Properties

Label 405.2.r.a.233.15
Level $405$
Weight $2$
Character 405.233
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 233.15
Character \(\chi\) \(=\) 405.233
Dual form 405.2.r.a.332.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48477 - 2.12047i) q^{2} +(-1.60780 - 4.41741i) q^{4} +(-1.13563 - 1.92622i) q^{5} +(-2.68394 + 1.25154i) q^{7} +(-6.75336 - 1.80956i) q^{8} +(-5.77064 - 0.451915i) q^{10} +(1.00437 + 1.19696i) q^{11} +(3.28227 - 2.29827i) q^{13} +(-1.33117 + 7.54945i) q^{14} +(-6.66205 + 5.59013i) q^{16} +(-1.82995 + 0.490334i) q^{17} +(2.41262 - 1.39293i) q^{19} +(-6.68303 + 8.11355i) q^{20} +(4.02936 - 0.352524i) q^{22} +(3.16476 - 6.78686i) q^{23} +(-2.42067 + 4.37497i) q^{25} -10.3723i q^{26} +(9.84382 + 9.84382i) q^{28} +(-0.683218 - 3.87472i) q^{29} +(5.45790 - 1.98651i) q^{31} +(0.743366 + 8.49672i) q^{32} +(-1.67731 + 4.60838i) q^{34} +(5.45873 + 3.74857i) q^{35} +(0.0847926 + 0.316450i) q^{37} +(0.628522 - 7.18404i) q^{38} +(4.18374 + 15.0635i) q^{40} +(-6.26389 - 1.10449i) q^{41} +(0.582670 + 0.0509770i) q^{43} +(3.67263 - 6.36118i) q^{44} +(-9.69236 - 16.7877i) q^{46} +(-0.321786 - 0.690071i) q^{47} +(1.13767 - 1.35582i) q^{49} +(5.68285 + 11.6287i) q^{50} +(-15.4296 - 10.8039i) q^{52} +(-5.57112 + 5.57112i) q^{53} +(1.16502 - 3.29395i) q^{55} +(20.3903 - 3.59537i) q^{56} +(-9.23063 - 4.30431i) q^{58} +(7.84000 + 6.57854i) q^{59} +(11.4160 + 4.15507i) q^{61} +(3.89137 - 14.5228i) q^{62} +(4.05760 + 2.34266i) q^{64} +(-8.15444 - 3.71239i) q^{65} +(1.14383 + 1.63356i) q^{67} +(5.10821 + 7.29527i) q^{68} +(16.0536 - 6.00929i) q^{70} +(6.11142 + 3.52843i) q^{71} +(-1.05397 + 3.93347i) q^{73} +(0.796919 + 0.290055i) q^{74} +(-10.0321 - 8.41796i) q^{76} +(-4.19371 - 1.95556i) q^{77} +(12.9467 - 2.28286i) q^{79} +(18.3335 + 6.48426i) q^{80} +(-11.6425 + 11.6425i) q^{82} +(3.33133 + 2.33262i) q^{83} +(3.02265 + 2.96805i) q^{85} +(0.973224 - 1.15984i) q^{86} +(-4.61689 - 9.90096i) q^{88} +(4.23520 + 7.33558i) q^{89} +(-5.93304 + 10.2763i) q^{91} +(-35.0686 - 3.06811i) q^{92} +(-1.94105 - 0.342259i) q^{94} +(-5.42294 - 3.06539i) q^{95} +(0.696015 - 7.95549i) q^{97} +(-1.18580 - 4.42546i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48477 2.12047i 1.04989 1.49940i 0.194848 0.980833i \(-0.437579\pi\)
0.855040 0.518562i \(-0.173533\pi\)
\(3\) 0 0
\(4\) −1.60780 4.41741i −0.803902 2.20870i
\(5\) −1.13563 1.92622i −0.507871 0.861433i
\(6\) 0 0
\(7\) −2.68394 + 1.25154i −1.01443 + 0.473038i −0.857453 0.514563i \(-0.827954\pi\)
−0.156982 + 0.987602i \(0.550176\pi\)
\(8\) −6.75336 1.80956i −2.38767 0.639775i
\(9\) 0 0
\(10\) −5.77064 0.451915i −1.82484 0.142908i
\(11\) 1.00437 + 1.19696i 0.302828 + 0.360897i 0.895902 0.444251i \(-0.146530\pi\)
−0.593074 + 0.805148i \(0.702086\pi\)
\(12\) 0 0
\(13\) 3.28227 2.29827i 0.910338 0.637425i −0.0217086 0.999764i \(-0.506911\pi\)
0.932046 + 0.362339i \(0.118022\pi\)
\(14\) −1.33117 + 7.54945i −0.355771 + 2.01768i
\(15\) 0 0
\(16\) −6.66205 + 5.59013i −1.66551 + 1.39753i
\(17\) −1.82995 + 0.490334i −0.443828 + 0.118923i −0.473810 0.880627i \(-0.657122\pi\)
0.0299818 + 0.999550i \(0.490455\pi\)
\(18\) 0 0
\(19\) 2.41262 1.39293i 0.553493 0.319559i −0.197037 0.980396i \(-0.563132\pi\)
0.750529 + 0.660837i \(0.229799\pi\)
\(20\) −6.68303 + 8.11355i −1.49437 + 1.81424i
\(21\) 0 0
\(22\) 4.02936 0.352524i 0.859063 0.0751583i
\(23\) 3.16476 6.78686i 0.659899 1.41516i −0.236377 0.971661i \(-0.575960\pi\)
0.896276 0.443496i \(-0.146262\pi\)
\(24\) 0 0
\(25\) −2.42067 + 4.37497i −0.484133 + 0.874994i
\(26\) 10.3723i 2.03418i
\(27\) 0 0
\(28\) 9.84382 + 9.84382i 1.86031 + 1.86031i
\(29\) −0.683218 3.87472i −0.126870 0.719518i −0.980179 0.198112i \(-0.936519\pi\)
0.853309 0.521406i \(-0.174592\pi\)
\(30\) 0 0
\(31\) 5.45790 1.98651i 0.980267 0.356788i 0.198323 0.980137i \(-0.436450\pi\)
0.781944 + 0.623348i \(0.214228\pi\)
\(32\) 0.743366 + 8.49672i 0.131410 + 1.50202i
\(33\) 0 0
\(34\) −1.67731 + 4.60838i −0.287657 + 0.790331i
\(35\) 5.45873 + 3.74857i 0.922693 + 0.633624i
\(36\) 0 0
\(37\) 0.0847926 + 0.316450i 0.0139398 + 0.0520241i 0.972545 0.232713i \(-0.0747603\pi\)
−0.958606 + 0.284737i \(0.908094\pi\)
\(38\) 0.628522 7.18404i 0.101960 1.16541i
\(39\) 0 0
\(40\) 4.18374 + 15.0635i 0.661507 + 2.38174i
\(41\) −6.26389 1.10449i −0.978255 0.172493i −0.338412 0.940998i \(-0.609890\pi\)
−0.639843 + 0.768505i \(0.721001\pi\)
\(42\) 0 0
\(43\) 0.582670 + 0.0509770i 0.0888564 + 0.00777393i 0.131497 0.991317i \(-0.458022\pi\)
−0.0426408 + 0.999090i \(0.513577\pi\)
\(44\) 3.67263 6.36118i 0.553670 0.958984i
\(45\) 0 0
\(46\) −9.69236 16.7877i −1.42906 2.47521i
\(47\) −0.321786 0.690071i −0.0469372 0.100657i 0.881441 0.472295i \(-0.156574\pi\)
−0.928378 + 0.371638i \(0.878796\pi\)
\(48\) 0 0
\(49\) 1.13767 1.35582i 0.162524 0.193688i
\(50\) 5.68285 + 11.6287i 0.803676 + 1.64455i
\(51\) 0 0
\(52\) −15.4296 10.8039i −2.13971 1.49824i
\(53\) −5.57112 + 5.57112i −0.765253 + 0.765253i −0.977267 0.212014i \(-0.931998\pi\)
0.212014 + 0.977267i \(0.431998\pi\)
\(54\) 0 0
\(55\) 1.16502 3.29395i 0.157091 0.444156i
\(56\) 20.3903 3.59537i 2.72477 0.480451i
\(57\) 0 0
\(58\) −9.23063 4.30431i −1.21204 0.565184i
\(59\) 7.84000 + 6.57854i 1.02068 + 0.856453i 0.989713 0.143067i \(-0.0456965\pi\)
0.0309682 + 0.999520i \(0.490141\pi\)
\(60\) 0 0
\(61\) 11.4160 + 4.15507i 1.46166 + 0.532002i 0.945823 0.324683i \(-0.105258\pi\)
0.515840 + 0.856685i \(0.327480\pi\)
\(62\) 3.89137 14.5228i 0.494205 1.84440i
\(63\) 0 0
\(64\) 4.05760 + 2.34266i 0.507201 + 0.292832i
\(65\) −8.15444 3.71239i −1.01143 0.460465i
\(66\) 0 0
\(67\) 1.14383 + 1.63356i 0.139742 + 0.199572i 0.882922 0.469519i \(-0.155573\pi\)
−0.743181 + 0.669091i \(0.766684\pi\)
\(68\) 5.10821 + 7.29527i 0.619461 + 0.884682i
\(69\) 0 0
\(70\) 16.0536 6.00929i 1.91878 0.718247i
\(71\) 6.11142 + 3.52843i 0.725292 + 0.418748i 0.816698 0.577066i \(-0.195802\pi\)
−0.0914051 + 0.995814i \(0.529136\pi\)
\(72\) 0 0
\(73\) −1.05397 + 3.93347i −0.123358 + 0.460378i −0.999776 0.0211733i \(-0.993260\pi\)
0.876418 + 0.481551i \(0.159926\pi\)
\(74\) 0.796919 + 0.290055i 0.0926400 + 0.0337182i
\(75\) 0 0
\(76\) −10.0321 8.41796i −1.15076 0.965606i
\(77\) −4.19371 1.95556i −0.477918 0.222857i
\(78\) 0 0
\(79\) 12.9467 2.28286i 1.45662 0.256842i 0.611427 0.791301i \(-0.290596\pi\)
