Properties

Label 405.2.r.a.152.15
Level $405$
Weight $2$
Character 405.152
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 152.15
Character \(\chi\) \(=\) 405.152
Dual form 405.2.r.a.8.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.12047 + 1.48477i) q^{2} +(1.60780 + 4.41741i) q^{4} +(2.09416 + 0.783897i) q^{5} +(-1.25154 - 2.68394i) q^{7} +(-1.80956 + 6.75336i) q^{8} +(3.27669 + 4.77156i) q^{10} +(1.00437 + 1.19696i) q^{11} +(-2.29827 - 3.28227i) q^{13} +(1.33117 - 7.54945i) q^{14} +(-6.66205 + 5.59013i) q^{16} +(-0.490334 - 1.82995i) q^{17} +(-2.41262 + 1.39293i) q^{19} +(-0.0957914 + 10.5111i) q^{20} +(0.352524 + 4.02936i) q^{22} +(-6.78686 - 3.16476i) q^{23} +(3.77101 + 3.28321i) q^{25} -10.3723i q^{26} +(9.84382 - 9.84382i) q^{28} +(0.683218 + 3.87472i) q^{29} +(5.45790 - 1.98651i) q^{31} +(-8.49672 + 0.743366i) q^{32} +(1.67731 - 4.60838i) q^{34} +(-0.516997 - 6.60168i) q^{35} +(-0.316450 + 0.0847926i) q^{37} +(-7.18404 - 0.628522i) q^{38} +(-9.08344 + 12.7241i) q^{40} +(-6.26389 - 1.10449i) q^{41} +(0.0509770 - 0.582670i) q^{43} +(-3.67263 + 6.36118i) q^{44} +(-9.69236 - 16.7877i) q^{46} +(0.690071 - 0.321786i) q^{47} +(-1.13767 + 1.35582i) q^{49} +(3.12150 + 12.5610i) q^{50} +(10.8039 - 15.4296i) q^{52} +(5.57112 + 5.57112i) q^{53} +(1.16502 + 3.29395i) q^{55} +(20.3903 - 3.59537i) q^{56} +(-4.30431 + 9.23063i) q^{58} +(-7.84000 - 6.57854i) q^{59} +(11.4160 + 4.15507i) q^{61} +(14.5228 + 3.89137i) q^{62} +(-4.05760 - 2.34266i) q^{64} +(-2.23998 - 8.67520i) q^{65} +(-1.63356 + 1.14383i) q^{67} +(7.29527 - 5.10821i) q^{68} +(8.70568 - 14.7663i) q^{70} +(6.11142 + 3.52843i) q^{71} +(3.93347 + 1.05397i) q^{73} +(-0.796919 - 0.290055i) q^{74} +(-10.0321 - 8.41796i) q^{76} +(1.95556 - 4.19371i) q^{77} +(-12.9467 + 2.28286i) q^{79} +(-18.3335 + 6.48426i) q^{80} +(-11.6425 - 11.6425i) q^{82} +(2.33262 - 3.33133i) q^{83} +(0.407655 - 4.21658i) q^{85} +(0.973224 - 1.15984i) q^{86} +(-9.90096 + 4.61689i) q^{88} +(-4.23520 - 7.33558i) q^{89} +(-5.93304 + 10.2763i) q^{91} +(3.06811 - 35.0686i) q^{92} +(1.94105 + 0.342259i) q^{94} +(-6.14432 + 1.02577i) q^{95} +(7.95549 + 0.696015i) q^{97} +(-4.42546 + 1.18580i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.12047 + 1.48477i 1.49940 + 1.04989i 0.980833 + 0.194848i \(0.0624214\pi\)
0.518562 + 0.855040i \(0.326467\pi\)
\(3\) 0 0
\(4\) 1.60780 + 4.41741i 0.803902 + 2.20870i
\(5\) 2.09416 + 0.783897i 0.936537 + 0.350569i
\(6\) 0 0
\(7\) −1.25154 2.68394i −0.473038 1.01443i −0.987602 0.156982i \(-0.949824\pi\)
0.514563 0.857453i \(-0.327954\pi\)
\(8\) −1.80956 + 6.75336i −0.639775 + 2.38767i
\(9\) 0 0
\(10\) 3.27669 + 4.77156i 1.03618 + 1.50890i
\(11\) 1.00437 + 1.19696i 0.302828 + 0.360897i 0.895902 0.444251i \(-0.146530\pi\)
−0.593074 + 0.805148i \(0.702086\pi\)
\(12\) 0 0
\(13\) −2.29827 3.28227i −0.637425 0.910338i 0.362339 0.932046i \(-0.381978\pi\)
−0.999764 + 0.0217086i \(0.993089\pi\)
\(14\) 1.33117 7.54945i 0.355771 2.01768i
\(15\) 0 0
\(16\) −6.66205 + 5.59013i −1.66551 + 1.39753i
\(17\) −0.490334 1.82995i −0.118923 0.443828i 0.880627 0.473810i \(-0.157122\pi\)
−0.999550 + 0.0299818i \(0.990455\pi\)
\(18\) 0 0
\(19\) −2.41262 + 1.39293i −0.553493 + 0.319559i −0.750529 0.660837i \(-0.770201\pi\)
0.197037 + 0.980396i \(0.436868\pi\)
\(20\) −0.0957914 + 10.5111i −0.0214196 + 2.35035i
\(21\) 0 0
\(22\) 0.352524 + 4.02936i 0.0751583 + 0.859063i
\(23\) −6.78686 3.16476i −1.41516 0.659899i −0.443496 0.896276i \(-0.646262\pi\)
−0.971661 + 0.236377i \(0.924040\pi\)
\(24\) 0 0
\(25\) 3.77101 + 3.28321i 0.754202 + 0.656642i
\(26\) 10.3723i 2.03418i
\(27\) 0 0
\(28\) 9.84382 9.84382i 1.86031 1.86031i
\(29\) 0.683218 + 3.87472i 0.126870 + 0.719518i 0.980179 + 0.198112i \(0.0634810\pi\)
−0.853309 + 0.521406i \(0.825408\pi\)
\(30\) 0 0
\(31\) 5.45790 1.98651i 0.980267 0.356788i 0.198323 0.980137i \(-0.436450\pi\)
0.781944 + 0.623348i \(0.214228\pi\)
\(32\) −8.49672 + 0.743366i −1.50202 + 0.131410i
\(33\) 0 0
\(34\) 1.67731 4.60838i 0.287657 0.790331i
\(35\) −0.516997 6.60168i −0.0873884 1.11589i
\(36\) 0 0
\(37\) −0.316450 + 0.0847926i −0.0520241 + 0.0139398i −0.284737 0.958606i \(-0.591906\pi\)
0.232713 + 0.972545i \(0.425240\pi\)
\(38\) −7.18404 0.628522i −1.16541 0.101960i
\(39\) 0 0
\(40\) −9.08344 + 12.7241i −1.43622 + 2.01186i
\(41\) −6.26389 1.10449i −0.978255 0.172493i −0.338412 0.940998i \(-0.609890\pi\)
−0.639843 + 0.768505i \(0.721001\pi\)
\(42\) 0 0
\(43\) 0.0509770 0.582670i 0.00777393 0.0888564i −0.991317 0.131497i \(-0.958022\pi\)
0.999090 + 0.0426408i \(0.0135771\pi\)
\(44\) −3.67263 + 6.36118i −0.553670 + 0.958984i
\(45\) 0 0
\(46\) −9.69236 16.7877i −1.42906 2.47521i
\(47\) 0.690071 0.321786i 0.100657 0.0469372i −0.371638 0.928378i \(-0.621204\pi\)
0.472295 + 0.881441i \(0.343426\pi\)
\(48\) 0 0
\(49\) −1.13767 + 1.35582i −0.162524 + 0.193688i
\(50\) 3.12150 + 12.5610i 0.441447 + 1.77639i
\(51\) 0 0
\(52\) 10.8039 15.4296i 1.49824 2.13971i
\(53\) 5.57112 + 5.57112i 0.765253 + 0.765253i 0.977267 0.212014i \(-0.0680022\pi\)
−0.212014 + 0.977267i \(0.568002\pi\)
\(54\) 0 0
\(55\) 1.16502 + 3.29395i 0.157091 + 0.444156i
\(56\) 20.3903 3.59537i 2.72477 0.480451i
\(57\) 0 0
\(58\) −4.30431 + 9.23063i −0.565184 + 1.21204i
\(59\) −7.84000 6.57854i −1.02068 0.856453i −0.0309682 0.999520i \(-0.509859\pi\)
−0.989713 + 0.143067i \(0.954303\pi\)
\(60\) 0 0
\(61\) 11.4160 + 4.15507i 1.46166 + 0.532002i 0.945823 0.324683i \(-0.105258\pi\)
0.515840 + 0.856685i \(0.327480\pi\)
\(62\) 14.5228 + 3.89137i 1.84440 + 0.494205i
\(63\) 0 0
\(64\) −4.05760 2.34266i −0.507201 0.292832i
\(65\) −2.23998 8.67520i −0.277836 1.07603i
\(66\) 0 0
\(67\) −1.63356 + 1.14383i −0.199572 + 0.139742i −0.669091 0.743181i \(-0.733316\pi\)
