Properties

Label 405.2.r.a.152.3
Level $405$
Weight $2$
Character 405.152
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 152.3
Character \(\chi\) \(=\) 405.152
Dual form 405.2.r.a.8.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.65044 - 1.15565i) q^{2} +(0.704386 + 1.93528i) q^{4} +(0.268922 - 2.21984i) q^{5} +(0.618828 + 1.32708i) q^{7} +(0.0310202 - 0.115769i) q^{8} +(-3.00920 + 3.35293i) q^{10} +(-1.86051 - 2.21727i) q^{11} +(-3.51558 - 5.02076i) q^{13} +(0.512304 - 2.90542i) q^{14} +(2.97033 - 2.49240i) q^{16} +(0.833002 + 3.10881i) q^{17} +(3.51741 - 2.03078i) q^{19} +(4.48544 - 1.04318i) q^{20} +(0.508272 + 5.80958i) q^{22} +(-4.58997 - 2.14034i) q^{23} +(-4.85536 - 1.19393i) q^{25} +12.3493i q^{26} +(-2.13239 + 2.13239i) q^{28} +(-0.368261 - 2.08851i) q^{29} +(-3.20394 + 1.16614i) q^{31} +(-8.02150 + 0.701790i) q^{32} +(2.21787 - 6.09356i) q^{34} +(3.11232 - 1.01682i) q^{35} +(-11.3656 + 3.04540i) q^{37} +(-8.15214 - 0.713220i) q^{38} +(-0.248646 - 0.0999926i) q^{40} +(-0.839107 - 0.147957i) q^{41} +(-0.0641287 + 0.732994i) q^{43} +(2.98053 - 5.16243i) q^{44} +(5.10199 + 8.83690i) q^{46} +(-2.61254 + 1.21825i) q^{47} +(3.12132 - 3.71984i) q^{49} +(6.63372 + 7.58161i) q^{50} +(7.24028 - 10.3402i) q^{52} +(0.0757900 + 0.0757900i) q^{53} +(-5.42232 + 3.53376i) q^{55} +(0.172831 - 0.0304748i) q^{56} +(-1.80580 + 3.87255i) q^{58} +(2.89613 + 2.43014i) q^{59} +(-4.21993 - 1.53593i) q^{61} +(6.63556 + 1.77799i) q^{62} +(7.33402 + 4.23430i) q^{64} +(-12.0907 + 6.45381i) q^{65} +(3.65313 - 2.55795i) q^{67} +(-5.42967 + 3.80189i) q^{68} +(-6.31179 - 1.91856i) q^{70} +(7.84988 + 4.53213i) q^{71} +(-8.04880 - 2.15667i) q^{73} +(22.2777 + 8.10840i) q^{74} +(6.40774 + 5.37673i) q^{76} +(1.79116 - 3.84116i) q^{77} +(1.44073 - 0.254040i) q^{79} +(-4.73394 - 7.26391i) q^{80} +(1.21391 + 1.21391i) q^{82} +(9.69375 - 13.8441i) q^{83} +(7.12506 - 1.01310i) q^{85} +(0.952926 - 1.13565i) q^{86} +(-0.314404 + 0.146609i) q^{88} +(-3.05075 - 5.28406i) q^{89} +(4.48742 - 7.77244i) q^{91} +(0.909052 - 10.3905i) q^{92} +(5.71971 + 1.00854i) q^{94} +(-3.56209 - 8.35420i) q^{95} +(16.1512 + 1.41304i) q^{97} +(-9.45039 + 2.53222i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65044 1.15565i −1.16704 0.817169i −0.180966 0.983489i \(-0.557923\pi\)
−0.986072 + 0.166320i \(0.946811\pi\)
\(3\) 0 0
\(4\) 0.704386 + 1.93528i 0.352193 + 0.967642i
\(5\) 0.268922 2.21984i 0.120266 0.992742i
\(6\) 0 0
\(7\) 0.618828 + 1.32708i 0.233895 + 0.501590i 0.987864 0.155320i \(-0.0496410\pi\)
−0.753969 + 0.656910i \(0.771863\pi\)
\(8\) 0.0310202 0.115769i 0.0109673 0.0409305i
\(9\) 0 0
\(10\) −3.00920 + 3.35293i −0.951592 + 1.06029i
\(11\) −1.86051 2.21727i −0.560965 0.668532i 0.408785 0.912631i \(-0.365953\pi\)
−0.969751 + 0.244098i \(0.921508\pi\)
\(12\) 0 0
\(13\) −3.51558 5.02076i −0.975045 1.39251i −0.919078 0.394076i \(-0.871065\pi\)
−0.0559675 0.998433i \(-0.517824\pi\)
\(14\) 0.512304 2.90542i 0.136919 0.776506i
\(15\) 0 0
\(16\) 2.97033 2.49240i 0.742582 0.623101i
\(17\) 0.833002 + 3.10881i 0.202033 + 0.753996i 0.990334 + 0.138706i \(0.0442944\pi\)
−0.788301 + 0.615290i \(0.789039\pi\)
\(18\) 0 0
\(19\) 3.51741 2.03078i 0.806949 0.465892i −0.0389464 0.999241i \(-0.512400\pi\)
0.845895 + 0.533349i \(0.179067\pi\)
\(20\) 4.48544 1.04318i 1.00298 0.233262i
\(21\) 0 0
\(22\) 0.508272 + 5.80958i 0.108364 + 1.23861i
\(23\) −4.58997 2.14034i −0.957074 0.446291i −0.119633 0.992818i \(-0.538172\pi\)
−0.837441 + 0.546527i \(0.815949\pi\)
\(24\) 0 0
\(25\) −4.85536 1.19393i −0.971072 0.238785i
\(26\) 12.3493i 2.42189i
\(27\) 0 0
\(28\) −2.13239 + 2.13239i −0.402983 + 0.402983i
\(29\) −0.368261 2.08851i −0.0683844 0.387827i −0.999720 0.0236650i \(-0.992466\pi\)
0.931336 0.364162i \(-0.118645\pi\)
\(30\) 0 0
\(31\) −3.20394 + 1.16614i −0.575445 + 0.209445i −0.613316 0.789838i \(-0.710165\pi\)
0.0378710 + 0.999283i \(0.487942\pi\)
\(32\) −8.02150 + 0.701790i −1.41801 + 0.124060i
\(33\) 0 0
\(34\) 2.21787 6.09356i 0.380362 1.04504i
\(35\) 3.11232 1.01682i 0.526079 0.171873i
\(36\) 0 0
\(37\) −11.3656 + 3.04540i −1.86849 + 0.500661i −0.868503 + 0.495683i \(0.834918\pi\)
−0.999988 + 0.00497757i \(0.998416\pi\)
\(38\) −8.15214 0.713220i −1.32245 0.115700i
\(39\) 0 0
\(40\) −0.248646 0.0999926i −0.0393144 0.0158102i
\(41\) −0.839107 0.147957i −0.131046 0.0231070i 0.107740 0.994179i \(-0.465639\pi\)
−0.238787 + 0.971072i \(0.576750\pi\)
\(42\) 0 0
\(43\) −0.0641287 + 0.732994i −0.00977953 + 0.111781i −0.999515 0.0311282i \(-0.990090\pi\)
0.989736 + 0.142909i \(0.0456455\pi\)
\(44\) 2.98053 5.16243i 0.449332 0.778266i
\(45\) 0 0
\(46\) 5.10199 + 8.83690i 0.752247 + 1.30293i
\(47\) −2.61254 + 1.21825i −0.381078 + 0.177700i −0.603712 0.797203i \(-0.706312\pi\)
0.222634 + 0.974902i \(0.428535\pi\)
\(48\) 0 0
\(49\) 3.12132 3.71984i 0.445902 0.531406i
\(50\) 6.63372 + 7.58161i 0.938150 + 1.07220i
\(51\) 0 0
\(52\) 7.24028 10.3402i 1.00405 1.43393i
\(53\) 0.0757900 + 0.0757900i 0.0104106 + 0.0104106i 0.712293 0.701882i \(-0.247657\pi\)
−0.701882 + 0.712293i \(0.747657\pi\)
\(54\) 0 0
\(55\) −5.42232 + 3.53376i −0.731145 + 0.476492i
\(56\) 0.172831 0.0304748i 0.0230955 0.00407236i
\(57\) 0 0
\(58\) −1.80580 + 3.87255i −0.237113 + 0.508491i
\(59\) 2.89613 + 2.43014i 0.377044 + 0.316377i 0.811540 0.584296i \(-0.198629\pi\)
−0.434497 + 0.900673i \(0.643074\pi\)
\(60\) 0 0
\(61\) −4.21993 1.53593i −0.540306 0.196655i 0.0574282 0.998350i \(-0.481710\pi\)
−0.597734 + 0.801694i \(0.703932\pi\)
\(62\) 6.63556 + 1.77799i 0.842717 + 0.225805i
\(63\) 0 0
\(64\) 7.33402 + 4.23430i 0.916753 + 0.529287i
\(65\) −12.0907 + 6.45381i −1.49967 + 0.800497i
\(66\) 0 0
\(67\) 3.65313 2.55795i 0.446301 0.312504i −0.328733 0.944423i \(-0.606622\pi\)
0.775034 + 0.631919i \(0.217733\pi\)
\(68\) −5.42967 + 3.80189i −0.658444 + 0.461047i
\(69\) 0 0
\(70\) −6.31179 1.91856i −0.754403 0.229312i
\(71\) 7.84988 + 4.53213i 0.931609 + 0.537865i 0.887320 0.461154i \(-0.152564\pi\)
0.0442890 + 0.999019i \(0.485898\pi\)
\(72\) 0 0
\(73\) −8.04880 2.15667i −0.942041 0.252419i −0.245059 0.969508i \(-0.578807\pi\)
−0.696982 + 0.717089i \(0.745474\pi\)
\(74\) 22.2777 + 8.10840i 2.58972 + 0.942583i
\(75\) 0 0
\(76\) 6.40774 + 5.37673i 0.735018 + 0.616754i
\(77\) 1.79116 3.84116i 0.204122 0.437741i
\(78\) 0 0
\(79\) 1.44073 0.254040i 0.162095 0.0285818i −0.0920115 0.995758i \(-0.529330\pi\)
