Properties

Label 405.2.r.a.233.3
Level $405$
Weight $2$
Character 405.233
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 233.3
Character \(\chi\) \(=\) 405.233
Dual form 405.2.r.a.332.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15565 + 1.65044i) q^{2} +(-0.704386 - 1.93528i) q^{4} +(2.13942 - 0.650308i) q^{5} +(1.32708 - 0.618828i) q^{7} +(0.115769 + 0.0310202i) q^{8} +(-1.39912 + 4.28251i) q^{10} +(-1.86051 - 2.21727i) q^{11} +(5.02076 - 3.51558i) q^{13} +(-0.512304 + 2.90542i) q^{14} +(2.97033 - 2.49240i) q^{16} +(3.10881 - 0.833002i) q^{17} +(-3.51741 + 2.03078i) q^{19} +(-2.76550 - 3.68231i) q^{20} +(5.80958 - 0.508272i) q^{22} +(2.14034 - 4.58997i) q^{23} +(4.15420 - 2.78256i) q^{25} +12.3493i q^{26} +(-2.13239 - 2.13239i) q^{28} +(0.368261 + 2.08851i) q^{29} +(-3.20394 + 1.16614i) q^{31} +(0.701790 + 8.02150i) q^{32} +(-2.21787 + 6.09356i) q^{34} +(2.43675 - 2.18694i) q^{35} +(3.04540 + 11.3656i) q^{37} +(0.713220 - 8.15214i) q^{38} +(0.267850 - 0.00892031i) q^{40} +(-0.839107 - 0.147957i) q^{41} +(-0.732994 - 0.0641287i) q^{43} +(-2.98053 + 5.16243i) q^{44} +(5.10199 + 8.83690i) q^{46} +(1.21825 + 2.61254i) q^{47} +(-3.12132 + 3.71984i) q^{49} +(-0.208362 + 10.0719i) q^{50} +(-10.3402 - 7.24028i) q^{52} +(-0.0757900 + 0.0757900i) q^{53} +(-5.42232 - 3.53376i) q^{55} +(0.172831 - 0.0304748i) q^{56} +(-3.87255 - 1.80580i) q^{58} +(-2.89613 - 2.43014i) q^{59} +(-4.21993 - 1.53593i) q^{61} +(1.77799 - 6.63556i) q^{62} +(-7.33402 - 4.23430i) q^{64} +(8.45529 - 10.7863i) q^{65} +(-2.55795 - 3.65313i) q^{67} +(-3.80189 - 5.42967i) q^{68} +(0.793385 + 6.54906i) q^{70} +(7.84988 + 4.53213i) q^{71} +(2.15667 - 8.04880i) q^{73} +(-22.2777 - 8.10840i) q^{74} +(6.40774 + 5.37673i) q^{76} +(-3.84116 - 1.79116i) q^{77} +(-1.44073 + 0.254040i) q^{79} +(4.73394 - 7.26391i) q^{80} +(1.21391 - 1.21391i) q^{82} +(13.8441 + 9.69375i) q^{83} +(6.10932 - 3.80382i) q^{85} +(0.952926 - 1.13565i) q^{86} +(-0.146609 - 0.314404i) q^{88} +(3.05075 + 5.28406i) q^{89} +(4.48742 - 7.77244i) q^{91} +(-10.3905 - 0.909052i) q^{92} +(-5.71971 - 1.00854i) q^{94} +(-6.20457 + 6.63207i) q^{95} +(1.41304 - 16.1512i) q^{97} +(-2.53222 - 9.45039i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15565 + 1.65044i −0.817169 + 1.16704i 0.166320 + 0.986072i \(0.446811\pi\)
−0.983489 + 0.180966i \(0.942077\pi\)
\(3\) 0 0
\(4\) −0.704386 1.93528i −0.352193 0.967642i
\(5\) 2.13942 0.650308i 0.956776 0.290826i
\(6\) 0 0
\(7\) 1.32708 0.618828i 0.501590 0.233895i −0.155320 0.987864i \(-0.549641\pi\)
0.656910 + 0.753969i \(0.271863\pi\)
\(8\) 0.115769 + 0.0310202i 0.0409305 + 0.0109673i
\(9\) 0 0
\(10\) −1.39912 + 4.28251i −0.442442 + 1.35425i
\(11\) −1.86051 2.21727i −0.560965 0.668532i 0.408785 0.912631i \(-0.365953\pi\)
−0.969751 + 0.244098i \(0.921508\pi\)
\(12\) 0 0
\(13\) 5.02076 3.51558i 1.39251 0.975045i 0.394076 0.919078i \(-0.371065\pi\)
0.998433 0.0559675i \(-0.0178243\pi\)
\(14\) −0.512304 + 2.90542i −0.136919 + 0.776506i
\(15\) 0 0
\(16\) 2.97033 2.49240i 0.742582 0.623101i
\(17\) 3.10881 0.833002i 0.753996 0.202033i 0.138706 0.990334i \(-0.455706\pi\)
0.615290 + 0.788301i \(0.289039\pi\)
\(18\) 0 0
\(19\) −3.51741 + 2.03078i −0.806949 + 0.465892i −0.845895 0.533349i \(-0.820933\pi\)
0.0389464 + 0.999241i \(0.487600\pi\)
\(20\) −2.76550 3.68231i −0.618385 0.823389i
\(21\) 0 0
\(22\) 5.80958 0.508272i 1.23861 0.108364i
\(23\) 2.14034 4.58997i 0.446291 0.957074i −0.546527 0.837441i \(-0.684051\pi\)
0.992818 0.119633i \(-0.0381717\pi\)
\(24\) 0 0
\(25\) 4.15420 2.78256i 0.830840 0.556511i
\(26\) 12.3493i 2.42189i
\(27\) 0 0
\(28\) −2.13239 2.13239i −0.402983 0.402983i
\(29\) 0.368261 + 2.08851i 0.0683844 + 0.387827i 0.999720 + 0.0236650i \(0.00753352\pi\)
−0.931336 + 0.364162i \(0.881355\pi\)
\(30\) 0 0
\(31\) −3.20394 + 1.16614i −0.575445 + 0.209445i −0.613316 0.789838i \(-0.710165\pi\)
0.0378710 + 0.999283i \(0.487942\pi\)
\(32\) 0.701790 + 8.02150i 0.124060 + 1.41801i
\(33\) 0 0
\(34\) −2.21787 + 6.09356i −0.380362 + 1.04504i
\(35\) 2.43675 2.18694i 0.411886 0.369661i
\(36\) 0 0
\(37\) 3.04540 + 11.3656i 0.500661 + 1.86849i 0.495683 + 0.868503i \(0.334918\pi\)
0.00497757 + 0.999988i \(0.498416\pi\)
\(38\) 0.713220 8.15214i 0.115700 1.32245i
\(39\) 0 0
\(40\) 0.267850 0.00892031i 0.0423509 0.00141043i
\(41\) −0.839107 0.147957i −0.131046 0.0231070i 0.107740 0.994179i \(-0.465639\pi\)
−0.238787 + 0.971072i \(0.576750\pi\)
\(42\) 0 0
\(43\) −0.732994 0.0641287i −0.111781 0.00977953i 0.0311282 0.999515i \(-0.490090\pi\)
−0.142909 + 0.989736i \(0.545646\pi\)
\(44\) −2.98053 + 5.16243i −0.449332 + 0.778266i
\(45\) 0 0
\(46\) 5.10199 + 8.83690i 0.752247 + 1.30293i
\(47\) 1.21825 + 2.61254i 0.177700 + 0.381078i 0.974902 0.222634i \(-0.0714655\pi\)
−0.797203 + 0.603712i \(0.793688\pi\)
\(48\) 0 0
\(49\) −3.12132 + 3.71984i −0.445902 + 0.531406i
\(50\) −0.208362 + 10.0719i −0.0294668 + 1.42439i
\(51\) 0 0
\(52\) −10.3402 7.24028i −1.43393 1.00405i
\(53\) −0.0757900 + 0.0757900i −0.0104106 + 0.0104106i −0.712293 0.701882i \(-0.752343\pi\)
0.701882 + 0.712293i \(0.252343\pi\)
\(54\) 0 0
\(55\) −5.42232 3.53376i −0.731145 0.476492i
\(56\) 0.172831 0.0304748i 0.0230955 0.00407236i
\(57\) 0 0
\(58\) −3.87255 1.80580i −0.508491 0.237113i
\(59\) −2.89613 2.43014i −0.377044 0.316377i 0.434497 0.900673i \(-0.356926\pi\)
−0.811540 + 0.584296i \(0.801371\pi\)
\(60\) 0 0
\(61\) −4.21993 1.53593i −0.540306 0.196655i 0.0574282 0.998350i \(-0.481710\pi\)
−0.597734 + 0.801694i \(0.703932\pi\)
\(62\) 1.77799 6.63556i 0.225805 0.842717i
\(63\) 0 0
\(64\) −7.33402 4.23430i −0.916753 0.529287i
\(65\) 8.45529 10.7863i 1.04875 1.33788i
\(66\) 0 0
\(67\) −2.55795 3.65313i −0.312504 0.446301i 0.631919 0.775034i \(-0.282267\pi\)
−0.944423 + 0.328733i \(0.893378\pi\)
\(68\) −3.80189 5.42967i −0.461047 0.658444i
\(69\) 0 0
\(70\) 0.793385 + 6.54906i 0.0948277 + 0.782762i
\(71\) 7.84988 + 4.53213i 0.931609 + 0.537865i 0.887320 0.461154i \(-0.152564\pi\)
0.0442890 + 0.999019i \(0.485898\pi\)
\(72\) 0 0
\(73\) 2.15667 8.04880i 0.252419 0.942041i −0.717089 0.696982i \(-0.754526\pi\)
0.969508 0.245059i \(-0.0788074\pi\)
\(74\) −22.2777 8.10840i −2.58972 0.942583i
\(75\) 0 0
\(76\) 6.40774 + 5.37673i 0.735018 + 0.616754i
\(77\) −3.84116 1.79116i −0.437741 0.204122i
\(78\) 0 0
