Properties

Label 405.2.r.a.17.3
Level $405$
Weight $2$
Character 405.17
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(8,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([2, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 405.17
Dual form 405.2.r.a.143.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.81626 + 0.846935i) q^{2} +(1.29592 - 1.54442i) q^{4} +(-0.828498 - 2.07692i) q^{5} +(-2.21198 - 0.193523i) q^{7} +(-0.00834683 + 0.0311508i) q^{8} +(3.26378 + 3.07054i) q^{10} +(-1.09616 + 0.193283i) q^{11} +(-1.28211 + 2.74949i) q^{13} +(4.18143 - 1.52192i) q^{14} +(0.688959 + 3.90728i) q^{16} +(1.56207 + 5.82972i) q^{17} +(3.84801 - 2.22165i) q^{19} +(-4.28129 - 1.41197i) q^{20} +(1.82722 - 1.27943i) q^{22} +(0.293046 + 3.34953i) q^{23} +(-3.62718 + 3.44145i) q^{25} -6.07964i q^{26} +(-3.16543 + 3.16543i) q^{28} +(1.74671 + 0.635749i) q^{29} +(7.13252 + 5.98490i) q^{31} +(-4.59753 - 6.56596i) q^{32} +(-7.77451 - 9.26530i) q^{34} +(1.43069 + 4.75444i) q^{35} +(-4.53439 + 1.21499i) q^{37} +(-5.10738 + 7.29410i) q^{38} +(0.0716130 - 0.00847269i) q^{40} +(1.07377 + 2.95017i) q^{41} +(-5.86507 - 4.10676i) q^{43} +(-1.12203 + 1.94341i) q^{44} +(-3.36908 - 5.83541i) q^{46} +(-1.10183 + 12.5940i) q^{47} +(-2.03824 - 0.359397i) q^{49} +(3.67322 - 9.32254i) q^{50} +(2.58485 + 5.54322i) q^{52} +(-6.34457 - 6.34457i) q^{53} +(1.30960 + 2.11651i) q^{55} +(0.0244914 - 0.0672897i) q^{56} +(-3.71091 + 0.324662i) q^{58} +(-0.242616 + 1.37594i) q^{59} +(-2.30056 + 1.93040i) q^{61} +(-18.0233 - 4.82933i) q^{62} +(7.03924 + 4.06411i) q^{64} +(6.77268 + 0.384887i) q^{65} +(8.07622 + 3.76600i) q^{67} +(11.0278 + 5.14236i) q^{68} +(-6.62521 - 7.42359i) q^{70} +(6.78702 + 3.91849i) q^{71} +(-0.167045 - 0.0447595i) q^{73} +(7.20661 - 6.04707i) q^{74} +(1.55556 - 8.82200i) q^{76} +(2.46210 - 0.215406i) q^{77} +(-0.697324 + 1.91588i) q^{79} +(7.54430 - 4.66809i) q^{80} +(-4.44885 - 4.44885i) q^{82} +(2.27031 + 4.86870i) q^{83} +(10.8137 - 8.07420i) q^{85} +(14.1306 + 2.49161i) q^{86} +(0.00312857 - 0.0357597i) q^{88} +(-6.70700 - 11.6169i) q^{89} +(3.36809 - 5.83370i) q^{91} +(5.55283 + 3.88813i) q^{92} +(-8.66507 - 23.8071i) q^{94} +(-7.80225 - 6.15137i) q^{95} +(9.92914 - 14.1803i) q^{97} +(4.00635 - 1.07350i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.81626 + 0.846935i −1.28429 + 0.598874i −0.940379 0.340129i \(-0.889529\pi\)
−0.343910 + 0.939003i \(0.611751\pi\)
\(3\) 0 0
\(4\) 1.29592 1.54442i 0.647960 0.772208i
\(5\) −0.828498 2.07692i −0.370516 0.928826i
\(6\) 0 0
\(7\) −2.21198 0.193523i −0.836051 0.0731450i −0.338914 0.940817i \(-0.610060\pi\)
−0.497137 + 0.867672i \(0.665615\pi\)
\(8\) −0.00834683 + 0.0311508i −0.00295105 + 0.0110135i
\(9\) 0 0
\(10\) 3.26378 + 3.07054i 1.03210 + 0.970989i
\(11\) −1.09616 + 0.193283i −0.330506 + 0.0582771i −0.336439 0.941705i \(-0.609223\pi\)
0.00593305 + 0.999982i \(0.498111\pi\)
\(12\) 0 0
\(13\) −1.28211 + 2.74949i −0.355592 + 0.762570i −0.999998 0.00211367i \(-0.999327\pi\)
0.644405 + 0.764684i \(0.277105\pi\)
\(14\) 4.18143 1.52192i 1.11753 0.406749i
\(15\) 0 0
\(16\) 0.688959 + 3.90728i 0.172240 + 0.976820i
\(17\) 1.56207 + 5.82972i 0.378857 + 1.41391i 0.847626 + 0.530594i \(0.178031\pi\)
−0.468769 + 0.883321i \(0.655302\pi\)
\(18\) 0 0
\(19\) 3.84801 2.22165i 0.882794 0.509681i 0.0112151 0.999937i \(-0.496430\pi\)
0.871578 + 0.490256i \(0.163097\pi\)
\(20\) −4.28129 1.41197i −0.957326 0.315727i
\(21\) 0 0
\(22\) 1.82722 1.27943i 0.389564 0.272776i
\(23\) 0.293046 + 3.34953i 0.0611042 + 0.698425i 0.963534 + 0.267587i \(0.0862263\pi\)
−0.902429 + 0.430838i \(0.858218\pi\)
\(24\) 0 0
\(25\) −3.62718 + 3.44145i −0.725436 + 0.688289i
\(26\) 6.07964i 1.19232i
\(27\) 0 0
\(28\) −3.16543 + 3.16543i −0.598210 + 0.598210i
\(29\) 1.74671 + 0.635749i 0.324355 + 0.118056i 0.499066 0.866564i \(-0.333677\pi\)
−0.174710 + 0.984620i \(0.555899\pi\)
\(30\) 0 0
\(31\) 7.13252 + 5.98490i 1.28104 + 1.07492i 0.993100 + 0.117270i \(0.0374144\pi\)
0.287939 + 0.957649i \(0.407030\pi\)
\(32\) −4.59753 6.56596i −0.812737 1.16071i
\(33\) 0 0
\(34\) −7.77451 9.26530i −1.33332 1.58899i
\(35\) 1.43069 + 4.75444i 0.241831 + 0.803647i
\(36\) 0 0
\(37\) −4.53439 + 1.21499i −0.745450 + 0.199743i −0.611499 0.791245i \(-0.709433\pi\)
−0.133951 + 0.990988i \(0.542766\pi\)
\(38\) −5.10738 + 7.29410i −0.828527 + 1.18326i
\(39\) 0 0
\(40\) 0.0716130 0.00847269i 0.0113230 0.00133965i
\(41\) 1.07377 + 2.95017i 0.167695 + 0.460739i 0.994865 0.101214i \(-0.0322726\pi\)
−0.827169 + 0.561953i \(0.810050\pi\)
\(42\) 0 0
\(43\) −5.86507 4.10676i −0.894414 0.626276i 0.0333495 0.999444i \(-0.489383\pi\)
−0.927764 + 0.373168i \(0.878271\pi\)
\(44\) −1.12203 + 1.94341i −0.169152 + 0.292981i
\(45\) 0 0
\(46\) −3.36908 5.83541i −0.496743 0.860385i
\(47\) −1.10183 + 12.5940i −0.160718 + 1.83702i 0.305313 + 0.952252i \(0.401239\pi\)
−0.466031 + 0.884768i \(0.654317\pi\)
\(48\) 0 0
\(49\) −2.03824 0.359397i −0.291177 0.0513424i
\(50\) 3.67322 9.32254i 0.519471 1.31841i
\(51\) 0 0
\(52\) 2.58485 + 5.54322i 0.358454 + 0.768706i
\(53\) −6.34457 6.34457i −0.871494 0.871494i 0.121142 0.992635i \(-0.461344\pi\)
−0.992635 + 0.121142i \(0.961344\pi\)
\(54\) 0 0
\(55\) 1.30960 + 2.11651i 0.176587 + 0.285390i
\(56\) 0.0244914 0.0672897i 0.00327281 0.00899196i
\(57\) 0 0
\(58\) −3.71091 + 0.324662i −0.487266 + 0.0426303i
\(59\) −0.242616 + 1.37594i −0.0315859 + 0.179132i −0.996519 0.0833623i \(-0.973434\pi\)
0.964933 + 0.262495i \(0.0845452\pi\)
\(60\) 0 0
\(61\) −2.30056 + 1.93040i −0.294557 + 0.247163i −0.778075 0.628172i \(-0.783803\pi\)
0.483517 + 0.875335i \(0.339359\pi\)
\(62\) −18.0233 4.82933i −2.28896 0.613326i
\(63\) 0 0
\(64\) 7.03924 + 4.06411i 0.879905 + 0.508014i
\(65\) 6.77268 + 0.384887i 0.840048 + 0.0477393i
\(66\) 0 0
\(67\) 8.07622 + 3.76600i 0.986667 + 0.460090i 0.847855 0.530228i \(-0.177894\pi\)
0.138812 + 0.990319i \(0.455672\pi\)
\(68\) 11.0278 + 5.14236i 1.33732 + 0.623603i
\(69\) 0 0
\(70\) −6.62521 7.42359i −0.791864 0.887289i
\(71\) 6.78702 + 3.91849i 0.805471 + 0.465039i 0.845380 0.534165i \(-0.179374\pi\)
−0.0399099 + 0.999203i \(0.512707\pi\)
\(72\) 0 0
\(73\) −0.167045 0.0447595i −0.0195511 0.00523870i 0.249030 0.968496i \(-0.419888\pi\)
−0.268581 + 0.963257i \(0.586555\pi\)
\(74\) 7.20661 6.04707i 0.837752 0.702957i
\(75\) 0 0
\(76\) 1.55556 8.82200i 0.178435 1.01195i