0.845194 + 0.534460i \(0.179485\pi\)
\(80\) 18.3335 + 6.48426i 2.04975 + 0.724962i
\(81\) 0 0
\(82\) −11.6425 + 11.6425i −1.28569 + 1.28569i
\(83\) 3.33133 + 2.33262i 0.365661 + 0.256038i 0.741938 0.670469i \(-0.233907\pi\)
−0.376277 + 0.926507i \(0.622796\pi\)
\(84\) 0 0
\(85\) 3.02265 + 2.96805i 0.327852 + 0.321931i
\(86\) 0.973224 1.15984i 0.104945 0.125069i
\(87\) 0 0
\(88\) −4.61689 9.90096i −0.492162 1.05545i
\(89\) 4.23520 + 7.33558i 0.448930 + 0.777570i 0.998317 0.0579982i \(-0.0184718\pi\)
−0.549386 + 0.835569i \(0.685138\pi\)
\(90\) 0 0
\(91\) −5.93304 + 10.2763i −0.621951 + 1.07725i
\(92\) −35.0686 3.06811i −3.65616 0.319872i
\(93\) 0 0
\(94\) −1.94105 0.342259i −0.200204 0.0353013i
\(95\) −5.42294 3.06539i −0.556382 0.314502i
\(96\) 0 0
\(97\) 0.696015 7.95549i 0.0706696 0.807758i −0.875317 0.483550i \(-0.839347\pi\)
0.945986 0.324207i \(-0.105097\pi\)
\(98\) −1.18580 4.42546i −0.119784 0.447039i
\(99\) 0 0
\(100\) 23.2180 + 3.65897i 2.32180 + 0.365897i
\(101\) −5.32423 + 14.6282i −0.529781 + 1.45556i 0.329549 + 0.944139i \(0.393103\pi\)
−0.859330 + 0.511422i \(0.829119\pi\)
\(102\) 0 0
\(103\) −0.690517 7.89264i −0.0680387 0.777685i −0.951192 0.308601i \(-0.900139\pi\)
0.883153 0.469085i \(-0.155416\pi\)
\(104\) −26.3252 + 9.58158i −2.58140 + 0.939552i
\(105\) 0 0
\(106\) 3.54156 + 20.0852i 0.343987 + 1.95085i
\(107\) −3.95377 3.95377i −0.382225 0.382225i 0.489678 0.871903i \(-0.337114\pi\)
−0.871903 + 0.489678i \(0.837114\pi\)
\(108\) 0 0
\(109\) 6.56334i 0.628654i −0.949315 0.314327i \(-0.898221\pi\)
0.949315 0.314327i \(-0.101779\pi\)
\(110\) −5.25492 7.36111i −0.501037 0.701855i
\(111\) 0 0
\(112\) 10.8843 23.3414i 1.02847 2.20556i
\(113\) 2.27035 0.198630i 0.213577 0.0186855i 0.0201349 0.999797i \(-0.493590\pi\)
0.193442 + 0.981112i \(0.438035\pi\)
\(114\) 0 0
\(115\) −16.6670 + 1.61135i −1.55421 + 0.150259i
\(116\) −16.0177 + 9.24784i −1.48721 + 0.858641i
\(117\) 0 0
\(118\) 25.5901 6.85686i 2.35576 0.631225i
\(119\) 4.29781 3.60629i 0.393979 0.330588i
\(120\) 0 0
\(121\) 1.48617 8.42851i 0.135107 0.766228i
\(122\) 25.7607 18.0378i 2.33226 1.63307i
\(123\) 0 0
\(124\) −17.5505 20.9158i −1.57608 1.87830i
\(125\) 11.1762 0.305624i 0.999626 0.0273359i
\(126\) 0 0
\(127\) −2.08725 0.559276i −0.185213 0.0496277i 0.165020 0.986290i \(-0.447231\pi\)
−0.350233 + 0.936662i \(0.613898\pi\)
\(128\) −4.46799 + 2.08346i −0.394918 + 0.184153i
\(129\) 0 0
\(130\) −19.9794 + 11.7792i −1.75231 + 1.03310i
\(131\) −0.329501 0.905296i −0.0287886 0.0790961i 0.924466 0.381265i \(-0.124512\pi\)
−0.953254 + 0.302169i \(0.902289\pi\)
\(132\) 0 0
\(133\) −4.73202 + 6.75802i −0.410318 + 0.585995i
\(134\) 5.16224 0.445950
\(135\) 0 0
\(136\) 13.2456 1.13580
\(137\) −1.39561 + 1.99313i −0.119235 + 0.170285i −0.874333 0.485327i \(-0.838700\pi\)
0.755098 + 0.655612i \(0.227589\pi\)
\(138\) 0 0
\(139\) 3.32712 + 9.14118i 0.282202 + 0.775345i 0.997099 + 0.0761146i \(0.0242515\pi\)
−0.714897 + 0.699230i \(0.753526\pi\)
\(140\) 7.78240 30.1404i 0.657733 2.54733i
\(141\) 0 0
\(142\) 16.5560 7.72017i 1.38934 0.647862i
\(143\) 6.04754 + 1.62043i 0.505721 + 0.135508i
\(144\) 0 0
\(145\) −6.68769 + 5.71630i −0.555382 + 0.474713i
\(146\) 6.77589 + 8.07519i 0.560777 + 0.668308i
\(147\) 0 0
\(148\) 1.26156 0.883353i 0.103700 0.0726112i
\(149\) 2.43445 13.8064i 0.199438 1.13107i −0.706518 0.707695i \(-0.749735\pi\)
0.905956 0.423373i \(-0.139154\pi\)
\(150\) 0 0
\(151\) −13.9585 + 11.7126i −1.13593 + 0.953156i −0.999298 0.0374659i \(-0.988071\pi\)
−0.136630 + 0.990622i \(0.543627\pi\)
\(152\) −18.8139 + 5.04116i −1.52600 + 0.408892i
\(153\) 0 0
\(154\) −10.3734 + 5.98907i −0.835910 + 0.482613i
\(155\) −10.0246 8.25717i −0.805199 0.663232i
\(156\) 0 0
\(157\) −3.03267 + 0.265324i −0.242033 + 0.0211752i −0.207527 0.978229i \(-0.566541\pi\)
−0.0345064 + 0.999404i \(0.510986\pi\)
\(158\) 14.3821 30.8426i 1.14418 2.45371i
\(159\) 0 0
\(160\) 15.5224 11.0811i 1.22715 0.876034i
\(161\) 22.1764i 1.74774i
\(162\) 0 0
\(163\) −16.0133 16.0133i −1.25426 1.25426i −0.953793 0.300465i \(-0.902858\pi\)
−0.300465 0.953793i \(-0.597142\pi\)
\(164\) 5.19212 + 29.4459i 0.405436 + 2.29934i
\(165\) 0 0
\(166\) 9.89249 3.60057i 0.767806 0.279459i
\(167\) 0.457294 + 5.22689i 0.0353865 + 0.404469i 0.993144 + 0.116894i \(0.0372937\pi\)
−0.957758 + 0.287576i \(0.907151\pi\)
\(168\) 0 0
\(169\) 1.04499 2.87108i 0.0803837 0.220852i
\(170\) 10.7816 2.00256i 0.826909 0.153589i
\(171\) 0 0
\(172\) −0.711633 2.65585i −0.0542615 0.202507i
\(173\) −0.712745 + 8.14671i −0.0541890 + 0.619383i 0.919740 + 0.392529i \(0.128400\pi\)
−0.973929 + 0.226854i \(0.927156\pi\)
\(174\) 0 0
\(175\) 1.02147 14.7717i 0.0772157 1.11664i
\(176\) −13.3823 2.35966i −1.00873 0.177866i
\(177\) 0 0
\(178\) 21.8431 + 1.91103i 1.63721 + 0.143238i
\(179\) 2.65400 4.59686i 0.198369 0.343585i −0.749631 0.661856i \(-0.769769\pi\)
0.948000 + 0.318271i \(0.103102\pi\)
\(180\) 0 0
\(181\) 11.5435 + 19.9940i 0.858023 + 1.48614i 0.873811 + 0.486265i \(0.161641\pi\)
−0.0157880 + 0.999875i \(0.505026\pi\)
\(182\) 12.9814 + 27.8387i 0.962246 + 2.06354i
\(183\) 0 0
\(184\) −33.6540 + 40.1073i −2.48100 + 2.95675i
\(185\) 0.513260 0.522701i 0.0377356 0.0384298i
\(186\) 0 0
\(187\) −2.42486 1.69790i −0.177323 0.124163i
\(188\) −2.53096 + 2.53096i −0.184589 + 0.184589i
\(189\) 0 0
\(190\) −14.5518 + 6.94778i −1.05570 + 0.504045i
\(191\) 3.74191 0.659800i 0.270755 0.0477414i −0.0366221 0.999329i \(-0.511660\pi\)
0.307377 + 0.951588i \(0.400549\pi\)
\(192\) 0 0
\(193\) −11.2015 5.22336i −0.806305 0.375986i −0.0246489 0.999696i \(-0.507847\pi\)
−0.781656 + 0.623710i \(0.785625\pi\)
\(194\) −15.8359 13.2879i −1.13695 0.954017i
\(195\) 0 0
\(196\) −7.81835 2.84565i −0.558453 0.203260i
\(197\) −6.21326 + 23.1882i −0.442676 + 1.65209i 0.279324 + 0.960197i \(0.409890\pi\)
−0.722000 + 0.691893i \(0.756777\pi\)
\(198\) 0 0
\(199\) 5.73533 + 3.31129i 0.406566 + 0.234731i 0.689313 0.724463i \(-0.257912\pi\)
−0.282747 + 0.959195i \(0.591246\pi\)
\(200\) 24.2644 25.1654i 1.71575 1.77946i
\(201\) 0 0
\(202\) 23.1134 + 33.0093i 1.62625 + 2.32253i
\(203\) 6.68309 + 9.54445i 0.469061 + 0.669889i
\(204\) 0 0
\(205\) 4.98599 + 13.3199i 0.348237 + 0.930305i
\(206\) −17.7613 10.2545i −1.23749 0.714466i
\(207\) 0 0