0.469519 + 0.882922i \(0.344427\pi\)
\(68\) 7.29527 5.10821i 0.884682 0.619461i
\(69\) 0 0
\(70\) 8.70568 14.7663i 1.04053 1.76491i
\(71\) 6.11142 + 3.52843i 0.725292 + 0.418748i 0.816698 0.577066i \(-0.195802\pi\)
−0.0914051 + 0.995814i \(0.529136\pi\)
\(72\) 0 0
\(73\) 3.93347 + 1.05397i 0.460378 + 0.123358i 0.481551 0.876418i \(-0.340074\pi\)
−0.0211733 + 0.999776i \(0.506740\pi\)
\(74\) −0.796919 0.290055i −0.0926400 0.0337182i
\(75\) 0 0
\(76\) −10.0321 8.41796i −1.15076 0.965606i
\(77\) 1.95556 4.19371i 0.222857 0.477918i
\(78\) 0 0
\(79\) −12.9467 + 2.28286i −1.45662 + 0.256842i −0.845194 0.534460i \(-0.820515\pi\)
−0.611427 + 0.791301i \(0.709404\pi\)
\(80\) −18.3335 + 6.48426i −2.04975 + 0.724962i
\(81\) 0 0
\(82\) −11.6425 11.6425i −1.28569 1.28569i
\(83\) 2.33262 3.33133i 0.256038 0.365661i −0.670469 0.741938i \(-0.733907\pi\)
0.926507 + 0.376277i \(0.122796\pi\)
\(84\) 0 0
\(85\) 0.407655 4.21658i 0.0442164 0.457352i
\(86\) 0.973224 1.15984i 0.104945 0.125069i
\(87\) 0 0
\(88\) −9.90096 + 4.61689i −1.05545 + 0.492162i
\(89\) −4.23520 7.33558i −0.448930 0.777570i 0.549386 0.835569i \(-0.314862\pi\)
−0.998317 + 0.0579982i \(0.981528\pi\)
\(90\) 0 0
\(91\) −5.93304 + 10.2763i −0.621951 + 1.07725i
\(92\) 3.06811 35.0686i 0.319872 3.65616i
\(93\) 0 0
\(94\) 1.94105 + 0.342259i 0.200204 + 0.0353013i
\(95\) −6.14432 + 1.02577i −0.630394 + 0.105241i
\(96\) 0 0
\(97\) 7.95549 + 0.696015i 0.807758 + 0.0706696i 0.483550 0.875317i \(-0.339347\pi\)
0.324207 + 0.945986i \(0.394903\pi\)
\(98\) −4.42546 + 1.18580i −0.447039 + 0.119784i
\(99\) 0 0
\(100\) −8.44022 + 21.9368i −0.844022 + 2.19368i
\(101\) −5.32423 + 14.6282i −0.529781 + 1.45556i 0.329549 + 0.944139i \(0.393103\pi\)
−0.859330 + 0.511422i \(0.829119\pi\)
\(102\) 0 0
\(103\) −7.89264 + 0.690517i −0.777685 + 0.0680387i −0.469085 0.883153i \(-0.655416\pi\)
−0.308601 + 0.951192i \(0.599861\pi\)
\(104\) 26.3252 9.58158i 2.58140 0.939552i
\(105\) 0 0
\(106\) 3.54156 + 20.0852i 0.343987 + 1.95085i
\(107\) 3.95377 3.95377i 0.382225 0.382225i −0.489678 0.871903i \(-0.662886\pi\)
0.871903 + 0.489678i \(0.162886\pi\)
\(108\) 0 0
\(109\) 6.56334i 0.628654i 0.949315 + 0.314327i \(0.101779\pi\)
−0.949315 + 0.314327i \(0.898221\pi\)
\(110\) −2.42036 + 8.71447i −0.230773 + 0.830893i
\(111\) 0 0
\(112\) 23.3414 + 10.8843i 2.20556 + 1.02847i
\(113\) −0.198630 2.27035i −0.0186855 0.213577i −0.999797 0.0201349i \(-0.993590\pi\)
0.981112 0.193442i \(-0.0619651\pi\)
\(114\) 0 0
\(115\) −11.7319 11.9477i −1.09401 1.11413i
\(116\) −16.0177 + 9.24784i −1.48721 + 0.858641i
\(117\) 0 0
\(118\) −6.85686 25.5901i −0.631225 2.35576i
\(119\) −4.29781 + 3.60629i −0.393979 + 0.330588i
\(120\) 0 0
\(121\) 1.48617 8.42851i 0.135107 0.766228i
\(122\) 18.0378 + 25.7607i 1.63307 + 2.33226i
\(123\) 0 0
\(124\) 17.5505 + 20.9158i 1.57608 + 1.87830i
\(125\) 5.32340 + 9.83165i 0.476140 + 0.879370i
\(126\) 0 0
\(127\) 0.559276 2.08725i 0.0496277 0.185213i −0.936662 0.350233i \(-0.886102\pi\)
0.986290 + 0.165020i \(0.0527690\pi\)
\(128\) 2.08346 + 4.46799i 0.184153 + 0.394918i
\(129\) 0 0
\(130\) 8.13084 21.7213i 0.713122 1.90509i
\(131\) −0.329501 0.905296i −0.0287886 0.0790961i 0.924466 0.381265i \(-0.124512\pi\)
−0.953254 + 0.302169i \(0.902289\pi\)
\(132\) 0 0
\(133\) 6.75802 + 4.73202i 0.585995 + 0.410318i
\(134\) −5.16224 −0.445950
\(135\) 0 0
\(136\) 13.2456 1.13580
\(137\) −1.99313 1.39561i −0.170285 0.119235i 0.485327 0.874333i \(-0.338700\pi\)
−0.655612 + 0.755098i \(0.727589\pi\)
\(138\) 0 0
\(139\) −3.32712 9.14118i −0.282202 0.775345i −0.997099 0.0761146i \(-0.975749\pi\)
0.714897 0.699230i \(-0.246474\pi\)
\(140\) 28.3311 12.8980i 2.39441 1.09008i
\(141\) 0 0
\(142\) 7.72017 + 16.5560i 0.647862 + 1.38934i
\(143\) 1.62043 6.04754i 0.135508 0.505721i
\(144\) 0 0
\(145\) −1.60661 + 8.64986i −0.133422 + 0.718332i
\(146\) 6.77589 + 8.07519i 0.560777 + 0.668308i
\(147\) 0 0
\(148\) −0.883353 1.26156i −0.0726112 0.103700i
\(149\) −2.43445 + 13.8064i −0.199438 + 1.13107i 0.706518 + 0.707695i \(0.250265\pi\)
−0.905956 + 0.423373i \(0.860846\pi\)
\(150\) 0 0
\(151\) −13.9585 + 11.7126i −1.13593 + 0.953156i −0.999298 0.0374659i \(-0.988071\pi\)
−0.136630 + 0.990622i \(0.543627\pi\)
\(152\) −5.04116 18.8139i −0.408892 1.52600i
\(153\) 0 0
\(154\) 10.3734 5.98907i 0.835910 0.482613i
\(155\) 12.9869 + 0.118354i 1.04314 + 0.00950646i
\(156\) 0 0
\(157\) −0.265324 3.03267i −0.0211752 0.242033i −0.999404 0.0345064i \(-0.989014\pi\)
0.978229 0.207527i \(-0.0665415\pi\)
\(158\) −30.8426 14.3821i −2.45371 1.14418i
\(159\) 0 0
\(160\) −18.3762 5.10382i −1.45277 0.403492i
\(161\) 22.1764i 1.74774i
\(162\) 0 0
\(163\) −16.0133 + 16.0133i −1.25426 + 1.25426i −0.300465 + 0.953793i \(0.597142\pi\)
−0.953793 + 0.300465i \(0.902858\pi\)
\(164\) −5.19212 29.4459i −0.405436 2.29934i
\(165\) 0 0
\(166\) 9.89249 3.60057i 0.767806 0.279459i
\(167\) −5.22689 + 0.457294i −0.404469 + 0.0353865i −0.287576 0.957758i \(-0.592849\pi\)
−0.116894 + 0.993144i \(0.537294\pi\)
\(168\) 0 0
\(169\) −1.04499 + 2.87108i −0.0803837 + 0.220852i
\(170\) 7.12506 8.33584i 0.546467 0.639330i
\(171\) 0 0
\(172\) 2.65585 0.711633i 0.202507 0.0542615i
\(173\) 8.14671 + 0.712745i 0.619383 + 0.0541890i 0.392529 0.919740i \(-0.371600\pi\)
0.226854 + 0.973929i \(0.427156\pi\)
\(174\) 0 0
\(175\) 4.09236 14.2302i 0.309354 1.07571i
\(176\) −13.3823 2.35966i −1.00873 0.177866i
\(177\) 0 0
\(178\) 1.91103 21.8431i 0.143238 1.63721i
\(179\) −2.65400 + 4.59686i −0.198369 + 0.343585i −0.948000 0.318271i \(-0.896898\pi\)
0.749631 + 0.661856i \(0.230231\pi\)
\(180\) 0 0
\(181\) 11.5435 + 19.9940i 0.858023 + 1.48614i 0.873811 + 0.486265i \(0.161641\pi\)
−0.0157880 + 0.999875i \(0.505026\pi\)
\(182\) −27.8387 + 12.9814i −2.06354 + 0.962246i