\(77\) 2.46210 0.215406i 0.280582 0.0245478i
\(78\) 0 0
\(79\) −0.697324 + 1.91588i −0.0784551 + 0.215554i −0.972719 0.231986i \(-0.925478\pi\)
0.894264 + 0.447540i \(0.147700\pi\)
\(80\) 7.54430 4.66809i 0.843479 0.521908i
\(81\) 0 0
\(82\) −4.44885 4.44885i −0.491293 0.491293i
\(83\) 2.27031 + 4.86870i 0.249199 + 0.534409i 0.990622 0.136629i \(-0.0436267\pi\)
−0.741423 + 0.671038i \(0.765849\pi\)
\(84\) 0 0
\(85\) 10.8137 8.07420i 1.17291 0.875770i
\(86\) 14.1306 + 2.49161i 1.52375 + 0.268677i
\(87\) 0 0
\(88\) 0.00312857 0.0357597i 0.000333506 0.00381199i
\(89\) −6.70700 11.6169i −0.710941 1.23139i −0.964504 0.264067i \(-0.914936\pi\)
0.253563 0.967319i \(-0.418397\pi\)
\(90\) 0 0
\(91\) 3.36809 5.83370i 0.353072 0.611538i
\(92\) 5.55283 + 3.88813i 0.578922 + 0.405366i
\(93\) 0 0
\(94\) −8.66507 23.8071i −0.893734 2.45551i
\(95\) −7.80225 6.15137i −0.800494 0.631117i
\(96\) 0 0
\(97\) 9.92914 14.1803i 1.00815 1.43979i 0.113229 0.993569i \(-0.463881\pi\)
0.894923 0.446221i \(-0.147231\pi\)
\(98\) 4.00635 1.07350i 0.404703 0.108440i
\(99\) 0 0
\(100\) 0.614492 + 10.0617i 0.0614492 + 1.00617i
\(101\) −4.92991 5.87523i −0.490544 0.584608i 0.462812 0.886457i \(-0.346841\pi\)
−0.953356 + 0.301849i \(0.902396\pi\)
\(102\) 0 0
\(103\) 6.03654 + 8.62107i 0.594798 + 0.849460i 0.997838 0.0657227i \(-0.0209353\pi\)
−0.403040 + 0.915182i \(0.632046\pi\)
\(104\) −0.0749472 0.0628881i −0.00734917 0.00616669i
\(105\) 0 0
\(106\) 16.8968 + 6.14994i 1.64116 + 0.597335i
\(107\) 4.95248 4.95248i 0.478774 0.478774i −0.425965 0.904740i \(-0.640065\pi\)
0.904740 + 0.425965i \(0.140065\pi\)
\(108\) 0 0
\(109\) 9.40170i 0.900520i 0.892898 + 0.450260i \(0.148669\pi\)
−0.892898 + 0.450260i \(0.851331\pi\)
\(110\) −4.17112 2.73498i −0.397701 0.260770i
\(111\) 0 0
\(112\) −0.767815 8.77616i −0.0725517 0.829270i
\(113\) 1.10249 0.771969i 0.103713 0.0726207i −0.520569 0.853819i \(-0.674280\pi\)
0.624283 + 0.781199i \(0.285391\pi\)
\(114\) 0 0
\(115\) 6.71391 3.38371i 0.626075 0.315532i
\(116\) 3.24545 1.87376i 0.301333 0.173974i
\(117\) 0 0
\(118\) −0.724681 2.70455i −0.0667123 0.248974i
\(119\) −2.32708 13.1975i −0.213323 1.20982i
\(120\) 0 0
\(121\) −9.17240 + 3.33848i −0.833855 + 0.303498i
\(122\) 2.54349 5.45454i 0.230277 0.493831i
\(123\) 0 0
\(124\) 18.4863 3.25964i 1.66012 0.292724i
\(125\) 10.1527 + 4.68213i 0.908087 + 0.418782i
\(126\) 0 0
\(127\) −3.93996 + 14.7041i −0.349615 + 1.30478i 0.537513 + 0.843256i \(0.319364\pi\)
−0.887127 + 0.461525i \(0.847303\pi\)
\(128\) −0.257007 0.0224852i −0.0227165 0.00198743i
\(129\) 0 0
\(130\) −12.6269 + 5.03697i −1.10745 + 0.441771i
\(131\) −12.8204 + 15.2788i −1.12013 + 1.33491i −0.184131 + 0.982902i \(0.558947\pi\)
−0.935995 + 0.352013i \(0.885497\pi\)
\(132\) 0 0
\(133\) −8.94167 + 4.16957i −0.775341 + 0.361547i
\(134\) −17.8581 −1.54270
\(135\) 0 0
\(136\) −0.194639 −0.0166901
\(137\) 14.7130 6.86076i 1.25701 0.586155i 0.324020 0.946050i \(-0.394966\pi\)
0.932993 + 0.359896i \(0.117188\pi\)
\(138\) 0 0
\(139\) −1.79469 + 2.13883i −0.152223 + 0.181413i −0.836767 0.547559i \(-0.815557\pi\)
0.684544 + 0.728972i \(0.260002\pi\)
\(140\) 9.19690 + 3.95179i 0.777280 + 0.333987i
\(141\) 0 0
\(142\) −15.6457 1.36882i −1.31296 0.114869i
\(143\) 0.873969 3.26170i 0.0730850 0.272757i
\(144\) 0 0
\(145\) −0.126744 4.15448i −0.0105255 0.345011i
\(146\) 0.341305 0.0601812i 0.0282466 0.00498063i
\(147\) 0 0
\(148\) −3.99976 + 8.57752i −0.328778 + 0.705068i
\(149\) −18.9187 + 6.88585i −1.54988 + 0.564111i −0.968390 0.249441i \(-0.919753\pi\)
−0.581492 + 0.813552i \(0.697531\pi\)
\(150\) 0 0
\(151\) 0.0907569 + 0.514708i 0.00738569 + 0.0418864i 0.988278 0.152666i \(-0.0487858\pi\)
−0.980892 + 0.194552i \(0.937675\pi\)
\(152\) 0.0370874 + 0.138412i 0.00300819 + 0.0112267i
\(153\) 0 0
\(154\) −4.28937 + 2.47647i −0.345648 + 0.199560i
\(155\) 6.52086 19.7721i 0.523768 1.58814i
\(156\) 0 0
\(157\) 0.765462 0.535982i 0.0610905 0.0427760i −0.542632 0.839970i \(-0.682572\pi\)
0.603723 + 0.797194i \(0.293683\pi\)
\(158\) −0.356107 4.07033i −0.0283304 0.323818i
\(159\) 0 0
\(160\) −9.82792 + 14.9886i −0.776965 + 1.18495i
\(161\) 7.46581i 0.588388i
\(162\) 0 0
\(163\) 4.24897 4.24897i 0.332805 0.332805i −0.520846 0.853651i \(-0.674383\pi\)
0.853651 + 0.520846i \(0.174383\pi\)
\(164\) 5.94781 + 2.16483i 0.464446 + 0.169045i
\(165\) 0 0
\(166\) −8.24694 6.92001i −0.640087 0.537097i
\(167\) −4.66589 6.66358i −0.361057 0.515643i 0.596992 0.802247i \(-0.296362\pi\)
−0.958049 + 0.286604i \(0.907474\pi\)
\(168\) 0 0
\(169\) 2.44036 + 2.90831i 0.187720 + 0.223716i
\(170\) −12.8021 + 23.8233i −0.981877 + 1.82716i
\(171\) 0 0
\(172\) −13.9432 + 3.73607i −1.06316 + 0.284873i
\(173\) −9.39399 + 13.4160i −0.714212 + 1.02000i 0.283917 + 0.958849i \(0.408366\pi\)
−0.998129 + 0.0611509i \(0.980523\pi\)
\(174\) 0 0
\(175\) 8.68926 6.91047i 0.656846 0.522383i
\(176\) −1.51042 4.14985i −0.113852 0.312807i
\(177\) 0 0
\(178\) 22.0204 + 15.4188i 1.65050 + 1.15569i
\(179\) −0.436647 + 0.756295i −0.0326365 + 0.0565281i −0.881882 0.471470i \(-0.843724\pi\)
0.849246 + 0.527998i \(0.177057\pi\)
\(180\) 0 0
\(181\) −0.367901 0.637223i −0.0273459 0.0473644i 0.852029 0.523495i \(-0.175372\pi\)
−0.879374 + 0.476131i \(0.842039\pi\)
\(182\) −1.17655 + 13.4481i −0.0872119 + 0.996836i
\(183\) 0 0
\(184\) −0.106786 0.0188293i −0.00787240 0.00138812i
\(185\) 6.28017 + 8.41095i 0.461727 + 0.618385i
\(186\) 0 0
\(187\) −2.83907 6.08840i −0.207613 0.445228i
\(188\) 18.0225 + 18.0225i 1.31442 + 1.31442i
\(189\) 0 0
\(190\) 19.3807 + 4.56447i 1.40602 + 0.331142i
\(191\) −2.16218 + 5.94054i −0.156450 + 0.429842i −0.993010 0.118033i \(-0.962341\pi\)
0.836560 + 0.547876i \(0.184563\pi\)
\(192\) 0 0
\(193\) −26.3618 + 2.30636i −1.89756 + 0.166015i −0.975349 0.220667i \(-0.929176\pi\)
−0.922213 + 0.386683i \(0.873621\pi\)
\(194\) −6.02411 + 34.1644i −0.432506 + 2.45286i
\(195\) 0 0
\(196\) −3.19645 + 2.68214i −0.228318 + 0.191582i
\(197\) 0.424090 + 0.113635i 0.0302152 + 0.00809613i 0.273895 0.961760i \(-0.411688\pi\)
−0.243680 + 0.969856i \(0.578355\pi\)
\(198\) 0 0
\(199\) −2.06085 1.18983i −0.146090 0.0843452i 0.425173 0.905112i \(-0.360213\pi\)
−0.571263 + 0.820767i \(0.693546\pi\)
\(200\) −0.0769283 0.141715i −0.00543965 0.0100207i
\(201\) 0 0
\(202\) 13.9299 + 6.49563i 0.980106 + 0.457031i
\(203\) −3.74065 1.74429i −0.262542 0.122425i
\(204\) 0 0
