63076i 0.431595 + 0.157088i
\(870\) 0 0
\(871\) 0.685845 3.88962i 0.0232390 0.131795i
\(872\) 0.707971 0.189700i 0.0239749 0.00642406i
\(873\) 0 0
\(874\) −0.435146 + 0.251232i −0.0147190 + 0.00849804i
\(875\) 0.745074 2.78759i 0.0251881 0.0942376i
\(876\) 0 0
\(877\) −3.98890 + 45.5933i −0.134696 + 1.53958i 0.564973 + 0.825110i \(0.308887\pi\)
−0.699668 + 0.714468i \(0.746669\pi\)
\(878\) −0.00628162 + 0.0717992i −0.000211994 + 0.00242311i
\(879\) 0 0
\(880\) −23.3500 + 31.3781i −0.787129 + 1.05776i
\(881\) 33.3855 19.2752i 1.12479 0.649396i 0.182169 0.983267i \(-0.441688\pi\)
0.942619 + 0.333871i \(0.108355\pi\)
\(882\) 0 0
\(883\) 18.1259 4.85682i 0.609986 0.163445i 0.0594144 0.998233i \(-0.481077\pi\)
0.550571 + 0.834788i \(0.314410\pi\)
\(884\) −1.31612 + 7.46412i −0.0442661 + 0.251045i
\(885\) 0 0
\(886\) −0.424182 0.154390i −0.0142507 0.00518682i
\(887\) −21.0306 + 30.0349i −0.706140 + 1.00847i 0.292496 + 0.956267i \(0.405514\pi\)
−0.998636 + 0.0522057i \(0.983375\pi\)
\(888\) 0 0
\(889\) −3.22424 + 3.84250i −0.108137 + 0.128873i
\(890\) 0.0199418 0.0966792i 0.000668449 0.00324069i
\(891\) 0 0
\(892\) 18.6451 18.6451i 0.624283 0.624283i
\(893\) −22.6804 + 1.98428i −0.758972 + 0.0664014i
\(894\) 0 0
\(895\) −15.5450 + 14.6721i −0.519613 + 0.490433i
\(896\) −0.0431100 + 0.118444i −0.00144021 + 0.00395693i
\(897\) 0 0
\(898\) −0.0842201 + 0.0589716i −0.00281046 + 0.00196791i
\(899\) 12.3336 21.3624i 0.411349 0.712477i
\(900\) 0 0
\(901\) −10.1666 17.6091i −0.338700 0.586645i
\(902\) 0.0227860 + 0.0106253i 0.000758690 + 0.000353783i
\(903\) 0 0
\(904\) 0.364593 + 0.434505i 0.0121262 + 0.0144514i
\(905\) −29.7294 8.89369i −0.988239 0.295636i
\(906\) 0 0
\(907\) −8.15736 + 17.4935i −0.270861 + 0.580863i −0.993943 0.109900i \(-0.964947\pi\)
0.723082 + 0.690762i \(0.242725\pi\)
\(908\) −28.1504 7.54288i −0.934204 0.250319i
\(909\) 0 0
\(910\) 0.0141578 + 0.0125941i 0.000469326 + 0.000417491i
\(911\) −39.2363 6.91842i −1.29996 0.229217i −0.519523 0.854456i \(-0.673890\pi\)
−0.780433 + 0.625239i \(0.785001\pi\)
\(912\) 0 0
\(913\) 9.18269 + 19.6923i 0.303903 + 0.651721i
\(914\) 0.0961236 + 0.545144i 0.00317949 + 0.0180318i
\(915\) 0 0
\(916\) −12.7575 10.7048i −0.421519 0.353696i
\(917\) −0.833342 0.833342i −0.0275194 0.0275194i
\(918\) 0 0
\(919\) 43.5953i 1.43808i −0.694971 0.719038i \(-0.744583\pi\)
0.694971 0.719038i \(-0.255417\pi\)
\(920\) −0.785864 0.0916892i −0.0259092 0.00302290i
\(921\) 0 0
\(922\) 0.330404 + 0.231352i 0.0108813 + 0.00761916i
\(923\) −10.0017 + 4.66385i −0.329209 + 0.153513i
\(924\) 0 0
\(925\) −15.8433 + 3.27822i −0.520923 + 0.107787i
\(926\) −0.159010 0.0918044i −0.00522539 0.00301688i
\(927\) 0 0
\(928\) 0.222526 0.830480i 0.00730479 0.0272618i
\(929\) −32.4046 + 11.7943i −1.06316 + 0.386959i −0.813615 0.581404i \(-0.802504\pi\)
−0.249546 + 0.968363i \(0.580281\pi\)
\(930\) 0 0
\(931\) −30.1676 + 25.3136i −0.988703 + 0.829620i
\(932\) 55.0863 + 4.81942i 1.80441 + 0.157865i
\(933\) 0 0
\(934\) −0.0577199 0.158584i −0.00188865 0.00518903i
\(935\) −5.42525 16.3611i −0.177425 0.535066i
\(936\) 0 0
\(937\) 11.9945 + 44.7642i 0.391845 + 1.46238i 0.827089 + 0.562072i \(0.189995\pi\)
−0.435244 + 0.900313i \(0.643338\pi\)
\(938\) 0.00415010 + 0.00592696i 0.000135506 + 0.000193522i
\(939\) 0 0
\(940\) −15.2572 9.40643i −0.497635 0.306804i
\(941\) −8.77614 + 1.54747i −0.286094 + 0.0504461i −0.314854 0.949140i \(-0.601955\pi\)
0.0287596 + 0.999586i \(0.490844\pi\)
\(942\) 0 0
\(943\) −0.190123 2.17311i −0.00619124 0.0707662i