\(183\) 0 0
\(184\) 33.6540 40.1073i 2.48100 2.95675i
\(185\) −0.729166 0.0704951i −0.0536094 0.00518290i
\(186\) 0 0
\(187\) 1.69790 2.42486i 0.124163 0.177323i
\(188\) 2.53096 + 2.53096i 0.184589 + 0.184589i
\(189\) 0 0
\(190\) −14.5518 6.94778i −1.05570 0.504045i
\(191\) 3.74191 0.659800i 0.270755 0.0477414i −0.0366221 0.999329i \(-0.511660\pi\)
0.307377 + 0.951588i \(0.400549\pi\)
\(192\) 0 0
\(193\) −5.22336 + 11.2015i −0.375986 + 0.806305i 0.623710 + 0.781656i \(0.285625\pi\)
−0.999696 + 0.0246489i \(0.992153\pi\)
\(194\) 15.8359 + 13.2879i 1.13695 + 0.954017i
\(195\) 0 0
\(196\) −7.81835 2.84565i −0.558453 0.203260i
\(197\) −23.1882 6.21326i −1.65209 0.442676i −0.691893 0.722000i \(-0.743223\pi\)
−0.960197 + 0.279324i \(0.909890\pi\)
\(198\) 0 0
\(199\) −5.73533 3.31129i −0.406566 0.234731i 0.282747 0.959195i \(-0.408754\pi\)
−0.689313 + 0.724463i \(0.742088\pi\)
\(200\) −28.9966 + 19.5258i −2.05037 + 1.38068i
\(201\) 0 0
\(202\) −33.0093 + 23.1134i −2.32253 + 1.62625i
\(203\) 9.54445 6.68309i 0.669889 0.469061i
\(204\) 0 0
\(205\) −12.2518 7.22323i −0.855701 0.504492i
\(206\) −17.7613 10.2545i −1.23749 0.714466i
\(207\) 0 0
\(208\) 33.6595 + 9.01904i 2.33387 + 0.625358i
\(209\) −4.09043 1.48880i −0.282941 0.102982i
\(210\) 0 0
\(211\) −2.13311 1.78989i −0.146849 0.123221i 0.566404 0.824128i \(-0.308334\pi\)
−0.713253 + 0.700907i \(0.752779\pi\)
\(212\) −15.6526 + 33.5672i −1.07503 + 2.30540i
\(213\) 0 0
\(214\) 14.2542 2.51341i 0.974400 0.171813i
\(215\) 0.563508 1.18024i 0.0384309 0.0804920i
\(216\) 0 0
\(217\) −12.1625 12.1625i −0.825642 0.825642i
\(218\) −9.74502 + 13.9173i −0.660016 + 0.942601i
\(219\) 0 0
\(220\) −12.6776 + 10.4424i −0.854722 + 0.704024i
\(221\) −4.87947 + 5.81513i −0.328229 + 0.391168i
\(222\) 0 0
\(223\) 19.9909 9.32189i 1.33869 0.624240i 0.384410 0.923163i \(-0.374405\pi\)
0.954277 + 0.298923i \(0.0966273\pi\)
\(224\) 12.6291 + 21.8743i 0.843821 + 1.46154i
\(225\) 0 0
\(226\) 2.94975 5.10912i 0.196215 0.339854i
\(227\) −0.647951 + 7.40612i −0.0430060 + 0.491561i 0.943896 + 0.330242i \(0.107130\pi\)
−0.986902 + 0.161319i \(0.948425\pi\)
\(228\) 0 0
\(229\) −4.57594 0.806861i −0.302386 0.0533189i 0.0203963 0.999792i \(-0.493507\pi\)
−0.322783 + 0.946473i \(0.604618\pi\)
\(230\) −7.13756 42.7539i −0.470637 2.81911i
\(231\) 0 0
\(232\) −27.4037 2.39751i −1.79914 0.157404i
\(233\) −13.7921 + 3.69557i −0.903549 + 0.242105i −0.680540 0.732711i \(-0.738255\pi\)
−0.223009 + 0.974816i \(0.571588\pi\)
\(234\) 0 0
\(235\) 1.69737 0.132926i 0.110724 0.00867111i
\(236\) 16.4549 45.2095i 1.07112 2.94289i
\(237\) 0 0
\(238\) −14.4678 + 1.26577i −0.937811 + 0.0820478i
\(239\) 19.1398 6.96633i 1.23805 0.450614i 0.361705 0.932293i \(-0.382195\pi\)
0.876348 + 0.481678i \(0.159973\pi\)
\(240\) 0 0
\(241\) −2.82578 16.0258i −0.182024 1.03231i −0.929719 0.368269i \(-0.879950\pi\)
0.747695 0.664043i \(-0.231161\pi\)
\(242\) 15.6657 15.6657i 1.00703 1.00703i
\(243\) 0 0
\(244\) 57.1094i 3.65606i
\(245\) −3.44528 + 1.94749i −0.220111 + 0.124420i
\(246\) 0 0
\(247\) 10.1168 + 4.71754i 0.643717 + 0.300170i
\(248\) 3.53925 + 40.4538i 0.224743 + 2.56882i
\(249\) 0 0
\(250\) −3.30961 + 28.7517i −0.209318 + 1.81842i
\(251\) 8.96649 5.17681i 0.565960 0.326757i −0.189574 0.981866i \(-0.560711\pi\)
0.755534 + 0.655109i \(0.227377\pi\)
\(252\) 0 0
\(253\) −3.02841 11.3022i −0.190395 0.710562i
\(254\) 4.28500 3.59554i 0.268865 0.225604i
\(255\) 0 0
\(256\) −3.84321 + 21.7959i −0.240201 + 1.36225i
\(257\) −3.25941 4.65492i −0.203316 0.290366i 0.704525 0.709679i \(-0.251160\pi\)
−0.907842 + 0.419313i \(0.862271\pi\)
\(258\) 0 0
\(259\) 0.623629 + 0.743212i 0.0387504 + 0.0461810i
\(260\) 34.7204 23.8429i 2.15327 1.47868i
\(261\) 0 0
\(262\) 0.645458 2.40888i 0.0398765 0.148821i
\(263\) −8.23378 17.6574i −0.507717 1.08880i −0.978442 0.206522i \(-0.933785\pi\)
0.470725 0.882280i \(-0.343992\pi\)
\(264\) 0 0
\(265\) 7.29964 + 16.0340i 0.448413 + 0.984961i
\(266\) 7.30422 + 20.0682i 0.447850 + 1.23046i
\(267\) 0 0
\(268\) −7.67923 5.37706i −0.469084 0.328456i
\(269\) 21.8628 1.33300 0.666501 0.745505i \(-0.267791\pi\)
0.666501 + 0.745505i \(0.267791\pi\)
\(270\) 0 0
\(271\) 25.6697 1.55933 0.779663 0.626200i \(-0.215391\pi\)
0.779663 + 0.626200i \(0.215391\pi\)
\(272\) 13.4963 + 9.45020i 0.818333 + 0.573003i
\(273\) 0 0
\(274\) −2.15422 5.91867i −0.130141 0.357560i
\(275\) −0.142386 + 7.81130i −0.00858620 + 0.471039i
\(276\) 0 0
\(277\) −2.24166 4.80726i −0.134689 0.288841i 0.827383 0.561638i \(-0.189829\pi\)
−0.962071 + 0.272798i \(0.912051\pi\)
\(278\) 6.51747 24.3235i 0.390892 1.45883i
\(279\) 0 0
\(280\) 45.5190 + 8.45465i 2.72028 + 0.505262i
\(281\) 0.950287 + 1.13251i 0.0566894 + 0.0675598i 0.793644 0.608382i \(-0.208181\pi\)
−0.736955 + 0.675942i \(0.763737\pi\)
\(282\) 0 0
\(283\) 2.90572 + 4.14980i 0.172727 + 0.246680i 0.896177 0.443697i \(-0.146333\pi\)
−0.723449 + 0.690377i \(0.757444\pi\)
\(284\) −5.76054 + 32.6697i −0.341825 + 1.93859i
\(285\) 0 0
\(286\) 12.4153 10.4176i 0.734130 0.616008i
\(287\) 4.87513 + 18.1942i 0.287770 + 1.07397i
\(288\) 0 0
\(289\) 11.6141 6.70543i 0.683185 0.394437i
\(290\) −16.2498 + 15.9563i −0.954220 + 0.936985i
\(291\) 0 0
\(292\) 1.66844 + 19.0703i 0.0976379 + 1.11601i
\(293\) −20.8181 9.70762i −1.21620 0.567125i −0.294736 0.955579i \(-0.595232\pi\)
−0.921468 + 0.388453i \(0.873009\pi\)
\(294\) 0 0
\(295\) −11.2613 19.9223i −0.655659 1.15992i
\(296\) 2.29054i 0.133135i
\(297\) 0 0
\(298\) −25.6615 + 25.6615i −1.48653 + 1.48653i
\(299\) 5.21042 + 29.5498i 0.301327 + 1.70891i
\(300\) 0 0
\(301\) −1.62765 + 0.592417i −0.0938163 + 0.0341464i
\(302\) −46.9890 + 4.11100i −2.70391 + 0.236562i
\(303\) 0 0
\(304\) 8.28636 22.7666i 0.475255 1.30575i