\(205\) 5.23764 4.67435i 0.365813 0.326471i
\(206\) −18.2654 10.5455i −1.27261 0.734742i
\(207\) 0 0
\(208\) −11.6263 3.11527i −0.806141 0.216005i
\(209\) −3.78864 + 3.17905i −0.262066 + 0.219899i
\(210\) 0 0
\(211\) 1.83079 10.3830i 0.126037 0.714792i −0.854649 0.519206i \(-0.826228\pi\)
0.980686 0.195586i \(-0.0626610\pi\)
\(212\) −18.0207 + 1.57661i −1.23767 + 0.108282i
\(213\) 0 0
\(214\) −4.80055 + 13.1894i −0.328159 + 0.901610i
\(215\) −3.67022 + 15.5837i −0.250307 + 1.06280i
\(216\) 0 0
\(217\) −14.6188 14.6188i −0.992389 0.992389i
\(218\) −7.96263 17.0759i −0.539297 1.15653i
\(219\) 0 0
\(220\) 4.96591 + 0.720251i 0.334802 + 0.0485593i
\(221\) −18.0315 3.17944i −1.21293 0.213872i
\(222\) 0 0
\(223\) 0.713099 8.15076i 0.0477527 0.545815i −0.934208 0.356729i \(-0.883892\pi\)
0.981960 0.189086i \(-0.0605525\pi\)
\(224\) 8.89900 + 15.4135i 0.594589 + 1.02986i
\(225\) 0 0
\(226\) −1.34859 + 2.33583i −0.0897069 + 0.155377i
\(227\) 3.90472 + 2.73411i 0.259165 + 0.181469i 0.695937 0.718103i \(-0.254989\pi\)
−0.436772 + 0.899572i \(0.643878\pi\)
\(228\) 0 0
\(229\) 2.44592 + 6.72010i 0.161631 + 0.444077i 0.993899 0.110297i \(-0.0351801\pi\)
−0.832268 + 0.554374i \(0.812958\pi\)
\(230\) −9.32841 + 11.8319i −0.615097 + 0.780174i
\(231\) 0 0
\(232\) −0.0343835 + 0.0491048i −0.00225739 + 0.00322389i
\(233\) −8.72938 + 2.33903i −0.571881 + 0.153235i −0.533159 0.846015i \(-0.678995\pi\)
−0.0387217 + 0.999250i \(0.512329\pi\)
\(234\) 0 0
\(235\) 27.0695 8.14568i 1.76582 0.531365i
\(236\) 1.81062 + 2.15781i 0.117861 + 0.140461i
\(237\) 0 0
\(238\) 15.4040 + 21.9992i 0.998495 + 1.42600i
\(239\) 3.14736 + 2.64095i 0.203586 + 0.170829i 0.738880 0.673837i \(-0.235355\pi\)
−0.535295 + 0.844665i \(0.679799\pi\)
\(240\) 0 0
\(241\) 5.80277 + 2.11203i 0.373789 + 0.136048i 0.522082 0.852895i \(-0.325156\pi\)
−0.148293 + 0.988944i \(0.547378\pi\)
\(242\) 13.8320 13.8320i 0.889153 0.889153i
\(243\) 0 0
\(244\) 6.05468i 0.387611i
\(245\) 0.942240 + 4.53102i 0.0601975 + 0.289476i
\(246\) 0 0
\(247\) 1.17484 + 13.4284i 0.0747530 + 0.854431i
\(248\) −0.245968 + 0.172229i −0.0156190 + 0.0109365i
\(249\) 0 0
\(250\) −22.4054 + 0.0947372i −1.41704 + 0.00599171i
\(251\) 15.6657 9.04459i 0.988810 0.570890i 0.0838914 0.996475i \(-0.473265\pi\)
0.904918 + 0.425585i \(0.139932\pi\)
\(252\) 0 0
\(253\) −0.968633 3.61499i −0.0608975 0.227272i
\(254\) −5.29746 30.0434i −0.332392 1.88509i
\(255\) 0 0
\(256\) −14.7902 + 5.38320i −0.924389 + 0.336450i
\(257\) 4.90513 10.5191i 0.305974 0.656163i −0.691854 0.722037i \(-0.743206\pi\)
0.997828 + 0.0658743i \(0.0209837\pi\)
\(258\) 0 0
\(259\) 10.2651 1.81002i 0.637844 0.112469i
\(260\) 9.37128 9.96106i 0.581182 0.617759i
\(261\) 0 0
\(262\) 10.3451 38.6083i 0.639120 2.38523i
\(263\) 2.21755 + 0.194010i 0.136740 + 0.0119632i 0.155320 0.987864i \(-0.450359\pi\)
−0.0185804 + 0.999827i \(0.505915\pi\)
\(264\) 0 0
\(265\) −7.92069 + 18.4336i −0.486564 + 1.13237i
\(266\) 12.7090 15.1460i 0.779240 0.928662i
\(267\) 0 0
\(268\) 16.2824 7.59261i 0.994606 0.463792i
\(269\) 2.60637 0.158913 0.0794565 0.996838i \(-0.474682\pi\)
0.0794565 + 0.996838i \(0.474682\pi\)
\(270\) 0 0
\(271\) −22.2817 −1.35352 −0.676759 0.736205i \(-0.736616\pi\)
−0.676759 + 0.736205i \(0.736616\pi\)
\(272\) −21.7021 + 10.1199i −1.31589 + 0.613608i
\(273\) 0 0
\(274\) −20.9119 + 24.9218i −1.26333 + 1.50558i
\(275\) 3.31081 4.47346i 0.199649 0.269760i
\(276\) 0 0
\(277\) −8.27992 0.724399i −0.497492 0.0435249i −0.164351 0.986402i \(-0.552553\pi\)
−0.333141 + 0.942877i \(0.608109\pi\)
\(278\) 1.44817 5.40464i 0.0868555 0.324149i
\(279\) 0 0
\(280\) −0.160046 + 0.00488265i −0.00956460 + 0.000291794i
\(281\) 6.04432 1.06578i 0.360574 0.0635790i 0.00957353 0.999954i \(-0.496953\pi\)
0.351001 + 0.936375i \(0.385841\pi\)
\(282\) 0 0
\(283\) 12.9205 27.7081i 0.768044 1.64708i 0.00563108 0.999984i \(-0.498208\pi\)
0.762413 0.647091i \(-0.224015\pi\)
\(284\) 14.8472 5.40394i 0.881019 0.320665i
\(285\) 0 0
\(286\) 1.17509 + 6.66428i 0.0694847 + 0.394067i
\(287\) −1.80424 6.73352i −0.106501 0.397467i
\(288\) 0 0
\(289\) −16.8231 + 9.71284i −0.989596 + 0.571343i
\(290\) 3.74878 + 7.43827i 0.220136 + 0.436790i
\(291\) 0 0
\(292\) −0.285604 + 0.199982i −0.0167137 + 0.0117031i
\(293\) −0.657015 7.50972i −0.0383833 0.438723i −0.990935 0.134345i \(-0.957107\pi\)
0.952551 0.304378i \(-0.0984485\pi\)
\(294\) 0 0
\(295\) 3.05873 0.636072i 0.178086 0.0370336i
\(296\) 0.151391i 0.00879944i
\(297\) 0 0
\(298\) 28.5294 28.5294i 1.65266 1.65266i
\(299\) −9.58520 3.48873i −0.554326 0.201758i
\(300\) 0 0
\(301\) 12.1787 + 10.2191i 0.701967 + 0.589020i
\(302\) −0.600762 0.857978i −0.0345700 0.0493711i
\(303\) 0 0
\(304\) 11.3317 + 13.5046i 0.649919 + 0.774543i
\(305\) 5.91530 + 3.17875i 0.338709 + 0.182015i
\(306\) 0 0
\(307\) −12.7384 + 3.41325i −0.727021 + 0.194805i −0.603302 0.797513i \(-0.706149\pi\)
−0.123719 + 0.992317i \(0.539482\pi\)
\(308\) 2.85801 4.08166i 0.162850 0.232574i
\(309\) 0 0
\(310\) 4.90215 + 41.4341i 0.278424 + 2.35330i
\(311\) 0.0958399 + 0.263318i 0.00543458 + 0.0149314i 0.942380 0.334544i \(-0.108582\pi\)
−0.936946 + 0.349475i \(0.886360\pi\)
\(312\) 0 0
\(313\) −7.80530 5.46533i −0.441182 0.308919i 0.331797 0.943351i \(-0.392345\pi\)
−0.772979 + 0.634432i \(0.781234\pi\)
\(314\) −0.936334 + 1.62178i −0.0528404 + 0.0915223i
\(315\) 0 0
\(316\) 2.05524 + 3.55979i 0.115617 + 0.200254i
\(317\) 0.318142 3.63638i 0.0178686 0.204239i −0.982012 0.188816i \(-0.939535\pi\)
0.999881 0.0154231i \(-0.00490952\pi\)
\(318\) 0 0
\(319\) −2.03756 0.359276i −0.114081 0.0201156i
\(320\) 2.60882 17.9870i 0.145838 1.00551i
\(321\) 0 0
\(322\) 6.32305 + 13.5598i 0.352370 + 0.755660i
\(323\) 18.9624 + 18.9624i 1.05510 + 1.05510i
\(324\) 0 0
\(325\) −4.81178 14.3852i −0.266909 0.797947i
\(326\) −4.11862 + 11.3158i −0.228109 + 0.626725i
\(327\) 0 0
\(328\) −0.100863 + 0.00882434i −0.00556921 + 0.000487243i
\(329\) 4.87446 27.6444i 0.268738 1.52409i
\(330\) 0 0
\(331\) −6.76703 + 5.67821i −0.371950 + 0.312103i −0.809532 0.587075i \(-0.800279\pi\)
0.437583 + 0.899178i \(0.355835\pi\)
\(332\) 10.4614 + 2.80313i 0.574146 + 0.153842i
\(333\) 0 0
\(334\) 14.1181 + 8.15107i 0.772506 + 0.446007i
\(335\) 1.13055 19.8938i 0.0617685 1.08691i
\(336\) 0 0
\(337\) 21.7951 + 10.1632i 1.18726 + 0.553627i 0.912972 0.408022i \(-0.133781\pi\)
0.274284 + 0.961649i \(0.411559\pi\)