\(79\) −1.44073 + 0.254040i −0.162095 + 0.0285818i −0.254107 0.967176i \(-0.581781\pi\)
0.0920115 + 0.995758i \(0.470670\pi\)
\(80\) 4.73394 7.26391i 0.529271 0.812130i
\(81\) 0 0
\(82\) 1.21391 1.21391i 0.134054 0.134054i
\(83\) 13.8441 + 9.69375i 1.51959 + 1.06403i 0.974157 + 0.225872i \(0.0725231\pi\)
0.545431 + 0.838155i \(0.316366\pi\)
\(84\) 0 0
\(85\) 6.10932 3.80382i 0.662649 0.412582i
\(86\) 0.952926 1.13565i 0.102757 0.122461i
\(87\) 0 0
\(88\) −0.146609 0.314404i −0.0156286 0.0335156i
\(89\) 3.05075 + 5.28406i 0.323379 + 0.560109i 0.981183 0.193080i \(-0.0618477\pi\)
−0.657804 + 0.753189i \(0.728514\pi\)
\(90\) 0 0
\(91\) 4.48742 7.77244i 0.470410 0.814774i
\(92\) −10.3905 0.909052i −1.08329 0.0947752i
\(93\) 0 0
\(94\) −5.71971 1.00854i −0.589943 0.104023i
\(95\) −6.20457 + 6.63207i −0.636575 + 0.680436i
\(96\) 0 0
\(97\) 1.41304 16.1512i 0.143473 1.63990i −0.494023 0.869449i \(-0.664474\pi\)
0.637496 0.770453i \(-0.279970\pi\)
\(98\) −2.53222 9.45039i −0.255793 0.954633i
\(99\) 0 0
\(100\) −8.31119 6.07956i −0.831119 0.607956i
\(101\) 1.88053 5.16673i 0.187120 0.514108i −0.810290 0.586029i \(-0.800691\pi\)
0.997410 + 0.0719204i \(0.0229128\pi\)
\(102\) 0 0
\(103\) 0.342012 + 3.90922i 0.0336994 + 0.385186i 0.994250 + 0.107082i \(0.0341507\pi\)
−0.960551 + 0.278105i \(0.910294\pi\)
\(104\) 0.690302 0.251249i 0.0676897 0.0246370i
\(105\) 0 0
\(106\) −0.0375001 0.212674i −0.00364233 0.0206567i
\(107\) −10.5329 10.5329i −1.01825 1.01825i −0.999830 0.0184189i \(-0.994137\pi\)
−0.0184189 0.999830i \(-0.505863\pi\)
\(108\) 0 0
\(109\) 9.91447i 0.949634i 0.880085 + 0.474817i \(0.157486\pi\)
−0.880085 + 0.474817i \(0.842514\pi\)
\(110\) 12.0986 4.86542i 1.15355 0.463899i
\(111\) 0 0
\(112\) 2.39950 5.14574i 0.226731 0.486227i
\(113\) −15.1732 + 1.32748i −1.42737 + 0.124879i −0.774492 0.632583i \(-0.781995\pi\)
−0.652879 + 0.757462i \(0.726439\pi\)
\(114\) 0 0
\(115\) 1.59418 11.2117i 0.148658 1.04550i
\(116\) 3.78247 2.18381i 0.351193 0.202762i
\(117\) 0 0
\(118\) 7.35771 1.97149i 0.677332 0.181491i
\(119\) 3.61015 3.02928i 0.330942 0.277693i
\(120\) 0 0
\(121\) 0.455341 2.58237i 0.0413946 0.234761i
\(122\) 7.41172 5.18974i 0.671026 0.469857i
\(123\) 0 0
\(124\) 4.51362 + 5.37912i 0.405335 + 0.483059i
\(125\) 7.07804 8.65455i 0.633080 0.774087i
\(126\) 0 0
\(127\) −9.62937 2.58018i −0.854468 0.228954i −0.195109 0.980782i \(-0.562506\pi\)
−0.659360 + 0.751828i \(0.729173\pi\)
\(128\) 0.868604 0.405037i 0.0767745 0.0358005i
\(129\) 0 0
\(130\) 8.03081 + 26.4202i 0.704349 + 2.31720i
\(131\) −3.84111 10.5534i −0.335599 0.922051i −0.986627 0.162997i \(-0.947884\pi\)
0.651028 0.759054i \(-0.274338\pi\)
\(132\) 0 0
\(133\) −3.41119 + 4.87168i −0.295787 + 0.422428i
\(134\) 8.98538 0.776219
\(135\) 0 0
\(136\) 0.385743 0.0330772
\(137\) −11.2752 + 16.1027i −0.963306 + 1.37574i −0.0368588 + 0.999320i \(0.511735\pi\)
−0.926448 + 0.376424i \(0.877154\pi\)
\(138\) 0 0
\(139\) −0.508611 1.39740i −0.0431398 0.118526i 0.916252 0.400602i \(-0.131199\pi\)
−0.959392 + 0.282076i \(0.908977\pi\)
\(140\) −5.94876 3.17535i −0.502762 0.268366i
\(141\) 0 0
\(142\) −16.5517 + 7.71820i −1.38899 + 0.647697i
\(143\) −17.1362 4.59162i −1.43300 0.383971i
\(144\) 0 0
\(145\) 2.14604 + 4.22872i 0.178219 + 0.351176i
\(146\) 10.7917 + 12.8611i 0.893129 + 1.06439i
\(147\) 0 0
\(148\) 19.8505 13.8995i 1.63170 1.14253i
\(149\) 0.861743 4.88719i 0.0705968 0.400374i −0.928948 0.370210i \(-0.879286\pi\)
0.999545 0.0301644i \(-0.00960308\pi\)
\(150\) 0 0
\(151\) −15.8833 + 13.3277i −1.29257 + 1.08459i −0.301186 + 0.953565i \(0.597383\pi\)
−0.991379 + 0.131025i \(0.958173\pi\)
\(152\) −0.470202 + 0.125990i −0.0381384 + 0.0102191i
\(153\) 0 0
\(154\) 7.39525 4.26965i 0.595926 0.344058i
\(155\) −6.09621 + 4.57840i −0.489659 + 0.367746i
\(156\) 0 0
\(157\) 6.76582 0.591932i 0.539971 0.0472413i 0.186092 0.982532i \(-0.440418\pi\)
0.353879 + 0.935291i \(0.384862\pi\)
\(158\) 1.24571 2.67143i 0.0991032 0.212528i
\(159\) 0 0
\(160\) 6.71786 + 16.7049i 0.531093 + 1.32064i
\(161\) 7.41576i 0.584444i
\(162\) 0 0
\(163\) 14.3864 + 14.3864i 1.12683 + 1.12683i 0.990689 + 0.136142i \(0.0434702\pi\)
0.136142 + 0.990689i \(0.456530\pi\)
\(164\) 0.304716 + 1.72813i 0.0237943 + 0.134944i
\(165\) 0 0
\(166\) −31.9979 + 11.6463i −2.48352 + 0.903928i
\(167\) −0.0411027 0.469806i −0.00318063 0.0363547i 0.994439 0.105319i \(-0.0335862\pi\)
−0.997619 + 0.0689639i \(0.978031\pi\)
\(168\) 0 0
\(169\) 8.40252 23.0857i 0.646348 1.77583i
\(170\) −0.782268 + 14.4790i −0.0599972 + 1.11049i
\(171\) 0 0
\(172\) 0.392203 + 1.46372i 0.0299052 + 0.111608i
\(173\) −1.60708 + 18.3690i −0.122184 + 1.39657i 0.649402 + 0.760446i \(0.275019\pi\)
−0.771586 + 0.636125i \(0.780536\pi\)
\(174\) 0 0
\(175\) 3.79104 6.26342i 0.286576 0.473470i
\(176\) −11.0527 1.94888i −0.833126 0.146903i
\(177\) 0 0
\(178\) −12.2466 1.07144i −0.917925 0.0803080i
\(179\) −3.95796 + 6.85540i −0.295832 + 0.512396i −0.975178 0.221422i \(-0.928930\pi\)
0.679346 + 0.733818i \(0.262264\pi\)
\(180\) 0 0
\(181\) 9.86110 + 17.0799i 0.732970 + 1.26954i 0.955608 + 0.294640i \(0.0951998\pi\)
−0.222638 + 0.974901i \(0.571467\pi\)
\(182\) 7.64207 + 16.3885i 0.566468 + 1.21479i
\(183\) 0 0
\(184\) 0.390166 0.464982i 0.0287634 0.0342789i
\(185\) 13.9065 + 22.3353i 1.02243 + 1.64212i
\(186\) 0 0
\(187\) −7.63096 5.34326i −0.558031 0.390738i
\(188\) 4.19789 4.19789i 0.306162 0.306162i
\(189\) 0 0
\(190\) −3.77553 17.9046i −0.273905 1.29894i
\(191\) 8.60644 1.51755i 0.622740 0.109806i 0.146630 0.989191i \(-0.453157\pi\)
0.476110 + 0.879386i \(0.342046\pi\)
\(192\) 0 0
\(193\) −7.83132 3.65180i −0.563711 0.262863i 0.119806 0.992797i \(-0.461773\pi\)
−0.683517 + 0.729935i \(0.739550\pi\)
\(194\) 25.0236 + 20.9973i 1.79659 + 1.50752i
\(195\) 0 0
\(196\) 9.39756 + 3.42043i 0.671254 + 0.244316i
\(197\) −0.519071 + 1.93720i −0.0369822 + 0.138020i −0.981949 0.189148i \(-0.939427\pi\)
0.944966 + 0.327167i \(0.106094\pi\)
\(198\) 0 0
\(199\) −15.5130 8.95641i −1.09968 0.634903i −0.163546 0.986536i \(-0.552293\pi\)
−0.936138 + 0.351633i \(0.885627\pi\)
\(200\) 0.567243 0.193269i 0.0401101 0.0136662i
\(201\) 0 0
\(202\) 6.35413 + 9.07464i 0.447075 + 0.638490i
\(203\) 1.78114 + 2.54374i 0.125012 + 0.178535i
\(204\) 0 0
\(205\) −1.89142 + 0.229136i −0.132102 + 0.0160035i
\(206\) −6.84718 3.95322i −0.477065 0.275434i
\(207\) 0 0