\(208\) −9.01904 + 33.6595i −0.625358 + 2.33387i
\(209\) 4.09043 + 1.48880i 0.282941 + 0.102982i
\(210\) 0 0
\(211\) −2.13311 1.78989i −0.146849 0.123221i 0.566404 0.824128i \(-0.308334\pi\)
−0.713253 + 0.700907i \(0.752779\pi\)
\(212\) 33.5672 + 15.6526i 2.30540 + 1.07503i
\(213\) 0 0
\(214\) −14.2542 + 2.51341i −0.974400 + 0.171813i
\(215\) −0.563508 1.18024i −0.0384309 0.0804920i
\(216\) 0 0
\(217\) −12.1625 + 12.1625i −0.825642 + 0.825642i
\(218\) −13.9173 9.74502i −0.942601 0.660016i
\(219\) 0 0
\(220\) −16.4238 + 0.149676i −1.10729 + 0.0100911i
\(221\) −4.87947 + 5.81513i −0.328229 + 0.391168i
\(222\) 0 0
\(223\) 9.32189 + 19.9909i 0.624240 + 1.33869i 0.923163 + 0.384410i \(0.125595\pi\)
−0.298923 + 0.954277i \(0.596627\pi\)
\(224\) −12.6291 21.8743i −0.843821 1.46154i
\(225\) 0 0
\(226\) 2.94975 5.10912i 0.196215 0.339854i
\(227\) 7.40612 + 0.647951i 0.491561 + 0.0430060i 0.330242 0.943896i \(-0.392870\pi\)
0.161319 + 0.986902i \(0.448425\pi\)
\(228\) 0 0
\(229\) 4.57594 + 0.806861i 0.302386 + 0.0533189i 0.322783 0.946473i \(-0.395382\pi\)
−0.0203963 + 0.999792i \(0.506493\pi\)
\(230\) −21.3298 + 37.7343i −1.40645 + 2.48813i
\(231\) 0 0
\(232\) −2.39751 + 27.4037i −0.157404 + 1.79914i
\(233\) −3.69557 13.7921i −0.242105 0.903549i −0.974816 0.223009i \(-0.928412\pi\)
0.732711 0.680540i \(-0.238255\pi\)
\(234\) 0 0
\(235\) −0.963800 + 1.40350i −0.0628714 + 0.0915542i
\(236\) 16.4549 45.2095i 1.07112 2.94289i
\(237\) 0 0
\(238\) −1.26577 14.4678i −0.0820478 0.937811i
\(239\) −19.1398 + 6.96633i −1.23805 + 0.450614i −0.876348 0.481678i \(-0.840027\pi\)
−0.361705 + 0.932293i \(0.617805\pi\)
\(240\) 0 0
\(241\) −2.82578 16.0258i −0.182024 1.03231i −0.929719 0.368269i \(-0.879950\pi\)
0.747695 0.664043i \(-0.231161\pi\)
\(242\) −15.6657 15.6657i −1.00703 1.00703i
\(243\) 0 0
\(244\) 57.1094i 3.65606i
\(245\) −3.90358 0.651685i −0.249391 0.0416346i
\(246\) 0 0
\(247\) 4.71754 10.1168i 0.300170 0.643717i
\(248\) −40.4538 + 3.53925i −2.56882 + 0.224743i
\(249\) 0 0
\(250\) 15.9459 24.1524i 1.00851 1.52753i
\(251\) 8.96649 5.17681i 0.565960 0.326757i −0.189574 0.981866i \(-0.560711\pi\)
0.755534 + 0.655109i \(0.227377\pi\)
\(252\) 0 0
\(253\) 11.3022 3.02841i 0.710562 0.190395i
\(254\) −4.28500 + 3.59554i −0.268865 + 0.225604i
\(255\) 0 0
\(256\) −3.84321 + 21.7959i −0.240201 + 1.36225i
\(257\) −4.65492 + 3.25941i −0.290366 + 0.203316i −0.709679 0.704525i \(-0.751160\pi\)
0.419313 + 0.907842i \(0.362271\pi\)
\(258\) 0 0
\(259\) −0.623629 0.743212i −0.0387504 0.0461810i
\(260\) −3.28838 + 41.9903i −0.203937 + 2.60412i
\(261\) 0 0
\(262\) −2.40888 0.645458i −0.148821 0.0398765i
\(263\) 17.6574 8.23378i 1.08880 0.507717i 0.206522 0.978442i \(-0.433785\pi\)
0.882280 + 0.470725i \(0.156008\pi\)
\(264\) 0 0
\(265\) 17.0580 + 4.40446i 1.04786 + 0.270564i
\(266\) 7.30422 + 20.0682i 0.447850 + 1.23046i
\(267\) 0 0
\(268\) 5.37706 7.67923i 0.328456 0.469084i
\(269\) −21.8628 −1.33300 −0.666501 0.745505i \(-0.732209\pi\)
−0.666501 + 0.745505i \(0.732209\pi\)
\(270\) 0 0
\(271\) 25.6697 1.55933 0.779663 0.626200i \(-0.215391\pi\)
0.779663 + 0.626200i \(0.215391\pi\)
\(272\) 9.45020 13.4963i 0.573003 0.818333i
\(273\) 0 0
\(274\) 2.15422 + 5.91867i 0.130141 + 0.357560i
\(275\) −7.66791 + 1.49664i −0.462392 + 0.0902509i
\(276\) 0 0
\(277\) −4.80726 + 2.24166i −0.288841 + 0.134689i −0.561638 0.827383i \(-0.689829\pi\)
0.272798 + 0.962071i \(0.412051\pi\)
\(278\) 24.3235 + 6.51747i 1.45883 + 0.390892i
\(279\) 0 0
\(280\) −30.0815 35.1933i −1.79771 2.10320i
\(281\) 0.950287 + 1.13251i 0.0566894 + 0.0675598i 0.793644 0.608382i \(-0.208181\pi\)
−0.736955 + 0.675942i \(0.763737\pi\)
\(282\) 0 0
\(283\) −4.14980 + 2.90572i −0.246680 + 0.172727i −0.690377 0.723449i \(-0.742556\pi\)
0.443697 + 0.896177i \(0.353667\pi\)
\(284\) 5.76054 32.6697i 0.341825 1.93859i
\(285\) 0 0
\(286\) 12.4153 10.4176i 0.734130 0.616008i
\(287\) 18.1942 4.87513i 1.07397 0.287770i
\(288\) 0 0
\(289\) −11.6141 + 6.70543i −0.683185 + 0.394437i
\(290\) 2.19156 + 22.6684i 0.128693 + 1.33113i
\(291\) 0 0
\(292\) 19.0703 1.66844i 1.11601 0.0976379i
\(293\) 9.70762 20.8181i 0.567125 1.21620i −0.388453 0.921468i \(-0.626991\pi\)
0.955579 0.294736i \(-0.0952316\pi\)
\(294\) 0 0
\(295\) 3.76836 22.5724i 0.219402 1.31422i
\(296\) 2.29054i 0.133135i
\(297\) 0 0
\(298\) −25.6615 25.6615i −1.48653 1.48653i
\(299\) −5.21042 29.5498i −0.301327 1.70891i
\(300\) 0 0
\(301\) −1.62765 + 0.592417i −0.0938163 + 0.0341464i
\(302\) 4.11100 + 46.9890i 0.236562 + 2.70391i
\(303\) 0 0
\(304\) −8.28636 + 22.7666i −0.475255 + 1.30575i
\(305\) −4.96077 26.7083i −0.284053 1.52931i
\(306\) 0 0
\(307\) −6.03527 22.5239i −0.344451 1.28551i −0.893252 0.449556i \(-0.851582\pi\)
0.548801 0.835953i \(-0.315084\pi\)
\(308\) −1.89583 + 21.6695i −0.108025 + 1.23473i
\(309\) 0 0
\(310\) −32.3933 + 8.99694i −1.83982 + 0.510992i
\(311\) −9.32616 1.64445i −0.528838 0.0932485i −0.0971473 0.995270i \(-0.530972\pi\)
−0.431691 + 0.902022i \(0.642083\pi\)
\(312\) 0 0
\(313\) −30.8225 2.69662i −1.74219 0.152422i −0.828810 0.559530i \(-0.810982\pi\)
−0.913380 + 0.407109i \(0.866537\pi\)
\(314\) −3.94019 + 6.82461i −0.222358 + 0.385135i
\(315\) 0 0
\(316\) −30.9001 53.5206i −1.73827 3.01077i
\(317\) −8.89049 19.0657i −0.499340 1.07084i −0.980916 0.194433i \(-0.937713\pi\)
0.481576 0.876404i \(-0.340064\pi\)
\(318\) 0 0
\(319\) 3.95168 4.70943i 0.221252 0.263678i
\(320\) −0.0954738 10.4763i −0.00533715 0.585640i
\(321\) 0 0
\(322\) 47.0242 + 32.9267i 2.62056 + 1.83493i
\(323\) −3.73198 + 3.73198i −0.207653 + 0.207653i
\(324\) 0 0
\(325\) 2.10958 + 19.9232i 0.117018 + 1.10514i
\(326\) −57.7316 + 10.1796i −3.19746 + 0.563798i
\(327\) 0 0
\(328\) 40.3036 + 18.7939i 2.22540 + 1.03772i
\(329\) 1.72731 + 1.44938i 0.0952295 + 0.0799070i
\(330\) 0 0
\(331\) 0.225624 + 0.0821205i 0.0124014 + 0.00451375i 0.348213 0.937415i \(-0.386788\pi\)
−0.335812 + 0.941929i \(0.609011\pi\)
\(332\) 4.94801 18.4662i 0.271557 1.01347i
\(333\) 0 0
\(334\) 11.7624 + 6.79104i 0.643611 + 0.371589i
\(335\) 1.84763 4.05841i 0.100947 0.221735i
\(336\) 0 0
\(337\) −9.82568 14.0325i −0.535239 0.764400i 0.456903 0.889516i \(-0.348959\pi\)
−0.992142 + 0.125116i \(0.960070\pi\)
\(338\) −4.53646 6.47874i −0.246751 0.352397i
\(339\) 0 0
\(340\) 8.25127 18.1243i 0.447488 0.982929i