\(338\) −6.89547 3.21541i −0.375064 0.174895i
\(339\) 0 0
\(340\) 1.54373 27.1643i 0.0837205 1.47319i
\(341\) −8.97519 5.18183i −0.486034 0.280612i
\(342\) 0 0
\(343\) 19.4524 + 5.21226i 1.05033 + 0.281435i
\(344\) 0.176884 0.148423i 0.00953693 0.00800243i
\(345\) 0 0
\(346\) 5.69942 32.3230i 0.306403 1.73770i
\(347\) 16.7440 1.46491i 0.898867 0.0786406i 0.371651 0.928372i \(-0.378792\pi\)
0.527215 + 0.849732i \(0.323236\pi\)
\(348\) 0 0
\(349\) 11.7112 32.1764i 0.626888 1.72236i −0.0625752 0.998040i \(-0.519931\pi\)
0.689463 0.724321i \(-0.257846\pi\)
\(350\) −9.92922 + 19.9104i −0.530739 + 1.06426i
\(351\) 0 0
\(352\) 6.30874 + 6.30874i 0.336257 + 0.336257i
\(353\) −9.55751 20.4961i −0.508695 1.09090i −0.978142 0.207939i \(-0.933324\pi\)
0.469447 0.882961i \(-0.344453\pi\)
\(354\) 0 0
\(355\) 2.51535 17.3425i 0.133501 0.920446i
\(356\) −26.6330 4.69612i −1.41155 0.248894i
\(357\) 0 0
\(358\) 0.152531 1.74344i 0.00806152 0.0921436i
\(359\) 15.4051 + 26.6824i 0.813050 + 1.40824i 0.910720 + 0.413025i \(0.135528\pi\)
−0.0976695 + 0.995219i \(0.531139\pi\)
\(360\) 0 0
\(361\) 0.371443 0.643357i 0.0195496 0.0338609i
\(362\) 1.20789 + 0.845774i 0.0634853 + 0.0444529i
\(363\) 0 0
\(364\) −4.64489 12.7617i −0.243458 0.668897i
\(365\) 0.0454344 + 0.384021i 0.00237814 + 0.0201006i
\(366\) 0 0
\(367\) −8.33253 + 11.9001i −0.434955 + 0.621179i −0.975464 0.220158i \(-0.929343\pi\)
0.540510 + 0.841338i \(0.318231\pi\)
\(368\) −12.8856 + 3.45270i −0.671711 + 0.179984i
\(369\) 0 0
\(370\) −18.5299 9.95757i −0.963325 0.517669i
\(371\) 12.8063 + 15.2619i 0.664868 + 0.792358i
\(372\) 0 0
\(373\) −9.77090 13.9543i −0.505918 0.722526i 0.482227 0.876046i \(-0.339828\pi\)
−0.988146 + 0.153520i \(0.950939\pi\)
\(374\) 10.3130 + 8.65361i 0.533271 + 0.447467i
\(375\) 0 0
\(376\) −0.383116 0.139443i −0.0197577 0.00719121i
\(377\) −3.98745 + 3.98745i −0.205364 + 0.205364i
\(378\) 0 0
\(379\) 1.06208i 0.0545552i 0.999628 + 0.0272776i \(0.00868381\pi\)
−0.999628 + 0.0272776i \(0.991316\pi\)
\(380\) −19.6114 + 4.07825i −1.00604 + 0.209210i
\(381\) 0 0
\(382\) −1.10417 12.6208i −0.0564945 0.645735i
\(383\) 18.5741 13.0057i 0.949090 0.664560i 0.00701991 0.999975i \(-0.497765\pi\)
0.942070 + 0.335415i \(0.108877\pi\)
\(384\) 0 0
\(385\) −2.48723 4.93512i −0.126761 0.251517i
\(386\) 45.9265 26.5156i 2.33759 1.34961i
\(387\) 0 0
\(388\) −9.03290 33.7112i −0.458576 1.71143i
\(389\) 0.536388 + 3.04201i 0.0271960 + 0.154236i 0.995382 0.0959969i \(-0.0306039\pi\)
−0.968186 + 0.250233i \(0.919493\pi\)
\(390\) 0 0
\(391\) −19.0690 + 6.94056i −0.964363 + 0.350999i
\(392\) 0.0282083 0.0604930i 0.00142474 0.00305536i
\(393\) 0 0
\(394\) −0.866498 + 0.152787i −0.0436535 + 0.00769729i
\(395\) 4.55686 0.139019i 0.229281 0.00699483i
\(396\) 0 0
\(397\) −3.92165 + 14.6358i −0.196822 + 0.734549i 0.794966 + 0.606654i \(0.207489\pi\)
−0.991788 + 0.127895i \(0.959178\pi\)
\(398\) 4.75076 + 0.415637i 0.238134 + 0.0208340i
\(399\) 0 0
\(400\) −15.9457 11.8014i −0.797284 0.590070i
\(401\) −15.1491 + 18.0540i −0.756509 + 0.901573i −0.997622 0.0689246i \(-0.978043\pi\)
0.241113 + 0.970497i \(0.422488\pi\)
\(402\) 0 0
\(403\) −25.6001 + 11.9375i −1.27523 + 0.594649i
\(404\) −15.4626 −0.769292
\(405\) 0 0
\(406\) 8.27129 0.410497
\(407\) 4.73560 2.20825i 0.234735 0.109459i
\(408\) 0 0
\(409\) −9.99118 + 11.9070i −0.494032 + 0.588764i −0.954238 0.299048i \(-0.903331\pi\)
0.460206 + 0.887812i \(0.347775\pi\)
\(410\) −5.55404 + 12.9258i −0.274294 + 0.638358i
\(411\) 0 0
\(412\) 21.1374 + 1.84928i 1.04136 + 0.0911076i
\(413\) 0.802939 2.99661i 0.0395100 0.147453i
\(414\) 0 0
\(415\) 8.23094 8.74896i 0.404041 0.429469i
\(416\) 23.9476 4.22260i 1.17413 0.207030i
\(417\) 0 0
\(418\) 4.18870 8.98270i 0.204876 0.439358i
\(419\) −7.24231 + 2.63599i −0.353810 + 0.128776i −0.512810 0.858502i \(-0.671395\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(420\) 0 0
\(421\) −0.219552 1.24514i −0.0107003 0.0606845i 0.978990 0.203908i \(-0.0653643\pi\)
−0.989690 + 0.143223i \(0.954253\pi\)
\(422\) 5.46849 + 20.4087i 0.266202 + 0.993479i
\(423\) 0 0
\(424\) 0.250595 0.144681i 0.0121700 0.00702635i
\(425\) −25.7286 15.7697i −1.24802 0.764942i
\(426\) 0 0
\(427\) 5.46239 3.82480i 0.264343 0.185095i
\(428\) −1.23068 14.0667i −0.0594871 0.679940i
\(429\) 0 0
\(430\) −6.53233 31.4125i −0.315017 1.51484i
\(431\) 31.3833i 1.51168i 0.654755 + 0.755841i \(0.272772\pi\)
−0.654755 + 0.755841i \(0.727228\pi\)
\(432\) 0 0
\(433\) −24.8304 + 24.8304i −1.19327 + 1.19327i −0.217127 + 0.976143i \(0.569669\pi\)
−0.976143 + 0.217127i \(0.930331\pi\)
\(434\) 38.9327 + 14.1703i 1.86883 + 0.680198i
\(435\) 0 0
\(436\) 14.5201 + 12.1838i 0.695389 + 0.583500i
\(437\) 8.56911 + 12.2380i 0.409916 + 0.585421i
\(438\) 0 0
\(439\) −13.0944 15.6053i −0.624962 0.744800i 0.356953 0.934122i \(-0.383815\pi\)
−0.981915 + 0.189322i \(0.939371\pi\)
\(440\) −0.0768619 + 0.0231290i −0.00366425 + 0.00110263i
\(441\) 0 0
\(442\) 35.4426 9.49681i 1.68583 0.451717i
\(443\) −1.58059 + 2.25731i −0.0750960 + 0.107248i −0.854943 0.518722i \(-0.826408\pi\)
0.779847 + 0.625970i \(0.215297\pi\)
\(444\) 0 0
\(445\) −18.5706 + 23.5545i −0.880329 + 1.11659i
\(446\) 5.60799 + 15.4078i 0.265546 + 0.729582i
\(447\) 0 0
\(448\) −14.7842 10.3520i −0.698487 0.489086i
\(449\) 14.4725 25.0672i 0.683001 1.18299i −0.291059 0.956705i \(-0.594008\pi\)
0.974060 0.226288i \(-0.0726590\pi\)
\(450\) 0 0
\(451\) −1.74725 3.02633i −0.0822748 0.142504i
\(452\) 0.236491 2.70311i 0.0111236 0.127143i
\(453\) 0 0
\(454\) −9.40759 1.65881i −0.441520 0.0778519i
\(455\) −14.9066 2.16204i −0.698831 0.101358i
\(456\) 0 0
\(457\) 10.0414 + 21.5339i 0.469718 + 1.00731i 0.988333 + 0.152305i \(0.0486697\pi\)
−0.518616 + 0.855007i \(0.673553\pi\)
\(458\) −10.1339 10.1339i −0.473527 0.473527i
\(459\) 0 0
\(460\) 3.47483 14.7541i 0.162015 0.687913i
\(461\) 3.22783 8.86840i 0.150335 0.413043i −0.841550 0.540179i \(-0.818356\pi\)
0.991885 + 0.127137i \(0.0405786\pi\)
\(462\) 0 0
\(463\) 18.4116 1.61081i 0.855659 0.0748605i 0.349121 0.937078i \(-0.386480\pi\)
0.506538 + 0.862217i \(0.330925\pi\)
\(464\) −1.28064 + 7.26288i −0.0594523 + 0.337171i
\(465\) 0 0
\(466\) 13.8738 11.6415i 0.642691 0.539282i
\(467\) 12.3653 + 3.31326i 0.572196 + 0.153320i 0.533304 0.845924i \(-0.320950\pi\)
0.0388925 + 0.999243i \(0.487617\pi\)
\(468\) 0 0