0.254107 + 0.967176i \(0.418219\pi\)
\(80\) −4.73394 7.26391i −0.529271 0.812130i
\(81\) 0 0
\(82\) 1.21391 + 1.21391i 0.134054 + 0.134054i
\(83\) 9.69375 13.8441i 1.06403 1.51959i 0.225872 0.974157i \(-0.427477\pi\)
0.838155 0.545431i \(-0.183634\pi\)
\(84\) 0 0
\(85\) 7.12506 1.01310i 0.772821 0.109886i
\(86\) 0.952926 1.13565i 0.102757 0.122461i
\(87\) 0 0
\(88\) −0.314404 + 0.146609i −0.0335156 + 0.0156286i
\(89\) −3.05075 5.28406i −0.323379 0.560109i 0.657804 0.753189i \(-0.271486\pi\)
−0.981183 + 0.193080i \(0.938152\pi\)
\(90\) 0 0
\(91\) 4.48742 7.77244i 0.470410 0.814774i
\(92\) 0.909052 10.3905i 0.0947752 1.08329i
\(93\) 0 0
\(94\) 5.71971 + 1.00854i 0.589943 + 0.104023i
\(95\) −3.56209 8.35420i −0.365462 0.857123i
\(96\) 0 0
\(97\) 16.1512 + 1.41304i 1.63990 + 0.143473i 0.869449 0.494023i \(-0.164474\pi\)
0.770453 + 0.637496i \(0.220030\pi\)
\(98\) −9.45039 + 2.53222i −0.954633 + 0.255793i
\(99\) 0 0
\(100\) −1.10946 10.2375i −0.110946 1.02375i
\(101\) 1.88053 5.16673i 0.187120 0.514108i −0.810290 0.586029i \(-0.800691\pi\)
0.997410 + 0.0719204i \(0.0229128\pi\)
\(102\) 0 0
\(103\) 3.90922 0.342012i 0.385186 0.0336994i 0.107082 0.994250i \(-0.465849\pi\)
0.278105 + 0.960551i \(0.410294\pi\)
\(104\) −0.690302 + 0.251249i −0.0676897 + 0.0246370i
\(105\) 0 0
\(106\) −0.0375001 0.212674i −0.00364233 0.0206567i
\(107\) 10.5329 10.5329i 1.01825 1.01825i 0.0184189 0.999830i \(-0.494137\pi\)
0.999830 0.0184189i \(-0.00586325\pi\)
\(108\) 0 0
\(109\) 9.91447i 0.949634i −0.880085 0.474817i \(-0.842514\pi\)
0.880085 0.474817i \(-0.157486\pi\)
\(110\) 13.0330 + 0.434043i 1.24265 + 0.0413843i
\(111\) 0 0
\(112\) 5.14574 + 2.39950i 0.486227 + 0.226731i
\(113\) 1.32748 + 15.1732i 0.124879 + 1.42737i 0.757462 + 0.652879i \(0.226439\pi\)
−0.632583 + 0.774492i \(0.718005\pi\)
\(114\) 0 0
\(115\) −5.98554 + 9.61340i −0.558155 + 0.896454i
\(116\) 3.78247 2.18381i 0.351193 0.202762i
\(117\) 0 0
\(118\) −1.97149 7.35771i −0.181491 0.677332i
\(119\) −3.61015 + 3.02928i −0.330942 + 0.277693i
\(120\) 0 0
\(121\) 0.455341 2.58237i 0.0413946 0.234761i
\(122\) 5.18974 + 7.41172i 0.469857 + 0.671026i
\(123\) 0 0
\(124\) −4.51362 5.37912i −0.405335 0.483059i
\(125\) −3.95604 + 10.4570i −0.353839 + 0.935306i
\(126\) 0 0
\(127\) 2.58018 9.62937i 0.228954 0.854468i −0.751828 0.659360i \(-0.770827\pi\)
0.980782 0.195109i \(-0.0625059\pi\)
\(128\) −0.405037 0.868604i −0.0358005 0.0767745i
\(129\) 0 0
\(130\) 27.4133 + 3.32099i 2.40431 + 0.291270i
\(131\) −3.84111 10.5534i −0.335599 0.922051i −0.986627 0.162997i \(-0.947884\pi\)
0.651028 0.759054i \(-0.274338\pi\)
\(132\) 0 0
\(133\) 4.87168 + 3.41119i 0.422428 + 0.295787i
\(134\) −8.98538 −0.776219
\(135\) 0 0
\(136\) 0.385743 0.0330772
\(137\) −16.1027 11.2752i −1.37574 0.963306i −0.999320 0.0368588i \(-0.988265\pi\)
−0.376424 0.926448i \(-0.622846\pi\)
\(138\) 0 0
\(139\) 0.508611 + 1.39740i 0.0431398 + 0.118526i 0.959392 0.282076i \(-0.0910232\pi\)
−0.916252 + 0.400602i \(0.868801\pi\)
\(140\) 4.16010 + 5.30700i 0.351593 + 0.448523i
\(141\) 0 0
\(142\) −7.71820 16.5517i −0.647697 1.38899i
\(143\) −4.59162 + 17.1362i −0.383971 + 1.43300i
\(144\) 0 0
\(145\) −4.73520 + 0.255833i −0.393237 + 0.0212458i
\(146\) 10.7917 + 12.8611i 0.893129 + 1.06439i
\(147\) 0 0
\(148\) −13.8995 19.8505i −1.14253 1.63170i
\(149\) −0.861743 + 4.88719i −0.0705968 + 0.400374i 0.928948 + 0.370210i \(0.120714\pi\)
−0.999545 + 0.0301644i \(0.990397\pi\)
\(150\) 0 0
\(151\) −15.8833 + 13.3277i −1.29257 + 1.08459i −0.301186 + 0.953565i \(0.597383\pi\)
−0.991379 + 0.131025i \(0.958173\pi\)
\(152\) −0.125990 0.470202i −0.0102191 0.0381384i
\(153\) 0 0
\(154\) −7.39525 + 4.26965i −0.595926 + 0.344058i
\(155\) 1.72703 + 7.42583i 0.138718 + 0.596457i
\(156\) 0 0
\(157\) 0.591932 + 6.76582i 0.0472413 + 0.539971i 0.982532 + 0.186092i \(0.0595821\pi\)
−0.935291 + 0.353879i \(0.884862\pi\)
\(158\) −2.67143 1.24571i −0.212528 0.0991032i
\(159\) 0 0
\(160\) −0.599298 + 17.9951i −0.0473787 + 1.42264i
\(161\) 7.41576i 0.584444i
\(162\) 0 0
\(163\) 14.3864 14.3864i 1.12683 1.12683i 0.136142 0.990689i \(-0.456530\pi\)
0.990689 0.136142i \(-0.0434702\pi\)
\(164\) −0.304716 1.72813i −0.0237943 0.134944i
\(165\) 0 0
\(166\) −31.9979 + 11.6463i −2.48352 + 0.903928i
\(167\) 0.469806 0.0411027i 0.0363547 0.00318063i −0.0689639 0.997619i \(-0.521969\pi\)
0.105319 + 0.994439i \(0.466414\pi\)
\(168\) 0 0
\(169\) −8.40252 + 23.0857i −0.646348 + 1.77583i
\(170\) −12.9303 6.56202i −0.991707 0.503284i
\(171\) 0 0
\(172\) −1.46372 + 0.392203i −0.111608 + 0.0299052i
\(173\) 18.3690 + 1.60708i 1.39657 + 0.122184i 0.760446 0.649402i \(-0.224981\pi\)
0.636125 + 0.771586i \(0.280536\pi\)
\(174\) 0 0
\(175\) −1.42020 7.18230i −0.107357 0.542931i
\(176\) −11.0527 1.94888i −0.833126 0.146903i
\(177\) 0 0
\(178\) −1.07144 + 12.2466i −0.0803080 + 0.917925i
\(179\) 3.95796 6.85540i 0.295832 0.512396i −0.679346 0.733818i \(-0.737736\pi\)
0.975178 + 0.221422i \(0.0710697\pi\)
\(180\) 0 0
\(181\) 9.86110 + 17.0799i 0.732970 + 1.26954i 0.955608 + 0.294640i \(0.0951998\pi\)
−0.222638 + 0.974901i \(0.571467\pi\)
\(182\) −16.3885 + 7.64207i −1.21479 + 0.566468i
\(183\) 0 0
\(184\) −0.390166 + 0.464982i −0.0287634 + 0.0342789i
\(185\) 3.70384 + 26.0487i 0.272311 + 1.91514i
\(186\) 0 0
\(187\) 5.34326 7.63096i 0.390738 0.558031i
\(188\) −4.19789 4.19789i −0.306162 0.306162i
\(189\) 0 0
\(190\) −3.77553 + 17.9046i −0.273905 + 1.29894i
\(191\) 8.60644 1.51755i 0.622740 0.109806i 0.146630 0.989191i \(-0.453157\pi\)
0.476110 + 0.879386i \(0.342046\pi\)
\(192\) 0 0
\(193\) −3.65180 + 7.83132i −0.262863 + 0.563711i −0.992797 0.119806i \(-0.961773\pi\)
0.729935 + 0.683517i \(0.239550\pi\)
\(194\) −25.0236 20.9973i −1.79659 1.50752i
\(195\) 0 0
\(196\) 9.39756 + 3.42043i 0.671254 + 0.244316i
\(197\) −1.93720 0.519071i −0.138020 0.0369822i 0.189148 0.981949i \(-0.439427\pi\)
−0.327167 + 0.944966i \(0.606094\pi\)
\(198\) 0 0
\(199\) 15.5130 + 8.95641i 1.09968 + 0.634903i 0.936138 0.351633i \(-0.114373\pi\)
0.163546 + 0.986536i \(0.447707\pi\)
\(200\) −0.288834 + 0.525064i −0.0204236 + 0.0371276i
\(201\) 0 0
\(202\) −9.07464 + 6.35413i −0.638490 + 0.447075i
\(203\) 2.54374 1.78114i 0.178535 0.125012i
\(204\) 0 0
\(205\) −0.554096 + 1.82289i −0.0386997 + 0.127316i
\(206\) −6.84718 3.95322i −0.477065 0.275434i