\(341\) 7.85952 + 4.53769i 0.425617 + 0.245730i
\(342\) 0 0
\(343\) 4.00870 14.9607i 0.216450 0.807801i
\(344\) −3.84273 1.39864i −0.207186 0.0754097i
\(345\) 0 0
\(346\) 16.2166 + 13.6073i 0.871808 + 0.731534i
\(347\) −24.5967 11.4696i −1.32042 0.615723i −0.370681 0.928760i \(-0.620876\pi\)
−0.949741 + 0.313038i \(0.898653\pi\)
\(348\) 0 0
\(349\) −18.8404 + 3.32208i −1.00851 + 0.177827i −0.653411 0.757003i \(-0.726663\pi\)
−0.355095 + 0.934830i \(0.615551\pi\)
\(350\) −29.8063 24.0985i −1.59321 1.28812i
\(351\) 0 0
\(352\) −9.42361 + 9.42361i −0.502280 + 0.502280i
\(353\) 24.9423 + 17.4648i 1.32755 + 0.929558i 0.999884 0.0152364i \(-0.00485008\pi\)
0.327663 + 0.944795i \(0.393739\pi\)
\(354\) 0 0
\(355\) −0.143799 15.7790i −0.00763207 0.837461i
\(356\) 25.5949 30.5028i 1.35653 1.61664i
\(357\) 0 0
\(358\) −5.80691 12.4530i −0.306905 0.658160i
\(359\) 15.6146 + 27.0453i 0.824108 + 1.42740i 0.902599 + 0.430483i \(0.141657\pi\)
−0.0784904 + 0.996915i \(0.525010\pi\)
\(360\) 0 0
\(361\) −5.61951 + 9.73329i −0.295764 + 0.512278i
\(362\) 59.5360 + 5.20872i 3.12914 + 0.273764i
\(363\) 0 0
\(364\) 54.9338 + 9.68632i 2.87931 + 0.507701i
\(365\) 8.77367 2.43681i 0.459235 0.127548i
\(366\) 0 0
\(367\) 0.124058 1.41799i 0.00647576 0.0740183i −0.992269 0.124105i \(-0.960394\pi\)
0.998745 + 0.0500864i \(0.0159497\pi\)
\(368\) 16.8556 + 62.9058i 0.878657 + 3.27919i
\(369\) 0 0
\(370\) −0.346299 1.86444i −0.0180032 0.0969276i
\(371\) 7.98007 21.9251i 0.414305 1.13829i
\(372\) 0 0
\(373\) 0.857201 + 9.79785i 0.0443842 + 0.507313i 0.985552 + 0.169374i \(0.0541745\pi\)
−0.941168 + 0.337940i \(0.890270\pi\)
\(374\) −7.20068 + 2.62083i −0.372339 + 0.135520i
\(375\) 0 0
\(376\) 0.924409 + 5.24259i 0.0476728 + 0.270366i
\(377\) −11.1477 11.1477i −0.574134 0.574134i
\(378\) 0 0
\(379\) 5.76488i 0.296122i 0.988978 + 0.148061i \(0.0473032\pi\)
−0.988978 + 0.148061i \(0.952697\pi\)
\(380\) −4.82203 + 28.8839i −0.247365 + 1.48171i
\(381\) 0 0
\(382\) 4.15678 8.91424i 0.212679 0.456092i
\(383\) 2.84641 0.249029i 0.145445 0.0127248i −0.0142007 0.999899i \(-0.504520\pi\)
0.159646 + 0.987174i \(0.448965\pi\)
\(384\) 0 0
\(385\) 0.995681 + 10.2988i 0.0507446 + 0.524877i
\(386\) −27.7076 + 15.9970i −1.41028 + 0.814226i
\(387\) 0 0
\(388\) −36.2617 + 9.71629i −1.84091 + 0.493270i
\(389\) 9.76677 8.19530i 0.495195 0.415518i −0.360689 0.932686i \(-0.617458\pi\)
0.855884 + 0.517168i \(0.173014\pi\)
\(390\) 0 0
\(391\) −2.46354 + 13.9714i −0.124586 + 0.706565i
\(392\) −10.1365 + 7.09766i −0.511971 + 0.358486i
\(393\) 0 0
\(394\) 39.9445 + 47.6040i 2.01238 + 2.39826i
\(395\) −19.1000 22.3458i −0.961028 1.12434i
\(396\) 0 0
\(397\) −3.46941 0.929625i −0.174125 0.0466565i 0.170703 0.985322i \(-0.445396\pi\)
−0.344828 + 0.938666i \(0.612063\pi\)
\(398\) 15.5371 7.24507i 0.778804 0.363162i
\(399\) 0 0
\(400\) −8.33002 42.6781i −0.416501 2.13391i
\(401\) 7.04392 + 19.3530i 0.351756 + 0.966443i 0.981806 + 0.189888i \(0.0608124\pi\)
−0.630049 + 0.776555i \(0.716965\pi\)
\(402\) 0 0
\(403\) 13.3488 19.0640i 0.664949 0.949645i
\(404\) 73.1790 3.64079
\(405\) 0 0
\(406\) 30.1615 1.49689
\(407\) −0.293615 + 0.419326i −0.0145540 + 0.0207852i
\(408\) 0 0
\(409\) 5.75785 + 15.8196i 0.284707 + 0.782226i 0.996785 + 0.0801257i \(0.0255322\pi\)
−0.712078 + 0.702101i \(0.752246\pi\)
\(410\) 35.6475 + 9.20438i 1.76051 + 0.454572i
\(411\) 0 0
\(412\) −33.7548 + 15.7401i −1.66298 + 0.775460i
\(413\) −29.2754 7.84432i −1.44055 0.385994i
\(414\) 0 0
\(415\) 0.709976 9.06589i 0.0348513 0.445027i
\(416\) 21.9677 + 26.1801i 1.07705 + 1.28358i
\(417\) 0 0
\(418\) 9.23028 6.46311i 0.451468 0.316121i
\(419\) −0.0944911 + 0.535886i −0.00461619 + 0.0261797i −0.987029 0.160543i \(-0.948675\pi\)
0.982413 + 0.186723i \(0.0597866\pi\)
\(420\) 0 0
\(421\) −5.72762 + 4.80604i −0.279147 + 0.234232i −0.771602 0.636106i \(-0.780544\pi\)
0.492455 + 0.870338i \(0.336100\pi\)
\(422\) −6.96256 + 1.86561i −0.338932 + 0.0908166i
\(423\) 0 0
\(424\) 47.7050 27.5425i 2.31676 1.33758i
\(425\) 2.28451 9.19292i 0.110815 0.445922i
\(426\) 0 0
\(427\) −35.8400 + 3.13559i −1.73442 + 0.151742i
\(428\) −11.1085 + 23.8223i −0.536950 + 1.15149i
\(429\) 0 0
\(430\) −3.33934 0.557488i −0.161037 0.0268845i
\(431\) 14.9683i 0.720998i −0.932760 0.360499i \(-0.882606\pi\)
0.932760 0.360499i \(-0.117394\pi\)
\(432\) 0 0
\(433\) 24.8822 + 24.8822i 1.19576 + 1.19576i 0.975424 + 0.220337i \(0.0707157\pi\)
0.220337 + 0.975424i \(0.429284\pi\)
\(434\) 7.73168 + 43.8485i 0.371132 + 2.10480i
\(435\) 0 0
\(436\) −28.9929 + 10.5526i −1.38851 + 0.505376i
\(437\) −1.81822 20.7824i −0.0869774 0.994156i
\(438\) 0 0
\(439\) 13.0228 35.7799i 0.621545 1.70768i −0.0816297 0.996663i \(-0.526012\pi\)
0.703174 0.711017i \(-0.251765\pi\)
\(440\) −13.8283 + 20.1370i −0.659240 + 0.959995i
\(441\) 0 0
\(442\) 5.08591 + 18.9809i 0.241912 + 0.902828i
\(443\) −2.49320 + 28.4974i −0.118456 + 1.35395i 0.671597 + 0.740916i \(0.265608\pi\)
−0.790053 + 0.613038i \(0.789947\pi\)
\(444\) 0 0
\(445\) 9.32033 16.4885i 0.441826 0.781629i
\(446\) 56.2308 + 9.91500i 2.66260 + 0.469489i
\(447\) 0 0
\(448\) −13.8223 1.20930i −0.653043 0.0571338i
\(449\) 12.4470 21.5588i 0.587409 1.01742i −0.407162 0.913356i \(-0.633481\pi\)
0.994570 0.104066i \(-0.0331852\pi\)
\(450\) 0 0
\(451\) −4.96922 8.60694i −0.233991 0.405285i
\(452\) −4.52771 9.70971i −0.212966 0.456706i
\(453\) 0 0
\(454\) 12.3703 14.7424i 0.580567 0.691893i
\(455\) 26.5322 0.241798i 1.24385 0.0113356i
\(456\) 0 0
\(457\) 3.01872 + 2.11373i 0.141210 + 0.0988761i 0.642047 0.766666i \(-0.278086\pi\)
−0.500837 + 0.865542i \(0.666974\pi\)
\(458\) 8.50512 8.50512i 0.397418 0.397418i
\(459\) 0 0
\(460\) 33.9153 + 71.0342i 1.58131 + 3.31199i
\(461\) 15.0276 2.64977i 0.699905 0.123412i 0.187638 0.982238i \(-0.439917\pi\)
0.512267 + 0.858826i \(0.328806\pi\)
\(462\) 0 0
\(463\) 10.2029 + 4.75770i 0.474170 + 0.221109i 0.644987 0.764194i \(-0.276863\pi\)
−0.170817 + 0.985303i \(0.554641\pi\)
\(464\) 26.2118 + 21.9943i 1.21685 + 1.02106i
\(465\) 0 0
\(466\) −34.7327 12.6417i −1.60896 0.585614i
\(467\) −4.51835 + 16.8627i −0.209084 + 0.780313i 0.779082 + 0.626923i \(0.215686\pi\)
−0.988166 + 0.153390i \(0.950981\pi\)
\(468\) 0 0
\(469\) −5.11446 2.95283i −0.236164 0.136349i
\(470\) 1.54505 + 4.12757i 0.0712681 + 0.190391i