\(305\) 20.6497 + 17.6503i 1.18240 + 1.01065i
\(306\) 0 0
\(307\) 22.5239 6.03527i 1.28551 0.344451i 0.449556 0.893252i \(-0.351582\pi\)
0.835953 + 0.548801i \(0.184916\pi\)
\(308\) 21.6695 + 1.89583i 1.23473 + 0.108025i
\(309\) 0 0
\(310\) 27.3626 + 19.5335i 1.55409 + 1.10943i
\(311\) −9.32616 1.64445i −0.528838 0.0932485i −0.0971473 0.995270i \(-0.530972\pi\)
−0.431691 + 0.902022i \(0.642083\pi\)
\(312\) 0 0
\(313\) −2.69662 + 30.8225i −0.152422 + 1.74219i 0.407109 + 0.913380i \(0.366537\pi\)
−0.559530 + 0.828810i \(0.689018\pi\)
\(314\) 3.94019 6.82461i 0.222358 0.385135i
\(315\) 0 0
\(316\) −30.9001 53.5206i −1.73827 3.01077i
\(317\) 19.0657 8.89049i 1.07084 0.499340i 0.194433 0.980916i \(-0.437713\pi\)
0.876404 + 0.481576i \(0.159936\pi\)
\(318\) 0 0
\(319\) −3.95168 + 4.70943i −0.221252 + 0.263678i
\(320\) −6.66087 8.08665i −0.372354 0.452057i
\(321\) 0 0
\(322\) −32.9267 + 47.0242i −1.83493 + 2.62056i
\(323\) 3.73198 + 3.73198i 0.207653 + 0.207653i
\(324\) 0 0
\(325\) 2.10958 19.9232i 0.117018 1.10514i
\(326\) −57.7316 + 10.1796i −3.19746 + 0.563798i
\(327\) 0 0
\(328\) 18.7939 40.3036i 1.03772 2.22540i
\(329\) −1.72731 1.44938i −0.0952295 0.0799070i
\(330\) 0 0
\(331\) 0.225624 + 0.0821205i 0.0124014 + 0.00451375i 0.348213 0.937415i \(-0.386788\pi\)
−0.335812 + 0.941929i \(0.609011\pi\)
\(332\) 18.4662 + 4.94801i 1.01347 + 0.271557i
\(333\) 0 0
\(334\) −11.7624 6.79104i −0.643611 0.371589i
\(335\) −4.31759 + 1.11483i −0.235895 + 0.0609094i
\(336\) 0 0
\(337\) 14.0325 9.82568i 0.764400 0.535239i −0.125116 0.992142i \(-0.539930\pi\)
0.889516 + 0.456903i \(0.151041\pi\)
\(338\) −6.47874 + 4.53646i −0.352397 + 0.246751i
\(339\) 0 0
\(340\) 19.2818 4.97866i 1.04570 0.270006i
\(341\) 7.85952 + 4.53769i 0.425617 + 0.245730i
\(342\) 0 0
\(343\) −14.9607 4.00870i −0.807801 0.216450i
\(344\) 3.84273 + 1.39864i 0.207186 + 0.0754097i
\(345\) 0 0
\(346\) 16.2166 + 13.6073i 0.871808 + 0.731534i
\(347\) 11.4696 24.5967i 0.615723 1.32042i −0.313038 0.949741i \(-0.601347\pi\)
0.928760 0.370681i \(-0.120876\pi\)
\(348\) 0 0
\(349\) 18.8404 3.32208i 1.00851 0.177827i 0.355095 0.934830i \(-0.384449\pi\)
0.653411 + 0.757003i \(0.273337\pi\)
\(350\) 29.8063 24.0985i 1.59321 1.28812i
\(351\) 0 0
\(352\) −9.42361 9.42361i −0.502280 0.502280i
\(353\) 17.4648 24.9423i 0.929558 1.32755i −0.0152364 0.999884i \(-0.504850\pi\)
0.944795 0.327663i \(-0.106261\pi\)
\(354\) 0 0
\(355\) 10.0324 + 12.1798i 0.532463 + 0.646438i
\(356\) 25.5949 30.5028i 1.35653 1.61664i
\(357\) 0 0
\(358\) −12.4530 + 5.80691i −0.658160 + 0.306905i
\(359\) −15.6146 27.0453i −0.824108 1.42740i −0.902599 0.430483i \(-0.858343\pi\)
0.0784904 0.996915i \(-0.474990\pi\)
\(360\) 0 0
\(361\) −5.61951 + 9.73329i −0.295764 + 0.512278i
\(362\) −5.20872 + 59.5360i −0.273764 + 3.12914i
\(363\) 0 0
\(364\) −54.9338 9.68632i −2.87931 0.507701i
\(365\) 7.41111 + 5.29062i 0.387915 + 0.276924i
\(366\) 0 0
\(367\) 1.41799 + 0.124058i 0.0740183 + 0.00647576i 0.124105 0.992269i \(-0.460394\pi\)
−0.0500864 + 0.998745i \(0.515950\pi\)
\(368\) 62.9058 16.8556i 3.27919 0.878657i
\(369\) 0 0
\(370\) −1.44150 1.23212i −0.0749402 0.0640550i
\(371\) 7.98007 21.9251i 0.414305 1.13829i
\(372\) 0 0
\(373\) 9.79785 0.857201i 0.507313 0.0443842i 0.169374 0.985552i \(-0.445826\pi\)
0.337940 + 0.941168i \(0.390270\pi\)
\(374\) 7.20068 2.62083i 0.372339 0.135520i
\(375\) 0 0
\(376\) 0.924409 + 5.24259i 0.0476728 + 0.270366i
\(377\) 11.1477 11.1477i 0.574134 0.574134i
\(378\) 0 0
\(379\) 5.76488i 0.296122i −0.988978 0.148061i \(-0.952697\pi\)
0.988978 0.148061i \(-0.0473032\pi\)
\(380\) −14.4101 25.4927i −0.739222 1.30775i
\(381\) 0 0
\(382\) 8.91424 + 4.15678i 0.456092 + 0.212679i
\(383\) −0.249029 2.84641i −0.0127248 0.145445i 0.987174 0.159646i \(-0.0510352\pi\)
−0.999899 + 0.0142007i \(0.995480\pi\)
\(384\) 0 0
\(385\) 7.38269 7.24934i 0.376257 0.369461i
\(386\) −27.7076 + 15.9970i −1.41028 + 0.814226i
\(387\) 0 0
\(388\) 9.71629 + 36.2617i 0.493270 + 1.84091i
\(389\) −9.76677 + 8.19530i −0.495195 + 0.415518i −0.855884 0.517168i \(-0.826986\pi\)
0.360689 + 0.932686i \(0.382542\pi\)
\(390\) 0 0
\(391\) −2.46354 + 13.9714i −0.124586 + 0.706565i
\(392\) −7.09766 10.1365i −0.358486 0.511971i
\(393\) 0 0
\(394\) −39.9445 47.6040i −2.01238 2.39826i
\(395\) −28.9020 5.36823i −1.45422 0.270105i
\(396\) 0 0
\(397\) 0.929625 3.46941i 0.0466565 0.174125i −0.938666 0.344828i \(-0.887937\pi\)
0.985322 + 0.170703i \(0.0546040\pi\)
\(398\) −7.24507 15.5371i −0.363162 0.778804i
\(399\) 0 0
\(400\) −43.4762 0.792494i −2.17381 0.0396247i
\(401\) 7.04392 + 19.3530i 0.351756 + 0.966443i 0.981806 + 0.189888i \(0.0608124\pi\)
−0.630049 + 0.776555i \(0.716965\pi\)
\(402\) 0 0
\(403\) −19.0640 13.3488i −0.949645 0.664949i
\(404\) −73.1790 −3.64079
\(405\) 0 0
\(406\) 30.1615 1.49689
\(407\) −0.419326 0.293615i −0.0207852 0.0145540i
\(408\) 0 0
\(409\) −5.75785 15.8196i −0.284707 0.782226i −0.996785 0.0801257i \(-0.974468\pi\)
0.712078 0.702101i \(-0.247754\pi\)
\(410\) −15.2547 33.5076i −0.753375 1.65482i
\(411\) 0 0
\(412\) −15.7401 33.7548i −0.775460 1.66298i
\(413\) −7.84432 + 29.2754i −0.385994 + 1.44055i
\(414\) 0 0
\(415\) 7.49630 5.14780i 0.367979 0.252696i
\(416\) 21.9677 + 26.1801i 1.07705 + 1.28358i
\(417\) 0 0
\(418\) −6.46311 9.23028i −0.316121 0.451468i
\(419\) 0.0944911 0.535886i 0.00461619 0.0261797i −0.982413 0.186723i \(-0.940213\pi\)
0.987029 + 0.160543i \(0.0513245\pi\)
\(420\) 0 0
\(421\) −5.72762 + 4.80604i −0.279147 + 0.234232i −0.771602 0.636106i \(-0.780544\pi\)
0.492455 + 0.870338i \(0.336100\pi\)
\(422\) −1.86561 6.96256i −0.0908166 0.338932i
\(423\) 0 0
\(424\) −47.7050 + 27.5425i −2.31676 + 1.33758i
\(425\) 4.15906 8.51064i 0.201744 0.412827i
\(426\) 0 0