\(208\) 6.15109 22.9562i 0.426501 1.59172i
\(209\) 11.0470 + 4.02077i 0.764134 + 0.278122i
\(210\) 0 0
\(211\) −8.17709 6.86139i −0.562934 0.472358i 0.316359 0.948640i \(-0.397540\pi\)
−0.879293 + 0.476282i \(0.841984\pi\)
\(212\) 0.200061 + 0.0932898i 0.0137402 + 0.00640717i
\(213\) 0 0
\(214\) 29.5562 5.21155i 2.02042 0.356254i
\(215\) −1.60988 + 0.339474i −0.109793 + 0.0231519i
\(216\) 0 0
\(217\) −3.53025 + 3.53025i −0.239649 + 0.239649i
\(218\) −16.3632 11.4577i −1.10826 0.776011i
\(219\) 0 0
\(220\) −3.01943 + 12.9828i −0.203570 + 0.875303i
\(221\) 12.6801 15.1115i 0.852955 1.01651i
\(222\) 0 0
\(223\) 5.05016 + 10.8301i 0.338184 + 0.725238i 0.999695 0.0246975i \(-0.00786226\pi\)
−0.661511 + 0.749936i \(0.730084\pi\)
\(224\) 5.89526 + 10.2109i 0.393894 + 0.682244i
\(225\) 0 0
\(226\) 15.3440 26.5765i 1.02067 1.76784i
\(227\) 1.15273 + 0.100851i 0.0765092 + 0.00669369i 0.125346 0.992113i \(-0.459996\pi\)
−0.0488368 + 0.998807i \(0.515551\pi\)
\(228\) 0 0
\(229\) 8.62548 + 1.52090i 0.569988 + 0.100504i 0.451212 0.892417i \(-0.350992\pi\)
0.118776 + 0.992921i \(0.462103\pi\)
\(230\) 16.6620 + 15.5879i 1.09866 + 1.02784i
\(231\) 0 0
\(232\) −0.0221529 + 0.253208i −0.00145441 + 0.0166240i
\(233\) 4.23498 + 15.8052i 0.277443 + 1.03543i 0.954186 + 0.299213i \(0.0967240\pi\)
−0.676743 + 0.736219i \(0.736609\pi\)
\(234\) 0 0
\(235\) 4.30529 + 4.79707i 0.280846 + 0.312927i
\(236\) −2.66302 + 7.31658i −0.173348 + 0.476269i
\(237\) 0 0
\(238\) 0.827567 + 9.45913i 0.0536432 + 0.613145i
\(239\) −8.07123 + 2.93769i −0.522085 + 0.190023i −0.589601 0.807695i \(-0.700715\pi\)
0.0675160 + 0.997718i \(0.478493\pi\)
\(240\) 0 0
\(241\) 0.358872 + 2.03527i 0.0231170 + 0.131103i 0.994182 0.107712i \(-0.0343523\pi\)
−0.971065 + 0.238815i \(0.923241\pi\)
\(242\) 3.73583 + 3.73583i 0.240148 + 0.240148i
\(243\) 0 0
\(244\) 9.24864i 0.592083i
\(245\) −4.25875 + 9.98810i −0.272082 + 0.638116i
\(246\) 0 0
\(247\) −10.5207 + 22.5618i −0.669417 + 1.43557i
\(248\) −0.407090 + 0.0356158i −0.0258503 + 0.00226161i
\(249\) 0 0
\(250\) 6.10408 + 21.6835i 0.386056 + 1.37139i
\(251\) −9.55376 + 5.51587i −0.603028 + 0.348158i −0.770232 0.637764i \(-0.779860\pi\)
0.167204 + 0.985922i \(0.446526\pi\)
\(252\) 0 0
\(253\) −14.1593 + 3.79398i −0.890189 + 0.238525i
\(254\) 15.3866 12.9109i 0.965443 0.810103i
\(255\) 0 0
\(256\) 2.60580 14.7782i 0.162862 0.923639i
\(257\) 4.73079 3.31253i 0.295098 0.206630i −0.416646 0.909069i \(-0.636794\pi\)
0.711744 + 0.702439i \(0.247906\pi\)
\(258\) 0 0
\(259\) 11.0748 + 13.1985i 0.688157 + 0.820114i
\(260\) −26.8304 8.76566i −1.66395 0.543623i
\(261\) 0 0
\(262\) 21.8567 + 5.85647i 1.35031 + 0.361814i
\(263\) 16.7213 7.79728i 1.03108 0.480801i 0.167958 0.985794i \(-0.446283\pi\)
0.863123 + 0.504993i \(0.168505\pi\)
\(264\) 0 0
\(265\) −0.112860 + 0.211433i −0.00693291 + 0.0129882i
\(266\) −4.09828 11.2599i −0.251281 0.690390i
\(267\) 0 0
\(268\) −5.26807 + 7.52358i −0.321798 + 0.459576i
\(269\) −15.7262 −0.958842 −0.479421 0.877585i \(-0.659153\pi\)
−0.479421 + 0.877585i \(0.659153\pi\)
\(270\) 0 0
\(271\) −17.4326 −1.05895 −0.529477 0.848324i \(-0.677612\pi\)
−0.529477 + 0.848324i \(0.677612\pi\)
\(272\) 7.15800 10.2227i 0.434018 0.619841i
\(273\) 0 0
\(274\) −13.5463 37.2181i −0.818362 2.24843i
\(275\) −13.8986 4.03401i −0.838118 0.243260i
\(276\) 0 0
\(277\) 13.9179 6.49002i 0.836245 0.389947i 0.0431672 0.999068i \(-0.486255\pi\)
0.793078 + 0.609120i \(0.208477\pi\)
\(278\) 2.89410 + 0.775471i 0.173576 + 0.0465097i
\(279\) 0 0
\(280\) 0.349939 0.177591i 0.0209129 0.0106131i
\(281\) −4.76302 5.67634i −0.284138 0.338622i 0.605031 0.796202i \(-0.293161\pi\)
−0.889168 + 0.457580i \(0.848716\pi\)
\(282\) 0 0
\(283\) −11.7772 + 8.24647i −0.700081 + 0.490202i −0.868611 0.495495i \(-0.834987\pi\)
0.168530 + 0.985696i \(0.446098\pi\)
\(284\) 3.24161 18.3841i 0.192354 1.09090i
\(285\) 0 0
\(286\) 27.3816 22.9759i 1.61911 1.35859i
\(287\) −1.20512 + 0.322912i −0.0711362 + 0.0190609i
\(288\) 0 0
\(289\) −5.75165 + 3.32072i −0.338332 + 0.195336i
\(290\) −9.45932 1.34501i −0.555470 0.0789816i
\(291\) 0 0
\(292\) −17.0958 + 1.49569i −1.00046 + 0.0875288i
\(293\) 8.51297 18.2561i 0.497333 1.06653i −0.484150 0.874985i \(-0.660871\pi\)
0.981483 0.191549i \(-0.0613510\pi\)
\(294\) 0 0
\(295\) −7.77636 3.31570i −0.452757 0.193048i
\(296\) 1.41025i 0.0819691i
\(297\) 0 0
\(298\) 7.07014 + 7.07014i 0.409562 + 0.409562i
\(299\) −5.39025 30.5696i −0.311726 1.76789i
\(300\) 0 0
\(301\) −1.01243 + 0.368493i −0.0583553 + 0.0212396i
\(302\) −3.64098 41.6166i −0.209515 2.39477i
\(303\) 0 0
\(304\) −5.38635 + 14.7989i −0.308928 + 0.848774i
\(305\) −10.0270 0.541738i −0.574144 0.0310198i
\(306\) 0 0
\(307\) −3.09276 11.5423i −0.176513 0.658756i −0.996289 0.0860714i \(-0.972569\pi\)
0.819776 0.572684i \(-0.194098\pi\)
\(308\) −0.760749 + 8.69540i −0.0433477 + 0.495467i
\(309\) 0 0
\(310\) −0.511289 15.3525i −0.0290392 0.871962i
\(311\) −2.38442 0.420438i −0.135208 0.0238408i 0.105634 0.994405i \(-0.466313\pi\)
−0.240843 + 0.970564i \(0.577424\pi\)
\(312\) 0 0
\(313\) 12.2121 + 1.06842i 0.690267 + 0.0603905i 0.426891 0.904303i \(-0.359609\pi\)
0.263375 + 0.964693i \(0.415164\pi\)
\(314\) −6.84198 + 11.8506i −0.386115 + 0.668771i
\(315\) 0 0
\(316\) 1.50647 + 2.60929i 0.0847457 + 0.146784i
\(317\) 9.58656 + 20.5585i 0.538435 + 1.15468i 0.967840 + 0.251566i \(0.0809455\pi\)
−0.429405 + 0.903112i \(0.641277\pi\)
\(318\) 0 0
\(319\) 3.94565 4.70224i 0.220914 0.263275i
\(320\) −18.4441 4.28956i −1.03106 0.239794i
\(321\) 0 0
\(322\) 12.2393 + 8.57003i 0.682068 + 0.477589i
\(323\) −9.24330 + 9.24330i −0.514311 + 0.514311i
\(324\) 0 0
\(325\) 11.0750 28.5750i 0.614329 1.58505i
\(326\) −40.3696 + 7.11825i −2.23587 + 0.394243i
\(327\) 0 0
\(328\) −0.0925528 0.0431581i −0.00511038 0.00238301i
\(329\) 3.23343 + 2.71317i 0.178265 + 0.149582i
\(330\) 0 0
\(331\) 15.3336 + 5.58098i 0.842812 + 0.306758i 0.727106 0.686525i \(-0.240865\pi\)
0.115706 + 0.993284i \(0.463087\pi\)
\(332\) 9.00856 33.6204i 0.494409 1.84516i
\(333\) 0 0
\(334\) 0.822888 + 0.475095i 0.0450264 + 0.0259960i
\(335\) −7.84818 6.15212i −0.428792 0.336126i
\(336\) 0 0
\(337\) 2.30026 + 3.28511i 0.125303 + 0.178951i 0.876902 0.480669i \(-0.159606\pi\)
−0.751599 + 0.659620i \(0.770717\pi\)
\(338\) 28.3913 + 40.5469i 1.54428 + 2.20546i
\(339\) 0 0