\(471\) 0 0
\(472\) −41.0421 58.6142i −1.88911 2.69794i
\(473\) 0.524198 + 0.748633i 0.0241027 + 0.0344222i
\(474\) 0 0
\(475\) 0.253863 + 13.9269i 0.0116480 + 0.639012i
\(476\) −22.8405 13.1870i −1.04689 0.604423i
\(477\) 0 0
\(478\) −13.6463 + 50.9287i −0.624168 + 2.32943i
\(479\) 21.5176 + 7.83178i 0.983166 + 0.357843i 0.783070 0.621933i \(-0.213652\pi\)
0.200096 + 0.979776i \(0.435875\pi\)
\(480\) 0 0
\(481\) 1.00560 + 0.843799i 0.0458514 + 0.0384739i
\(482\) −38.1778 17.8026i −1.73895 0.810885i
\(483\) 0 0
\(484\) −39.6216 + 6.98636i −1.80098 + 0.317562i
\(485\) −16.1145 + 7.69385i −0.731720 + 0.349360i
\(486\) 0 0
\(487\) 25.6571 25.6571i 1.16264 1.16264i 0.178740 0.983896i \(-0.442798\pi\)
0.983896 0.178740i \(-0.0572021\pi\)
\(488\) −69.5772 48.7185i −3.14961 2.20538i
\(489\) 0 0
\(490\) −7.17778 + 7.30981i −0.324259 + 0.330224i
\(491\) 8.85005 10.5471i 0.399397 0.475983i −0.528439 0.848971i \(-0.677222\pi\)
0.927836 + 0.372988i \(0.121667\pi\)
\(492\) 0 0
\(493\) 3.15016 + 6.75555i 0.141876 + 0.304255i
\(494\) −14.4479 25.0245i −0.650041 1.12590i
\(495\) 0 0
\(496\) −25.2560 + 43.7446i −1.13403 + 1.96419i
\(497\) −20.8187 1.82140i −0.933845 0.0817009i
\(498\) 0 0
\(499\) −16.6957 2.94390i −0.747401 0.131787i −0.213040 0.977043i \(-0.568337\pi\)
−0.534361 + 0.845256i \(0.679448\pi\)
\(500\) −19.3191 48.8783i −0.863978 2.18590i
\(501\) 0 0
\(502\) 2.33590 26.6995i 0.104256 1.19166i
\(503\) −3.19471 11.9228i −0.142445 0.531612i −0.999856 0.0169795i \(-0.994595\pi\)
0.857411 0.514633i \(-0.172072\pi\)
\(504\) 0 0
\(505\) 34.2236 6.35664i 1.52293 0.282867i
\(506\) 10.3595 28.4624i 0.460534 1.26531i
\(507\) 0 0
\(508\) 0.885334 + 10.1194i 0.0392803 + 0.448976i
\(509\) −1.17560 + 0.427885i −0.0521077 + 0.0189657i −0.367943 0.929849i \(-0.619938\pi\)
0.315835 + 0.948814i \(0.397715\pi\)
\(510\) 0 0
\(511\) −2.09411 11.8763i −0.0926380 0.525376i
\(512\) 33.5394 + 33.5394i 1.48224 + 1.48224i
\(513\) 0 0
\(514\) 14.7101i 0.648833i
\(515\) −14.4188 + 10.2933i −0.635369 + 0.453575i
\(516\) 0 0
\(517\) 0.502796 1.07825i 0.0221130 0.0474214i
\(518\) −2.50190 + 0.218888i −0.109927 + 0.00961738i
\(519\) 0 0
\(520\) 48.3521 + 39.8270i 2.12038 + 1.74653i
\(521\) 25.5030 14.7242i 1.11731 0.645078i 0.176595 0.984284i \(-0.443492\pi\)
0.940712 + 0.339206i \(0.110158\pi\)
\(522\) 0 0
\(523\) 10.8910 2.91822i 0.476228 0.127605i −0.0127175 0.999919i \(-0.504048\pi\)
0.488946 + 0.872314i \(0.337382\pi\)
\(524\) −3.46929 + 2.91108i −0.151556 + 0.127171i
\(525\) 0 0
\(526\) 8.75766 49.6671i 0.381852 2.16559i
\(527\) −9.01363 + 6.31141i −0.392640 + 0.274929i
\(528\) 0 0
\(529\) −21.2616 25.3386i −0.924417 1.10168i
\(530\) 34.6666 29.6313i 1.50582 1.28710i
\(531\) 0 0
\(532\) 37.4611 + 10.0377i 1.62414 + 0.435188i
\(533\) −23.0982 + 10.7709i −1.00049 + 0.466538i
\(534\) 0 0
\(535\) −3.12580 + 12.1059i −0.135140 + 0.523383i
\(536\) −4.76869 13.1019i −0.205976 0.565915i
\(537\) 0 0
\(538\) −32.4612 + 46.3594i −1.39950 + 1.99870i
\(539\) 2.76550 0.119118
\(540\) 0 0
\(541\) −2.55842 −0.109995 −0.0549975 0.998486i \(-0.517515\pi\)
−0.0549975 + 0.998486i \(0.517515\pi\)
\(542\) 38.1136 54.4318i 1.63712 2.33805i
\(543\) 0 0
\(544\) −5.52655 15.1841i −0.236949 0.651012i
\(545\) −12.6424 + 7.45355i −0.541543 + 0.319275i
\(546\) 0 0
\(547\) 3.81919 1.78092i 0.163297 0.0761465i −0.339251 0.940696i \(-0.610174\pi\)
0.502548 + 0.864549i \(0.332396\pi\)
\(548\) 11.0483 + 2.96039i 0.471961 + 0.126462i
\(549\) 0 0
\(550\) −8.21147 + 18.4817i −0.350138 + 0.788062i
\(551\) −7.04554 8.39655i −0.300150 0.357705i
\(552\) 0 0
\(553\) −31.8912 + 22.3304i −1.35615 + 0.949586i
\(554\) −2.38429 + 13.5220i −0.101299 + 0.574494i
\(555\) 0 0
\(556\) 35.0309 29.3944i 1.48564 1.24660i
\(557\) −19.0860 + 5.11407i −0.808698 + 0.216690i −0.639399 0.768875i \(-0.720817\pi\)
−0.169299 + 0.985565i \(0.554150\pi\)
\(558\) 0 0
\(559\) 2.02964 1.17181i 0.0858446 0.0495624i
\(560\) −57.3213 + 5.54177i −2.42227 + 0.234183i
\(561\) 0 0
\(562\) 3.81240 0.333542i 0.160816 0.0140696i
\(563\) −11.2154 + 24.0516i −0.472675 + 1.01365i 0.515008 + 0.857185i \(0.327789\pi\)
−0.987683 + 0.156469i \(0.949989\pi\)
\(564\) 0 0
\(565\) −2.96090 4.14763i −0.124566 0.174492i
\(566\) 13.1138i 0.551216i
\(567\) 0 0
\(568\) −34.8877 34.8877i −1.46386 1.46386i
\(569\) 7.42425 + 42.1050i 0.311241 + 1.76513i 0.592567 + 0.805521i \(0.298114\pi\)
−0.281327 + 0.959612i \(0.590774\pi\)
\(570\) 0 0
\(571\) 9.01463 3.28106i 0.377251 0.137308i −0.146433 0.989221i \(-0.546779\pi\)
0.523684 + 0.851912i \(0.324557\pi\)
\(572\) −2.56515 29.3198i −0.107254 1.22592i
\(573\) 0 0
\(574\) 16.6766 45.8187i 0.696069 1.91243i
\(575\) 22.0315 + 30.2745i 0.918776 + 1.26253i
\(576\) 0 0
\(577\) −3.87943 14.4782i −0.161503 0.602737i −0.998460 0.0554690i \(-0.982335\pi\)
0.836958 0.547268i \(-0.184332\pi\)
\(578\) −3.02565 + 34.5834i −0.125851 + 1.43848i
\(579\) 0 0
\(580\) 36.0037 + 20.3516i 1.49497 + 0.845052i
\(581\) −11.8605 2.09132i −0.492055 0.0867626i
\(582\) 0 0
\(583\) −12.2639 1.07295i −0.507918 0.0444370i
\(584\) 14.2357 24.6569i 0.589077 1.02031i
\(585\) 0 0
\(586\) −29.7304 51.4946i −1.22815 2.12722i
\(587\) 1.70173 + 3.64938i 0.0702381 + 0.150626i 0.938292 0.345844i \(-0.112407\pi\)
−0.868054 + 0.496470i \(0.834629\pi\)
\(588\) 0 0
\(589\) 10.4008 12.3951i 0.428556 0.510733i
\(590\) −42.2689 41.5054i −1.74018 1.70875i
\(591\) 0 0
\(592\) −2.33389 1.63421i −0.0959223 0.0671655i
\(593\) −6.31053 + 6.31053i −0.259142 + 0.259142i −0.824705 0.565563i \(-0.808659\pi\)
0.565563 + 0.824705i \(0.308659\pi\)
\(594\) 0 0
\(595\) −11.8273 4.18311i −0.484870 0.171491i
\(596\) −64.9028 + 11.4441i −2.65852 + 0.468769i
\(597\) 0 0
\(598\) −70.3955 32.8260i −2.87869 1.34235i
\(599\) −25.4844 21.3840i −1.04127 0.873726i −0.0491180 0.998793i \(-0.515641\pi\)
−0.992148 + 0.125067i \(0.960085\pi\)
\(600\) 0 0
\(601\) −16.7184 6.08500i −0.681958 0.248212i −0.0222700 0.999752i \(-0.507089\pi\)
−0.659688 + 0.751540i \(0.729312\pi\)
\(602\) −1.16048 + 4.33098i −0.0472978 + 0.176518i
\(603\) 0 0
\(604\) 74.1818 + 42.8289i 3.01841 + 1.74268i
\(605\) −17.9229 + 6.70901i −0.728671 + 0.272760i
\(606\) 0 0
\(607\) 26.0280 + 37.1718i 1.05644 + 1.50876i 0.847477 + 0.530833i \(0.178121\pi\)
0.208966 + 0.977923i \(0.432990\pi\)
\(608\) 13.6288 + 19.4639i 0.552719 + 0.789365i