\(427\) −3.13559 35.8400i −0.151742 1.73442i
\(428\) 23.8223 + 11.1085i 1.15149 + 0.536950i
\(429\) 0 0
\(430\) 2.94728 1.66599i 0.142131 0.0803412i
\(431\) 14.9683i 0.720998i −0.932760 0.360499i \(-0.882606\pi\)
0.932760 0.360499i \(-0.117394\pi\)
\(432\) 0 0
\(433\) 24.8822 24.8822i 1.19576 1.19576i 0.220337 0.975424i \(-0.429284\pi\)
0.975424 0.220337i \(-0.0707157\pi\)
\(434\) −7.73168 43.8485i −0.371132 2.10480i
\(435\) 0 0
\(436\) −28.9929 + 10.5526i −1.38851 + 0.505376i
\(437\) 20.7824 1.81822i 0.994156 0.0869774i
\(438\) 0 0
\(439\) −13.0228 + 35.7799i −0.621545 + 1.70768i 0.0816297 + 0.996663i \(0.473988\pi\)
−0.703174 + 0.711017i \(0.748235\pi\)
\(440\) −24.3534 + 1.90718i −1.16100 + 0.0909213i
\(441\) 0 0
\(442\) −18.9809 + 5.08591i −0.902828 + 0.241912i
\(443\) 28.4974 + 2.49320i 1.35395 + 0.118456i 0.740916 0.671597i \(-0.234392\pi\)
0.613038 + 0.790053i \(0.289947\pi\)
\(444\) 0 0
\(445\) −3.11885 18.6818i −0.147848 0.885605i
\(446\) 56.2308 + 9.91500i 2.66260 + 0.469489i
\(447\) 0 0
\(448\) −1.20930 + 13.8223i −0.0571338 + 0.653043i
\(449\) −12.4470 + 21.5588i −0.587409 + 1.01742i 0.407162 + 0.913356i \(0.366519\pi\)
−0.994570 + 0.104066i \(0.966815\pi\)
\(450\) 0 0
\(451\) −4.96922 8.60694i −0.233991 0.405285i
\(452\) 9.70971 4.52771i 0.456706 0.212966i
\(453\) 0 0
\(454\) −12.3703 + 14.7424i −0.580567 + 0.691893i
\(455\) −20.4803 + 16.8694i −0.960131 + 0.790848i
\(456\) 0 0
\(457\) −2.11373 + 3.01872i −0.0988761 + 0.141210i −0.865542 0.500837i \(-0.833026\pi\)
0.766666 + 0.642047i \(0.221914\pi\)
\(458\) −8.50512 8.50512i −0.397418 0.397418i
\(459\) 0 0
\(460\) 33.9153 71.0342i 1.58131 3.31199i
\(461\) 15.0276 2.64977i 0.699905 0.123412i 0.187638 0.982238i \(-0.439917\pi\)
0.512267 + 0.858826i \(0.328806\pi\)
\(462\) 0 0
\(463\) 4.75770 10.2029i 0.221109 0.474170i −0.764194 0.644987i \(-0.776863\pi\)
0.985303 + 0.170817i \(0.0546406\pi\)
\(464\) −26.2118 21.9943i −1.21685 1.02106i
\(465\) 0 0
\(466\) −34.7327 12.6417i −1.60896 0.585614i
\(467\) −16.8627 4.51835i −0.780313 0.209084i −0.153390 0.988166i \(-0.549019\pi\)
−0.626923 + 0.779082i \(0.715686\pi\)
\(468\) 0 0
\(469\) 5.11446 + 2.95283i 0.236164 + 0.136349i
\(470\) 3.79657 + 2.23833i 0.175123 + 0.103246i
\(471\) 0 0
\(472\) 58.6142 41.0421i 2.69794 1.88911i
\(473\) 0.748633 0.524198i 0.0344222 0.0241027i
\(474\) 0 0
\(475\) −13.6713 2.66840i −0.627281 0.122434i
\(476\) −22.8405 13.1870i −1.04689 0.604423i
\(477\) 0 0
\(478\) 50.9287 + 13.6463i 2.32943 + 0.624168i
\(479\) −21.5176 7.83178i −0.983166 0.357843i −0.200096 0.979776i \(-0.564125\pi\)
−0.783070 + 0.621933i \(0.786348\pi\)
\(480\) 0 0
\(481\) 1.00560 + 0.843799i 0.0458514 + 0.0384739i
\(482\) 17.8026 38.1778i 0.810885 1.73895i
\(483\) 0 0
\(484\) 39.6216 6.98636i 1.80098 0.317562i
\(485\) 16.1145 + 7.69385i 0.731720 + 0.349360i
\(486\) 0 0
\(487\) 25.6571 + 25.6571i 1.16264 + 1.16264i 0.983896 + 0.178740i \(0.0572021\pi\)
0.178740 + 0.983896i \(0.442798\pi\)
\(488\) −48.7185 + 69.5772i −2.20538 + 3.14961i
\(489\) 0 0
\(490\) −10.1972 0.985852i −0.460661 0.0445363i
\(491\) 8.85005 10.5471i 0.399397 0.475983i −0.528439 0.848971i \(-0.677222\pi\)
0.927836 + 0.372988i \(0.121667\pi\)
\(492\) 0 0
\(493\) 6.75555 3.15016i 0.304255 0.141876i
\(494\) 14.4479 + 25.0245i 0.650041 + 1.12590i
\(495\) 0 0
\(496\) −25.2560 + 43.7446i −1.13403 + 1.96419i
\(497\) 1.82140 20.8187i 0.0817009 0.933845i
\(498\) 0 0
\(499\) 16.6957 + 2.94390i 0.747401 + 0.131787i 0.534361 0.845256i \(-0.320552\pi\)
0.213040 + 0.977043i \(0.431663\pi\)
\(500\) −34.8714 + 39.3230i −1.55950 + 1.75858i
\(501\) 0 0
\(502\) 26.6995 + 2.33590i 1.19166 + 0.104256i
\(503\) −11.9228 + 3.19471i −0.531612 + 0.142445i −0.514633 0.857411i \(-0.672072\pi\)
−0.0169795 + 0.999856i \(0.505405\pi\)
\(504\) 0 0
\(505\) −22.6168 + 26.4602i −1.00643 + 1.17746i
\(506\) 10.3595 28.4624i 0.460534 1.26531i
\(507\) 0 0
\(508\) 10.1194 0.885334i 0.448976 0.0392803i
\(509\) 1.17560 0.427885i 0.0521077 0.0189657i −0.315835 0.948814i \(-0.602285\pi\)
0.367943 + 0.929849i \(0.380062\pi\)
\(510\) 0 0
\(511\) −2.09411 11.8763i −0.0926380 0.525376i
\(512\) −33.5394 + 33.5394i −1.48224 + 1.48224i
\(513\) 0 0
\(514\) 14.7101i 0.648833i
\(515\) −17.0698 4.74097i −0.752183 0.208912i
\(516\) 0 0
\(517\) 1.07825 + 0.502796i 0.0474214 + 0.0221130i
\(518\) 0.218888 + 2.50190i 0.00961738 + 0.109927i
\(519\) 0 0
\(520\) 62.6401 + 0.570861i 2.74695 + 0.0250339i
\(521\) 25.5030 14.7242i 1.11731 0.645078i 0.176595 0.984284i \(-0.443492\pi\)
0.940712 + 0.339206i \(0.110158\pi\)
\(522\) 0 0
\(523\) −2.91822 10.8910i −0.127605 0.476228i 0.872314 0.488946i \(-0.162618\pi\)
−0.999919 + 0.0127175i \(0.995952\pi\)
\(524\) 3.46929 2.91108i 0.151556 0.127171i
\(525\) 0 0
\(526\) 8.75766 49.6671i 0.381852 2.16559i
\(527\) −6.31141 9.01363i −0.274929 0.392640i
\(528\) 0 0
\(529\) 21.2616 + 25.3386i 0.924417 + 1.10168i
\(530\) −8.32812 + 44.8378i −0.361751 + 1.94763i
\(531\) 0 0
\(532\) −10.0377 + 37.4611i −0.435188 + 1.62414i
\(533\) 10.7709 + 23.0982i 0.466538 + 1.00049i
\(534\) 0 0
\(535\) 11.3792 5.18048i 0.491964 0.223972i
\(536\) −4.76869 13.1019i −0.205976 0.565915i
\(537\) 0 0
\(538\) 46.3594 + 32.4612i 1.99870 + 1.39950i
\(539\) −2.76550 −0.119118
\(540\) 0 0
\(541\) −2.55842 −0.109995 −0.0549975 0.998486i \(-0.517515\pi\)
−0.0549975 + 0.998486i \(0.517515\pi\)
\(542\) 54.4318 + 38.1136i 2.33805 + 1.63712i
\(543\) 0 0
\(544\) 5.52655 + 15.1841i 0.236949 + 0.651012i
\(545\) −5.14498 + 13.7447i −0.220387 + 0.588757i
\(546\) 0 0
\(547\) 1.78092 + 3.81919i 0.0761465 + 0.163297i 0.940696 0.339251i \(-0.110174\pi\)
−0.864549 + 0.502548i \(0.832396\pi\)
\(548\) 2.96039 11.0483i 0.126462 0.471961i
\(549\) 0 0
\(550\) −11.8999 + 16.3522i −0.507413 + 0.697260i