\(340\) −11.6648 9.14391i −0.632612 0.495898i
\(341\) 8.54661 + 4.93439i 0.462825 + 0.267212i
\(342\) 0 0
\(343\) −4.49317 + 16.7687i −0.242608 + 0.905427i
\(344\) −0.0828686 0.0301617i −0.00446798 0.00162621i
\(345\) 0 0
\(346\) −28.4598 23.8806i −1.53001 1.28383i
\(347\) −11.2479 5.24496i −0.603816 0.281564i 0.0965722 0.995326i \(-0.469212\pi\)
−0.700389 + 0.713762i \(0.746990\pi\)
\(348\) 0 0
\(349\) 7.52479 1.32682i 0.402793 0.0710232i 0.0314181 0.999506i \(-0.489998\pi\)
0.371375 + 0.928483i \(0.378887\pi\)
\(350\) 5.95628 + 13.4952i 0.318377 + 0.721349i
\(351\) 0 0
\(352\) 16.4801 16.4801i 0.878395 0.878395i
\(353\) −14.6661 10.2693i −0.780595 0.546579i 0.113987 0.993482i \(-0.463638\pi\)
−0.894582 + 0.446904i \(0.852527\pi\)
\(354\) 0 0
\(355\) 19.7414 + 4.59127i 1.04777 + 0.243680i
\(356\) 8.07725 9.62609i 0.428093 0.510182i
\(357\) 0 0
\(358\) −6.74040 14.4548i −0.356241 0.763962i
\(359\) 6.26521 + 10.8517i 0.330665 + 0.572729i 0.982642 0.185510i \(-0.0593936\pi\)
−0.651977 + 0.758239i \(0.726060\pi\)
\(360\) 0 0
\(361\) −1.25189 + 2.16834i −0.0658891 + 0.114123i
\(362\) −39.5854 3.46328i −2.08056 0.182026i
\(363\) 0 0
\(364\) −18.2028 3.20964i −0.954084 0.168231i
\(365\) −0.620182 18.6222i −0.0324618 0.974732i
\(366\) 0 0
\(367\) −1.19292 + 13.6352i −0.0622701 + 0.711750i 0.899325 + 0.437280i \(0.144058\pi\)
−0.961596 + 0.274470i \(0.911497\pi\)
\(368\) −5.08254 18.9683i −0.264946 0.988790i
\(369\) 0 0
\(370\) −52.9341 2.85992i −2.75191 0.148680i
\(371\) −0.0536785 + 0.147481i −0.00278685 + 0.00765681i
\(372\) 0 0
\(373\) −1.05518 12.0608i −0.0546353 0.624485i −0.973314 0.229478i \(-0.926298\pi\)
0.918678 0.395006i \(-0.129258\pi\)
\(374\) 17.6375 6.41951i 0.912011 0.331945i
\(375\) 0 0
\(376\) 0.0599937 + 0.340241i 0.00309394 + 0.0175466i
\(377\) 9.19128 + 9.19128i 0.473375 + 0.473375i
\(378\) 0 0
\(379\) 22.5213i 1.15684i 0.815738 + 0.578421i \(0.196331\pi\)
−0.815738 + 0.578421i \(0.803669\pi\)
\(380\) 17.2054 + 7.33607i 0.882616 + 0.376332i
\(381\) 0 0
\(382\) −7.44142 + 15.9582i −0.380736 + 0.816491i
\(383\) 14.4118 1.26087i 0.736410 0.0644275i 0.287221 0.957864i \(-0.407269\pi\)
0.449189 + 0.893437i \(0.351713\pi\)
\(384\) 0 0
\(385\) −9.38265 1.33411i −0.478184 0.0679923i
\(386\) 15.0774 8.70492i 0.767417 0.443069i
\(387\) 0 0
\(388\) −32.2524 + 8.64201i −1.63737 + 0.438731i
\(389\) −9.68308 + 8.12507i −0.490951 + 0.411957i −0.854367 0.519670i \(-0.826055\pi\)
0.363416 + 0.931627i \(0.381610\pi\)
\(390\) 0 0
\(391\) 2.83044 16.0522i 0.143141 0.811795i
\(392\) −0.476742 + 0.333818i −0.0240791 + 0.0168604i
\(393\) 0 0
\(394\) −2.59737 3.09542i −0.130853 0.155945i
\(395\) −2.91713 + 1.48042i −0.146777 + 0.0744879i
\(396\) 0 0
\(397\) −14.5205 3.89075i −0.728761 0.195271i −0.124684 0.992197i \(-0.539792\pi\)
−0.604077 + 0.796926i \(0.706458\pi\)
\(398\) 32.7096 15.2527i 1.63958 0.764550i
\(399\) 0 0
\(400\) 5.40409 18.6190i 0.270205 0.930952i
\(401\) 8.96818 + 24.6399i 0.447849 + 1.23046i 0.934218 + 0.356703i \(0.116099\pi\)
−0.486369 + 0.873754i \(0.661679\pi\)
\(402\) 0 0
\(403\) −11.9866 + 17.1186i −0.597094 + 0.852738i
\(404\) −11.3237 −0.563375
\(405\) 0 0
\(406\) −6.25667 −0.310513
\(407\) 19.5346 27.8983i 0.968294 1.38287i
\(408\) 0 0
\(409\) 2.57831 + 7.08384i 0.127489 + 0.350273i 0.986972 0.160891i \(-0.0514367\pi\)
−0.859483 + 0.511164i \(0.829214\pi\)
\(410\) 1.80764 3.38647i 0.0892731 0.167246i
\(411\) 0 0
\(412\) 7.32453 3.41549i 0.360854 0.168269i
\(413\) −5.34723 1.43279i −0.263120 0.0705028i
\(414\) 0 0
\(415\) 35.9222 + 11.7360i 1.76335 + 0.576099i
\(416\) 31.7237 + 37.8068i 1.55538 + 1.85363i
\(417\) 0 0
\(418\) −19.4025 + 13.5858i −0.949006 + 0.664501i
\(419\) 3.59622 20.3952i 0.175687 0.996370i −0.761661 0.647975i \(-0.775616\pi\)
0.937348 0.348394i \(-0.113273\pi\)
\(420\) 0 0
\(421\) −5.26964 + 4.42176i −0.256827 + 0.215503i −0.762105 0.647453i \(-0.775834\pi\)
0.505279 + 0.862956i \(0.331390\pi\)
\(422\) 20.7742 5.56643i 1.01127 0.270969i
\(423\) 0 0
\(424\) −0.0111251 + 0.00642311i −0.000540285 + 0.000311934i
\(425\) 10.5967 12.1109i 0.514017 0.587464i
\(426\) 0 0
\(427\) −6.55066 + 0.573108i −0.317009 + 0.0277347i
\(428\) −12.9649 + 27.8032i −0.626680 + 1.34392i
\(429\) 0 0
\(430\) 1.30018 3.04933i 0.0627003 0.147052i
\(431\) 2.91928i 0.140617i 0.997525 + 0.0703084i \(0.0223983\pi\)
−0.997525 + 0.0703084i \(0.977602\pi\)
\(432\) 0 0
\(433\) 3.01763 + 3.01763i 0.145018 + 0.145018i 0.775888 0.630870i \(-0.217302\pi\)
−0.630870 + 0.775888i \(0.717302\pi\)
\(434\) −1.74673 9.90621i −0.0838458 0.475513i
\(435\) 0 0
\(436\) 19.1873 6.98361i 0.918905 0.334454i
\(437\) 1.79276 + 20.4913i 0.0857593 + 0.980233i
\(438\) 0 0
\(439\) 1.28129 3.52030i 0.0611524 0.168015i −0.905354 0.424658i \(-0.860394\pi\)
0.966506 + 0.256643i \(0.0826165\pi\)
\(440\) −0.518118 0.577301i −0.0247003 0.0275217i
\(441\) 0 0
\(442\) 10.2870 + 38.3914i 0.489300 + 1.82609i
\(443\) −2.43927 + 27.8809i −0.115893 + 1.32466i 0.686177 + 0.727434i \(0.259287\pi\)
−0.802070 + 0.597229i \(0.796268\pi\)
\(444\) 0 0
\(445\) 9.96310 + 9.32088i 0.472296 + 0.441852i
\(446\) −23.7107 4.18083i −1.12273 0.197968i
\(447\) 0 0
\(448\) −12.3531 1.08076i −0.583631 0.0510611i
\(449\) 4.77256 8.26631i 0.225231 0.390111i −0.731158 0.682208i \(-0.761020\pi\)
0.956389 + 0.292097i \(0.0943530\pi\)
\(450\) 0 0
\(451\) 1.23311 + 2.13580i 0.0580647 + 0.100571i
\(452\) 13.2568 + 28.4293i 0.623548 + 1.33720i
\(453\) 0 0
\(454\) −1.49860 + 1.78596i −0.0703328 + 0.0838193i
\(455\) 4.54598 19.5467i 0.213119 0.916363i
\(456\) 0 0
\(457\) −29.0265 20.3246i −1.35780 0.950745i −0.999855 0.0170039i \(-0.994587\pi\)
−0.357949 0.933741i \(-0.616524\pi\)
\(458\) −12.4782 + 12.4782i −0.583068 + 0.583068i
\(459\) 0 0
\(460\) −22.8208 + 4.81219i −1.06402 + 0.224369i
\(461\) −24.4088 + 4.30393i −1.13683 + 0.200454i −0.710219 0.703981i \(-0.751404\pi\)
−0.426612 + 0.904435i \(0.640293\pi\)
\(462\) 0 0
\(463\) −4.90609 2.28775i −0.228005 0.106321i 0.305259 0.952269i \(-0.401257\pi\)
−0.533264 + 0.845949i \(0.679035\pi\)
\(464\) 6.29927 + 5.28572i 0.292436 + 0.245383i
\(465\) 0 0
\(466\) −30.9797 11.2757i −1.43511 0.522336i
\(467\) −10.5998 + 39.5591i −0.490502 + 1.83058i 0.0633888 + 0.997989i \(0.479809\pi\)
−0.553891 + 0.832589i \(0.686857\pi\)
\(468\) 0 0
\(469\) −5.65527 3.26507i −0.261136 0.150767i