\(469\) −17.1356 9.89327i −0.791250 0.456829i
\(470\) −42.2664 + 37.7208i −1.94960 + 1.73993i
\(471\) 0 0
\(472\) −0.0408366 0.0190424i −0.00187966 0.000876499i
\(473\) 7.22284 + 3.36807i 0.332107 + 0.154864i
\(474\) 0 0
\(475\) −6.31174 + 21.3010i −0.289602 + 0.977358i
\(476\) −23.3982 13.5090i −1.07245 0.619182i
\(477\) 0 0
\(478\) −7.95312 2.13103i −0.363767 0.0974712i
\(479\) 6.23949 5.23555i 0.285090 0.239219i −0.489016 0.872275i \(-0.662644\pi\)
0.774106 + 0.633056i \(0.218200\pi\)
\(480\) 0 0
\(481\) 2.47299 14.0250i 0.112758 0.639485i
\(482\) −12.3281 + 1.07857i −0.561529 + 0.0491274i
\(483\) 0 0
\(484\) −6.73069 + 18.4924i −0.305940 + 0.840564i
\(485\) −37.6776 8.87368i −1.71085 0.402933i
\(486\) 0 0
\(487\) 11.3243 + 11.3243i 0.513154 + 0.513154i 0.915492 0.402337i \(-0.131802\pi\)
−0.402337 + 0.915492i \(0.631802\pi\)
\(488\) −0.0409312 0.0877772i −0.00185287 0.00397349i
\(489\) 0 0
\(490\) −5.54883 7.43148i −0.250671 0.335720i
\(491\) −3.22425 0.568523i −0.145508 0.0256571i 0.100419 0.994945i \(-0.467982\pi\)
−0.245928 + 0.969288i \(0.579093\pi\)
\(492\) 0 0
\(493\) −0.977764 + 11.1759i −0.0440363 + 0.503337i
\(494\) −13.5068 23.3945i −0.607701 1.05257i
\(495\) 0 0
\(496\) −18.4707 + 31.9921i −0.829357 + 1.43649i
\(497\) −14.2544 9.98107i −0.639399 0.447712i
\(498\) 0 0
\(499\) −10.4633 28.7478i −0.468404 1.28693i −0.919020 0.394211i \(-0.871018\pi\)
0.450616 0.892718i \(-0.351204\pi\)
\(500\) 20.3883 9.61236i 0.911791 0.429878i
\(501\) 0 0
\(502\) −20.7928 + 29.6951i −0.928026 + 1.32536i
\(503\) −12.3296 + 3.30370i −0.549749 + 0.147305i −0.522993 0.852337i \(-0.675184\pi\)
−0.0267563 + 0.999642i \(0.508518\pi\)
\(504\) 0 0
\(505\) −8.11796 + 15.1066i −0.361245 + 0.672236i
\(506\) 4.82095 + 5.74538i 0.214317 + 0.255413i
\(507\) 0 0
\(508\) 17.6034 + 25.1403i 0.781026 + 1.11542i
\(509\) 25.3418 + 21.2643i 1.12326 + 0.942525i 0.998764 0.0496958i \(-0.0158252\pi\)
0.124493 + 0.992221i \(0.460270\pi\)
\(510\) 0 0
\(511\) 0.360838 + 0.131334i 0.0159625 + 0.00580988i
\(512\) 22.6685 22.6685i 1.00181 1.00181i
\(513\) 0 0
\(514\) 23.2597i 1.02594i
\(515\) 12.9040 19.6799i 0.568618 0.867202i
\(516\) 0 0
\(517\) −1.22642 14.0180i −0.0539378 0.616512i
\(518\) −17.1112 + 11.9814i −0.751821 + 0.526431i
\(519\) 0 0
\(520\) −0.0685200 + 0.207762i −0.00300480 + 0.00911096i
\(521\) −25.0460 + 14.4603i −1.09728 + 0.633518i −0.935507 0.353309i \(-0.885056\pi\)
−0.161778 + 0.986827i \(0.551723\pi\)
\(522\) 0 0
\(523\) 6.53051 + 24.3722i 0.285559 + 1.06572i 0.948430 + 0.316987i \(0.102671\pi\)
−0.662871 + 0.748734i \(0.730662\pi\)
\(524\) 6.98258 + 39.6002i 0.305035 + 1.72994i
\(525\) 0 0
\(526\) −4.19195 + 1.52575i −0.182778 + 0.0665257i
\(527\) −23.7488 + 50.9294i −1.03451 + 2.21852i
\(528\) 0 0
\(529\) 11.5171 2.03078i 0.500745 0.0882948i
\(530\) −1.22606 40.1885i −0.0532566 1.74568i
\(531\) 0 0
\(532\) −5.14813 + 19.2131i −0.223200 + 0.832993i
\(533\) −9.48814 0.830105i −0.410977 0.0359558i
\(534\) 0 0
\(535\) −14.3890 6.18278i −0.622092 0.267305i
\(536\) −0.184725 + 0.220146i −0.00797889 + 0.00950888i
\(537\) 0 0
\(538\) −4.73383 + 2.20742i −0.204090 + 0.0951687i
\(539\) 2.30371 0.0992278
\(540\) 0 0
\(541\) −5.37883 −0.231254 −0.115627 0.993293i \(-0.536888\pi\)
−0.115627 + 0.993293i \(0.536888\pi\)
\(542\) 40.4693 18.8712i 1.73831 0.810586i
\(543\) 0 0
\(544\) 31.0960 37.0588i 1.33323 1.58888i
\(545\) 19.5266 7.78929i 0.836426 0.333657i
\(546\) 0 0
\(547\) 18.2031 + 1.59256i 0.778308 + 0.0680931i 0.469384 0.882994i \(-0.344476\pi\)
0.308923 + 0.951087i \(0.400031\pi\)
\(548\) 8.47092 31.6139i 0.361860 1.35048i
\(549\) 0 0
\(550\) −2.22456 + 10.9290i −0.0948554 + 0.466014i
\(551\) 8.13375 1.43420i 0.346509 0.0610990i
\(552\) 0 0
\(553\) 1.91324 4.10295i 0.0813591 0.174475i
\(554\) 15.6520 5.69686i 0.664990 0.242036i
\(555\) 0 0
\(556\) 0.977467 + 5.54349i 0.0414538 + 0.235096i
\(557\) 1.10675 + 4.13045i 0.0468945 + 0.175013i 0.985401 0.170248i \(-0.0544570\pi\)
−0.938507 + 0.345261i \(0.887790\pi\)
\(558\) 0 0
\(559\) 18.8111 10.8606i 0.795626 0.459355i
\(560\) −17.5912 + 8.86572i −0.743366 + 0.374645i
\(561\) 0 0
\(562\) −10.0754 + 7.05488i −0.425005 + 0.297592i
\(563\) −2.00004 22.8606i −0.0842918 0.963459i −0.914121 0.405442i \(-0.867118\pi\)
0.829829 0.558018i \(-0.188438\pi\)
\(564\) 0 0
\(565\) −2.51672 1.65020i −0.105879 0.0694244i
\(566\) 61.2679i 2.57528i
\(567\) 0 0
\(568\) −0.178714 + 0.178714i −0.00749867 + 0.00749867i
\(569\) −4.11183 1.49658i −0.172377 0.0627400i 0.254390 0.967102i \(-0.418125\pi\)
−0.426767 + 0.904362i \(0.640348\pi\)
\(570\) 0 0
\(571\) 16.1524 + 13.5535i 0.675958 + 0.567196i 0.914822 0.403857i \(-0.132331\pi\)
−0.238864 + 0.971053i \(0.576775\pi\)
\(572\) −3.90483 5.57667i −0.163269 0.233172i
\(573\) 0 0
\(574\) 8.97982 + 10.7017i 0.374811 + 0.446682i
\(575\) −12.5901 11.1408i −0.525045 0.464605i
\(576\) 0 0
\(577\) 11.7007 3.13518i 0.487105 0.130519i −0.00690397 0.999976i \(-0.502198\pi\)
0.494009 + 0.869457i \(0.335531\pi\)
\(578\) 22.3290 31.8891i 0.928764 1.32641i
\(579\) 0 0
\(580\) −6.58050 5.18813i −0.273241 0.215425i
\(581\) −4.07968 11.2088i −0.169254 0.465021i
\(582\) 0 0
\(583\) 8.18099 + 5.72839i 0.338822 + 0.237246i
\(584\) 0.00278859 0.00482997i 0.000115393 0.000199866i
\(585\) 0 0
\(586\) 7.55356 + 13.0831i 0.312034 + 0.540460i
\(587\) 1.25428 14.3364i 0.0517695 0.591728i −0.925361 0.379087i \(-0.876238\pi\)
0.977130 0.212641i \(-0.0682064\pi\)
\(588\) 0 0
\(589\) 40.7423 + 7.18397i 1.67876 + 0.296010i
\(590\) −5.01672 + 3.74581i −0.206535 + 0.154213i
\(591\) 0 0
\(592\) −7.87131 16.8801i −0.323509 0.693767i
\(593\) 0.209120 + 0.209120i 0.00858753 + 0.00858753i 0.711388 0.702800i \(-0.248067\pi\)
−0.702800 + 0.711388i \(0.748067\pi\)
\(594\) 0 0
\(595\) −25.4822 + 15.7673i −1.04467 + 0.646396i
\(596\) −13.8825 + 38.1419i −0.568650 + 1.56235i
\(597\) 0 0
\(598\) 20.3639 1.78161i 0.832742 0.0728555i
\(599\) −1.58777 + 9.00467i −0.0648743 + 0.367921i 0.935036 + 0.354552i \(0.115367\pi\)
−0.999911 + 0.0133687i \(0.995744\pi\)
\(600\) 0 0
\(601\) −4.24577 + 3.56262i −0.173188 + 0.145322i −0.725262 0.688473i \(-0.758281\pi\)
0.552073 + 0.833796i \(0.313837\pi\)
\(602\) −30.7745 8.24601i −1.25428 0.336082i
\(603\) 0 0
\(604\) 0.912537 + 0.526854i 0.0371306 + 0.0214374i
\(605\) 14.5331 + 16.2844i 0.590853 + 0.662055i
\(606\) 0 0
\(607\) −33.1493 15.4578i −1.34549 0.627412i −0.389559 0.921002i \(-0.627372\pi\)