\(207\) 0 0
\(208\) −22.9562 6.15109i −1.59172 0.426501i
\(209\) −11.0470 4.02077i −0.764134 0.278122i
\(210\) 0 0
\(211\) −8.17709 6.86139i −0.562934 0.472358i 0.316359 0.948640i \(-0.397540\pi\)
−0.879293 + 0.476282i \(0.841984\pi\)
\(212\) −0.0932898 + 0.200061i −0.00640717 + 0.0137402i
\(213\) 0 0
\(214\) −29.5562 + 5.21155i −2.02042 + 0.356254i
\(215\) 1.60988 + 0.339474i 0.109793 + 0.0231519i
\(216\) 0 0
\(217\) −3.53025 3.53025i −0.239649 0.239649i
\(218\) −11.4577 + 16.3632i −0.776011 + 1.10826i
\(219\) 0 0
\(220\) −10.6582 8.00459i −0.718578 0.539669i
\(221\) 12.6801 15.1115i 0.852955 1.01651i
\(222\) 0 0
\(223\) 10.8301 5.05016i 0.725238 0.338184i −0.0246975 0.999695i \(-0.507862\pi\)
0.749936 + 0.661511i \(0.230084\pi\)
\(224\) −5.89526 10.2109i −0.393894 0.682244i
\(225\) 0 0
\(226\) 15.3440 26.5765i 1.02067 1.76784i
\(227\) −0.100851 + 1.15273i −0.00669369 + 0.0765092i −0.998807 0.0488368i \(-0.984449\pi\)
0.992113 + 0.125346i \(0.0400041\pi\)
\(228\) 0 0
\(229\) −8.62548 1.52090i −0.569988 0.100504i −0.118776 0.992921i \(-0.537897\pi\)
−0.451212 + 0.892417i \(0.649008\pi\)
\(230\) 20.9885 8.94914i 1.38394 0.590089i
\(231\) 0 0
\(232\) −0.253208 0.0221529i −0.0166240 0.00145441i
\(233\) 15.8052 4.23498i 1.03543 0.277443i 0.299213 0.954186i \(-0.403276\pi\)
0.736219 + 0.676743i \(0.236609\pi\)
\(234\) 0 0
\(235\) 2.00174 + 6.12703i 0.130579 + 0.399683i
\(236\) −2.66302 + 7.31658i −0.173348 + 0.476269i
\(237\) 0 0
\(238\) 9.45913 0.827567i 0.613145 0.0536432i
\(239\) 8.07123 2.93769i 0.522085 0.190023i −0.0675160 0.997718i \(-0.521507\pi\)
0.589601 + 0.807695i \(0.299285\pi\)
\(240\) 0 0
\(241\) 0.358872 + 2.03527i 0.0231170 + 0.131103i 0.994182 0.107712i \(-0.0343523\pi\)
−0.971065 + 0.238815i \(0.923241\pi\)
\(242\) −3.73583 + 3.73583i −0.240148 + 0.240148i
\(243\) 0 0
\(244\) 9.24864i 0.592083i
\(245\) −7.41805 7.92916i −0.473922 0.506576i
\(246\) 0 0
\(247\) −22.5618 10.5207i −1.43557 0.669417i
\(248\) 0.0356158 + 0.407090i 0.00226161 + 0.0258503i
\(249\) 0 0
\(250\) 18.6139 12.6869i 1.17725 0.802392i
\(251\) −9.55376 + 5.51587i −0.603028 + 0.348158i −0.770232 0.637764i \(-0.779860\pi\)
0.167204 + 0.985922i \(0.446526\pi\)
\(252\) 0 0
\(253\) 3.79398 + 14.1593i 0.238525 + 0.890189i
\(254\) −15.3866 + 12.9109i −0.965443 + 0.810103i
\(255\) 0 0
\(256\) 2.60580 14.7782i 0.162862 0.923639i
\(257\) 3.31253 + 4.73079i 0.206630 + 0.295098i 0.909069 0.416646i \(-0.136794\pi\)
−0.702439 + 0.711744i \(0.747906\pi\)
\(258\) 0 0
\(259\) −11.0748 13.1985i −0.688157 0.820114i
\(260\) −21.0065 18.8529i −1.30277 1.16921i
\(261\) 0 0
\(262\) −5.85647 + 21.8567i −0.361814 + 1.35031i
\(263\) −7.79728 16.7213i −0.480801 1.03108i −0.985794 0.167958i \(-0.946283\pi\)
0.504993 0.863123i \(-0.331495\pi\)
\(264\) 0 0
\(265\) 0.188623 0.147860i 0.0115870 0.00908296i
\(266\) −4.09828 11.2599i −0.251281 0.690390i
\(267\) 0 0
\(268\) 7.52358 + 5.26807i 0.459576 + 0.321798i
\(269\) 15.7262 0.958842 0.479421 0.877585i \(-0.340847\pi\)
0.479421 + 0.877585i \(0.340847\pi\)
\(270\) 0 0
\(271\) −17.4326 −1.05895 −0.529477 0.848324i \(-0.677612\pi\)
−0.529477 + 0.848324i \(0.677612\pi\)
\(272\) 10.2227 + 7.15800i 0.619841 + 0.434018i
\(273\) 0 0
\(274\) 13.5463 + 37.2181i 0.818362 + 2.24843i
\(275\) 6.38620 + 12.9870i 0.385102 + 0.783144i
\(276\) 0 0
\(277\) 6.49002 + 13.9179i 0.389947 + 0.836245i 0.999068 + 0.0431672i \(0.0137448\pi\)
−0.609120 + 0.793078i \(0.708477\pi\)
\(278\) 0.775471 2.89410i 0.0465097 0.173576i
\(279\) 0 0
\(280\) −0.0211709 0.391852i −0.00126521 0.0234176i
\(281\) −4.76302 5.67634i −0.284138 0.338622i 0.605031 0.796202i \(-0.293161\pi\)
−0.889168 + 0.457580i \(0.848716\pi\)
\(282\) 0 0
\(283\) 8.24647 + 11.7772i 0.490202 + 0.700081i 0.985696 0.168530i \(-0.0539021\pi\)
−0.495495 + 0.868611i \(0.665013\pi\)
\(284\) −3.24161 + 18.3841i −0.192354 + 1.09090i
\(285\) 0 0
\(286\) 27.3816 22.9759i 1.61911 1.35859i
\(287\) −0.322912 1.20512i −0.0190609 0.0711362i
\(288\) 0 0
\(289\) 5.75165 3.32072i 0.338332 0.195336i
\(290\) 8.11081 + 5.05000i 0.476283 + 0.296546i
\(291\) 0 0
\(292\) −1.49569 17.0958i −0.0875288 1.00046i
\(293\) −18.2561 8.51297i −1.06653 0.497333i −0.191549 0.981483i \(-0.561351\pi\)
−0.874985 + 0.484150i \(0.839129\pi\)
\(294\) 0 0
\(295\) 6.17335 5.77541i 0.359426 0.336258i
\(296\) 1.41025i 0.0819691i
\(297\) 0 0
\(298\) 7.07014 7.07014i 0.409562 0.409562i
\(299\) 5.39025 + 30.5696i 0.311726 + 1.76789i
\(300\) 0 0
\(301\) −1.01243 + 0.368493i −0.0583553 + 0.0212396i
\(302\) 41.6166 3.64098i 2.39477 0.209515i
\(303\) 0 0
\(304\) 5.38635 14.7989i 0.308928 0.848774i
\(305\) −4.54434 + 8.95451i −0.260208 + 0.512733i
\(306\) 0 0
\(307\) 11.5423 3.09276i 0.658756 0.176513i 0.0860714 0.996289i \(-0.472569\pi\)
0.572684 + 0.819776i \(0.305902\pi\)
\(308\) 8.69540 + 0.760749i 0.495467 + 0.0433477i
\(309\) 0 0
\(310\) 5.73131 14.2517i 0.325516 0.809444i
\(311\) −2.38442 0.420438i −0.135208 0.0238408i 0.105634 0.994405i \(-0.466313\pi\)
−0.240843 + 0.970564i \(0.577424\pi\)
\(312\) 0 0
\(313\) 1.06842 12.2121i 0.0603905 0.690267i −0.904303 0.426891i \(-0.859609\pi\)
0.964693 0.263375i \(-0.0848358\pi\)
\(314\) 6.84198 11.8506i 0.386115 0.668771i
\(315\) 0 0
\(316\) 1.50647 + 2.60929i 0.0847457 + 0.146784i
\(317\) −20.5585 + 9.58656i −1.15468 + 0.538435i −0.903112 0.429405i \(-0.858723\pi\)
−0.251566 + 0.967840i \(0.580945\pi\)
\(318\) 0 0
\(319\) −3.94565 + 4.70224i −0.220914 + 0.263275i
\(320\) 11.3717 15.1416i 0.635700 0.846444i
\(321\) 0 0
\(322\) −8.57003 + 12.2393i −0.477589 + 0.682068i
\(323\) 9.24330 + 9.24330i 0.514311 + 0.514311i
\(324\) 0 0
\(325\) 11.0750 + 28.5750i 0.614329 + 1.58505i
\(326\) −40.3696 + 7.11825i −2.23587 + 0.394243i
\(327\) 0 0
\(328\) −0.0431581 + 0.0925528i −0.00238301 + 0.00511038i
\(329\) −3.23343 2.71317i −0.178265 0.149582i
\(330\) 0 0
\(331\) 15.3336 + 5.58098i 0.842812 + 0.306758i 0.727106 0.686525i \(-0.240865\pi\)
0.115706 + 0.993284i \(0.463087\pi\)
\(332\) 33.6204 + 9.00856i 1.84516 + 0.494409i
\(333\) 0 0
\(334\) −0.822888 0.475095i −0.0450264 0.0259960i
\(335\) −4.69583 8.79726i −0.256561 0.480646i
\(336\) 0 0
\(337\) −3.28511 + 2.30026i −0.178951 + 0.125303i −0.659620 0.751599i \(-0.729283\pi\)
0.480669 + 0.876902i \(0.340394\pi\)
\(338\) 40.5469 28.3913i 2.20546 1.54428i
\(339\) 0 0
\(340\) 6.97943 + 13.0754i 0.378513 + 0.709113i