\(470\) −12.8927 + 1.56189i −0.594696 + 0.0720444i
\(471\) 0 0
\(472\) −0.259898 0.371173i −0.0119628 0.0170846i
\(473\) 1.22155 + 1.74456i 0.0561671 + 0.0802149i
\(474\) 0 0
\(475\) −8.96127 + 18.2236i −0.411171 + 0.836158i
\(476\) −8.40545 4.85289i −0.385263 0.222432i
\(477\) 0 0
\(478\) 4.47905 16.7160i 0.204867 0.764574i
\(479\) −25.9636 9.44996i −1.18631 0.431780i −0.327880 0.944719i \(-0.606334\pi\)
−0.858425 + 0.512940i \(0.828556\pi\)
\(480\) 0 0
\(481\) 55.2468 + 46.3576i 2.51904 + 2.11372i
\(482\) −3.77382 1.75976i −0.171893 0.0801549i
\(483\) 0 0
\(484\) −5.31835 + 0.937769i −0.241743 + 0.0426258i
\(485\) −7.48013 35.4730i −0.339655 1.61074i
\(486\) 0 0
\(487\) 28.3122 28.3122i 1.28295 1.28295i 0.343969 0.938981i \(-0.388228\pi\)
0.938981 0.343969i \(-0.111772\pi\)
\(488\) −0.440891 0.308715i −0.0199582 0.0139749i
\(489\) 0 0
\(490\) −11.5631 18.5716i −0.522369 0.838979i
\(491\) −15.4259 + 18.3839i −0.696161 + 0.829652i −0.992086 0.125559i \(-0.959928\pi\)
0.295925 + 0.955211i \(0.404372\pi\)
\(492\) 0 0
\(493\) 2.88459 + 6.18602i 0.129915 + 0.278604i
\(494\) −25.0786 43.4374i −1.12834 1.95434i
\(495\) 0 0
\(496\) −6.61027 + 11.4493i −0.296810 + 0.514090i
\(497\) 13.2220 + 1.15678i 0.593089 + 0.0518886i
\(498\) 0 0
\(499\) 31.1017 + 5.48406i 1.39230 + 0.245500i 0.818976 0.573828i \(-0.194542\pi\)
0.573325 + 0.819328i \(0.305653\pi\)
\(500\) −21.7347 7.60188i −0.972005 0.339966i
\(501\) 0 0
\(502\) 1.93720 22.1423i 0.0864616 0.988261i
\(503\) 0.730168 + 2.72503i 0.0325566 + 0.121503i 0.980292 0.197555i \(-0.0633002\pi\)
−0.947735 + 0.319058i \(0.896634\pi\)
\(504\) 0 0
\(505\) 0.663284 12.2767i 0.0295158 0.546306i
\(506\) 10.1015 27.7536i 0.449066 1.23380i
\(507\) 0 0
\(508\) 1.78941 + 20.4530i 0.0793920 + 0.907455i
\(509\) 20.7599 7.55598i 0.920166 0.334913i 0.161861 0.986814i \(-0.448250\pi\)
0.758304 + 0.651901i \(0.226028\pi\)
\(510\) 0 0
\(511\) −2.11875 12.0160i −0.0937279 0.531557i
\(512\) 22.7346 + 22.7346i 1.00474 + 1.00474i
\(513\) 0 0
\(514\) 11.6360i 0.513243i
\(515\) 3.27390 + 8.14102i 0.144265 + 0.358736i
\(516\) 0 0
\(517\) 3.52615 7.56184i 0.155080 0.332569i
\(518\) −34.5820 + 3.02553i −1.51944 + 0.132934i
\(519\) 0 0
\(520\) 1.31345 0.986435i 0.0575987 0.0432581i
\(521\) 7.62484 4.40220i 0.334050 0.192864i −0.323588 0.946198i \(-0.604889\pi\)
0.657638 + 0.753334i \(0.271556\pi\)
\(522\) 0 0
\(523\) 1.24254 0.332937i 0.0543324 0.0145583i −0.231550 0.972823i \(-0.574380\pi\)
0.285883 + 0.958265i \(0.407713\pi\)
\(524\) −17.7181 + 14.8673i −0.774019 + 0.649479i
\(525\) 0 0
\(526\) −6.45507 + 36.6085i −0.281454 + 1.59621i
\(527\) −8.98903 + 6.29419i −0.391568 + 0.274179i
\(528\) 0 0
\(529\) −1.70263 2.02911i −0.0740274 0.0882224i
\(530\) −0.218532 0.430611i −0.00949241 0.0187046i
\(531\) 0 0
\(532\) 11.8309 + 3.17007i 0.512933 + 0.137440i
\(533\) −4.73311 + 2.20709i −0.205014 + 0.0955995i
\(534\) 0 0
\(535\) −29.3837 15.6846i −1.27037 0.678103i
\(536\) −0.182810 0.502268i −0.00789621 0.0216947i
\(537\) 0 0
\(538\) 18.1740 25.9551i 0.783535 1.11900i
\(539\) 14.0551 0.605398
\(540\) 0 0
\(541\) −9.16794 −0.394160 −0.197080 0.980387i \(-0.563146\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(542\) 20.1460 28.7714i 0.865344 1.23584i
\(543\) 0 0
\(544\) 8.86365 + 24.3527i 0.380026 + 1.04411i
\(545\) 6.44745 + 21.2112i 0.276179 + 0.908587i
\(546\) 0 0
\(547\) 4.18752 1.95267i 0.179046 0.0834904i −0.331029 0.943621i \(-0.607396\pi\)
0.510074 + 0.860130i \(0.329618\pi\)
\(548\) 39.1053 + 10.4782i 1.67050 + 0.447608i
\(549\) 0 0
\(550\) 22.7199 18.2769i 0.968778 0.779331i
\(551\) −5.53663 6.59830i −0.235868 0.281097i
\(552\) 0 0
\(553\) −1.75476 + 1.22870i −0.0746202 + 0.0522496i
\(554\) −5.37283 + 30.4709i −0.228270 + 1.29458i
\(555\) 0 0
\(556\) −2.34610 + 1.96861i −0.0994968 + 0.0834878i
\(557\) −9.73354 + 2.60809i −0.412423 + 0.110509i −0.459064 0.888403i \(-0.651815\pi\)
0.0466405 + 0.998912i \(0.485148\pi\)
\(558\) 0 0
\(559\) −3.90564 + 2.25492i −0.165191 + 0.0953730i
\(560\) 1.78721 12.5693i 0.0755235 0.531150i
\(561\) 0 0
\(562\) 14.8729 1.30121i 0.627373 0.0548881i
\(563\) −6.99817 + 15.0076i −0.294938 + 0.632496i −0.996810 0.0798064i \(-0.974570\pi\)
0.701873 + 0.712302i \(0.252348\pi\)
\(564\) 0 0
\(565\) −31.5984 + 12.7073i −1.32936 + 0.534598i
\(566\) 28.9676i 1.21760i
\(567\) 0 0
\(568\) 0.768184 + 0.768184i 0.0322323 + 0.0322323i
\(569\) 1.89828 + 10.7657i 0.0795799 + 0.451320i 0.998395 + 0.0566320i \(0.0180362\pi\)
−0.918815 + 0.394688i \(0.870853\pi\)
\(570\) 0 0
\(571\) 15.2515 5.55110i 0.638256 0.232306i −0.00256475 0.999997i \(-0.500816\pi\)
0.640821 + 0.767691i \(0.278594\pi\)
\(572\) 3.18438 + 36.3976i 0.133146 + 1.52186i
\(573\) 0 0
\(574\) 0.859755 2.36216i 0.0358855 0.0985946i
\(575\) −3.88045 25.0232i −0.161826 1.04354i
\(576\) 0 0
\(577\) −4.56140 17.0234i −0.189894 0.708693i −0.993530 0.113572i \(-0.963771\pi\)
0.803636 0.595121i \(-0.202896\pi\)
\(578\) 1.16625 13.3304i 0.0485098 0.554469i
\(579\) 0 0
\(580\) 6.67212 7.13184i 0.277045 0.296134i
\(581\) 24.3710 + 4.29727i 1.01108 + 0.178281i
\(582\) 0 0
\(583\) 0.309055 + 0.0270388i 0.0127998 + 0.00111983i
\(584\) 0.499351 0.864901i 0.0206633 0.0357898i
\(585\) 0 0
\(586\) 20.2926 + 35.1479i 0.838280 + 1.45194i
\(587\) −3.45411 7.40736i −0.142566 0.305734i 0.822040 0.569430i \(-0.192836\pi\)
−0.964606 + 0.263696i \(0.915058\pi\)
\(588\) 0 0
\(589\) 8.90140 10.6083i 0.366776 0.437106i
\(590\) 14.4591 9.00262i 0.595273 0.370632i
\(591\) 0 0
\(592\) 37.3735 + 26.1692i 1.53604 + 1.07555i
\(593\) 28.1239 28.1239i 1.15491 1.15491i 0.169357 0.985555i \(-0.445831\pi\)
0.985555 0.169357i \(-0.0541692\pi\)
\(594\) 0 0
\(595\) 5.75366 8.82860i 0.235877 0.361937i
\(596\) −10.0651 + 1.77475i −0.412282 + 0.0726965i
\(597\) 0 0
\(598\) 56.6826 + 26.4315i 2.31793 + 1.08087i
\(599\) −27.5968 23.1564i −1.12757 0.946147i −0.128612 0.991695i \(-0.541052\pi\)
−0.998962 + 0.0455483i \(0.985496\pi\)
\(600\) 0 0
\(601\) −21.4617 7.81141i −0.875440 0.318634i −0.135072 0.990836i \(-0.543126\pi\)
−0.740368 + 0.672202i \(0.765349\pi\)
\(602\) 0.561836 2.09680i 0.0228987 0.0854593i
\(603\) 0 0
\(604\) 36.9808 + 21.3509i 1.50473 + 0.868755i
\(605\) −0.705169 5.82087i −0.0286692 0.236652i
\(606\) 0 0
\(607\) 4.90539 + 7.00562i 0.199104 + 0.284349i 0.906271 0.422696i \(-0.138916\pi\)
−0.707168 + 0.707046i \(0.750027\pi\)