\(609\) 0 0
\(610\) −63.9996 29.1364i −2.59127 1.17970i
\(611\) −2.64216 1.52545i −0.106890 0.0617131i
\(612\) 0 0
\(613\) 9.48053 35.3818i 0.382915 1.42906i −0.458512 0.888688i \(-0.651617\pi\)
0.841427 0.540370i \(-0.181716\pi\)
\(614\) −56.7222 20.6452i −2.28912 0.833172i
\(615\) 0 0
\(616\) 24.7829 + 20.7953i 0.998533 + 0.837868i
\(617\) 32.8468 + 15.3167i 1.32236 + 0.616628i 0.950229 0.311551i \(-0.100848\pi\)
0.372134 + 0.928179i \(0.378626\pi\)
\(618\) 0 0
\(619\) 33.7534 5.95163i 1.35666 0.239216i 0.552444 0.833550i \(-0.313695\pi\)
0.804218 + 0.594334i \(0.202584\pi\)
\(620\) −20.3576 + 57.5588i −0.817582 + 2.31162i
\(621\) 0 0
\(622\) −17.3342 + 17.3342i −0.695037 + 0.695037i
\(623\) −20.5478 14.3877i −0.823231 0.576433i
\(624\) 0 0
\(625\) −13.2807 21.1807i −0.531230 0.847228i
\(626\) −51.4823 + 61.3542i −2.05764 + 2.45221i
\(627\) 0 0
\(628\) 6.04798 + 12.9699i 0.241341 + 0.517557i
\(629\) −0.310333 0.537512i −0.0123738 0.0214320i
\(630\) 0 0
\(631\) −15.6392 + 27.0879i −0.622587 + 1.07835i 0.366415 + 0.930451i \(0.380585\pi\)
−0.989002 + 0.147901i \(0.952748\pi\)
\(632\) −91.5648 8.01088i −3.64225 0.318656i
\(633\) 0 0
\(634\) −53.6285 9.45615i −2.12986 0.375552i
\(635\) 1.29306 + 4.65563i 0.0513135 + 0.184753i
\(636\) 0 0
\(637\) 0.618092 7.06483i 0.0244897 0.279919i
\(638\) −4.11886 15.3718i −0.163067 0.608576i
\(639\) 0 0
\(640\) 9.08721 + 6.24029i 0.359203 + 0.246669i
\(641\) −1.87972 + 5.16450i −0.0742446 + 0.203985i −0.971263 0.238007i \(-0.923506\pi\)
0.897019 + 0.441992i \(0.145728\pi\)
\(642\) 0 0
\(643\) 3.93539 + 44.9817i 0.155197 + 1.77390i 0.531161 + 0.847271i \(0.321756\pi\)
−0.375965 + 0.926634i \(0.622689\pi\)
\(644\) 97.9620 35.6552i 3.86024 1.40501i
\(645\) 0 0
\(646\) 2.37242 + 13.4546i 0.0933414 + 0.529366i
\(647\) 18.1400 + 18.1400i 0.713158 + 0.713158i 0.967195 0.254037i \(-0.0817584\pi\)
−0.254037 + 0.967195i \(0.581758\pi\)
\(648\) 0 0
\(649\) 15.9914i 0.627719i
\(650\) 45.3787 + 25.1080i 1.77990 + 0.984816i
\(651\) 0 0
\(652\) −44.9910 + 96.4835i −1.76198 + 3.77858i
\(653\) 7.25864 0.635049i 0.284052 0.0248514i 0.0557608 0.998444i \(-0.482242\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(654\) 0 0
\(655\) −1.36961 + 1.66278i −0.0535151 + 0.0649701i
\(656\) 47.9046 27.6577i 1.87036 1.07985i
\(657\) 0 0
\(658\) 5.63801 1.51070i 0.219793 0.0588932i
\(659\) 20.4475 17.1575i 0.796520 0.668360i −0.150830 0.988560i \(-0.548195\pi\)
0.947350 + 0.320200i \(0.103750\pi\)
\(660\) 0 0
\(661\) −3.17425 + 18.0020i −0.123464 + 0.700198i 0.858745 + 0.512404i \(0.171245\pi\)
−0.982208 + 0.187794i \(0.939866\pi\)
\(662\) 0.509133 0.356499i 0.0197880 0.0138557i
\(663\) 0 0
\(664\) −18.2766 21.7813i −0.709271 0.845277i
\(665\) 18.3913 + 1.44028i 0.713184 + 0.0558515i
\(666\) 0 0
\(667\) −28.4594 7.62568i −1.10195 0.295267i
\(668\) 22.3541 10.4239i 0.864905 0.403312i
\(669\) 0 0
\(670\) −5.86242 9.94363i −0.226485 0.384156i
\(671\) 6.49238 + 17.8377i 0.250635 + 0.688615i
\(672\) 0 0
\(673\) 12.4963 17.8466i 0.481697 0.687934i −0.502587 0.864526i \(-0.667618\pi\)
0.984284 + 0.176592i \(0.0565074\pi\)
\(674\) −44.3443 −1.70808
\(675\) 0 0
\(676\) −14.3629 −0.552418
\(677\) 6.04776 8.63710i 0.232434 0.331951i −0.685944 0.727654i \(-0.740610\pi\)
0.918378 + 0.395704i \(0.129499\pi\)
\(678\) 0 0
\(679\) 8.08857 + 22.2232i 0.310411 + 0.852846i
\(680\) −15.0422 25.5140i −0.576841 0.978416i
\(681\) 0 0
\(682\) 21.2916 9.92842i 0.815296 0.380179i
\(683\) −22.9581 6.15162i −0.878469 0.235385i −0.208723 0.977975i \(-0.566931\pi\)
−0.669746 + 0.742590i \(0.733597\pi\)
\(684\) 0 0
\(685\) 5.42411 + 0.424778i 0.207245 + 0.0162299i
\(686\) −25.7716 30.7134i −0.983965 1.17264i
\(687\) 0 0
\(688\) −4.16675 + 2.91759i −0.158856 + 0.111232i
\(689\) −5.48198 + 31.0899i −0.208847 + 1.18443i
\(690\) 0 0
\(691\) 29.8109 25.0143i 1.13406 0.951591i 0.134833 0.990868i \(-0.456950\pi\)
0.999228 + 0.0392778i \(0.0125057\pi\)
\(692\) 37.1333 9.94983i 1.41160 0.378236i
\(693\) 0 0
\(694\) −60.8414 + 35.1268i −2.30951 + 1.33339i
\(695\) 13.8296 16.7898i 0.524585 0.636874i
\(696\) 0 0
\(697\) 12.0042 1.05023i 0.454691 0.0397803i
\(698\) −20.9293 + 44.8830i −0.792185 + 1.69885i
\(699\) 0 0
\(700\) −66.8950 + 19.2378i −2.52839 + 0.727121i
\(701\) 37.4202i 1.41334i −0.707542 0.706671i \(-0.750196\pi\)
0.707542 0.706671i \(-0.249804\pi\)
\(702\) 0 0
\(703\) 0.645364 + 0.645364i 0.0243404 + 0.0243404i
\(704\) 1.27126 + 7.20968i 0.0479125 + 0.271725i
\(705\) 0 0
\(706\) 74.0671 26.9582i 2.78755 1.01459i
\(707\) −4.01789 45.9247i −0.151108 1.72718i
\(708\) 0 0
\(709\) −10.2864 + 28.2616i −0.386313 + 1.06139i 0.582335 + 0.812949i \(0.302139\pi\)
−0.968648 + 0.248437i \(0.920083\pi\)
\(710\) −33.6723 23.1232i −1.26370 0.867797i
\(711\) 0 0
\(712\) −15.3277 57.2037i −0.574429 2.14380i
\(713\) 3.79078 43.3288i 0.141966 1.62268i
\(714\) 0 0
\(715\) −3.74648 13.4891i −0.140111 0.504465i
\(716\) −24.5733 4.33293i −0.918347 0.161929i
\(717\) 0 0
\(718\) 80.5327 + 7.04570i 3.00546 + 0.262943i
\(719\) −1.80566 + 3.12750i −0.0673399 + 0.116636i −0.897730 0.440547i \(-0.854785\pi\)
0.830390 + 0.557183i \(0.188118\pi\)
\(720\) 0 0
\(721\) 11.7313 + 20.3192i 0.436896 + 0.756726i
\(722\) 12.2954 + 26.3676i 0.457589 + 0.981302i
\(723\) 0 0
\(724\) 69.7617 83.1388i 2.59268 3.08983i
\(725\) 18.6056 + 6.39035i 0.690996 + 0.237332i
\(726\) 0 0
\(727\) 24.6477 + 17.2585i 0.914133 + 0.640083i 0.933053 0.359738i \(-0.117134\pi\)
−0.0189200 + 0.999821i \(0.506023\pi\)
\(728\) 58.6635 58.6635i 2.17421 2.17421i
\(729\) 0 0
\(730\) 7.85968 22.2223i 0.290900 0.822486i
\(731\) −1.09125 + 0.192418i −0.0403615 + 0.00711682i
\(732\) 0 0
\(733\) −37.0978 17.2990i −1.37024 0.638953i −0.408459 0.912777i \(-0.633934\pi\)
−0.961780 + 0.273824i \(0.911712\pi\)
\(734\) −2.82259 2.36844i −0.104184 0.0874206i
\(735\) 0 0
\(736\) 60.0186 + 21.8450i 2.21231 + 0.805217i
\(737\) −0.806480 + 3.00982i −0.0297071 + 0.110868i
\(738\) 0 0
\(739\) 7.88425 + 4.55198i 0.290027 + 0.167447i 0.637954 0.770074i \(-0.279781\pi\)
−0.347927 + 0.937522i \(0.613114\pi\)
\(740\) −3.13421 1.42688i −0.115216 0.0524530i
\(741\) 0 0
\(742\) −34.6428 49.4750i −1.27178 1.81629i
\(743\) 27.8074 + 39.7131i 1.02016 + 1.45693i 0.884706 + 0.466149i \(0.154359\pi\)
0.135449 + 0.990784i \(0.456752\pi\)