\(551\) −7.04554 8.39655i −0.300150 0.357705i
\(552\) 0 0
\(553\) 22.3304 + 31.8912i 0.949586 + 1.35615i
\(554\) 2.38429 13.5220i 0.101299 0.574494i
\(555\) 0 0
\(556\) 35.0309 29.3944i 1.48564 1.24660i
\(557\) −5.11407 19.0860i −0.216690 0.808698i −0.985565 0.169299i \(-0.945850\pi\)
0.768875 0.639399i \(-0.220817\pi\)
\(558\) 0 0
\(559\) −2.02964 + 1.17181i −0.0858446 + 0.0495624i
\(560\) 40.3485 + 41.0907i 1.70503 + 1.73640i
\(561\) 0 0
\(562\) 0.333542 + 3.81240i 0.0140696 + 0.160816i
\(563\) 24.0516 + 11.2154i 1.01365 + 0.472675i 0.857185 0.515008i \(-0.172211\pi\)
0.156469 + 0.987683i \(0.449989\pi\)
\(564\) 0 0
\(565\) 1.36376 4.91019i 0.0573738 0.206573i
\(566\) 13.1138i 0.551216i
\(567\) 0 0
\(568\) −34.8877 + 34.8877i −1.46386 + 1.46386i
\(569\) −7.42425 42.1050i −0.311241 1.76513i −0.592567 0.805521i \(-0.701886\pi\)
0.281327 0.959612i \(-0.409226\pi\)
\(570\) 0 0
\(571\) 9.01463 3.28106i 0.377251 0.137308i −0.146433 0.989221i \(-0.546779\pi\)
0.523684 + 0.851912i \(0.324557\pi\)
\(572\) 29.3198 2.56515i 1.22592 0.107254i
\(573\) 0 0
\(574\) −16.6766 + 45.8187i −0.696069 + 1.91243i
\(575\) −15.2027 34.2170i −0.633998 1.42695i
\(576\) 0 0
\(577\) 14.4782 3.87943i 0.602737 0.161503i 0.0554690 0.998460i \(-0.482335\pi\)
0.547268 + 0.836958i \(0.315668\pi\)
\(578\) 34.5834 + 3.02565i 1.43848 + 0.125851i
\(579\) 0 0
\(580\) −40.7931 + 6.81021i −1.69384 + 0.282779i
\(581\) −11.8605 2.09132i −0.492055 0.0867626i
\(582\) 0 0
\(583\) −1.07295 + 12.2639i −0.0444370 + 0.507918i
\(584\) −14.2357 + 24.6569i −0.589077 + 1.02031i
\(585\) 0 0
\(586\) −29.7304 51.4946i −1.22815 2.12722i
\(587\) −3.64938 + 1.70173i −0.150626 + 0.0702381i −0.496470 0.868054i \(-0.665371\pi\)
0.345844 + 0.938292i \(0.387593\pi\)
\(588\) 0 0
\(589\) −10.4008 + 12.3951i −0.428556 + 0.510733i
\(590\) 5.70067 58.9649i 0.234693 2.42755i
\(591\) 0 0
\(592\) 1.63421 2.33389i 0.0671655 0.0959223i
\(593\) 6.31053 + 6.31053i 0.259142 + 0.259142i 0.824705 0.565563i \(-0.191341\pi\)
−0.565563 + 0.824705i \(0.691341\pi\)
\(594\) 0 0
\(595\) −11.8273 + 4.18311i −0.484870 + 0.171491i
\(596\) −64.9028 + 11.4441i −2.65852 + 0.468769i
\(597\) 0 0
\(598\) −32.8260 + 70.3955i −1.34235 + 2.87869i
\(599\) 25.4844 + 21.3840i 1.04127 + 0.873726i 0.992148 0.125067i \(-0.0399145\pi\)
0.0491180 + 0.998793i \(0.484359\pi\)
\(600\) 0 0
\(601\) −16.7184 6.08500i −0.681958 0.248212i −0.0222700 0.999752i \(-0.507089\pi\)
−0.659688 + 0.751540i \(0.729312\pi\)
\(602\) −4.33098 1.16048i −0.176518 0.0472978i
\(603\) 0 0
\(604\) −74.1818 42.8289i −3.01841 1.74268i
\(605\) 9.71937 16.4856i 0.395148 0.670236i
\(606\) 0 0
\(607\) −37.1718 + 26.0280i −1.50876 + 1.05644i −0.530833 + 0.847477i \(0.678121\pi\)
−0.977923 + 0.208966i \(0.932990\pi\)
\(608\) 19.4639 13.6288i 0.789365 0.552719i
\(609\) 0 0
\(610\) 17.5804 + 68.0868i 0.711809 + 2.75675i
\(611\) −2.64216 1.52545i −0.106890 0.0617131i
\(612\) 0 0
\(613\) −35.3818 9.48053i −1.42906 0.382915i −0.540370 0.841427i \(-0.681716\pi\)
−0.888688 + 0.458512i \(0.848383\pi\)
\(614\) 56.7222 + 20.6452i 2.28912 + 0.833172i
\(615\) 0 0
\(616\) 24.7829 + 20.7953i 0.998533 + 0.837868i
\(617\) −15.3167 + 32.8468i −0.616628 + 1.32236i 0.311551 + 0.950229i \(0.399152\pi\)
−0.928179 + 0.372134i \(0.878626\pi\)
\(618\) 0 0
\(619\) −33.7534 + 5.95163i −1.35666 + 0.239216i −0.804218 0.594334i \(-0.797416\pi\)
−0.552444 + 0.833550i \(0.686305\pi\)
\(620\) 20.3576 + 57.5588i 0.817582 + 2.31162i
\(621\) 0 0
\(622\) −17.3342 17.3342i −0.695037 0.695037i
\(623\) −14.3877 + 20.5478i −0.576433 + 0.823231i
\(624\) 0 0
\(625\) 3.44105 + 24.7621i 0.137642 + 0.990482i
\(626\) −51.4823 + 61.3542i −2.05764 + 2.45221i
\(627\) 0 0
\(628\) 12.9699 6.04798i 0.517557 0.241341i
\(629\) 0.310333 + 0.537512i 0.0123738 + 0.0214320i
\(630\) 0 0
\(631\) −15.6392 + 27.0879i −0.622587 + 1.07835i 0.366415 + 0.930451i \(0.380585\pi\)
−0.989002 + 0.147901i \(0.952748\pi\)
\(632\) 8.01088 91.5648i 0.318656 3.64225i
\(633\) 0 0
\(634\) 53.6285 + 9.45615i 2.12986 + 0.375552i
\(635\) 2.80740 3.93261i 0.111408 0.156061i
\(636\) 0 0
\(637\) 7.06483 + 0.618092i 0.279919 + 0.0244897i
\(638\) −15.3718 + 4.11886i −0.608576 + 0.163067i
\(639\) 0 0
\(640\) 0.860650 + 10.9899i 0.0340202 + 0.434414i
\(641\) −1.87972 + 5.16450i −0.0742446 + 0.203985i −0.971263 0.238007i \(-0.923506\pi\)
0.897019 + 0.441992i \(0.145728\pi\)
\(642\) 0 0
\(643\) 44.9817 3.93539i 1.77390 0.155197i 0.847271 0.531161i \(-0.178244\pi\)
0.926634 + 0.375965i \(0.122689\pi\)
\(644\) −97.9620 + 35.6552i −3.86024 + 1.40501i
\(645\) 0 0
\(646\) 2.37242 + 13.4546i 0.0933414 + 0.529366i
\(647\) −18.1400 + 18.1400i −0.713158 + 0.713158i −0.967195 0.254037i \(-0.918242\pi\)
0.254037 + 0.967195i \(0.418242\pi\)
\(648\) 0 0
\(649\) 15.9914i 0.627719i
\(650\) 34.0546 39.1142i 1.33573 1.53418i
\(651\) 0 0
\(652\) −96.4835 44.9910i −3.77858 1.76198i
\(653\) −0.635049 7.25864i −0.0248514 0.284052i −0.998444 0.0557608i \(-0.982242\pi\)
0.973593 0.228292i \(-0.0733140\pi\)
\(654\) 0 0
\(655\) 0.0196313 2.15413i 0.000767060 0.0841688i
\(656\) 47.9046 27.6577i 1.87036 1.07985i
\(657\) 0 0
\(658\) −1.51070 5.63801i −0.0588932 0.219793i
\(659\) −20.4475 + 17.1575i −0.796520 + 0.668360i −0.947350 0.320200i \(-0.896250\pi\)
0.150830 + 0.988560i \(0.451805\pi\)
\(660\) 0 0
\(661\) −3.17425 + 18.0020i −0.123464 + 0.700198i 0.858745 + 0.512404i \(0.171245\pi\)
−0.982208 + 0.187794i \(0.939866\pi\)
\(662\) 0.356499 + 0.509133i 0.0138557 + 0.0197880i
\(663\) 0 0
\(664\) 18.2766 + 21.7813i 0.709271 + 0.845277i
\(665\) 10.4430 + 15.2072i 0.404961 + 0.589710i
\(666\) 0 0
\(667\) 7.62568 28.4594i 0.295267 1.10195i
\(668\) −10.4239 22.3541i −0.403312 0.864905i
\(669\) 0 0
\(670\) −10.8106 4.04667i −0.417649 0.156336i