\(608\) −18.7583 26.7897i −0.760751 1.08647i
\(609\) 0 0
\(610\) 12.4818 15.9229i 0.505374 0.644700i
\(611\) 15.3011 + 8.83410i 0.619017 + 0.357389i
\(612\) 0 0
\(613\) 9.58796 35.7827i 0.387254 1.44525i −0.447329 0.894369i \(-0.647625\pi\)
0.834583 0.550882i \(-0.185709\pi\)
\(614\) 22.6241 + 8.23450i 0.913034 + 0.332317i
\(615\) 0 0
\(616\) −0.389125 0.326514i −0.0156783 0.0131556i
\(617\) −11.1077 5.17963i −0.447181 0.208524i 0.185965 0.982556i \(-0.440459\pi\)
−0.633146 + 0.774032i \(0.718237\pi\)
\(618\) 0 0
\(619\) −8.63834 + 1.52317i −0.347204 + 0.0612215i −0.344531 0.938775i \(-0.611962\pi\)
−0.00267331 + 0.999996i \(0.500851\pi\)
\(620\) 13.1546 + 8.57294i 0.528301 + 0.344297i
\(621\) 0 0
\(622\) 3.44947 3.44947i 0.138311 0.138311i
\(623\) 7.31853 + 5.12449i 0.293211 + 0.205308i
\(624\) 0 0
\(625\) 9.51476 23.1186i 0.380590 0.924744i
\(626\) −15.8763 + 18.9206i −0.634543 + 0.756218i
\(627\) 0 0
\(628\) −5.91130 12.6768i −0.235887 0.505860i
\(629\) 18.9351 + 32.7966i 0.754992 + 1.30769i
\(630\) 0 0
\(631\) 16.1540 27.9796i 0.643083 1.11385i −0.341658 0.939824i \(-0.610989\pi\)
0.984741 0.174027i \(-0.0556781\pi\)
\(632\) −0.174673 0.0152819i −0.00694810 0.000607880i
\(633\) 0 0
\(634\) −45.0092 7.93634i −1.78755 0.315192i
\(635\) −22.2791 + 0.741969i −0.884121 + 0.0294442i
\(636\) 0 0
\(637\) −2.59401 + 29.6497i −0.102778 + 1.17476i
\(638\) 3.20098 + 11.9462i 0.126728 + 0.472955i
\(639\) 0 0
\(640\) 1.59491 1.43140i 0.0630442 0.0565811i
\(641\) 3.35944 9.23000i 0.132690 0.364563i −0.855499 0.517805i \(-0.826749\pi\)
0.988189 + 0.153242i \(0.0489715\pi\)
\(642\) 0 0
\(643\) 1.62110 + 18.5293i 0.0639299 + 0.730723i 0.958742 + 0.284279i \(0.0917541\pi\)
−0.894812 + 0.446444i \(0.852690\pi\)
\(644\) −14.3516 + 5.22355i −0.565532 + 0.205837i
\(645\) 0 0
\(646\) −4.57349 25.9375i −0.179942 1.02050i
\(647\) −14.2018 14.2018i −0.558331 0.558331i 0.370501 0.928832i \(-0.379186\pi\)
−0.928832 + 0.370501i \(0.879186\pi\)
\(648\) 0 0
\(649\) 10.9428i 0.429542i
\(650\) 34.3625 + 51.3013i 1.34781 + 2.01220i
\(651\) 0 0
\(652\) 17.7082 37.9754i 0.693507 1.48723i
\(653\) 19.8693 1.73834i 0.777546 0.0680265i 0.308528 0.951215i \(-0.400164\pi\)
0.469018 + 0.883189i \(0.344608\pi\)
\(654\) 0 0
\(655\) −15.0806 20.0801i −0.589250 0.784595i
\(656\) −2.86119 + 1.65191i −0.111711 + 0.0644963i
\(657\) 0 0
\(658\) −8.21463 + 2.20110i −0.320240 + 0.0858080i
\(659\) 0.815140 0.683983i 0.0317533 0.0266442i −0.626773 0.779202i \(-0.715625\pi\)
0.658526 + 0.752558i \(0.271180\pi\)
\(660\) 0 0
\(661\) −5.78183 + 32.7904i −0.224887 + 1.27540i 0.638014 + 0.770025i \(0.279756\pi\)
−0.862901 + 0.505373i \(0.831355\pi\)
\(662\) −26.9314 + 18.8576i −1.04672 + 0.732920i
\(663\) 0 0
\(664\) 1.30202 + 1.55168i 0.0505280 + 0.0602169i
\(665\) −4.12986 + 12.6409i −0.160149 + 0.490192i
\(666\) 0 0
\(667\) 10.3744 + 2.77981i 0.401699 + 0.107635i
\(668\) −0.880256 + 0.410470i −0.0340581 + 0.0158816i
\(669\) 0 0
\(670\) 19.2235 5.84326i 0.742668 0.225745i
\(671\) 4.44565 + 12.2143i 0.171622 + 0.471529i
\(672\) 0 0
\(673\) 14.0367 20.0466i 0.541077 0.772738i −0.451770 0.892135i \(-0.649207\pi\)
0.992847 + 0.119397i \(0.0380961\pi\)
\(674\) −8.08017 −0.311236
\(675\) 0 0
\(676\) −50.5961 −1.94600
\(677\) 11.7412 16.7682i 0.451252 0.644455i −0.527487 0.849563i \(-0.676866\pi\)
0.978739 + 0.205108i \(0.0657546\pi\)
\(678\) 0 0
\(679\) −8.11957 22.3083i −0.311601 0.856115i
\(680\) 0.825265 0.250852i 0.0316474 0.00961972i
\(681\) 0 0
\(682\) −18.0208 + 8.40325i −0.690053 + 0.321777i
\(683\) 21.3380 + 5.71751i 0.816477 + 0.218774i 0.642806 0.766029i \(-0.277770\pi\)
0.173671 + 0.984804i \(0.444437\pi\)
\(684\) 0 0
\(685\) −13.6507 + 41.7827i −0.521566 + 1.59643i
\(686\) −22.4833 26.7945i −0.858416 1.02302i
\(687\) 0 0
\(688\) −2.33707 + 1.63643i −0.0890999 + 0.0623884i
\(689\) −0.114078 + 0.646969i −0.00434603 + 0.0246476i
\(690\) 0 0
\(691\) 13.7398 11.5291i 0.522688 0.438587i −0.342880 0.939379i \(-0.611402\pi\)
0.865568 + 0.500792i \(0.166958\pi\)
\(692\) 36.6813 9.82872i 1.39441 0.373632i
\(693\) 0 0
\(694\) 21.6551 12.5026i 0.822016 0.474591i
\(695\) −1.99687 2.65886i −0.0757455 0.100856i
\(696\) 0 0
\(697\) −2.73187 + 0.239008i −0.103477 + 0.00905306i
\(698\) −6.50619 + 13.9526i −0.246263 + 0.528112i
\(699\) 0 0
\(700\) −14.7918 2.92487i −0.559079 0.110550i
\(701\) 11.4005i 0.430590i 0.976549 + 0.215295i \(0.0690713\pi\)
−0.976549 + 0.215295i \(0.930929\pi\)
\(702\) 0 0
\(703\) −33.7929 33.7929i −1.27452 1.27452i
\(704\) 4.25644 + 24.1395i 0.160421 + 0.909791i
\(705\) 0 0
\(706\) 33.8977 12.3377i 1.27576 0.464337i
\(707\) −0.701693 8.02039i −0.0263899 0.301638i
\(708\) 0 0
\(709\) −5.28444 + 14.5189i −0.198461 + 0.545268i −0.998504 0.0546749i \(-0.982588\pi\)
0.800043 + 0.599943i \(0.204810\pi\)
\(710\) −30.3918 + 27.2762i −1.14059 + 1.02366i
\(711\) 0 0
\(712\) 0.189270 + 0.706365i 0.00709319 + 0.0264722i
\(713\) −1.50497 + 17.2019i −0.0563616 + 0.644216i
\(714\) 0 0
\(715\) −39.6474 + 1.32039i −1.48273 + 0.0493798i
\(716\) 16.0551 + 2.83094i 0.600006 + 0.105797i
\(717\) 0 0
\(718\) −25.1504 2.20038i −0.938606 0.0821174i
\(719\) 4.71157 8.16068i 0.175712 0.304342i −0.764695 0.644392i \(-0.777111\pi\)
0.940407 + 0.340050i \(0.110444\pi\)
\(720\) 0 0
\(721\) 2.87301 + 4.97620i 0.106997 + 0.185323i
\(722\) −2.13197 4.57202i −0.0793437 0.170153i
\(723\) 0 0
\(724\) 26.1085 31.1149i 0.970315 1.15638i
\(725\) 7.34124 + 7.65140i 0.272647 + 0.284166i
\(726\) 0 0
\(727\) 35.1712 + 24.6272i 1.30443 + 0.913371i 0.999242 0.0389219i \(-0.0123924\pi\)
0.305186 + 0.952293i \(0.401281\pi\)
\(728\) 0.760607 0.760607i 0.0281900 0.0281900i
\(729\) 0 0
\(730\) 31.4516 + 20.4972i 1.16408 + 0.758636i
\(731\) −2.33216 + 0.411222i −0.0862579 + 0.0152096i
\(732\) 0 0
\(733\) 0.567513 + 0.264636i 0.0209616 + 0.00977454i 0.433071 0.901360i \(-0.357430\pi\)
−0.412109 + 0.911134i \(0.635208\pi\)
\(734\) −21.1255 17.7264i −0.779755 0.654292i
\(735\) 0 0
\(736\) 38.3205 + 13.9475i 1.41251 + 0.514112i
\(737\) −3.34089 + 12.4684i −0.123063 + 0.459278i
\(738\) 0 0
\(739\) −23.6846 13.6743i −0.871251 0.503017i −0.00348723 0.999994i \(-0.501110\pi\)
−0.867764 + 0.496977i \(0.834443\pi\)
\(740\) 33.4295 42.6457i 1.22889 1.56769i
\(741\) 0 0
\(742\) −0.181374 0.259029i −0.00665846 0.00950927i