\(341\) 8.54661 + 4.93439i 0.462825 + 0.267212i
\(342\) 0 0
\(343\) 16.7687 + 4.49317i 0.905427 + 0.242608i
\(344\) 0.0828686 + 0.0301617i 0.00446798 + 0.00162621i
\(345\) 0 0
\(346\) −28.4598 23.8806i −1.53001 1.28383i
\(347\) 5.24496 11.2479i 0.281564 0.603816i −0.713762 0.700389i \(-0.753010\pi\)
0.995326 + 0.0965722i \(0.0307879\pi\)
\(348\) 0 0
\(349\) −7.52479 + 1.32682i −0.402793 + 0.0710232i −0.371375 0.928483i \(-0.621113\pi\)
−0.0314181 + 0.999506i \(0.510002\pi\)
\(350\) −5.95628 + 13.4952i −0.318377 + 0.721349i
\(351\) 0 0
\(352\) 16.4801 + 16.4801i 0.878395 + 0.878395i
\(353\) −10.2693 + 14.6661i −0.546579 + 0.780595i −0.993482 0.113987i \(-0.963638\pi\)
0.446904 + 0.894582i \(0.352527\pi\)
\(354\) 0 0
\(355\) 12.1716 16.2067i 0.646001 0.860161i
\(356\) 8.07725 9.62609i 0.428093 0.510182i
\(357\) 0 0
\(358\) −14.4548 + 6.74040i −0.763962 + 0.356241i
\(359\) −6.26521 10.8517i −0.330665 0.572729i 0.651977 0.758239i \(-0.273940\pi\)
−0.982642 + 0.185510i \(0.940606\pi\)
\(360\) 0 0
\(361\) −1.25189 + 2.16834i −0.0658891 + 0.114123i
\(362\) 3.46328 39.5854i 0.182026 2.08056i
\(363\) 0 0
\(364\) 18.2028 + 3.20964i 0.954084 + 0.168231i
\(365\) −6.95196 + 17.2871i −0.363882 + 0.904846i
\(366\) 0 0
\(367\) −13.6352 1.19292i −0.711750 0.0622701i −0.274470 0.961596i \(-0.588503\pi\)
−0.437280 + 0.899325i \(0.644058\pi\)
\(368\) −18.9683 + 5.08254i −0.988790 + 0.264946i
\(369\) 0 0
\(370\) 23.9903 47.2723i 1.24720 2.45757i
\(371\) −0.0536785 + 0.147481i −0.00278685 + 0.00765681i
\(372\) 0 0
\(373\) −12.0608 + 1.05518i −0.624485 + 0.0546353i −0.395006 0.918678i \(-0.629258\pi\)
−0.229478 + 0.973314i \(0.573702\pi\)
\(374\) −17.6375 + 6.41951i −0.912011 + 0.331945i
\(375\) 0 0
\(376\) 0.0599937 + 0.340241i 0.00309394 + 0.0175466i
\(377\) −9.19128 + 9.19128i −0.473375 + 0.473375i
\(378\) 0 0
\(379\) 22.5213i 1.15684i −0.815738 0.578421i \(-0.803669\pi\)
0.815738 0.578421i \(-0.196331\pi\)
\(380\) 13.6587 12.7782i 0.700674 0.655509i
\(381\) 0 0
\(382\) −15.9582 7.44142i −0.816491 0.380736i
\(383\) −1.26087 14.4118i −0.0644275 0.736410i −0.957864 0.287221i \(-0.907269\pi\)
0.893437 0.449189i \(-0.148287\pi\)
\(384\) 0 0
\(385\) −8.04507 5.00906i −0.410015 0.255286i
\(386\) 15.0774 8.70492i 0.767417 0.443069i
\(387\) 0 0
\(388\) 8.64201 + 32.2524i 0.438731 + 1.63737i
\(389\) 9.68308 8.12507i 0.490951 0.411957i −0.363416 0.931627i \(-0.618390\pi\)
0.854367 + 0.519670i \(0.173945\pi\)
\(390\) 0 0
\(391\) 2.83044 16.0522i 0.143141 0.811795i
\(392\) −0.333818 0.476742i −0.0168604 0.0240791i
\(393\) 0 0
\(394\) 2.59737 + 3.09542i 0.130853 + 0.155945i
\(395\) −0.176483 3.26651i −0.00887982 0.164356i
\(396\) 0 0
\(397\) 3.89075 14.5205i 0.195271 0.728761i −0.796926 0.604077i \(-0.793542\pi\)
0.992197 0.124684i \(-0.0397916\pi\)
\(398\) −15.2527 32.7096i −0.764550 1.63958i
\(399\) 0 0
\(400\) −17.3978 + 8.55516i −0.869889 + 0.427758i
\(401\) 8.96818 + 24.6399i 0.447849 + 1.23046i 0.934218 + 0.356703i \(0.116099\pi\)
−0.486369 + 0.873754i \(0.661679\pi\)
\(402\) 0 0
\(403\) 17.1186 + 11.9866i 0.852738 + 0.597094i
\(404\) 11.3237 0.563375
\(405\) 0 0
\(406\) −6.25667 −0.310513
\(407\) 27.8983 + 19.5346i 1.38287 + 0.968294i
\(408\) 0 0
\(409\) −2.57831 7.08384i −0.127489 0.350273i 0.859483 0.511164i \(-0.170786\pi\)
−0.986972 + 0.160891i \(0.948563\pi\)
\(410\) 3.02113 2.36824i 0.149203 0.116959i
\(411\) 0 0
\(412\) 3.41549 + 7.32453i 0.168269 + 0.360854i
\(413\) −1.43279 + 5.34723i −0.0705028 + 0.263120i
\(414\) 0 0
\(415\) −28.1248 25.2415i −1.38059 1.23906i
\(416\) 31.7237 + 37.8068i 1.55538 + 1.85363i
\(417\) 0 0
\(418\) 13.5858 + 19.4025i 0.664501 + 0.949006i
\(419\) −3.59622 + 20.3952i −0.175687 + 0.996370i 0.761661 + 0.647975i \(0.224384\pi\)
−0.937348 + 0.348394i \(0.886727\pi\)
\(420\) 0 0
\(421\) −5.26964 + 4.42176i −0.256827 + 0.215503i −0.762105 0.647453i \(-0.775834\pi\)
0.505279 + 0.862956i \(0.331390\pi\)
\(422\) 5.56643 + 20.7742i 0.270969 + 1.01127i
\(423\) 0 0
\(424\) 0.0111251 0.00642311i 0.000540285 0.000311934i
\(425\) −0.332837 16.0889i −0.0161450 0.780427i
\(426\) 0 0
\(427\) −0.573108 6.55066i −0.0277347 0.317009i
\(428\) 27.8032 + 12.9649i 1.34392 + 0.626680i
\(429\) 0 0
\(430\) −2.26470 2.42074i −0.109214 0.116739i
\(431\) 2.91928i 0.140617i 0.997525 + 0.0703084i \(0.0223983\pi\)
−0.997525 + 0.0703084i \(0.977602\pi\)
\(432\) 0 0
\(433\) 3.01763 3.01763i 0.145018 0.145018i −0.630870 0.775888i \(-0.717302\pi\)
0.775888 + 0.630870i \(0.217302\pi\)
\(434\) 1.74673 + 9.90621i 0.0838458 + 0.475513i
\(435\) 0 0
\(436\) 19.1873 6.98361i 0.918905 0.334454i
\(437\) −20.4913 + 1.79276i −0.980233 + 0.0857593i
\(438\) 0 0
\(439\) −1.28129 + 3.52030i −0.0611524 + 0.168015i −0.966506 0.256643i \(-0.917383\pi\)
0.905354 + 0.424658i \(0.139606\pi\)
\(440\) 0.240898 + 0.737353i 0.0114844 + 0.0351519i
\(441\) 0 0
\(442\) −38.3914 + 10.2870i −1.82609 + 0.489300i
\(443\) 27.8809 + 2.43927i 1.32466 + 0.115893i 0.727434 0.686177i \(-0.240713\pi\)
0.597229 + 0.802070i \(0.296268\pi\)
\(444\) 0 0
\(445\) −12.5502 + 5.35118i −0.594935 + 0.253670i
\(446\) −23.7107 4.18083i −1.12273 0.197968i
\(447\) 0 0
\(448\) −1.08076 + 12.3531i −0.0510611 + 0.583631i
\(449\) −4.77256 + 8.26631i −0.225231 + 0.390111i −0.956389 0.292097i \(-0.905647\pi\)
0.731158 + 0.682208i \(0.238980\pi\)
\(450\) 0 0
\(451\) 1.23311 + 2.13580i 0.0580647 + 0.100571i
\(452\) −28.4293 + 13.2568i −1.33720 + 0.623548i
\(453\) 0 0
\(454\) 1.49860 1.78596i 0.0703328 0.0838193i
\(455\) −16.0468 12.0515i −0.752286 0.564985i
\(456\) 0 0
\(457\) 20.3246 29.0265i 0.950745 1.35780i 0.0170039 0.999855i \(-0.494587\pi\)
0.933741 0.357949i \(-0.116524\pi\)
\(458\) 12.4782 + 12.4782i 0.583068 + 0.583068i
\(459\) 0 0
\(460\) −22.8208 4.81219i −1.06402 0.224369i
\(461\) −24.4088 + 4.30393i −1.13683 + 0.200454i −0.710219 0.703981i \(-0.751404\pi\)
−0.426612 + 0.904435i \(0.640293\pi\)
\(462\) 0 0
\(463\) −2.28775 + 4.90609i −0.106321 + 0.228005i −0.952269 0.305259i \(-0.901257\pi\)
0.845949 + 0.533264i \(0.179035\pi\)
\(464\) −6.29927 5.28572i −0.292436 0.245383i
\(465\) 0 0
\(466\) −30.9797 11.2757i −1.43511 0.522336i
\(467\) −39.5591 10.5998i −1.83058 0.490502i −0.832589 0.553891i \(-0.813143\pi\)
−0.997989 + 0.0633888i \(0.979809\pi\)
\(468\) 0 0
\(469\) 5.65527 + 3.26507i 0.261136 + 0.150767i