\(944\) 45.1676 1.47008
\(945\) 0 0
\(946\) −0.608216 −0.0197748
\(947\) 3.21081 + 36.6998i 0.104337 + 1.19258i 0.850192 + 0.526473i \(0.176486\pi\)
−0.745854 + 0.666109i \(0.767959\pi\)
\(948\) 0 0
\(949\) −30.4146 + 5.36292i −0.987300 + 0.174088i
\(950\) −0.0127898 0.433379i −0.000414957 0.0140607i
\(951\) 0 0
\(952\) −0.0159289 0.0227488i −0.000516257 0.000737292i
\(953\) 7.47785 + 27.9077i 0.242231 + 0.904020i 0.974755 + 0.223278i \(0.0716758\pi\)
−0.732523 + 0.680742i \(0.761658\pi\)
\(954\) 0 0
\(955\) −23.7369 11.9150i −0.768109 0.385559i
\(956\) −14.8286 40.7411i −0.479590 1.31766i
\(957\) 0 0
\(958\) −0.0644504 0.00563868i −0.00208230 0.000182177i
\(959\) −1.38314 + 1.16060i −0.0446641 + 0.0374776i
\(960\) 0 0
\(961\) 3.17820 1.15677i 0.102522 0.0373151i
\(962\) 0.0274987 0.102627i 0.000886594 0.00330881i
\(963\) 0 0
\(964\) 9.04140 + 5.22006i 0.291204 + 0.168127i
\(965\) 25.1613 + 9.98990i 0.809970 + 0.321586i
\(966\) 0 0
\(967\) 19.0304 8.87400i 0.611975 0.285369i −0.0918158 0.995776i \(-0.529267\pi\)
0.703791 + 0.710407i \(0.251489\pi\)
\(968\) 0.406964 + 0.284960i 0.0130803 + 0.00915895i
\(969\) 0 0
\(970\) 0.0186434 0.159791i 0.000598603 0.00513059i
\(971\) 58.1766i 1.86697i −0.358610 0.933487i \(-0.616749\pi\)
0.358610 0.933487i \(-0.383251\pi\)
\(972\) 0 0
\(973\) −1.48956 1.48956i −0.0477531 0.0477531i
\(974\) −0.277273 0.232660i −0.00888441 0.00745490i
\(975\) 0 0
\(976\) 8.42555 + 47.7837i 0.269695 + 1.52952i
\(977\) −18.3257 39.2996i −0.586291 1.25731i −0.945977 0.324232i \(-0.894894\pi\)
0.359686 0.933073i \(-0.382884\pi\)
\(978\) 0 0
\(979\) 12.4574 + 2.19657i 0.398140 + 0.0702028i
\(980\) −30.9506 + 1.80911i −0.988682 + 0.0577898i
\(981\) 0 0
\(982\) 0.0300698 + 0.00805718i 0.000959566 + 0.000257115i
\(983\) −21.9924 + 47.1628i −0.701447 + 1.50426i 0.154940 + 0.987924i \(0.450482\pi\)
−0.856387 + 0.516335i \(0.827296\pi\)
\(984\) 0 0
\(985\) 6.31126 + 11.6992i 0.201093 + 0.372766i
\(986\) 0.0811698 + 0.0967344i 0.00258497 + 0.00308065i
\(987\) 0 0
\(988\) −22.1405 10.3243i −0.704384 0.328460i
\(989\) 26.3860 + 45.7019i 0.839026 + 1.45324i
\(990\) 0 0
\(991\) −1.64852 + 2.85532i −0.0523670 + 0.0907023i −0.891021 0.453963i \(-0.850010\pi\)
0.838654 + 0.544665i \(0.183343\pi\)
\(992\) −0.788532 + 0.552136i −0.0250359 + 0.0175303i
\(993\) 0 0
\(994\) 0.00691448 0.0189974i 0.000219314 0.000602560i
\(995\) −8.58692 9.09783i −0.272224 0.288421i
\(996\) 0 0
\(997\) 23.3597 2.04371i 0.739808 0.0647248i 0.288979 0.957335i \(-0.406684\pi\)
0.450829 + 0.892610i \(0.351129\pi\)
\(998\) 0.147387 0.147387i 0.00466546 0.00466546i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.278.9 192
3.2 odd 2 135.2.q.a.38.8 yes 192
5.2 odd 4 inner 405.2.r.a.197.8 192
15.2 even 4 135.2.q.a.92.9 yes 192
15.8 even 4 675.2.ba.b.632.8 192
15.14 odd 2 675.2.ba.b.443.9 192
27.5 odd 18 inner 405.2.r.a.368.8 192
27.22 even 9 135.2.q.a.113.9 yes 192
135.22 odd 36 135.2.q.a.32.8 192
135.32 even 36 inner 405.2.r.a.287.9 192
135.49 even 18 675.2.ba.b.518.8 192
135.103 odd 36 675.2.ba.b.32.9 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.32.8 192 135.22 odd 36
135.2.q.a.38.8 yes 192 3.2 odd 2
135.2.q.a.92.9 yes 192 15.2 even 4
135.2.q.a.113.9 yes 192 27.22 even 9
405.2.r.a.197.8 192 5.2 odd 4 inner
405.2.r.a.278.9 192 1.1 even 1 trivial
405.2.r.a.287.9 192 135.32 even 36 inner
405.2.r.a.368.8 192 27.5 odd 18 inner
675.2.ba.b.32.9 192 135.103 odd 36
675.2.ba.b.443.9 192 15.14 odd 2
675.2.ba.b.518.8 192 135.49 even 18
675.2.ba.b.632.8 192 15.8 even 4