\(743\) −20.5718 29.3796i −0.754706 1.07783i −0.994264 0.106950i \(-0.965891\pi\)
0.239558 0.970882i \(-0.422997\pi\)
\(744\) 0 0
\(745\) −1.33455 11.0161i −0.0488941 0.403600i
\(746\) 21.1251 + 12.1966i 0.773444 + 0.446548i
\(747\) 0 0
\(748\) −4.96558 + 18.5318i −0.181559 + 0.677589i
\(749\) −20.4960 7.45993i −0.748907 0.272580i
\(750\) 0 0
\(751\) −27.0935 22.7342i −0.988657 0.829582i −0.00328459 0.999995i \(-0.501046\pi\)
−0.985373 + 0.170413i \(0.945490\pi\)
\(752\) 10.1301 + 4.72374i 0.369407 + 0.172257i
\(753\) 0 0
\(754\) −25.7916 + 4.54775i −0.939274 + 0.165619i
\(755\) −25.3139 + 38.8425i −0.921267 + 1.41362i
\(756\) 0 0
\(757\) −26.1262 + 26.1262i −0.949573 + 0.949573i −0.998788 0.0492153i \(-0.984328\pi\)
0.0492153 + 0.998788i \(0.484328\pi\)
\(758\) −37.1701 26.0268i −1.35008 0.945336i
\(759\) 0 0
\(760\) −0.924024 + 0.575321i −0.0335179 + 0.0208691i
\(761\) −5.19201 + 6.18759i −0.188210 + 0.224300i −0.851896 0.523712i \(-0.824547\pi\)
0.663685 + 0.748012i \(0.268991\pi\)
\(762\) 0 0
\(763\) 6.13535 + 13.1573i 0.222115 + 0.476326i
\(764\) −8.99914 15.5870i −0.325577 0.563917i
\(765\) 0 0
\(766\) −14.5740 + 25.2430i −0.526582 + 0.912066i
\(767\) −23.0841 2.01960i −0.833519 0.0729234i
\(768\) 0 0
\(769\) 16.0619 + 2.83215i 0.579208 + 0.102130i 0.455574 0.890198i \(-0.349434\pi\)
0.123634 + 0.992328i \(0.460545\pi\)
\(770\) 13.0449 13.9437i 0.470107 0.502498i
\(771\) 0 0
\(772\) −1.55101 + 17.7281i −0.0558220 + 0.638048i
\(773\) −3.06271 11.4302i −0.110158 0.411116i 0.888721 0.458448i \(-0.151595\pi\)
−0.998879 + 0.0473325i \(0.984928\pi\)
\(774\) 0 0
\(775\) −10.0650 + 13.7595i −0.361544 + 0.494256i
\(776\) 0.664599 1.82597i 0.0238577 0.0655485i
\(777\) 0 0
\(778\) −2.21968 25.3711i −0.0795795 0.909598i
\(779\) 3.25195 1.18361i 0.116513 0.0424073i
\(780\) 0 0
\(781\) −4.55583 25.8374i −0.163020 0.924534i
\(782\) 23.2222 + 23.2222i 0.830425 + 0.830425i
\(783\) 0 0
\(784\) 18.8287i 0.672455i
\(785\) 14.0900 5.66625i 0.502892 0.202237i
\(786\) 0 0
\(787\) −20.1245 + 43.1572i −0.717361 + 1.53839i 0.120627 + 0.992698i \(0.461510\pi\)
−0.837988 + 0.545689i \(0.816268\pi\)
\(788\) 4.11465 0.359985i 0.146578 0.0128240i
\(789\) 0 0
\(790\) 0.927837 6.52539i 0.0330110 0.232163i
\(791\) −19.3145 + 11.1513i −0.686746 + 0.396493i
\(792\) 0 0
\(793\) −26.5869 + 7.12394i −0.944129 + 0.252979i
\(794\) 23.2020 19.4688i 0.823409 0.690922i
\(795\) 0 0
\(796\) −6.40609 + 36.3307i −0.227058 + 1.28771i
\(797\) −13.5475 + 9.48608i −0.479878 + 0.336014i −0.788358 0.615216i \(-0.789069\pi\)
0.308480 + 0.951231i \(0.400180\pi\)
\(798\) 0 0
\(799\) 5.96354 + 7.10708i 0.210975 + 0.251430i
\(800\) 25.2356 + 31.3701i 0.892215 + 1.10910i
\(801\) 0 0
\(802\) −51.0307 13.6736i −1.80196 0.482833i
\(803\) −21.8589 + 10.1930i −0.771383 + 0.359702i
\(804\) 0 0
\(805\) −4.82252 15.8654i −0.169972 0.559182i
\(806\) −14.4009 39.5663i −0.507252 1.39366i
\(807\) 0 0
\(808\) 0.377980 0.539812i 0.0132973 0.0189905i
\(809\) −21.1013 −0.741881 −0.370941 0.928657i \(-0.620965\pi\)
−0.370941 + 0.928657i \(0.620965\pi\)
\(810\) 0 0
\(811\) 3.03312 0.106507 0.0532537 0.998581i \(-0.483041\pi\)
0.0532537 + 0.998581i \(0.483041\pi\)
\(812\) 3.66824 5.23879i 0.128730 0.183845i
\(813\) 0 0
\(814\) 23.4693 + 64.4814i 0.822599 + 2.26007i
\(815\) 40.1341 + 21.4229i 1.40584 + 0.750412i
\(816\) 0 0
\(817\) 2.70847 1.26298i 0.0947574 0.0441861i
\(818\) −14.6711 3.93110i −0.512962 0.137448i
\(819\) 0 0
\(820\) 1.77573 + 3.49903i 0.0620111 + 0.122191i
\(821\) −7.72326 9.20422i −0.269544 0.321230i 0.614246 0.789115i \(-0.289460\pi\)
−0.883789 + 0.467885i \(0.845016\pi\)
\(822\) 0 0
\(823\) −19.4859 + 13.6442i −0.679237 + 0.475607i −0.861576 0.507629i \(-0.830522\pi\)
0.182339 + 0.983236i \(0.441633\pi\)
\(824\) −0.0816702 + 0.463175i −0.00284512 + 0.0161355i
\(825\) 0 0
\(826\) 8.54427 7.16949i 0.297293 0.249459i
\(827\) 44.8353 12.0136i 1.55907 0.417753i 0.626704 0.779257i \(-0.284403\pi\)
0.932370 + 0.361504i \(0.117737\pi\)
\(828\) 0 0
\(829\) 27.8169 16.0601i 0.966123 0.557791i 0.0680706 0.997681i \(-0.478316\pi\)
0.898052 + 0.439889i \(0.144982\pi\)
\(830\) −60.8832 + 45.7248i −2.11329 + 1.58713i
\(831\) 0 0
\(832\) −51.7084 + 4.52390i −1.79267 + 0.156838i
\(833\) −6.60493 + 14.1643i −0.228847 + 0.490765i
\(834\) 0 0
\(835\) −0.393455 0.978382i −0.0136161 0.0338583i
\(836\) 24.2112i 0.837361i
\(837\) 0 0
\(838\) 29.5051 + 29.5051i 1.01924 + 1.01924i
\(839\) 8.77845 + 49.7851i 0.303066 + 1.71877i 0.632472 + 0.774583i \(0.282040\pi\)
−0.329406 + 0.944188i \(0.606849\pi\)
\(840\) 0 0
\(841\) 23.0248 8.38035i 0.793959 0.288977i
\(842\) −1.20798 13.8072i −0.0416296 0.475829i
\(843\) 0 0
\(844\) −7.51891 + 20.6580i −0.258812 + 0.711079i
\(845\) 2.96366 54.8542i 0.101953 1.88704i
\(846\) 0 0
\(847\) −0.993767 3.70879i −0.0341463 0.127436i
\(848\) −0.0362221 + 0.414021i −0.00124387 + 0.0142175i
\(849\) 0 0
\(850\) 7.74218 + 31.4852i 0.265555 + 1.07993i
\(851\) 58.6858 + 10.3479i 2.01172 + 0.354721i
\(852\) 0 0
\(853\) 50.7794 + 4.44262i 1.73865 + 0.152112i 0.911889 0.410438i \(-0.134624\pi\)
0.826763 + 0.562550i \(0.190180\pi\)
\(854\) 6.62440 11.4738i 0.226682 0.392625i
\(855\) 0 0
\(856\) −0.892646 1.54611i −0.0305100 0.0528449i
\(857\) −4.25654 9.12817i −0.145400 0.311812i 0.820097 0.572224i \(-0.193919\pi\)
−0.965498 + 0.260412i \(0.916142\pi\)
\(858\) 0 0
\(859\) 8.01487 9.55175i 0.273464 0.325902i −0.611781 0.791027i \(-0.709547\pi\)
0.885245 + 0.465126i \(0.153991\pi\)
\(860\) 1.79096 + 2.87646i 0.0610711 + 0.0980864i
\(861\) 0 0
\(862\) −4.81810 3.37367i −0.164105 0.114908i
\(863\) 23.9621 23.9621i 0.815678 0.815678i −0.169800 0.985479i \(-0.554312\pi\)
0.985479 + 0.169800i \(0.0543122\pi\)
\(864\) 0 0
\(865\) 8.50730 + 40.3441i 0.289257 + 1.37174i
\(866\) −8.46774 + 1.49309i −0.287745 + 0.0507373i
\(867\) 0 0
\(868\) 9.31869 + 4.34538i 0.316297 + 0.147492i
\(869\) 3.24378 + 2.72185i 0.110038 + 0.0923326i
\(870\) 0 0
\(871\) −25.6857 9.34885i −0.870328 0.316774i
\(872\) −0.307549 + 1.14779i −0.0104149 + 0.0388690i
\(873\) 0 0
\(874\) −35.8915 20.7220i −1.21405 0.700932i
\(875\) 4.03746 15.8654i 0.136491 0.536348i
\(876\) 0 0
\(877\) −26.9320 38.4629i −0.909430 1.29880i −0.954004 0.299794i \(-0.903082\pi\)
0.0445739 0.999006i \(-0.485807\pi\)
\(878\) 4.32933 + 6.18293i 0.146108 + 0.208664i
\(879\) 0 0
\(880\) −24.9136 + 3.01816i −0.839838 + 0.101742i