\(470\) 3.77695 12.4256i 0.174218 0.573151i
\(471\) 0 0
\(472\) 0.371173 0.259898i 0.0170846 0.0119628i
\(473\) 1.74456 1.22155i 0.0802149 0.0561671i
\(474\) 0 0
\(475\) −19.5029 + 5.66062i −0.894854 + 0.259727i
\(476\) −8.40545 4.85289i −0.385263 0.222432i
\(477\) 0 0
\(478\) −16.7160 4.47905i −0.764574 0.204867i
\(479\) 25.9636 + 9.44996i 1.18631 + 0.431780i 0.858425 0.512940i \(-0.171444\pi\)
0.327880 + 0.944719i \(0.393666\pi\)
\(480\) 0 0
\(481\) 55.2468 + 46.3576i 2.51904 + 2.11372i
\(482\) 1.75976 3.77382i 0.0801549 0.171893i
\(483\) 0 0
\(484\) 5.31835 0.937769i 0.241743 0.0426258i
\(485\) 7.48013 35.4730i 0.339655 1.61074i
\(486\) 0 0
\(487\) 28.3122 + 28.3122i 1.28295 + 1.28295i 0.938981 + 0.343969i \(0.111772\pi\)
0.343969 + 0.938981i \(0.388228\pi\)
\(488\) −0.308715 + 0.440891i −0.0139749 + 0.0199582i
\(489\) 0 0
\(490\) 3.07971 + 21.6593i 0.139127 + 0.978467i
\(491\) −15.4259 + 18.3839i −0.696161 + 0.829652i −0.992086 0.125559i \(-0.959928\pi\)
0.295925 + 0.955211i \(0.404372\pi\)
\(492\) 0 0
\(493\) 6.18602 2.88459i 0.278604 0.129915i
\(494\) 25.0786 + 43.4374i 1.12834 + 1.95434i
\(495\) 0 0
\(496\) −6.61027 + 11.4493i −0.296810 + 0.514090i
\(497\) −1.15678 + 13.2220i −0.0518886 + 0.593089i
\(498\) 0 0
\(499\) −31.1017 5.48406i −1.39230 0.245500i −0.573325 0.819328i \(-0.694347\pi\)
−0.818976 + 0.573828i \(0.805458\pi\)
\(500\) −23.0239 0.290269i −1.02966 0.0129812i
\(501\) 0 0
\(502\) 22.1423 + 1.93720i 0.988261 + 0.0864616i
\(503\) 2.72503 0.730168i 0.121503 0.0325566i −0.197555 0.980292i \(-0.563300\pi\)
0.319058 + 0.947735i \(0.396634\pi\)
\(504\) 0 0
\(505\) −10.9636 5.56393i −0.487873 0.247592i
\(506\) 10.1015 27.7536i 0.449066 1.23380i
\(507\) 0 0
\(508\) 20.4530 1.78941i 0.907455 0.0793920i
\(509\) −20.7599 + 7.55598i −0.920166 + 0.334913i −0.758304 0.651901i \(-0.773972\pi\)
−0.161861 + 0.986814i \(0.551750\pi\)
\(510\) 0 0
\(511\) −2.11875 12.0160i −0.0937279 0.531557i
\(512\) −22.7346 + 22.7346i −1.00474 + 1.00474i
\(513\) 0 0
\(514\) 11.6360i 0.513243i
\(515\) 0.292064 8.76980i 0.0128699 0.386444i
\(516\) 0 0
\(517\) 7.56184 + 3.52615i 0.332569 + 0.155080i
\(518\) 3.02553 + 34.5820i 0.132934 + 1.51944i
\(519\) 0 0
\(520\) 0.372095 + 1.59992i 0.0163175 + 0.0701614i
\(521\) 7.62484 4.40220i 0.334050 0.192864i −0.323588 0.946198i \(-0.604889\pi\)
0.657638 + 0.753334i \(0.271556\pi\)
\(522\) 0 0
\(523\) −0.332937 1.24254i −0.0145583 0.0543324i 0.958265 0.285883i \(-0.0922868\pi\)
−0.972823 + 0.231550i \(0.925620\pi\)
\(524\) 17.7181 14.8673i 0.774019 0.649479i
\(525\) 0 0
\(526\) −6.45507 + 36.6085i −0.281454 + 1.59621i
\(527\) −6.29419 8.98903i −0.274179 0.391568i
\(528\) 0 0
\(529\) 1.70263 + 2.02911i 0.0740274 + 0.0882224i
\(530\) −0.482186 + 0.0260515i −0.0209448 + 0.00113161i
\(531\) 0 0
\(532\) −3.17007 + 11.8309i −0.137440 + 0.512933i
\(533\) 2.20709 + 4.73311i 0.0955995 + 0.205014i
\(534\) 0 0
\(535\) −20.5487 26.2137i −0.888398 1.13332i
\(536\) −0.182810 0.502268i −0.00789621 0.0216947i
\(537\) 0 0
\(538\) −25.9551 18.1740i −1.11900 0.783535i
\(539\) −14.0551 −0.605398
\(540\) 0 0
\(541\) −9.16794 −0.394160 −0.197080 0.980387i \(-0.563146\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(542\) 28.7714 + 20.1460i 1.23584 + 0.865344i
\(543\) 0 0
\(544\) −8.86365 24.3527i −0.380026 1.04411i
\(545\) −22.0085 2.66622i −0.942741 0.114208i
\(546\) 0 0
\(547\) 1.95267 + 4.18752i 0.0834904 + 0.179046i 0.943621 0.331029i \(-0.107396\pi\)
−0.860130 + 0.510074i \(0.829618\pi\)
\(548\) 10.4782 39.1053i 0.447608 1.67050i
\(549\) 0 0
\(550\) 4.46837 28.8144i 0.190532 1.22865i
\(551\) −5.53663 6.59830i −0.235868 0.281097i
\(552\) 0 0
\(553\) 1.22870 + 1.75476i 0.0522496 + 0.0746202i
\(554\) 5.37283 30.4709i 0.228270 1.29458i
\(555\) 0 0
\(556\) −2.34610 + 1.96861i −0.0994968 + 0.0834878i
\(557\) −2.60809 9.73354i −0.110509 0.412423i 0.888403 0.459064i \(-0.151815\pi\)
−0.998912 + 0.0466405i \(0.985148\pi\)
\(558\) 0 0
\(559\) 3.90564 2.25492i 0.165191 0.0953730i
\(560\) 6.71031 10.7774i 0.283562 0.455430i
\(561\) 0 0
\(562\) 1.30121 + 14.8729i 0.0548881 + 0.627373i
\(563\) 15.0076 + 6.99817i 0.632496 + 0.294938i 0.712302 0.701873i \(-0.247652\pi\)
−0.0798064 + 0.996810i \(0.525430\pi\)
\(564\) 0 0
\(565\) 34.0390 + 1.13361i 1.43203 + 0.0476914i
\(566\) 28.9676i 1.21760i
\(567\) 0 0
\(568\) 0.768184 0.768184i 0.0322323 0.0322323i
\(569\) −1.89828 10.7657i −0.0795799 0.451320i −0.998395 0.0566320i \(-0.981964\pi\)
0.918815 0.394688i \(-0.129147\pi\)
\(570\) 0 0
\(571\) 15.2515 5.55110i 0.638256 0.232306i −0.00256475 0.999997i \(-0.500816\pi\)
0.640821 + 0.767691i \(0.278594\pi\)
\(572\) −36.3976 + 3.18438i −1.52186 + 0.133146i
\(573\) 0 0
\(574\) −0.859755 + 2.36216i −0.0358855 + 0.0985946i
\(575\) 19.7305 + 15.8722i 0.822820 + 0.661916i
\(576\) 0 0
\(577\) 17.0234 4.56140i 0.708693 0.189894i 0.113572 0.993530i \(-0.463771\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(578\) −13.3304 1.16625i −0.554469 0.0485098i
\(579\) 0 0
\(580\) −3.83051 8.98374i −0.159053 0.373030i
\(581\) 24.3710 + 4.29727i 1.01108 + 0.178281i
\(582\) 0 0
\(583\) 0.0270388 0.309055i 0.00111983 0.0127998i
\(584\) −0.499351 + 0.864901i −0.0206633 + 0.0357898i
\(585\) 0 0
\(586\) 20.2926 + 35.1479i 0.838280 + 1.45194i
\(587\) 7.40736 3.45411i 0.305734 0.142566i −0.263696 0.964606i \(-0.584942\pi\)
0.569430 + 0.822040i \(0.307164\pi\)
\(588\) 0 0
\(589\) −8.90140 + 10.6083i −0.366776 + 0.437106i
\(590\) −16.8631 + 2.39774i −0.694243 + 0.0987135i
\(591\) 0 0
\(592\) −26.1692 + 37.3735i −1.07555 + 1.53604i
\(593\) −28.1239 28.1239i −1.15491 1.15491i −0.985555 0.169357i \(-0.945831\pi\)
−0.169357 0.985555i \(-0.554169\pi\)
\(594\) 0 0
\(595\) 5.75366 + 8.82860i 0.235877 + 0.361937i
\(596\) −10.0651 + 1.77475i −0.412282 + 0.0726965i
\(597\) 0 0
\(598\) 26.4315 56.6826i 1.08087 2.31793i
\(599\) 27.5968 + 23.1564i 1.12757 + 0.946147i 0.998962 0.0455483i \(-0.0145035\pi\)
0.128612 + 0.991695i \(0.458948\pi\)
\(600\) 0 0
\(601\) −21.4617 7.81141i −0.875440 0.318634i −0.135072 0.990836i \(-0.543126\pi\)
−0.740368 + 0.672202i \(0.765349\pi\)
\(602\) 2.09680 + 0.561836i 0.0854593 + 0.0228987i
\(603\) 0 0
\(604\) −36.9808 21.3509i −1.50473 0.868755i
\(605\) −5.60999 1.70524i −0.228078 0.0693279i
\(606\) 0 0
\(607\) −7.00562 + 4.90539i −0.284349 + 0.199104i −0.707046 0.707168i \(-0.749973\pi\)
0.422696 + 0.906271i \(0.361084\pi\)