−0.955932 + 0.293589i \(0.905150\pi\)
\(608\) −32.2786 15.0518i −1.30907 0.610429i
\(609\) 0 0
\(610\) −13.4359 0.763553i −0.544004 0.0309154i
\(611\) −33.2143 19.1763i −1.34371 0.775790i
\(612\) 0 0
\(613\) 25.3096 + 6.78170i 1.02225 + 0.273910i 0.730738 0.682658i \(-0.239176\pi\)
0.291509 + 0.956568i \(0.405843\pi\)
\(614\) 20.2455 16.9880i 0.817041 0.685579i
\(615\) 0 0
\(616\) −0.0138407 + 0.0784943i −0.000557656 + 0.00316263i
\(617\) 11.4338 1.00033i 0.460309 0.0402718i 0.145356 0.989379i \(-0.453567\pi\)
0.314952 + 0.949108i \(0.398012\pi\)
\(618\) 0 0
\(619\) 9.29363 25.5340i 0.373542 1.02630i −0.600439 0.799671i \(-0.705007\pi\)
0.973981 0.226629i \(-0.0727704\pi\)
\(620\) −22.0859 35.6940i −0.886992 1.43351i
\(621\) 0 0
\(622\) −0.397083 0.397083i −0.0159216 0.0159216i
\(623\) 12.5876 + 26.9943i 0.504313 + 1.08150i
\(624\) 0 0
\(625\) 1.31289 24.9655i 0.0525157 0.998620i
\(626\) 18.8052 + 3.31587i 0.751608 + 0.132529i
\(627\) 0 0
\(628\) 0.164197 1.87678i 0.00655218 0.0748917i
\(629\) −14.1661 24.5363i −0.564838 0.978328i
\(630\) 0 0
\(631\) 7.42122 12.8539i 0.295434 0.511707i −0.679652 0.733535i \(-0.737869\pi\)
0.975086 + 0.221828i \(0.0712024\pi\)
\(632\) −0.0538608 0.0377137i −0.00214247 0.00150017i
\(633\) 0 0
\(634\) 2.50195 + 6.87405i 0.0993651 + 0.273003i
\(635\) 33.8035 3.99937i 1.34145 0.158710i
\(636\) 0 0
\(637\) 3.60140 5.14333i 0.142693 0.203786i
\(638\) 4.00501 1.07314i 0.158560 0.0424860i
\(639\) 0 0
\(640\) 0.166230 + 0.552412i 0.00657082 + 0.0218360i
\(641\) 2.24280 + 2.67286i 0.0885851 + 0.105572i 0.808516 0.588474i \(-0.200271\pi\)
−0.719931 + 0.694046i \(0.755827\pi\)
\(642\) 0 0
\(643\) −1.30898 1.86941i −0.0516210 0.0737225i 0.792512 0.609857i \(-0.208773\pi\)
−0.844133 + 0.536134i \(0.819884\pi\)
\(644\) −11.5303 9.67508i −0.454358 0.381252i
\(645\) 0 0
\(646\) −50.5006 18.3807i −1.98692 0.723180i
\(647\) 8.56365 8.56365i 0.336672 0.336672i −0.518441 0.855113i \(-0.673488\pi\)
0.855113 + 0.518441i \(0.173488\pi\)
\(648\) 0 0
\(649\) 1.55515i 0.0610450i
\(650\) 20.9228 + 22.0520i 0.820658 + 0.864949i
\(651\) 0 0
\(652\) −1.05586 12.0685i −0.0413505 0.472638i
\(653\) 20.3999 14.2842i 0.798311 0.558984i −0.101718 0.994813i \(-0.532434\pi\)
0.900029 + 0.435830i \(0.143545\pi\)
\(654\) 0 0
\(655\) 42.3545 + 13.9685i 1.65493 + 0.545796i
\(656\) −10.7873 + 6.22808i −0.421175 + 0.243166i
\(657\) 0 0
\(658\) 14.5598 + 54.3378i 0.567599 + 2.11831i
\(659\) 5.36362 + 30.4186i 0.208937 + 1.18494i 0.891123 + 0.453762i \(0.149918\pi\)
−0.682186 + 0.731179i \(0.738970\pi\)
\(660\) 0 0
\(661\) 33.9585 12.3599i 1.32083 0.480744i 0.417109 0.908857i \(-0.363043\pi\)
0.903726 + 0.428112i \(0.140821\pi\)
\(662\) 7.48160 16.0443i 0.290780 0.623581i
\(663\) 0 0
\(664\) −0.170614 + 0.0300838i −0.00662109 + 0.00116748i
\(665\) 16.0680 + 15.1166i 0.623091 + 0.586198i
\(666\) 0 0
\(667\) −1.61759 + 6.03694i −0.0626335 + 0.233751i
\(668\) −16.3379 1.42939i −0.632134 0.0553046i
\(669\) 0 0
\(670\) 14.7954 + 37.0897i 0.571595 + 1.43290i
\(671\) 2.14868 2.56070i 0.0829489 0.0988547i
\(672\) 0 0
\(673\) 33.5440 15.6418i 1.29303 0.602949i 0.350339 0.936623i \(-0.386066\pi\)
0.942689 + 0.333674i \(0.108288\pi\)
\(674\) −48.1932 −1.85633
\(675\) 0 0
\(676\) 7.65415 0.294390
\(677\) −41.5346 + 19.3679i −1.59630 + 0.744368i −0.998364 0.0571738i \(-0.981791\pi\)
−0.597938 + 0.801542i \(0.704013\pi\)
\(678\) 0 0
\(679\) −24.7073 + 29.4450i −0.948179 + 1.13000i
\(680\) 0.161258 + 0.404249i 0.00618395 + 0.0155022i
\(681\) 0 0
\(682\) 20.6899 + 1.81014i 0.792259 + 0.0693137i
\(683\) −4.46063 + 16.6473i −0.170681 + 0.636992i 0.826566 + 0.562840i \(0.190291\pi\)
−0.997247 + 0.0741513i \(0.976375\pi\)
\(684\) 0 0
\(685\) −26.4389 24.8735i −1.01018 0.950367i
\(686\) −39.7450 + 7.00812i −1.51747 + 0.267571i
\(687\) 0 0
\(688\) 12.0055 25.7458i 0.457705 0.981551i
\(689\) 25.5787 9.30989i 0.974472 0.354679i
\(690\) 0 0
\(691\) −6.05103 34.3171i −0.230192 1.30548i −0.852506 0.522717i \(-0.824918\pi\)
0.622314 0.782768i \(-0.286193\pi\)
\(692\) 8.54605 + 31.8943i 0.324872 + 1.21244i
\(693\) 0 0
\(694\) −29.1708 + 16.8418i −1.10731 + 0.639305i
\(695\) 5.92906 + 1.95541i 0.224902 + 0.0741728i
\(696\) 0 0
\(697\) −15.5213 + 10.8682i −0.587913 + 0.411661i
\(698\) 5.98066 + 68.3592i 0.226371 + 2.58743i
\(699\) 0 0
\(700\) 0.587932 22.3753i 0.0222218 0.845705i
\(701\) 27.2979i 1.03103i −0.856881 0.515515i \(-0.827601\pi\)
0.856881 0.515515i \(-0.172399\pi\)
\(702\) 0 0
\(703\) −14.7491 + 14.7491i −0.556273 + 0.556273i
\(704\) −8.50169 3.09436i −0.320419 0.116623i
\(705\) 0 0
\(706\) 34.7178 + 29.1317i 1.30662 + 1.09639i
\(707\) 9.76787 + 13.9500i 0.367359 + 0.524642i
\(708\) 0 0
\(709\) 16.4826 + 19.6432i 0.619018 + 0.737717i 0.980901 0.194506i \(-0.0623105\pi\)
−0.361883 + 0.932223i \(0.617866\pi\)
\(710\) 10.1195 + 33.6289i 0.379778 + 1.26207i
\(711\) 0 0
\(712\) 0.417857 0.111964i 0.0156598 0.00419604i
\(713\) −17.9564 + 25.6444i −0.672473 + 0.960391i
\(714\) 0 0
\(715\) −7.49836 + 0.887147i −0.280423 + 0.0331774i
\(716\) 0.602175 + 1.65446i 0.0225043 + 0.0618302i
\(717\) 0 0
\(718\) −50.5779 35.4150i −1.88755 1.32168i
\(719\) −0.729141 + 1.26291i −0.0271924 + 0.0470986i −0.879301 0.476266i \(-0.841990\pi\)
0.852109 + 0.523364i \(0.175323\pi\)
\(720\) 0 0
\(721\) −11.6843 20.2379i −0.435148 0.753698i
\(722\) −0.129754 + 1.48309i −0.00482893 + 0.0551949i
\(723\) 0 0
\(724\) −1.46091 0.257598i −0.0542942 0.00957354i
\(725\) −8.52352 + 3.70522i −0.316555 + 0.137608i
\(726\) 0 0
\(727\) 19.8194 + 42.5029i 0.735062 + 1.57634i 0.814944 + 0.579540i \(0.196768\pi\)
−0.0798819 + 0.996804i \(0.525454\pi\)
\(728\) 0.153611 + 0.153611i 0.00569322 + 0.00569322i
\(729\) 0 0
\(730\) −0.407762 0.659002i −0.0150919 0.0243908i
\(731\) 14.7796 40.6067i 0.546645 1.50189i
\(732\) 0 0
\(733\) −24.4678 + 2.14066i −0.903740 + 0.0790670i −0.529544 0.848283i \(-0.677637\pi\)
−0.374196 + 0.927350i \(0.622081\pi\)
\(734\) 5.05543 28.6707i 0.186599 1.05826i
\(735\) 0 0
\(736\) 20.6456 17.3237i 0.761006 0.638560i
\(737\) −9.58076 2.56716i −0.352912 0.0945625i
\(738\) 0 0
\(739\) 18.0486 + 10.4204i 0.663928 + 0.383319i 0.793772 0.608215i \(-0.208114\pi\)
−0.129844 + 0.991534i \(0.541448\pi\)
\(740\) 21.1286 + 1.20072i 0.776703 + 0.0441395i
\(741\) 0 0
\(742\) −36.1853 16.8735i −1.32840 0.619445i