\(671\) 6.49238 + 17.8377i 0.250635 + 0.688615i
\(672\) 0 0
\(673\) −17.8466 12.4963i −0.687934 0.481697i 0.176592 0.984284i \(-0.443493\pi\)
−0.864526 + 0.502587i \(0.832382\pi\)
\(674\) 44.3443 1.70808
\(675\) 0 0
\(676\) −14.3629 −0.552418
\(677\) 8.63710 + 6.04776i 0.331951 + 0.232434i 0.727654 0.685944i \(-0.240610\pi\)
−0.395704 + 0.918378i \(0.629499\pi\)
\(678\) 0 0
\(679\) −8.08857 22.2232i −0.310411 0.852846i
\(680\) 27.7384 + 10.3832i 1.06372 + 0.398177i
\(681\) 0 0
\(682\) 9.92842 + 21.2916i 0.380179 + 0.815296i
\(683\) −6.15162 + 22.9581i −0.235385 + 0.878469i 0.742590 + 0.669746i \(0.233597\pi\)
−0.977975 + 0.208723i \(0.933069\pi\)
\(684\) 0 0
\(685\) −3.07992 4.48503i −0.117678 0.171364i
\(686\) −25.7716 30.7134i −0.983965 1.17264i
\(687\) 0 0
\(688\) 2.91759 + 4.16675i 0.111232 + 0.158856i
\(689\) 5.48198 31.0899i 0.208847 1.18443i
\(690\) 0 0
\(691\) 29.8109 25.0143i 1.13406 0.951591i 0.134833 0.990868i \(-0.456950\pi\)
0.999228 + 0.0392778i \(0.0125057\pi\)
\(692\) 9.94983 + 37.1333i 0.378236 + 1.41160i
\(693\) 0 0
\(694\) 60.8414 35.1268i 2.30951 1.33339i
\(695\) 0.198226 21.7512i 0.00751915 0.825070i
\(696\) 0 0
\(697\) 1.05023 + 12.0042i 0.0397803 + 0.454691i
\(698\) 44.8830 + 20.9293i 1.69885 + 0.792185i
\(699\) 0 0
\(700\) 69.4405 4.80182i 2.62460 0.181492i
\(701\) 37.4202i 1.41334i −0.707542 0.706671i \(-0.750196\pi\)
0.707542 0.706671i \(-0.249804\pi\)
\(702\) 0 0
\(703\) 0.645364 0.645364i 0.0243404 0.0243404i
\(704\) −1.27126 7.20968i −0.0479125 0.271725i
\(705\) 0 0
\(706\) 74.0671 26.9582i 2.78755 1.01459i
\(707\) 45.9247 4.01789i 1.72718 0.151108i
\(708\) 0 0
\(709\) 10.2864 28.2616i 0.386313 1.06139i −0.582335 0.812949i \(-0.697861\pi\)
0.968648 0.248437i \(-0.0799168\pi\)
\(710\) 3.18911 + 40.7226i 0.119685 + 1.52829i
\(711\) 0 0
\(712\) 57.2037 15.3277i 2.14380 0.574429i
\(713\) −43.3288 3.79078i −1.62268 0.141966i
\(714\) 0 0
\(715\) 8.13410 11.3943i 0.304198 0.426122i
\(716\) −24.5733 4.33293i −0.918347 0.161929i
\(717\) 0 0
\(718\) 7.04570 80.5327i 0.262943 3.00546i
\(719\) 1.80566 3.12750i 0.0673399 0.116636i −0.830390 0.557183i \(-0.811882\pi\)
0.897730 + 0.440547i \(0.145215\pi\)
\(720\) 0 0
\(721\) 11.7313 + 20.3192i 0.436896 + 0.756726i
\(722\) −26.3676 + 12.2954i −0.981302 + 0.457589i
\(723\) 0 0
\(724\) −69.7617 + 83.1388i −2.59268 + 3.08983i
\(725\) −10.1451 + 16.8548i −0.376780 + 0.625970i
\(726\) 0 0
\(727\) −17.2585 + 24.6477i −0.640083 + 0.914133i −0.999821 0.0189200i \(-0.993977\pi\)
0.359738 + 0.933053i \(0.382866\pi\)
\(728\) −58.6635 58.6635i −2.17421 2.17421i
\(729\) 0 0
\(730\) 7.85968 + 22.2223i 0.290900 + 0.822486i
\(731\) −1.09125 + 0.192418i −0.0403615 + 0.00711682i
\(732\) 0 0
\(733\) −17.2990 + 37.0978i −0.638953 + 1.37024i 0.273824 + 0.961780i \(0.411712\pi\)
−0.912777 + 0.408459i \(0.866066\pi\)
\(734\) 2.82259 + 2.36844i 0.104184 + 0.0874206i
\(735\) 0 0
\(736\) 60.0186 + 21.8450i 2.21231 + 0.805217i
\(737\) −3.00982 0.806480i −0.110868 0.0297071i
\(738\) 0 0
\(739\) −7.88425 4.55198i −0.290027 0.167447i 0.347927 0.937522i \(-0.386886\pi\)
−0.637954 + 0.770074i \(0.720219\pi\)
\(740\) −0.860951 3.33436i −0.0316492 0.122574i
\(741\) 0 0
\(742\) 49.4750 34.6428i 1.81629 1.27178i
\(743\) 39.7131 27.8074i 1.45693 1.02016i 0.466149 0.884706i \(-0.345641\pi\)
0.990784 0.135449i \(-0.0432478\pi\)
\(744\) 0 0
\(745\) −15.9210 + 27.0045i −0.583299 + 0.989370i
\(746\) 22.0487 + 12.7298i 0.807262 + 0.466073i
\(747\) 0 0
\(748\) 13.4415 + 3.60163i 0.491468 + 0.131689i
\(749\) −15.5600 5.66337i −0.568550 0.206935i
\(750\) 0 0
\(751\) −31.7068 26.6051i −1.15700 0.970835i −0.157137 0.987577i \(-0.550226\pi\)
−0.999860 + 0.0167415i \(0.994671\pi\)
\(752\) −2.79847 + 6.00134i −0.102050 + 0.218846i
\(753\) 0 0
\(754\) 40.1899 7.08656i 1.46363 0.258077i
\(755\) −38.4128 + 13.5860i −1.39799 + 0.494445i
\(756\) 0 0
\(757\) −27.0538 27.0538i −0.983288 0.983288i 0.0165746 0.999863i \(-0.494724\pi\)
−0.999863 + 0.0165746i \(0.994724\pi\)
\(758\) 8.55950 12.2242i 0.310895 0.444004i
\(759\) 0 0
\(760\) 4.19113 43.3510i 0.152028 1.57250i
\(761\) −22.5010 + 26.8156i −0.815660 + 0.972066i −0.999942 0.0108074i \(-0.996560\pi\)
0.184281 + 0.982874i \(0.441004\pi\)
\(762\) 0 0
\(763\) 17.6156 8.21429i 0.637728 0.297377i
\(764\) 8.93086 + 15.4687i 0.323107 + 0.559638i
\(765\) 0 0
\(766\) 3.69820 6.40547i 0.133621 0.231439i
\(767\) −3.57411 + 40.8523i −0.129054 + 1.47509i
\(768\) 0 0
\(769\) 6.45291 + 1.13782i 0.232698 + 0.0410309i 0.288781 0.957395i \(-0.406750\pi\)
−0.0560832 + 0.998426i \(0.517861\pi\)
\(770\) 26.4183 4.41042i 0.952050 0.158940i
\(771\) 0 0
\(772\) −57.8799 5.06383i −2.08314 0.182251i
\(773\) −5.36547 + 1.43767i −0.192983 + 0.0517095i −0.354016 0.935239i \(-0.615184\pi\)
0.161033 + 0.986949i \(0.448517\pi\)
\(774\) 0 0
\(775\) 27.1039 + 10.4283i 0.973602 + 0.374594i
\(776\) −19.0963 + 52.4668i −0.685519 + 1.88345i
\(777\) 0 0
\(778\) −32.8782 + 2.87647i −1.17874 + 0.103126i
\(779\) 16.6509 6.06042i 0.596579 0.217137i
\(780\) 0 0
\(781\) 1.91473 + 10.8590i 0.0685144 + 0.388565i
\(782\) −25.9681 + 25.9681i −0.928618 + 0.928618i
\(783\) 0 0
\(784\) 15.3922i 0.549723i
\(785\) 1.82167 6.55888i 0.0650181 0.234096i
\(786\) 0 0
\(787\) −28.1849 13.1429i −1.00468 0.468492i −0.150582 0.988597i \(-0.548115\pi\)
−0.854102 + 0.520105i \(0.825893\pi\)
\(788\) −9.83559 112.421i −0.350378 4.00484i
\(789\) 0 0
\(790\) −53.3152 54.2959i −1.89687 1.93176i
\(791\) −5.84490 + 3.37455i −0.207821 + 0.119985i
\(792\) 0 0
\(793\) −12.5989 47.0197i −0.447400 1.66972i
\(794\) 7.12249 5.97648i 0.252768 0.212097i
\(795\) 0 0
\(796\) 5.40604 30.6592i 0.191612 1.08669i
\(797\) 2.77214 + 3.95902i 0.0981941 + 0.140236i 0.865243 0.501353i \(-0.167164\pi\)