\(608\) −26.7897 + 18.7583i −1.08647 + 0.760751i
\(609\) 0 0
\(610\) 17.8485 9.52721i 0.722663 0.385745i
\(611\) 15.3011 + 8.83410i 0.619017 + 0.357389i
\(612\) 0 0
\(613\) −35.7827 9.58796i −1.44525 0.387254i −0.550882 0.834583i \(-0.685709\pi\)
−0.894369 + 0.447329i \(0.852375\pi\)
\(614\) −22.6241 8.23450i −0.913034 0.332317i
\(615\) 0 0
\(616\) −0.389125 0.326514i −0.0156783 0.0131556i
\(617\) 5.17963 11.1077i 0.208524 0.447181i −0.774032 0.633146i \(-0.781763\pi\)
0.982556 + 0.185965i \(0.0595411\pi\)
\(618\) 0 0
\(619\) 8.63834 1.52317i 0.347204 0.0612215i 0.00267331 0.999996i \(-0.499149\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(620\) −13.1546 + 8.57294i −0.528301 + 0.344297i
\(621\) 0 0
\(622\) 3.44947 + 3.44947i 0.138311 + 0.138311i
\(623\) 5.12449 7.31853i 0.205308 0.293211i
\(624\) 0 0
\(625\) 22.1491 + 11.5939i 0.885963 + 0.463756i
\(626\) −15.8763 + 18.9206i −0.634543 + 0.756218i
\(627\) 0 0
\(628\) −12.6768 + 5.91130i −0.505860 + 0.235887i
\(629\) −18.9351 32.7966i −0.754992 1.30769i
\(630\) 0 0
\(631\) 16.1540 27.9796i 0.643083 1.11385i −0.341658 0.939824i \(-0.610989\pi\)
0.984741 0.174027i \(-0.0556781\pi\)
\(632\) 0.0152819 0.174673i 0.000607880 0.00694810i
\(633\) 0 0
\(634\) 45.0092 + 7.93634i 1.78755 + 0.315192i
\(635\) −20.6818 8.31714i −0.820731 0.330056i
\(636\) 0 0
\(637\) −29.6497 2.59401i −1.17476 0.102778i
\(638\) 11.9462 3.20098i 0.472955 0.126728i
\(639\) 0 0
\(640\) −2.03708 + 0.665529i −0.0805228 + 0.0263073i
\(641\) 3.35944 9.23000i 0.132690 0.364563i −0.855499 0.517805i \(-0.826749\pi\)
0.988189 + 0.153242i \(0.0489715\pi\)
\(642\) 0 0
\(643\) 18.5293 1.62110i 0.730723 0.0639299i 0.284279 0.958742i \(-0.408246\pi\)
0.446444 + 0.894812i \(0.352690\pi\)
\(644\) 14.3516 5.22355i 0.565532 0.205837i
\(645\) 0 0
\(646\) −4.57349 25.9375i −0.179942 1.02050i
\(647\) 14.2018 14.2018i 0.558331 0.558331i −0.370501 0.928832i \(-0.620814\pi\)
0.928832 + 0.370501i \(0.120814\pi\)
\(648\) 0 0
\(649\) 10.9428i 0.429542i
\(650\) 14.7441 59.9601i 0.578312 2.35183i
\(651\) 0 0
\(652\) 37.9754 + 17.7082i 1.48723 + 0.693507i
\(653\) −1.73834 19.8693i −0.0680265 0.777546i −0.951215 0.308528i \(-0.900164\pi\)
0.883189 0.469018i \(-0.155392\pi\)
\(654\) 0 0
\(655\) −24.4597 + 5.68860i −0.955719 + 0.222272i
\(656\) −2.86119 + 1.65191i −0.111711 + 0.0644963i
\(657\) 0 0
\(658\) 2.20110 + 8.21463i 0.0858080 + 0.320240i
\(659\) −0.815140 + 0.683983i −0.0317533 + 0.0266442i −0.658526 0.752558i \(-0.728820\pi\)
0.626773 + 0.779202i \(0.284375\pi\)
\(660\) 0 0
\(661\) −5.78183 + 32.7904i −0.224887 + 1.27540i 0.638014 + 0.770025i \(0.279756\pi\)
−0.862901 + 0.505373i \(0.831355\pi\)
\(662\) −18.8576 26.9314i −0.732920 1.04672i
\(663\) 0 0
\(664\) −1.30202 1.55168i −0.0505280 0.0602169i
\(665\) 8.88238 9.89699i 0.344444 0.383789i
\(666\) 0 0
\(667\) −2.77981 + 10.3744i −0.107635 + 0.401699i
\(668\) 0.410470 + 0.880256i 0.0158816 + 0.0340581i
\(669\) 0 0
\(670\) −2.41637 + 19.9461i −0.0933525 + 0.770585i
\(671\) 4.44565 + 12.2143i 0.171622 + 0.471529i
\(672\) 0 0
\(673\) −20.0466 14.0367i −0.772738 0.541077i 0.119397 0.992847i \(-0.461904\pi\)
−0.892135 + 0.451770i \(0.850793\pi\)
\(674\) 8.08017 0.311236
\(675\) 0 0
\(676\) −50.5961 −1.94600
\(677\) 16.7682 + 11.7412i 0.644455 + 0.451252i 0.849563 0.527487i \(-0.176866\pi\)
−0.205108 + 0.978739i \(0.565755\pi\)
\(678\) 0 0
\(679\) 8.11957 + 22.3083i 0.311601 + 0.856115i
\(680\) 0.103735 0.856287i 0.00397805 0.0328371i
\(681\) 0 0
\(682\) −8.40325 18.0208i −0.321777 0.690053i
\(683\) 5.71751 21.3380i 0.218774 0.816477i −0.766029 0.642806i \(-0.777770\pi\)
0.984804 0.173671i \(-0.0555630\pi\)
\(684\) 0 0
\(685\) −29.3595 + 32.7132i −1.12177 + 1.24991i
\(686\) −22.4833 26.7945i −0.858416 1.02302i
\(687\) 0 0
\(688\) 1.63643 + 2.33707i 0.0623884 + 0.0890999i
\(689\) 0.114078 0.646969i 0.00434603 0.0246476i
\(690\) 0 0
\(691\) 13.7398 11.5291i 0.522688 0.438587i −0.342880 0.939379i \(-0.611402\pi\)
0.865568 + 0.500792i \(0.166958\pi\)
\(692\) 9.82872 + 36.6813i 0.373632 + 1.39441i
\(693\) 0 0
\(694\) −21.6551 + 12.5026i −0.822016 + 0.474591i
\(695\) 3.23877 0.753243i 0.122854 0.0285721i
\(696\) 0 0
\(697\) −0.239008 2.73187i −0.00905306 0.103477i
\(698\) 13.9526 + 6.50619i 0.528112 + 0.246263i
\(699\) 0 0
\(700\) 12.8994 7.80759i 0.487552 0.295099i
\(701\) 11.4005i 0.430590i 0.976549 + 0.215295i \(0.0690713\pi\)
−0.976549 + 0.215295i \(0.930929\pi\)
\(702\) 0 0
\(703\) −33.7929 + 33.7929i −1.27452 + 1.27452i
\(704\) −4.25644 24.1395i −0.160421 0.909791i
\(705\) 0 0
\(706\) 33.8977 12.3377i 1.27576 0.464337i
\(707\) 8.02039 0.701693i 0.301638 0.0263899i
\(708\) 0 0
\(709\) 5.28444 14.5189i 0.198461 0.545268i −0.800043 0.599943i \(-0.795190\pi\)
0.998504 + 0.0546749i \(0.0174122\pi\)
\(710\) −38.8178 + 12.6820i −1.45680 + 0.475948i
\(711\) 0 0
\(712\) −0.706365 + 0.189270i −0.0264722 + 0.00709319i
\(713\) 17.2019 + 1.50497i 0.644216 + 0.0563616i
\(714\) 0 0
\(715\) 36.8047 + 14.8010i 1.37642 + 0.553524i
\(716\) 16.0551 + 2.83094i 0.600006 + 0.105797i
\(717\) 0 0
\(718\) −2.20038 + 25.1504i −0.0821174 + 0.938606i
\(719\) −4.71157 + 8.16068i −0.175712 + 0.304342i −0.940407 0.340050i \(-0.889556\pi\)
0.764695 + 0.644392i \(0.222889\pi\)
\(720\) 0 0
\(721\) 2.87301 + 4.97620i 0.106997 + 0.185323i
\(722\) 4.57202 2.13197i 0.170153 0.0793437i
\(723\) 0 0
\(724\) −26.1085 + 31.1149i −0.970315 + 1.15638i
\(725\) −0.705492 + 10.5802i −0.0262013 + 0.392938i
\(726\) 0 0
\(727\) −24.6272 + 35.1712i −0.913371 + 1.30443i 0.0389219 + 0.999242i \(0.487608\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(728\) −0.760607 0.760607i −0.0281900 0.0281900i
\(729\) 0 0
\(730\) 31.4516 20.4972i 1.16408 0.758636i
\(731\) −2.33216 + 0.411222i −0.0862579 + 0.0152096i
\(732\) 0 0
\(733\) 0.264636 0.567513i 0.00977454 0.0209616i −0.901360 0.433071i \(-0.857430\pi\)
0.911134 + 0.412109i \(0.135208\pi\)
\(734\) 21.1255 + 17.7264i 0.779755 + 0.654292i
\(735\) 0 0
\(736\) 38.3205 + 13.9475i 1.41251 + 0.514112i
\(737\) −12.4684 3.34089i −0.459278 0.123063i
\(738\) 0 0
\(739\) 23.6846 + 13.6743i 0.871251 + 0.503017i 0.867764 0.496977i \(-0.165557\pi\)
0.00348723 + 0.999994i \(0.498890\pi\)
\(740\) −47.8028 + 25.5163i −1.75726 + 0.937999i
\(741\) 0 0
\(742\) 0.259029 0.181374i 0.00950927 0.00665846i