\(743\) −38.5547 17.9783i −1.41443 0.659561i −0.442923 0.896559i \(-0.646059\pi\)
−0.971510 + 0.236998i \(0.923836\pi\)
\(744\) 0 0
\(745\) 29.9755 + 33.5877i 1.09822 + 1.23056i
\(746\) 29.5649 + 17.0693i 1.08245 + 0.624951i
\(747\) 0 0
\(748\) −13.0822 3.50537i −0.478334 0.128169i
\(749\) −11.9132 + 9.99638i −0.435300 + 0.365260i
\(750\) 0 0
\(751\) 3.51433 19.9308i 0.128240 0.727284i −0.851091 0.525018i \(-0.824059\pi\)
0.979331 0.202265i \(-0.0648304\pi\)
\(752\) −49.9673 + 4.37157i −1.82212 + 0.159415i
\(753\) 0 0
\(754\) 3.86512 10.6193i 0.140760 0.386734i
\(755\) 0.993815 0.614929i 0.0361686 0.0223796i
\(756\) 0 0
\(757\) 10.9992 + 10.9992i 0.399771 + 0.399771i 0.878152 0.478381i \(-0.158776\pi\)
−0.478381 + 0.878152i \(0.658776\pi\)
\(758\) −0.899510 1.92901i −0.0326717 0.0700647i
\(759\) 0 0
\(760\) 0.256744 0.191702i 0.00931308 0.00695376i
\(761\) 12.7782 + 2.25313i 0.463208 + 0.0816761i 0.400382 0.916348i \(-0.368878\pi\)
0.0628262 + 0.998024i \(0.479989\pi\)
\(762\) 0 0
\(763\) 1.81945 20.7964i 0.0658685 0.752880i
\(764\) 6.37266 + 11.0378i 0.230555 + 0.399332i
\(765\) 0 0
\(766\) −22.7203 + 39.3527i −0.820918 + 1.42187i
\(767\) −3.47208 2.43117i −0.125369 0.0877846i
\(768\) 0 0
\(769\) 10.6865 + 29.3608i 0.385364 + 1.05878i 0.969064 + 0.246810i \(0.0793822\pi\)
−0.583700 + 0.811969i \(0.698396\pi\)
\(770\) 8.69717 + 6.85693i 0.313424 + 0.247107i
\(771\) 0 0
\(772\) −30.6008 + 43.7024i −1.10135 + 1.57288i
\(773\) −35.0964 + 9.40406i −1.26233 + 0.338241i −0.827088 0.562072i \(-0.810004\pi\)
−0.435243 + 0.900313i \(0.643338\pi\)
\(774\) 0 0
\(775\) −46.4677 + 2.83789i −1.66917 + 0.101940i
\(776\) 0.358850 + 0.427661i 0.0128820 + 0.0153521i
\(777\) 0 0
\(778\) −3.55061 5.07079i −0.127295 0.181797i
\(779\) 10.6861 + 8.96672i 0.382870 + 0.321266i
\(780\) 0 0
\(781\) −8.19706 2.98349i −0.293314 0.106758i
\(782\) 28.7561 28.7561i 1.02832 1.02832i
\(783\) 0 0
\(784\) 8.21158i 0.293271i
\(785\) −1.74738 1.14574i −0.0623665 0.0408933i
\(786\) 0 0
\(787\) −3.06442 35.0265i −0.109235 1.24856i −0.830942 0.556360i \(-0.812198\pi\)
0.721707 0.692199i \(-0.243358\pi\)
\(788\) 0.725085 0.507710i 0.0258301 0.0180864i
\(789\) 0 0
\(790\) −8.15870 + 4.11186i −0.290274 + 0.146294i
\(791\) −2.58807 + 1.49422i −0.0920213 + 0.0531285i
\(792\) 0 0
\(793\) −2.35805 8.80036i −0.0837367 0.312510i
\(794\) −5.27284 29.9037i −0.187126 1.06124i
\(795\) 0 0
\(796\) −4.50830 + 1.64089i −0.159793 + 0.0581597i
\(797\) 10.8830 23.3386i 0.385495 0.826696i −0.613811 0.789453i \(-0.710364\pi\)
0.999306 0.0372435i \(-0.0118577\pi\)
\(798\) 0 0
\(799\) −75.1405 + 13.2493i −2.65828 + 0.468726i
\(800\) 39.2725 + 7.99376i 1.38849 + 0.282622i
\(801\) 0 0
\(802\) 12.2241 45.6210i 0.431648 1.61093i
\(803\) 0.191760 + 0.0167768i 0.00676705 + 0.000592040i
\(804\) 0 0
\(805\) −15.5059 + 6.18541i −0.546510 + 0.218007i
\(806\) 36.3860 43.3632i 1.28164 1.52740i
\(807\) 0 0
\(808\) 0.224167 0.104531i 0.00788618 0.00367739i
\(809\) 14.9511 0.525654 0.262827 0.964843i \(-0.415345\pi\)
0.262827 + 0.964843i \(0.415345\pi\)
\(810\) 0 0
\(811\) 14.0980 0.495049 0.247525 0.968882i \(-0.420383\pi\)
0.247525 + 0.968882i \(0.420383\pi\)
\(812\) −7.54150 + 3.51666i −0.264655 + 0.123411i
\(813\) 0 0
\(814\) −6.73083 + 8.02149i −0.235916 + 0.281153i
\(815\) −12.3450 5.30449i −0.432427 0.185808i
\(816\) 0 0
\(817\) −31.6926 2.77274i −1.10878 0.0970060i
\(818\) 8.06208 30.0881i 0.281884 1.05201i
\(819\) 0 0
\(820\) −0.431583 14.1467i −0.0150715 0.494023i
\(821\) −6.53467 + 1.15224i −0.228061 + 0.0402134i −0.286511 0.958077i \(-0.592495\pi\)
0.0584494 + 0.998290i \(0.481384\pi\)
\(822\) 0 0
\(823\) 9.68030 20.7595i 0.337434 0.723630i −0.662236 0.749295i \(-0.730393\pi\)
0.999671 + 0.0256651i \(0.00817034\pi\)
\(824\) −0.318939 + 0.116084i −0.0111108 + 0.00404399i
\(825\) 0 0
\(826\) 1.07959 + 6.12265i 0.0375637 + 0.213034i
\(827\) 6.34894 + 23.6946i 0.220774 + 0.823941i 0.984054 + 0.177872i \(0.0569213\pi\)
−0.763279 + 0.646069i \(0.776412\pi\)
\(828\) 0 0
\(829\) 24.8714 14.3595i 0.863821 0.498727i −0.00146915 0.999999i \(-0.500468\pi\)
0.865290 + 0.501272i \(0.167134\pi\)
\(830\) −7.53971 + 22.8614i −0.261707 + 0.793532i
\(831\) 0 0
\(832\) −20.1993 + 14.1437i −0.700284 + 0.490344i
\(833\) −1.08869 12.4438i −0.0377208 0.431151i
\(834\) 0 0
\(835\) −9.97403 + 15.2114i −0.345165 + 0.526413i
\(836\) 9.97102i 0.344855i
\(837\) 0 0
\(838\) 10.9214 10.9214i 0.377273 0.377273i
\(839\) −29.6410 10.7884i −1.02332 0.372458i −0.224787 0.974408i \(-0.572169\pi\)
−0.798534 + 0.601950i \(0.794391\pi\)
\(840\) 0 0
\(841\) −19.5685 16.4199i −0.674775 0.566204i
\(842\) 1.45332 + 2.07555i 0.0500846 + 0.0715282i
\(843\) 0 0
\(844\) −13.6630 16.2830i −0.470301 0.560483i
\(845\) 4.01848 7.47795i 0.138240 0.257249i
\(846\) 0 0
\(847\) 20.9353 5.60959i 0.719344 0.192748i
\(848\) 20.4189 29.1612i 0.701187 1.00140i
\(849\) 0 0
\(850\) 60.0856 + 6.85137i 2.06092 + 0.235000i
\(851\) −5.39842 14.8320i −0.185055 0.508435i
\(852\) 0 0
\(853\) −18.5060 12.9580i −0.633632 0.443674i 0.212125 0.977243i \(-0.431962\pi\)
−0.845757 + 0.533569i \(0.820851\pi\)
\(854\) −6.68174 + 11.5731i −0.228645 + 0.396024i
\(855\) 0 0
\(856\) 0.112936 + 0.195611i 0.00386008 + 0.00668586i
\(857\) −0.720788 + 8.23864i −0.0246216 + 0.281427i 0.973896 + 0.226995i \(0.0728902\pi\)
−0.998518 + 0.0544314i \(0.982665\pi\)
\(858\) 0 0
\(859\) 11.2675 + 1.98676i 0.384442 + 0.0677875i 0.362529 0.931972i \(-0.381913\pi\)
0.0219126 + 0.999760i \(0.493024\pi\)
\(860\) 19.3114 + 25.8636i 0.658514 + 0.881941i
\(861\) 0 0
\(862\) −26.5797 57.0002i −0.905306 1.94144i
\(863\) 9.18912 + 9.18912i 0.312801 + 0.312801i 0.845994 0.533193i \(-0.179008\pi\)
−0.533193 + 0.845994i \(0.679008\pi\)
\(864\) 0 0
\(865\) 35.6468 + 8.39541i 1.21203 + 0.285453i
\(866\) 24.0686 66.1280i 0.817886 2.24712i
\(867\) 0 0
\(868\) −41.5223 + 3.63273i −1.40936 + 0.123303i
\(869\) 0.394074 2.23490i 0.0133680 0.0758139i
\(870\) 0 0
\(871\) −20.7091 + 17.3770i −0.701703 + 0.588798i
\(872\) −0.292870 0.0784744i −0.00991784 0.00265748i
\(873\) 0 0
\(874\) −25.9285 14.9698i −0.877044 0.506362i
\(875\) −21.5515 12.3216i −0.728575 0.416545i
\(876\) 0 0
\(877\) 48.3756 + 22.5579i 1.63353 + 0.761726i 0.999929 0.0119368i \(-0.00379970\pi\)
0.633598 + 0.773663i \(0.281577\pi\)
\(878\) 36.9995 + 17.2531i 1.24867 + 0.582265i
\(879\) 0 0
\(880\) −7.36753 + 6.57517i −0.248359 + 0.221649i