\(744\) 0 0
\(745\) −29.3589 + 10.9898i −1.07563 + 0.402635i
\(746\) 22.0487 + 12.7298i 0.807262 + 0.466073i
\(747\) 0 0
\(748\) −3.60163 + 13.4415i −0.131689 + 0.491468i
\(749\) 15.5600 + 5.66337i 0.568550 + 0.206935i
\(750\) 0 0
\(751\) −31.7068 26.6051i −1.15700 0.970835i −0.157137 0.987577i \(-0.550226\pi\)
−0.999860 + 0.0167415i \(0.994671\pi\)
\(752\) 6.00134 + 2.79847i 0.218846 + 0.102050i
\(753\) 0 0
\(754\) −40.1899 + 7.08656i −1.46363 + 0.258077i
\(755\) 38.4128 + 13.5860i 1.39799 + 0.494445i
\(756\) 0 0
\(757\) −27.0538 + 27.0538i −0.983288 + 0.983288i −0.999863 0.0165746i \(-0.994724\pi\)
0.0165746 + 0.999863i \(0.494724\pi\)
\(758\) 12.2242 + 8.55950i 0.444004 + 0.310895i
\(759\) 0 0
\(760\) 31.0761 + 30.5148i 1.12725 + 1.10689i
\(761\) −22.5010 + 26.8156i −0.815660 + 0.972066i −0.999942 0.0108074i \(-0.996560\pi\)
0.184281 + 0.982874i \(0.441004\pi\)
\(762\) 0 0
\(763\) 8.21429 + 17.6156i 0.297377 + 0.637728i
\(764\) −8.93086 15.4687i −0.323107 0.559638i
\(765\) 0 0
\(766\) 3.69820 6.40547i 0.133621 0.231439i
\(767\) 40.8523 + 3.57411i 1.47509 + 0.129054i
\(768\) 0 0
\(769\) −6.45291 1.13782i −0.232698 0.0410309i 0.0560832 0.998426i \(-0.482139\pi\)
−0.288781 + 0.957395i \(0.593250\pi\)
\(770\) 23.3166 + 13.1800i 0.840274 + 0.474975i
\(771\) 0 0
\(772\) −5.06383 + 57.8799i −0.182251 + 2.08314i
\(773\) −1.43767 5.36547i −0.0517095 0.192983i 0.935239 0.354016i \(-0.115184\pi\)
−0.986949 + 0.161033i \(0.948517\pi\)
\(774\) 0 0
\(775\) −4.52082 + 28.6868i −0.162393 + 1.03046i
\(776\) −19.0963 + 52.4668i −0.685519 + 1.88345i
\(777\) 0 0
\(778\) −2.87647 32.8782i −0.103126 1.17874i
\(779\) −16.6509 + 6.06042i −0.596579 + 0.217137i
\(780\) 0 0
\(781\) 1.91473 + 10.8590i 0.0685144 + 0.388565i
\(782\) 25.9681 + 25.9681i 0.928618 + 0.928618i
\(783\) 0 0
\(784\) 15.3922i 0.549723i
\(785\) 3.95508 + 5.54028i 0.141163 + 0.197741i
\(786\) 0 0
\(787\) −13.1429 + 28.1849i −0.468492 + 1.00468i 0.520105 + 0.854102i \(0.325893\pi\)
−0.988597 + 0.150582i \(0.951885\pi\)
\(788\) 112.421 9.83559i 4.00484 0.350378i
\(789\) 0 0
\(790\) −75.7426 + 7.32272i −2.69480 + 0.260531i
\(791\) −5.84490 + 3.37455i −0.207821 + 0.119985i
\(792\) 0 0
\(793\) 47.0197 12.5989i 1.66972 0.447400i
\(794\) −7.12249 + 5.97648i −0.252768 + 0.212097i
\(795\) 0 0
\(796\) 5.40604 30.6592i 0.191612 1.08669i
\(797\) 3.95902 2.77214i 0.140236 0.0981941i −0.501353 0.865243i \(-0.667164\pi\)
0.641589 + 0.767049i \(0.278275\pi\)
\(798\) 0 0
\(799\) 0.927217 + 1.10501i 0.0328026 + 0.0390926i
\(800\) −38.9723 17.3155i −1.37788 0.612196i
\(801\) 0 0
\(802\) 51.4959 + 13.7983i 1.81838 + 0.487235i
\(803\) −5.76678 + 2.68909i −0.203505 + 0.0948961i
\(804\) 0 0
\(805\) 42.7166 25.1842i 1.50556 0.887628i
\(806\) −20.6048 56.6111i −0.725772 1.99404i
\(807\) 0 0
\(808\) 62.4270 89.1550i 2.19617 3.13646i
\(809\) −27.0458 −0.950881 −0.475440 0.879748i \(-0.657711\pi\)
−0.475440 + 0.879748i \(0.657711\pi\)
\(810\) 0 0
\(811\) −47.9089 −1.68231 −0.841154 0.540795i \(-0.818123\pi\)
−0.841154 + 0.540795i \(0.818123\pi\)
\(812\) 31.4166 44.8675i 1.10251 1.57454i
\(813\) 0 0
\(814\) 0.453216 + 1.24520i 0.0158852 + 0.0436443i
\(815\) −12.6599 + 49.0304i −0.443458 + 1.71746i
\(816\) 0 0
\(817\) 1.47677 0.688628i 0.0516656 0.0240921i
\(818\) 42.0939 + 11.2790i 1.47178 + 0.394362i
\(819\) 0 0
\(820\) 50.8231 43.4410i 1.77482 1.51703i
\(821\) 27.5109 + 32.7862i 0.960137 + 1.14425i 0.989479 + 0.144678i \(0.0462145\pi\)
−0.0293416 + 0.999569i \(0.509341\pi\)
\(822\) 0 0
\(823\) −9.96073 + 6.97458i −0.347209 + 0.243119i −0.734152 0.678985i \(-0.762420\pi\)
0.386943 + 0.922104i \(0.373531\pi\)
\(824\) −9.61888 + 54.5514i −0.335090 + 1.90039i
\(825\) 0 0
\(826\) −60.1008 + 50.4305i −2.09117 + 1.75470i
\(827\) −13.0585 + 3.49901i −0.454088 + 0.121673i −0.478612 0.878027i \(-0.658860\pi\)
0.0245234 + 0.999699i \(0.492193\pi\)
\(828\) 0 0
\(829\) −22.0957 + 12.7570i −0.767415 + 0.443068i −0.831952 0.554848i \(-0.812776\pi\)
0.0645364 + 0.997915i \(0.479443\pi\)
\(830\) −18.1698 14.9662i −0.630681 0.519484i
\(831\) 0 0
\(832\) 18.7022 1.63623i 0.648383 0.0567261i
\(833\) −1.41707 + 3.03892i −0.0490986 + 0.105292i
\(834\) 0 0
\(835\) 9.54884 6.81669i 0.330451 0.235901i
\(836\) 20.4628i 0.707721i
\(837\) 0 0
\(838\) 0.996030 + 0.996030i 0.0344073 + 0.0344073i
\(839\) −6.29080 35.6769i −0.217183 1.23170i −0.877078 0.480347i \(-0.840511\pi\)
0.659896 0.751357i \(-0.270600\pi\)
\(840\) 0 0
\(841\) 12.7044 4.62403i 0.438083 0.159449i
\(842\) 1.68687 + 19.2811i 0.0581335 + 0.664469i
\(843\) 0 0
\(844\) −4.47705 + 12.3006i −0.154106 + 0.423404i
\(845\) −6.71706 + 1.24762i −0.231074 + 0.0429194i
\(846\) 0 0
\(847\) 6.55983 + 24.4816i 0.225398 + 0.841199i
\(848\) 5.97184 68.2584i 0.205074 2.34400i
\(849\) 0 0
\(850\) −16.1013 18.4935i −0.552270 0.634324i
\(851\) 2.41605 + 0.426015i 0.0828212 + 0.0146036i
\(852\) 0 0
\(853\) 12.1293 + 1.06118i 0.415300 + 0.0363341i 0.292891 0.956146i \(-0.405383\pi\)
0.122409 + 0.992480i \(0.460938\pi\)
\(854\) −46.5651 + 80.6531i −1.59342 + 2.75989i
\(855\) 0 0
\(856\) 19.5466 + 33.8558i 0.668090 + 1.15717i
\(857\) 17.7690 + 38.1058i 0.606978 + 1.30167i 0.934210 + 0.356724i \(0.116106\pi\)
−0.327232 + 0.944944i \(0.606116\pi\)
\(858\) 0 0
\(859\) −16.1180 + 19.2086i −0.549938 + 0.655390i −0.967385 0.253311i \(-0.918480\pi\)
0.417447 + 0.908701i \(0.362925\pi\)
\(860\) −4.30761 + 4.38684i −0.146888 + 0.149590i
\(861\) 0 0
\(862\) −31.7398 22.2244i −1.08106 0.756967i
\(863\) −16.2331 + 16.2331i −0.552582 + 0.552582i −0.927185 0.374603i \(-0.877779\pi\)
0.374603 + 0.927185i \(0.377779\pi\)
\(864\) 0 0
\(865\) 16.5018 7.87879i 0.561078 0.267887i
\(866\) 89.7060 15.8176i 3.04833 0.537503i
\(867\) 0 0
\(868\) 73.2814 + 34.1717i 2.48733 + 1.15986i
\(869\) 15.7358 + 13.2039i 0.533800 + 0.447911i
\(870\) 0 0
\(871\) 7.50875 + 2.73296i 0.254424 + 0.0926028i
\(872\) −11.8767 + 44.3246i −0.402197 + 1.50102i
\(873\) 0 0
\(874\) −46.7680 27.0015i −1.58195 0.913339i
\(875\) −29.6137 + 14.8077i −1.00112 + 0.500592i
\(876\) 0 0
\(877\) 31.8721 + 45.5180i 1.07624 + 1.53703i 0.821655 + 0.569985i \(0.193051\pi\)
0.254588 + 0.967049i \(0.418060\pi\)
\(878\) −56.5342 80.7392i −1.90794 2.72481i
\(879\) 0 0
\(880\) 10.6522 + 28.4570i 0.359085 + 0.959286i