\(743\) −29.3796 + 20.5718i −1.07783 + 0.754706i −0.970882 0.239558i \(-0.922997\pi\)
−0.106950 + 0.994264i \(0.534109\pi\)
\(744\) 0 0
\(745\) 10.6170 + 3.22720i 0.388978 + 0.118236i
\(746\) 21.1251 + 12.1966i 0.773444 + 0.446548i
\(747\) 0 0
\(748\) 18.5318 + 4.96558i 0.677589 + 0.181559i
\(749\) 20.4960 + 7.45993i 0.748907 + 0.272580i
\(750\) 0 0
\(751\) −27.0935 22.7342i −0.988657 0.829582i −0.00328459 0.999995i \(-0.501046\pi\)
−0.985373 + 0.170413i \(0.945490\pi\)
\(752\) −4.72374 + 10.1301i −0.172257 + 0.369407i
\(753\) 0 0
\(754\) 25.7916 4.54775i 0.939274 0.165619i
\(755\) 25.3139 + 38.8425i 0.921267 + 1.41362i
\(756\) 0 0
\(757\) −26.1262 26.1262i −0.949573 0.949573i 0.0492153 0.998788i \(-0.484328\pi\)
−0.998788 + 0.0492153i \(0.984328\pi\)
\(758\) −26.0268 + 37.1701i −0.945336 + 1.35008i
\(759\) 0 0
\(760\) −1.07765 + 0.153230i −0.0390906 + 0.00555824i
\(761\) −5.19201 + 6.18759i −0.188210 + 0.224300i −0.851896 0.523712i \(-0.824547\pi\)
0.663685 + 0.748012i \(0.268991\pi\)
\(762\) 0 0
\(763\) 13.1573 6.13535i 0.476326 0.222115i
\(764\) 8.99914 + 15.5870i 0.325577 + 0.563917i
\(765\) 0 0
\(766\) −14.5740 + 25.2430i −0.526582 + 0.912066i
\(767\) 2.01960 23.0841i 0.0729234 0.833519i
\(768\) 0 0
\(769\) −16.0619 2.83215i −0.579208 0.102130i −0.123634 0.992328i \(-0.539455\pi\)
−0.455574 + 0.890198i \(0.650566\pi\)
\(770\) 7.48918 + 17.5645i 0.269891 + 0.632979i
\(771\) 0 0
\(772\) −17.7281 1.55101i −0.638048 0.0558220i
\(773\) −11.4302 + 3.06271i −0.411116 + 0.110158i −0.458448 0.888721i \(-0.651595\pi\)
0.0473325 + 0.998879i \(0.484928\pi\)
\(774\) 0 0
\(775\) 16.9486 1.83675i 0.608811 0.0659781i
\(776\) 0.664599 1.82597i 0.0238577 0.0655485i
\(777\) 0 0
\(778\) −25.3711 + 2.21968i −0.909598 + 0.0795795i
\(779\) −3.25195 + 1.18361i −0.116513 + 0.0424073i
\(780\) 0 0
\(781\) −4.55583 25.8374i −0.163020 0.924534i
\(782\) −23.2222 + 23.2222i −0.830425 + 0.830425i
\(783\) 0 0
\(784\) 18.8287i 0.672455i
\(785\) 15.1782 + 0.505485i 0.541733 + 0.0180415i
\(786\) 0 0
\(787\) −43.1572 20.1245i −1.53839 0.717361i −0.545689 0.837988i \(-0.683732\pi\)
−0.992698 + 0.120627i \(0.961510\pi\)
\(788\) −0.359985 4.11465i −0.0128240 0.146578i
\(789\) 0 0
\(790\) −3.48368 + 5.59514i −0.123944 + 0.199066i
\(791\) −19.3145 + 11.1513i −0.686746 + 0.396493i
\(792\) 0 0
\(793\) 7.12394 + 26.5869i 0.252979 + 0.944129i
\(794\) −23.2020 + 19.4688i −0.823409 + 0.690922i
\(795\) 0 0
\(796\) −6.40609 + 36.3307i −0.227058 + 1.28771i
\(797\) −9.48608 13.5475i −0.336014 0.479878i 0.615216 0.788358i \(-0.289069\pi\)
−0.951231 + 0.308480i \(0.900180\pi\)
\(798\) 0 0
\(799\) −5.96354 7.10708i −0.210975 0.251430i
\(800\) 39.7851 + 6.16964i 1.40662 + 0.218130i
\(801\) 0 0
\(802\) 13.6736 51.0307i 0.482833 1.80196i
\(803\) 10.1930 + 21.8589i 0.359702 + 0.771383i
\(804\) 0 0
\(805\) −16.4618 1.99426i −0.580202 0.0702885i
\(806\) −14.4009 39.5663i −0.507252 1.39366i
\(807\) 0 0
\(808\) −0.539812 0.377980i −0.0189905 0.0132973i
\(809\) 21.1013 0.741881 0.370941 0.928657i \(-0.379035\pi\)
0.370941 + 0.928657i \(0.379035\pi\)
\(810\) 0 0
\(811\) 3.03312 0.106507 0.0532537 0.998581i \(-0.483041\pi\)
0.0532537 + 0.998581i \(0.483041\pi\)
\(812\) 5.23879 + 3.66824i 0.183845 + 0.128730i
\(813\) 0 0
\(814\) −23.4693 64.4814i −0.822599 2.26007i
\(815\) −28.0667 35.8043i −0.983133 1.25417i
\(816\) 0 0
\(817\) 1.26298 + 2.70847i 0.0441861 + 0.0947574i
\(818\) −3.93110 + 14.6711i −0.137448 + 0.512962i
\(819\) 0 0
\(820\) −3.91811 + 0.211687i −0.136826 + 0.00739244i
\(821\) −7.72326 9.20422i −0.269544 0.321230i 0.614246 0.789115i \(-0.289460\pi\)
−0.883789 + 0.467885i \(0.845016\pi\)
\(822\) 0 0
\(823\) 13.6442 + 19.4859i 0.475607 + 0.679237i 0.983236 0.182339i \(-0.0583668\pi\)
−0.507629 + 0.861576i \(0.669478\pi\)
\(824\) 0.0816702 0.463175i 0.00284512 0.0161355i
\(825\) 0 0
\(826\) 8.54427 7.16949i 0.297293 0.249459i
\(827\) 12.0136 + 44.8353i 0.417753 + 1.55907i 0.779257 + 0.626704i \(0.215597\pi\)
−0.361504 + 0.932370i \(0.617737\pi\)
\(828\) 0 0
\(829\) −27.8169 + 16.0601i −0.966123 + 0.557791i −0.898052 0.439889i \(-0.855018\pi\)
−0.0680706 + 0.997681i \(0.521684\pi\)
\(830\) 17.2479 + 74.1622i 0.598684 + 2.57421i
\(831\) 0 0
\(832\) −4.52390 51.7084i −0.156838 1.79267i
\(833\) 14.1643 + 6.60493i 0.490765 + 0.228847i
\(834\) 0 0
\(835\) 0.0351000 1.05395i 0.00121468 0.0364734i
\(836\) 24.2112i 0.837361i
\(837\) 0 0
\(838\) 29.5051 29.5051i 1.01924 1.01924i
\(839\) −8.77845 49.7851i −0.303066 1.71877i −0.632472 0.774583i \(-0.717960\pi\)
0.329406 0.944188i \(-0.393151\pi\)
\(840\) 0 0
\(841\) 23.0248 8.38035i 0.793959 0.288977i
\(842\) 13.8072 1.20798i 0.475829 0.0416296i
\(843\) 0 0
\(844\) 7.51891 20.6580i 0.258812 0.711079i
\(845\) 48.9870 + 24.8605i 1.68520 + 0.855227i
\(846\) 0 0
\(847\) 3.70879 0.993767i 0.127436 0.0341463i
\(848\) 0.414021 + 0.0362221i 0.0142175 + 0.00124387i
\(849\) 0 0
\(850\) −18.0439 + 26.9385i −0.618899 + 0.923982i
\(851\) 58.6858 + 10.3479i 2.01172 + 0.354721i
\(852\) 0 0
\(853\) 4.44262 50.7794i 0.152112 1.73865i −0.410438 0.911889i \(-0.634624\pi\)
0.562550 0.826763i \(-0.309820\pi\)
\(854\) −6.62440 + 11.4738i −0.226682 + 0.392625i
\(855\) 0 0
\(856\) −0.892646 1.54611i −0.0305100 0.0528449i
\(857\) 9.12817 4.25654i 0.311812 0.145400i −0.260412 0.965498i \(-0.583858\pi\)
0.572224 + 0.820097i \(0.306081\pi\)
\(858\) 0 0
\(859\) −8.01487 + 9.55175i −0.273464 + 0.325902i −0.885245 0.465126i \(-0.846009\pi\)
0.611781 + 0.791027i \(0.290453\pi\)
\(860\) 0.477000 + 3.35470i 0.0162656 + 0.114394i
\(861\) 0 0
\(862\) 3.37367 4.81810i 0.114908 0.164105i
\(863\) −23.9621 23.9621i −0.815678 0.815678i 0.169800 0.985479i \(-0.445688\pi\)
−0.985479 + 0.169800i \(0.945688\pi\)
\(864\) 0 0
\(865\) 8.50730 40.3441i 0.289257 1.37174i
\(866\) −8.46774 + 1.49309i −0.287745 + 0.0507373i
\(867\) 0 0
\(868\) 4.34538 9.31869i 0.147492 0.316297i
\(869\) −3.24378 2.72185i −0.110038 0.0923326i
\(870\) 0 0
\(871\) −25.6857 9.34885i −0.870328 0.316774i
\(872\) −1.14779 0.307549i −0.0388690 0.0104149i
\(873\) 0 0
\(874\) 35.8915 + 20.7220i 1.21405 + 0.700932i
\(875\) −16.3255 + 1.22113i −0.551901 + 0.0412816i
\(876\) 0 0
\(877\) 38.4629 26.9320i 1.29880 0.909430i 0.299794 0.954004i \(-0.403082\pi\)
0.999006 + 0.0445739i \(0.0141930\pi\)
\(878\) 6.18293 4.32933i 0.208664 0.146108i
\(879\) 0 0
\(880\) −7.29851 + 24.0110i −0.246033 + 0.809412i