\(881\) 34.2794 + 19.7912i 1.15490 + 0.666782i 0.950077 0.312016i \(-0.101004\pi\)
0.204824 + 0.978799i \(0.434338\pi\)
\(882\) 0 0
\(883\) 48.7707 + 13.0681i 1.64127 + 0.439776i 0.957149 0.289597i \(-0.0935213\pi\)
0.684116 + 0.729373i \(0.260188\pi\)
\(884\) −28.2777 + 23.7278i −0.951082 + 0.798053i
\(885\) 0 0
\(886\) 0.958958 5.43852i 0.0322168 0.182711i
\(887\) 11.8379 1.03569i 0.397479 0.0347749i 0.113336 0.993557i \(-0.463846\pi\)
0.284143 + 0.958782i \(0.408291\pi\)
\(888\) 0 0
\(889\) 11.5607 31.7628i 0.387734 1.06529i
\(890\) 13.7798 58.5090i 0.461901 1.96123i
\(891\) 0 0
\(892\) −11.6641 11.6641i −0.390541 0.390541i
\(893\) 23.7395 + 50.9096i 0.794413 + 1.70362i
\(894\) 0 0
\(895\) 1.93252 + 0.280292i 0.0645972 + 0.00936911i
\(896\) 0.564144 + 0.0994738i 0.0188467 + 0.00332319i
\(897\) 0 0
\(898\) −5.05560 + 57.7858i −0.168708 + 1.92834i
\(899\) 8.65353 + 14.9884i 0.288611 + 0.499890i
\(900\) 0 0
\(901\) 27.0764 46.8977i 0.902046 1.56239i
\(902\) 5.73656 + 4.01678i 0.191006 + 0.133744i
\(903\) 0 0
\(904\) 0.0148452 + 0.0407868i 0.000493743 + 0.00135655i
\(905\) −1.01866 + 1.29204i −0.0338613 + 0.0429488i
\(906\) 0 0
\(907\) 0.725418 1.03600i 0.0240871 0.0343999i −0.806928 0.590650i \(-0.798871\pi\)
0.831015 + 0.556250i \(0.187760\pi\)
\(908\) 9.28280 2.48732i 0.308061 0.0825446i
\(909\) 0 0
\(910\) 28.9053 8.69808i 0.958201 0.288339i
\(911\) −0.894909 1.06651i −0.0296497 0.0353351i 0.751016 0.660284i \(-0.229564\pi\)
−0.780666 + 0.624949i \(0.785120\pi\)
\(912\) 0 0
\(913\) −3.42967 4.89808i −0.113506 0.162103i
\(914\) −36.4756 30.6067i −1.20651 1.01238i
\(915\) 0 0
\(916\) 13.5484 + 4.93120i 0.447650 + 0.162931i
\(917\) 31.3154 31.3154i 1.03412 1.03412i
\(918\) 0 0
\(919\) 3.33325i 0.109954i 0.998488 + 0.0549769i \(0.0175085\pi\)
−0.998488 + 0.0549769i \(0.982491\pi\)
\(920\) 0.0493654 + 0.237387i 0.00162753 + 0.00782641i
\(921\) 0 0
\(922\) 1.64838 + 18.8411i 0.0542865 + 0.620498i
\(923\) −19.4755 + 13.6369i −0.641044 + 0.448864i
\(924\) 0 0
\(925\) 12.2658 20.0119i 0.403296 0.657986i
\(926\) −32.0759 + 18.5191i −1.05408 + 0.608574i
\(927\) 0 0
\(928\) −3.85624 14.3917i −0.126587 0.472430i
\(929\) 5.78861 + 32.8289i 0.189918 + 1.07708i 0.919472 + 0.393156i \(0.128617\pi\)
−0.729554 + 0.683924i \(0.760272\pi\)
\(930\) 0 0
\(931\) −8.64161 + 3.14529i −0.283217 + 0.103083i
\(932\) −7.70014 + 16.5130i −0.252226 + 0.540901i
\(933\) 0 0
\(934\) −25.2646 + 4.45484i −0.826684 + 0.145767i
\(935\) −10.2930 + 10.9407i −0.336616 + 0.357801i
\(936\) 0 0
\(937\) 11.0023 41.0610i 0.359428 1.34140i −0.515392 0.856955i \(-0.672353\pi\)
0.874820 0.484449i \(-0.160980\pi\)
\(938\) 39.5017 + 3.45595i 1.28978 + 0.112841i
\(939\) 0 0
\(940\) 22.4996 52.3628i 0.733856 1.70789i
\(941\) 1.20131 1.43167i 0.0391617 0.0466711i −0.746108 0.665825i \(-0.768080\pi\)
0.785270 + 0.619154i \(0.212524\pi\)
\(942\) 0 0
\(943\) −9.56700 + 4.46117i −0.311544 + 0.145276i
\(944\) −5.54334 −0.180420
\(945\) 0 0
\(946\) −15.9711 −0.519265
\(947\) −28.3806 + 13.2341i −0.922246 + 0.430050i −0.824950 0.565205i \(-0.808797\pi\)
−0.0972956 + 0.995256i \(0.531019\pi\)
\(948\) 0 0
\(949\) 0.337235 0.401901i 0.0109471 0.0130462i
\(950\) −6.57684 44.0338i −0.213381 1.42865i
\(951\) 0 0
\(952\) 0.430537 + 0.0376671i 0.0139538 + 0.00122080i
\(953\) −3.16696 + 11.8193i −0.102588 + 0.382864i −0.998060 0.0622534i \(-0.980171\pi\)
0.895472 + 0.445117i \(0.146838\pi\)
\(954\) 0 0
\(955\) 14.1294 0.431055i 0.457216 0.0139486i
\(956\) 8.15744 1.43838i 0.263830 0.0465204i
\(957\) 0 0
\(958\) −6.89835 + 14.7936i −0.222876 + 0.477958i
\(959\) −33.8725 + 12.3286i −1.09380 + 0.398111i
\(960\) 0 0
\(961\) 9.67079 + 54.8458i 0.311961 + 1.76922i
\(962\) 7.38668 + 27.5675i 0.238156 + 0.888811i
\(963\) 0 0
\(964\) 10.7818 6.22486i 0.347258 0.200489i
\(965\) 26.6308 + 52.8404i 0.857276 + 1.70099i
\(966\) 0 0
\(967\) 8.91754 6.24413i 0.286769 0.200798i −0.421337 0.906904i \(-0.638439\pi\)
0.708106 + 0.706107i \(0.249550\pi\)
\(968\) −0.0274359 0.313593i −0.000881822 0.0100793i
\(969\) 0 0
\(970\) 75.9476 15.7936i 2.43853 0.507101i
\(971\) 17.9235i 0.575194i −0.957752 0.287597i \(-0.907144\pi\)
0.957752 0.287597i \(-0.0928563\pi\)
\(972\) 0 0
\(973\) 4.38373 4.38373i 0.140536 0.140536i
\(974\) −30.1589 10.9769i −0.966353 0.351724i
\(975\) 0 0
\(976\) −9.12762 7.65898i −0.292168 0.245158i
\(977\) −2.92108 4.17173i −0.0934536 0.133466i 0.769702 0.638403i \(-0.220405\pi\)
−0.863156 + 0.504937i \(0.831516\pi\)
\(978\) 0 0
\(979\) 9.59732 + 11.4376i 0.306732 + 0.365549i
\(980\) 8.21884 + 4.41662i 0.262541 + 0.141084i
\(981\) 0 0
\(982\) 6.33758 1.69815i 0.202240 0.0541901i
\(983\) 31.6427 45.1905i 1.00925 1.44135i 0.115220 0.993340i \(-0.463243\pi\)
0.894027 0.448014i \(-0.147868\pi\)
\(984\) 0 0
\(985\) −0.115348 0.974946i −0.00367529 0.0310644i
\(986\) −7.68938 21.1264i −0.244880 0.672802i
\(987\) 0 0
\(988\) 22.2616 + 15.5877i 0.708236 + 0.495912i
\(989\) 12.0370 20.8487i 0.382754 0.662949i
\(990\) 0 0
\(991\) 4.20341 + 7.28053i 0.133526 + 0.231274i 0.925033 0.379886i \(-0.124037\pi\)
−0.791508 + 0.611159i \(0.790703\pi\)
\(992\) 6.50458 74.3476i 0.206520 2.36054i
\(993\) 0 0
\(994\) 34.3431 + 6.05561i 1.08930 + 0.192072i
\(995\) −0.763776 + 5.26600i −0.0242133 + 0.166944i
\(996\) 0 0
\(997\) −15.9928 34.2966i −0.506496 1.08618i −0.978813 0.204756i \(-0.934360\pi\)
0.472317 0.881429i \(-0.343418\pi\)
\(998\) 43.3517 + 43.3517i 1.37227 + 1.37227i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.17.3 192
3.2 odd 2 135.2.q.a.77.14 yes 192
5.3 odd 4 inner 405.2.r.a.98.14 192
15.2 even 4 675.2.ba.b.293.14 192
15.8 even 4 135.2.q.a.23.3 192
15.14 odd 2 675.2.ba.b.482.3 192
27.7 even 9 135.2.q.a.47.3 yes 192
27.20 odd 18 inner 405.2.r.a.62.14 192
135.7 odd 36 675.2.ba.b.668.3 192
135.34 even 18 675.2.ba.b.182.14 192
135.88 odd 36 135.2.q.a.128.14 yes 192
135.128 even 36 inner 405.2.r.a.143.3 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.23.3 192 15.8 even 4
135.2.q.a.47.3 yes 192 27.7 even 9
135.2.q.a.77.14 yes 192 3.2 odd 2
135.2.q.a.128.14 yes 192 135.88 odd 36
405.2.r.a.17.3 192 1.1 even 1 trivial
405.2.r.a.62.14 192 27.20 odd 18 inner
405.2.r.a.98.14 192 5.3 odd 4 inner
405.2.r.a.143.3 192 135.128 even 36 inner
675.2.ba.b.182.14 192 135.34 even 18
675.2.ba.b.293.14 192 15.2 even 4
675.2.ba.b.482.3 192 15.14 odd 2
675.2.ba.b.668.3 192 135.7 odd 36