\(881\) −20.5994 11.8931i −0.694013 0.400688i 0.111101 0.993809i \(-0.464562\pi\)
−0.805114 + 0.593121i \(0.797896\pi\)
\(882\) 0 0
\(883\) −6.72963 + 25.1153i −0.226470 + 0.845198i 0.755340 + 0.655333i \(0.227472\pi\)
−0.981810 + 0.189865i \(0.939195\pi\)
\(884\) 33.5330 + 12.2050i 1.12784 + 0.410499i
\(885\) 0 0
\(886\) 56.7260 + 47.5988i 1.90575 + 1.59911i
\(887\) −11.8712 5.53565i −0.398597 0.185869i 0.212975 0.977058i \(-0.431685\pi\)
−0.611572 + 0.791189i \(0.709463\pi\)
\(888\) 0 0
\(889\) 6.30200 1.11121i 0.211362 0.0372689i
\(890\) −21.1248 44.2450i −0.708104 1.48309i
\(891\) 0 0
\(892\) 73.3199 73.3199i 2.45493 2.45493i
\(893\) −1.73756 1.21666i −0.0581454 0.0407138i
\(894\) 0 0
\(895\) −11.8685 + 0.108162i −0.396722 + 0.00361546i
\(896\) 9.38428 11.1838i 0.313507 0.373623i
\(897\) 0 0
\(898\) −27.2338 58.4031i −0.908804 1.94894i
\(899\) −11.4261 19.7906i −0.381082 0.660054i
\(900\) 0 0
\(901\) 7.46317 12.9266i 0.248634 0.430647i
\(902\) −25.6289 2.24223i −0.853347 0.0746582i
\(903\) 0 0
\(904\) −15.6919 2.76691i −0.521906 0.0920261i
\(905\) 25.4036 44.9412i 0.844445 1.49390i
\(906\) 0 0
\(907\) −3.65873 + 41.8194i −0.121486 + 1.38859i 0.653650 + 0.756797i \(0.273237\pi\)
−0.775136 + 0.631795i \(0.782319\pi\)
\(908\) −9.04532 33.7576i −0.300180 1.12029i
\(909\) 0 0
\(910\) 38.8814 56.6197i 1.28891 1.87693i
\(911\) −18.7788 + 51.5943i −0.622169 + 1.70940i 0.0794445 + 0.996839i \(0.474685\pi\)
−0.701614 + 0.712557i \(0.747537\pi\)
\(912\) 0 0
\(913\) 0.553828 + 6.33028i 0.0183290 + 0.209502i
\(914\) 8.96418 3.26269i 0.296509 0.107920i
\(915\) 0 0
\(916\) −3.79298 21.5110i −0.125323 0.710745i
\(917\) 2.01738 + 2.01738i 0.0666196 + 0.0666196i
\(918\) 0 0
\(919\) 38.4394i 1.26800i −0.773333 0.634000i \(-0.781412\pi\)
0.773333 0.634000i \(-0.218588\pi\)
\(920\) 115.474 + 19.2779i 3.80707 + 0.635573i
\(921\) 0 0
\(922\) 16.6937 35.7998i 0.549778 1.17900i
\(923\) 28.1686 2.46444i 0.927182 0.0811179i
\(924\) 0 0
\(925\) −1.58972 0.395056i −0.0522695 0.0129894i
\(926\) 25.2375 14.5709i 0.829356 0.478829i
\(927\) 0 0
\(928\) 32.4145 8.68545i 1.06406 0.285114i
\(929\) −17.4189 + 14.6162i −0.571497 + 0.479543i −0.882142 0.470983i \(-0.843899\pi\)
0.310645 + 0.950526i \(0.399455\pi\)
\(930\) 0 0
\(931\) 0.856201 4.85576i 0.0280609 0.159141i
\(932\) −54.9834 + 38.4998i −1.80104 + 1.26110i
\(933\) 0 0
\(934\) 29.0481 + 34.6182i 0.950482 + 1.13274i
\(935\) −0.516787 + 6.59901i −0.0169007 + 0.215811i
\(936\) 0 0
\(937\) 2.08398 + 0.558400i 0.0680806 + 0.0182421i 0.292699 0.956205i \(-0.405447\pi\)
−0.224618 + 0.974447i \(0.572113\pi\)
\(938\) −13.8552 + 6.46077i −0.452387 + 0.210951i
\(939\) 0 0
\(940\) 7.74943 + 2.00094i 0.252758 + 0.0652636i
\(941\) −15.3914 42.2876i −0.501747 1.37854i −0.889568 0.456803i \(-0.848994\pi\)
0.387821 0.921735i \(-0.373228\pi\)
\(942\) 0 0
\(943\) −27.3198 + 39.0167i −0.889654 + 1.27056i
\(944\) −89.0054 −2.89688
\(945\) 0 0
\(946\) 2.36576 0.0769175
\(947\) −9.56806 + 13.6646i −0.310920 + 0.444040i −0.943950 0.330087i \(-0.892922\pi\)
0.633030 + 0.774127i \(0.281811\pi\)
\(948\) 0 0
\(949\) 5.58076 + 15.3330i 0.181159 + 0.497731i
\(950\) 29.9085 + 20.1399i 0.970361 + 0.653426i
\(951\) 0 0
\(952\) −35.5504 + 16.5774i −1.15220 + 0.537277i
\(953\) −17.5554 4.70396i −0.568676 0.152376i −0.0369865 0.999316i \(-0.511776\pi\)
−0.531689 + 0.846940i \(0.678443\pi\)
\(954\) 0 0
\(955\) −5.52036 6.45846i −0.178635 0.208991i
\(956\) 61.5462 + 73.3479i 1.99055 + 2.37224i
\(957\) 0 0
\(958\) 48.5557 33.9991i 1.56876 1.09846i
\(959\) 1.25123 7.09611i 0.0404045 0.229145i
\(960\) 0 0
\(961\) 2.09504 1.75795i 0.0675821 0.0567081i
\(962\) 3.28233 0.879497i 0.105826 0.0283561i
\(963\) 0 0
\(964\) −66.2491 + 38.2489i −2.13374 + 1.23192i
\(965\) 2.65950 + 27.5085i 0.0856122 + 0.885530i
\(966\) 0 0
\(967\) 33.4211 2.92397i 1.07475 0.0940285i 0.463988 0.885842i \(-0.346418\pi\)
0.610763 + 0.791813i \(0.290863\pi\)
\(968\) −25.2885 + 54.2314i −0.812804 + 1.74306i
\(969\) 0 0
\(970\) −7.61166 + 45.5937i −0.244396 + 1.46393i
\(971\) 23.4452i 0.752393i −0.926540 0.376196i \(-0.877232\pi\)
0.926540 0.376196i \(-0.122768\pi\)
\(972\) 0 0
\(973\) −20.3704 20.3704i −0.653044 0.653044i
\(974\) −16.3102 92.5000i −0.522614 2.96389i
\(975\) 0 0
\(976\) −99.2811 + 36.1353i −3.17791 + 1.15666i
\(977\) 1.95075 + 22.2971i 0.0624099 + 0.713349i 0.961359 + 0.275297i \(0.0887760\pi\)
−0.898949 + 0.438052i \(0.855668\pi\)
\(978\) 0 0
\(979\) −4.52670 + 12.4370i −0.144674 + 0.397488i
\(980\) 3.39744 + 18.2915i 0.108527 + 0.584300i
\(981\) 0 0
\(982\) −9.22446 34.4262i −0.294365 1.09858i
\(983\) −0.218640 + 2.49907i −0.00697353 + 0.0797078i −0.998884 0.0472321i \(-0.984960\pi\)
0.991910 + 0.126940i \(0.0405155\pi\)
\(984\) 0 0
\(985\) 51.7216 14.3652i 1.64799 0.457713i
\(986\) 19.0022 + 3.35059i 0.605152 + 0.106705i
\(987\) 0 0
\(988\) −52.2749 4.57346i −1.66309 0.145501i
\(989\) 2.18999 3.79317i 0.0696376 0.120616i
\(990\) 0 0
\(991\) −11.7772 20.3987i −0.374116 0.647987i 0.616079 0.787685i \(-0.288720\pi\)
−0.990194 + 0.139697i \(0.955387\pi\)
\(992\) 20.9361 + 44.8975i 0.664720 + 1.42550i
\(993\) 0 0
\(994\) −34.7731 + 41.4409i −1.10294 + 1.31443i
\(995\) −0.134950 14.8079i −0.00427820 0.469443i
\(996\) 0 0
\(997\) −12.8042 8.96558i −0.405512 0.283943i 0.352972 0.935634i \(-0.385171\pi\)
−0.758484 + 0.651691i \(0.774060\pi\)
\(998\) −31.0316 + 31.0316i −0.982289 + 0.982289i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.233.15 192
3.2 odd 2 135.2.q.a.68.2 yes 192
5.2 odd 4 inner 405.2.r.a.152.15 192
15.2 even 4 135.2.q.a.122.2 yes 192
15.8 even 4 675.2.ba.b.257.15 192
15.14 odd 2 675.2.ba.b.68.15 192
27.2 odd 18 inner 405.2.r.a.8.15 192
27.25 even 9 135.2.q.a.83.2 yes 192
135.2 even 36 inner 405.2.r.a.332.15 192
135.52 odd 36 135.2.q.a.2.2 192
135.79 even 18 675.2.ba.b.218.15 192
135.133 odd 36 675.2.ba.b.407.15 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.2 192 135.52 odd 36
135.2.q.a.68.2 yes 192 3.2 odd 2
135.2.q.a.83.2 yes 192 27.25 even 9
135.2.q.a.122.2 yes 192 15.2 even 4
405.2.r.a.8.15 192 27.2 odd 18 inner
405.2.r.a.152.15 192 5.2 odd 4 inner
405.2.r.a.233.15 192 1.1 even 1 trivial
405.2.r.a.332.15 192 135.2 even 36 inner
675.2.ba.b.68.15 192 15.14 odd 2
675.2.ba.b.218.15 192 135.79 even 18
675.2.ba.b.257.15 192 15.8 even 4
675.2.ba.b.407.15 192 135.133 odd 36