\(881\) −20.2756 11.7061i −0.683103 0.394390i 0.117920 0.993023i \(-0.462377\pi\)
−0.801023 + 0.598633i \(0.795711\pi\)
\(882\) 0 0
\(883\) 6.11319 + 1.63802i 0.205725 + 0.0551239i 0.360210 0.932871i \(-0.382705\pi\)
−0.154485 + 0.987995i \(0.549372\pi\)
\(884\) 38.1768 + 13.8952i 1.28402 + 0.467347i
\(885\) 0 0
\(886\) −43.1969 36.2465i −1.45123 1.21773i
\(887\) 13.8426 29.6855i 0.464788 0.996741i −0.524587 0.851357i \(-0.675780\pi\)
0.989375 0.145384i \(-0.0464419\pi\)
\(888\) 0 0
\(889\) 14.3756 2.53481i 0.482144 0.0850149i
\(890\) 26.8974 + 5.67182i 0.901604 + 0.190120i
\(891\) 0 0
\(892\) 17.4021 + 17.4021i 0.582665 + 0.582665i
\(893\) −6.71538 + 9.59056i −0.224722 + 0.320936i
\(894\) 0 0
\(895\) −14.1535 10.6296i −0.473099 0.355309i
\(896\) 0.902060 1.07503i 0.0301357 0.0359143i
\(897\) 0 0
\(898\) 17.4298 8.12765i 0.581640 0.271223i
\(899\) 3.61538 + 6.26203i 0.120580 + 0.208850i
\(900\) 0 0
\(901\) −0.172483 + 0.298750i −0.00574625 + 0.00995280i
\(902\) 0.433074 4.95006i 0.0144198 0.164819i
\(903\) 0 0
\(904\) 1.79776 + 0.316994i 0.0597926 + 0.0105430i
\(905\) 40.5666 17.2969i 1.34848 0.574968i
\(906\) 0 0
\(907\) 28.5313 + 2.49616i 0.947365 + 0.0828837i 0.550355 0.834931i \(-0.314492\pi\)
0.397010 + 0.917814i \(0.370048\pi\)
\(908\) −2.30189 + 0.616790i −0.0763910 + 0.0204689i
\(909\) 0 0
\(910\) 12.5569 + 38.4349i 0.416258 + 1.27410i
\(911\) 6.61616 18.1777i 0.219203 0.602255i −0.780536 0.625111i \(-0.785054\pi\)
0.999739 + 0.0228557i \(0.00727584\pi\)
\(912\) 0 0
\(913\) −48.7315 + 4.26345i −1.61278 + 0.141100i
\(914\) −67.0891 + 24.4184i −2.21911 + 0.807690i
\(915\) 0 0
\(916\) −3.13228 17.7641i −0.103493 0.586941i
\(917\) 11.6282 11.6282i 0.383996 0.383996i
\(918\) 0 0
\(919\) 44.6775i 1.47377i 0.676016 + 0.736887i \(0.263705\pi\)
−0.676016 + 0.736887i \(0.736295\pi\)
\(920\) 0.927260 + 0.991149i 0.0305708 + 0.0326772i
\(921\) 0 0
\(922\) 45.2591 + 21.1047i 1.49053 + 0.695046i
\(923\) −4.84210 55.3454i −0.159380 1.82172i
\(924\) 0 0
\(925\) 58.8200 1.21683i 1.93399 0.0400092i
\(926\) 9.44552 5.45337i 0.310399 0.179209i
\(927\) 0 0
\(928\) 4.41970 + 16.4946i 0.145084 + 0.541461i
\(929\) −40.3230 + 33.8350i −1.32296 + 1.11009i −0.337286 + 0.941402i \(0.609509\pi\)
−0.985669 + 0.168689i \(0.946047\pi\)
\(930\) 0 0
\(931\) 3.42478 19.4229i 0.112243 0.636560i
\(932\) 19.3288 + 27.6044i 0.633137 + 0.904213i
\(933\) 0 0
\(934\) 53.0403 + 63.2110i 1.73553 + 2.06833i
\(935\) −15.5026 13.9133i −0.506988 0.455013i
\(936\) 0 0
\(937\) 3.71263 13.8557i 0.121286 0.452647i −0.878394 0.477938i \(-0.841384\pi\)
0.999680 + 0.0252908i \(0.00805116\pi\)
\(938\) −5.56041 11.9243i −0.181554 0.389343i
\(939\) 0 0
\(940\) −10.4475 + 8.18973i −0.340761 + 0.267119i
\(941\) 0.0906224 + 0.248983i 0.00295420 + 0.00811661i 0.941161 0.337959i \(-0.109736\pi\)
−0.938207 + 0.346075i \(0.887514\pi\)
\(942\) 0 0
\(943\) 3.53479 + 2.47509i 0.115109 + 0.0806000i
\(944\) 14.6593 0.477121
\(945\) 0 0
\(946\) −4.29098 −0.139512
\(947\) 27.9252 + 19.5534i 0.907446 + 0.635401i 0.931276 0.364315i \(-0.118697\pi\)
−0.0238294 + 0.999716i \(0.507586\pi\)
\(948\) 0 0
\(949\) 17.4680 + 47.9930i 0.567037 + 1.55792i
\(950\) 38.7301 + 13.1960i 1.25657 + 0.428135i
\(951\) 0 0
\(952\) 0.238709 + 0.511912i 0.00773659 + 0.0165912i
\(953\) −6.91874 + 25.8211i −0.224120 + 0.836427i 0.758635 + 0.651516i \(0.225867\pi\)
−0.982755 + 0.184912i \(0.940800\pi\)
\(954\) 0 0
\(955\) −1.05425 19.5130i −0.0341146 0.631426i
\(956\) 11.3705 + 13.5509i 0.367749 + 0.438266i
\(957\) 0 0
\(958\) −31.9305 45.6014i −1.03163 1.47331i
\(959\) 4.99834 28.3470i 0.161405 0.915372i
\(960\) 0 0
\(961\) −14.8420 + 12.4539i −0.478775 + 0.401740i
\(962\) −37.6084 140.356i −1.21254 4.52528i
\(963\) 0 0
\(964\) −3.68603 + 2.12813i −0.118719 + 0.0685425i
\(965\) 16.4022 + 10.2124i 0.528006 + 0.328750i
\(966\) 0 0
\(967\) −1.77416 20.2788i −0.0570532 0.652121i −0.969849 0.243706i \(-0.921637\pi\)
0.912796 0.408416i \(-0.133919\pi\)
\(968\) −0.284833 0.132820i −0.00915488 0.00426899i
\(969\) 0 0
\(970\) −53.3399 + 49.9016i −1.71264 + 1.60224i
\(971\) 40.5268i 1.30057i 0.759692 + 0.650284i \(0.225350\pi\)
−0.759692 + 0.650284i \(0.774650\pi\)
\(972\) 0 0
\(973\) −1.53972 + 1.53972i −0.0493610 + 0.0493610i
\(974\) −14.0086 79.4468i −0.448865 2.54564i
\(975\) 0 0
\(976\) −16.3627 + 5.95554i −0.523758 + 0.190632i
\(977\) 35.4680 3.10305i 1.13472 0.0992752i 0.495721 0.868482i \(-0.334904\pi\)
0.639000 + 0.769207i \(0.279348\pi\)
\(978\) 0 0
\(979\) −6.04024 + 16.5954i −0.193047 + 0.530392i
\(980\) 10.1200 19.9412i 0.323272 0.636999i
\(981\) 0 0
\(982\) 46.7049 12.5145i 1.49041 0.399355i
\(983\) −36.5814 3.20046i −1.16677 0.102079i −0.512735 0.858547i \(-0.671368\pi\)
−0.654030 + 0.756468i \(0.726923\pi\)
\(984\) 0 0
\(985\) −1.67321 + 4.16068i −0.0533128 + 0.132570i
\(986\) −13.5432 2.38804i −0.431305 0.0760507i
\(987\) 0 0
\(988\) 4.46840 51.0740i 0.142159 1.62488i
\(989\) 1.86320 3.22716i 0.0592464 0.102618i
\(990\) 0 0
\(991\) 6.40763 + 11.0983i 0.203545 + 0.352550i 0.949668 0.313258i \(-0.101420\pi\)
−0.746123 + 0.665808i \(0.768087\pi\)
\(992\) 24.8820 11.6027i 0.790005 0.368385i
\(993\) 0 0
\(994\) 17.1893 20.4854i 0.545210 0.649756i
\(995\) 24.0536 32.0277i 0.762549 1.01535i
\(996\) 0 0
\(997\) 31.6947 45.2647i 1.00378 1.43355i 0.105349 0.994435i \(-0.466404\pi\)
0.898432 0.439113i \(-0.144707\pi\)
\(998\) 44.9938 + 44.9938i 1.42425 + 1.42425i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.152.3 192
3.2 odd 2 135.2.q.a.122.14 yes 192
5.3 odd 4 inner 405.2.r.a.233.3 192
15.2 even 4 675.2.ba.b.68.3 192
15.8 even 4 135.2.q.a.68.14 yes 192
15.14 odd 2 675.2.ba.b.257.3 192
27.2 odd 18 inner 405.2.r.a.332.3 192
27.25 even 9 135.2.q.a.2.14 192
135.52 odd 36 675.2.ba.b.218.3 192
135.79 even 18 675.2.ba.b.407.3 192
135.83 even 36 inner 405.2.r.a.8.3 192
135.133 odd 36 135.2.q.a.83.14 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.14 192 27.25 even 9
135.2.q.a.68.14 yes 192 15.8 even 4
135.2.q.a.83.14 yes 192 135.133 odd 36
135.2.q.a.122.14 yes 192 3.2 odd 2
405.2.r.a.8.3 192 135.83 even 36 inner
405.2.r.a.152.3 192 1.1 even 1 trivial
405.2.r.a.233.3 192 5.3 odd 4 inner
405.2.r.a.332.3 192 27.2 odd 18 inner
675.2.ba.b.68.3 192 15.2 even 4
675.2.ba.b.218.3 192 135.52 odd 36
675.2.ba.b.257.3 192 15.14 odd 2
675.2.ba.b.407.3 192 135.79 even 18