\(881\) −20.2756 11.7061i −0.683103 0.394390i 0.117920 0.993023i \(-0.462377\pi\)
−0.801023 + 0.598633i \(0.795711\pi\)
\(882\) 0 0
\(883\) −1.63802 + 6.11319i −0.0551239 + 0.205725i −0.987995 0.154485i \(-0.950628\pi\)
0.932871 + 0.360210i \(0.117295\pi\)
\(884\) −38.1768 13.8952i −1.28402 0.467347i
\(885\) 0 0
\(886\) −43.1969 36.2465i −1.45123 1.21773i
\(887\) −29.6855 13.8426i −0.996741 0.464788i −0.145384 0.989375i \(-0.546442\pi\)
−0.851357 + 0.524587i \(0.824220\pi\)
\(888\) 0 0
\(889\) −14.3756 + 2.53481i −0.482144 + 0.0850149i
\(890\) −26.8974 + 5.67182i −0.901604 + 0.190120i
\(891\) 0 0
\(892\) 17.4021 17.4021i 0.582665 0.582665i
\(893\) −9.59056 6.71538i −0.320936 0.224722i
\(894\) 0 0
\(895\) −4.00962 + 17.2404i −0.134027 + 0.576284i
\(896\) 0.902060 1.07503i 0.0301357 0.0359143i
\(897\) 0 0
\(898\) 8.12765 + 17.4298i 0.271223 + 0.581640i
\(899\) −3.61538 6.26203i −0.120580 0.208850i
\(900\) 0 0
\(901\) −0.172483 + 0.298750i −0.00574625 + 0.00995280i
\(902\) −4.95006 0.433074i −0.164819 0.0144198i
\(903\) 0 0
\(904\) −1.79776 0.316994i −0.0597926 0.0105430i
\(905\) 32.2042 + 30.1283i 1.07050 + 1.00150i
\(906\) 0 0
\(907\) 2.49616 28.5313i 0.0828837 0.947365i −0.834931 0.550355i \(-0.814492\pi\)
0.917814 0.397010i \(-0.129952\pi\)
\(908\) −0.616790 2.30189i −0.0204689 0.0763910i
\(909\) 0 0
\(910\) 27.0071 + 30.0920i 0.895277 + 0.997542i
\(911\) 6.61616 18.1777i 0.219203 0.602255i −0.780536 0.625111i \(-0.785054\pi\)
0.999739 + 0.0228557i \(0.00727584\pi\)
\(912\) 0 0
\(913\) −4.26345 48.7315i −0.141100 1.61278i
\(914\) 67.0891 24.4184i 2.21911 0.807690i
\(915\) 0 0
\(916\) −3.13228 17.7641i −0.103493 0.586941i
\(917\) −11.6282 11.6282i −0.383996 0.383996i
\(918\) 0 0
\(919\) 44.6775i 1.47377i −0.676016 0.736887i \(-0.736295\pi\)
0.676016 0.736887i \(-0.263705\pi\)
\(920\) 0.532346 1.24852i 0.0175509 0.0411624i
\(921\) 0 0
\(922\) 21.1047 45.2591i 0.695046 1.49053i
\(923\) 55.3454 4.84210i 1.82172 0.159380i
\(924\) 0 0
\(925\) 44.2766 + 38.7409i 1.45581 + 1.27379i
\(926\) 9.44552 5.45337i 0.310399 0.179209i
\(927\) 0 0
\(928\) −16.4946 + 4.41970i −0.541461 + 0.145084i
\(929\) 40.3230 33.8350i 1.32296 1.11009i 0.337286 0.941402i \(-0.390491\pi\)
0.985669 0.168689i \(-0.0539535\pi\)
\(930\) 0 0
\(931\) 3.42478 19.4229i 0.112243 0.636560i
\(932\) 27.6044 19.3288i 0.904213 0.633137i
\(933\) 0 0
\(934\) −53.0403 63.2110i −1.73553 2.06833i
\(935\) −19.8006 6.46898i −0.647547 0.211558i
\(936\) 0 0
\(937\) −13.8557 3.71263i −0.452647 0.121286i 0.0252908 0.999680i \(-0.491949\pi\)
−0.477938 + 0.878394i \(0.658616\pi\)
\(938\) 11.9243 5.56041i 0.389343 0.181554i
\(939\) 0 0
\(940\) 6.25111 11.7109i 0.203889 0.381969i
\(941\) 0.0906224 + 0.248983i 0.00295420 + 0.00811661i 0.941161 0.337959i \(-0.109736\pi\)
−0.938207 + 0.346075i \(0.887514\pi\)
\(942\) 0 0
\(943\) −2.47509 + 3.53479i −0.0806000 + 0.115109i
\(944\) −14.6593 −0.477121
\(945\) 0 0
\(946\) −4.29098 −0.139512
\(947\) 19.5534 27.9252i 0.635401 0.907446i −0.364315 0.931276i \(-0.618697\pi\)
0.999716 + 0.0238294i \(0.00758584\pi\)
\(948\) 0 0
\(949\) −17.4680 47.9930i −0.567037 1.55792i
\(950\) −19.7209 35.8502i −0.639832 1.16313i
\(951\) 0 0
\(952\) 0.511912 0.238709i 0.0165912 0.00773659i
\(953\) −25.8211 6.91874i −0.836427 0.224120i −0.184912 0.982755i \(-0.559200\pi\)
−0.651516 + 0.758635i \(0.725867\pi\)
\(954\) 0 0
\(955\) 17.4259 8.84350i 0.563888 0.286169i
\(956\) 11.3705 + 13.5509i 0.367749 + 0.438266i
\(957\) 0 0
\(958\) 45.6014 31.9305i 1.47331 1.03163i
\(959\) −4.99834 + 28.3470i −0.161405 + 0.915372i
\(960\) 0 0
\(961\) −14.8420 + 12.4539i −0.478775 + 0.401740i
\(962\) −140.356 + 37.6084i −4.52528 + 1.21254i
\(963\) 0 0
\(964\) 3.68603 2.12813i 0.118719 0.0685425i
\(965\) −19.1292 2.71996i −0.615792 0.0875587i
\(966\) 0 0
\(967\) −20.2788 + 1.77416i −0.652121 + 0.0570532i −0.408416 0.912796i \(-0.633919\pi\)
−0.243706 + 0.969849i \(0.578363\pi\)
\(968\) 0.132820 0.284833i 0.00426899 0.00915488i
\(969\) 0 0
\(970\) 67.1905 + 28.6489i 2.15736 + 0.919859i
\(971\) 40.5268i 1.30057i 0.759692 + 0.650284i \(0.225350\pi\)
−0.759692 + 0.650284i \(0.774650\pi\)
\(972\) 0 0
\(973\) −1.53972 1.53972i −0.0493610 0.0493610i
\(974\) 14.0086 + 79.4468i 0.448865 + 2.54564i
\(975\) 0 0
\(976\) −16.3627 + 5.95554i −0.523758 + 0.190632i
\(977\) −3.10305 35.4680i −0.0992752 1.13472i −0.868482 0.495721i \(-0.834904\pi\)
0.769207 0.639000i \(-0.220652\pi\)
\(978\) 0 0
\(979\) 6.04024 16.5954i 0.193047 0.530392i
\(980\) 22.3296 + 1.20642i 0.713293 + 0.0385377i
\(981\) 0 0
\(982\) −12.5145 46.7049i −0.399355 1.49041i
\(983\) 3.20046 36.5814i 0.102079 1.16677i −0.756468 0.654030i \(-0.773077\pi\)
0.858547 0.512735i \(-0.171368\pi\)
\(984\) 0 0
\(985\) 0.149266 + 4.48203i 0.00475602 + 0.142809i
\(986\) −13.5432 2.38804i −0.431305 0.0760507i
\(987\) 0 0
\(988\) 51.0740 + 4.46840i 1.62488 + 0.142159i
\(989\) −1.86320 + 3.22716i −0.0592464 + 0.102618i
\(990\) 0 0
\(991\) 6.40763 + 11.0983i 0.203545 + 0.352550i 0.949668 0.313258i \(-0.101420\pi\)
−0.746123 + 0.665808i \(0.768087\pi\)
\(992\) −11.6027 24.8820i −0.368385 0.790005i
\(993\) 0 0
\(994\) −17.1893 + 20.4854i −0.545210 + 0.649756i
\(995\) −39.0131 9.07329i −1.23680 0.287643i
\(996\) 0 0
\(997\) −45.2647 31.6947i −1.43355 1.00378i −0.994435 0.105349i \(-0.966404\pi\)
−0.439113 0.898432i \(-0.644707\pi\)
\(998\) −44.9938 + 44.9938i −1.42425 + 1.42425i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.233.3 192
3.2 odd 2 135.2.q.a.68.14 yes 192
5.2 odd 4 inner 405.2.r.a.152.3 192
15.2 even 4 135.2.q.a.122.14 yes 192
15.8 even 4 675.2.ba.b.257.3 192
15.14 odd 2 675.2.ba.b.68.3 192
27.2 odd 18 inner 405.2.r.a.8.3 192
27.25 even 9 135.2.q.a.83.14 yes 192
135.2 even 36 inner 405.2.r.a.332.3 192
135.52 odd 36 135.2.q.a.2.14 192
135.79 even 18 675.2.ba.b.218.3 192
135.133 odd 36 675.2.ba.b.407.3 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.14 192 135.52 odd 36
135.2.q.a.68.14 yes 192 3.2 odd 2
135.2.q.a.83.14 yes 192 27.25 even 9
135.2.q.a.122.14 yes 192 15.2 even 4
405.2.r.a.8.3 192 27.2 odd 18 inner
405.2.r.a.152.3 192 5.2 odd 4 inner
405.2.r.a.233.3 192 1.1 even 1 trivial
405.2.r.a.332.3 192 135.2 even 36 inner
675.2.ba.b.68.3 192 15.14 odd 2
675.2.ba.b.218.3 192 135.79 even 18
675.2.ba.b.257.3 192 15.8 even 4
675.2.ba.b.407.3 192 135.133 odd 36