−0.767049 + 0.641589i \(0.778275\pi\)
\(798\) 0 0
\(799\) −0.927217 1.10501i −0.0328026 0.0390926i
\(800\) −34.4818 25.0933i −1.21912 0.887181i
\(801\) 0 0
\(802\) −13.7983 + 51.4959i −0.487235 + 1.81838i
\(803\) 2.68909 + 5.76678i 0.0948961 + 0.203505i
\(804\) 0 0
\(805\) −17.3840 + 46.4408i −0.612705 + 1.63682i
\(806\) −20.6048 56.6111i −0.725772 1.99404i
\(807\) 0 0
\(808\) −89.1550 62.4270i −3.13646 2.19617i
\(809\) 27.0458 0.950881 0.475440 0.879748i \(-0.342289\pi\)
0.475440 + 0.879748i \(0.342289\pi\)
\(810\) 0 0
\(811\) −47.9089 −1.68231 −0.841154 0.540795i \(-0.818123\pi\)
−0.841154 + 0.540795i \(0.818123\pi\)
\(812\) 44.8675 + 31.4166i 1.57454 + 1.10251i
\(813\) 0 0
\(814\) −0.453216 1.24520i −0.0158852 0.0436443i
\(815\) −46.0872 + 20.9816i −1.61436 + 0.734954i
\(816\) 0 0
\(817\) 0.688628 + 1.47677i 0.0240921 + 0.0516656i
\(818\) 11.2790 42.0939i 0.394362 1.47178i
\(819\) 0 0
\(820\) 12.2095 65.7346i 0.426373 2.29555i
\(821\) 27.5109 + 32.7862i 0.960137 + 1.14425i 0.989479 + 0.144678i \(0.0462145\pi\)
−0.0293416 + 0.999569i \(0.509341\pi\)
\(822\) 0 0
\(823\) 6.97458 + 9.96073i 0.243119 + 0.347209i 0.922104 0.386943i \(-0.126469\pi\)
−0.678985 + 0.734152i \(0.737580\pi\)
\(824\) 9.61888 54.5514i 0.335090 1.90039i
\(825\) 0 0
\(826\) −60.1008 + 50.4305i −2.09117 + 1.75470i
\(827\) −3.49901 13.0585i −0.121673 0.454088i 0.878027 0.478612i \(-0.158860\pi\)
−0.999699 + 0.0245234i \(0.992193\pi\)
\(828\) 0 0
\(829\) 22.0957 12.7570i 0.767415 0.443068i −0.0645364 0.997915i \(-0.520557\pi\)
0.831952 + 0.554848i \(0.187224\pi\)
\(830\) 23.5389 + 0.214518i 0.817048 + 0.00744605i
\(831\) 0 0
\(832\) 1.63623 + 18.7022i 0.0567261 + 0.648383i
\(833\) 3.03892 + 1.41707i 0.105292 + 0.0490986i
\(834\) 0 0
\(835\) −11.3044 3.13970i −0.391206 0.108654i
\(836\) 20.4628i 0.707721i
\(837\) 0 0
\(838\) 0.996030 0.996030i 0.0344073 0.0344073i
\(839\) 6.29080 + 35.6769i 0.217183 + 1.23170i 0.877078 + 0.480347i \(0.159489\pi\)
−0.659896 + 0.751357i \(0.729400\pi\)
\(840\) 0 0
\(841\) 12.7044 4.62403i 0.438083 0.159449i
\(842\) −19.2811 + 1.68687i −0.664469 + 0.0581335i
\(843\) 0 0
\(844\) 4.47705 12.3006i 0.154106 0.423404i
\(845\) −4.43900 + 5.19334i −0.152706 + 0.178656i
\(846\) 0 0
\(847\) −24.4816 + 6.55983i −0.841199 + 0.225398i
\(848\) −68.2584 5.97184i −2.34400 0.205074i
\(849\) 0 0
\(850\) 21.4554 11.8713i 0.735916 0.407182i
\(851\) 2.41605 + 0.426015i 0.0828212 + 0.0146036i
\(852\) 0 0
\(853\) 1.06118 12.1293i 0.0363341 0.415300i −0.956146 0.292891i \(-0.905383\pi\)
0.992480 0.122409i \(-0.0390619\pi\)
\(854\) 46.5651 80.6531i 1.59342 2.75989i
\(855\) 0 0
\(856\) 19.5466 + 33.8558i 0.668090 + 1.15717i
\(857\) −38.1058 + 17.7690i −1.30167 + 0.606978i −0.944944 0.327232i \(-0.893884\pi\)
−0.356724 + 0.934210i \(0.616106\pi\)
\(858\) 0 0
\(859\) 16.1180 19.2086i 0.549938 0.655390i −0.417447 0.908701i \(-0.637075\pi\)
0.967385 + 0.253311i \(0.0815195\pi\)
\(860\) 6.11963 + 0.591640i 0.208678 + 0.0201748i
\(861\) 0 0
\(862\) 22.2244 31.7398i 0.756967 1.08106i
\(863\) 16.2331 + 16.2331i 0.552582 + 0.552582i 0.927185 0.374603i \(-0.122221\pi\)
−0.374603 + 0.927185i \(0.622221\pi\)
\(864\) 0 0
\(865\) 16.5018 + 7.87879i 0.561078 + 0.267887i
\(866\) 89.7060 15.8176i 3.04833 0.537503i
\(867\) 0 0
\(868\) 34.1717 73.2814i 1.15986 2.48733i
\(869\) −15.7358 13.2039i −0.533800 0.447911i
\(870\) 0 0
\(871\) 7.50875 + 2.73296i 0.254424 + 0.0926028i
\(872\) −44.3246 11.8767i −1.50102 0.402197i
\(873\) 0 0
\(874\) 46.7680 + 27.0015i 1.58195 + 0.913339i
\(875\) 19.7251 26.5924i 0.666830 0.898988i
\(876\) 0 0
\(877\) −45.5180 + 31.8721i −1.53703 + 1.07624i −0.569985 + 0.821655i \(0.693051\pi\)
−0.967049 + 0.254588i \(0.918060\pi\)
\(878\) −80.7392 + 56.5342i −2.72481 + 1.90794i
\(879\) 0 0
\(880\) −26.1750 15.4319i −0.882358 0.520208i
\(881\) −20.5994 11.8931i −0.694013 0.400688i 0.111101 0.993809i \(-0.464562\pi\)
−0.805114 + 0.593121i \(0.797896\pi\)
\(882\) 0 0
\(883\) 25.1153 + 6.72963i 0.845198 + 0.226470i 0.655333 0.755340i \(-0.272528\pi\)
0.189865 + 0.981810i \(0.439195\pi\)
\(884\) −33.5330 12.2050i −1.12784 0.410499i
\(885\) 0 0
\(886\) 56.7260 + 47.5988i 1.90575 + 1.59911i
\(887\) 5.53565 11.8712i 0.185869 0.398597i −0.791189 0.611572i \(-0.790537\pi\)
0.977058 + 0.212975i \(0.0683152\pi\)
\(888\) 0 0
\(889\) −6.30200 + 1.11121i −0.211362 + 0.0372689i
\(890\) 21.1248 44.2450i 0.708104 1.48309i
\(891\) 0 0
\(892\) 73.3199 + 73.3199i 2.45493 + 2.45493i
\(893\) −1.21666 + 1.73756i −0.0407138 + 0.0581454i
\(894\) 0 0
\(895\) −9.16135 + 7.54609i −0.306230 + 0.252238i
\(896\) 9.38428 11.1838i 0.313507 0.373623i
\(897\) 0 0
\(898\) −58.4031 + 27.2338i −1.94894 + 0.908804i
\(899\) 11.4261 + 19.7906i 0.381082 + 0.660054i
\(900\) 0 0
\(901\) 7.46317 12.9266i 0.248634 0.430647i
\(902\) 2.24223 25.6289i 0.0746582 0.853347i
\(903\) 0 0
\(904\) 15.6919 + 2.76691i 0.521906 + 0.0920261i
\(905\) 8.50078 + 50.9195i 0.282575 + 1.69262i
\(906\) 0 0
\(907\) −41.8194 3.65873i −1.38859 0.121486i −0.631795 0.775136i \(-0.717681\pi\)
−0.756797 + 0.653650i \(0.773237\pi\)
\(908\) −33.7576 + 9.04532i −1.12029 + 0.300180i
\(909\) 0 0
\(910\) −68.4748 + 5.36246i −2.26992 + 0.177764i
\(911\) −18.7788 + 51.5943i −0.622169 + 1.70940i 0.0794445 + 0.996839i \(0.474685\pi\)
−0.701614 + 0.712557i \(0.747537\pi\)
\(912\) 0 0
\(913\) 6.33028 0.553828i 0.209502 0.0183290i
\(914\) −8.96418 + 3.26269i −0.296509 + 0.107920i
\(915\) 0 0
\(916\) −3.79298 21.5110i −0.125323 0.710745i
\(917\) −2.01738 + 2.01738i −0.0666196 + 0.0666196i
\(918\) 0 0
\(919\) 38.4394i 1.26800i 0.773333 + 0.634000i \(0.218588\pi\)
−0.773333 + 0.634000i \(0.781412\pi\)
\(920\) 101.917 57.6098i 3.36010 1.89934i
\(921\) 0 0
\(922\) 35.7998 + 16.6937i 1.17900 + 0.549778i
\(923\) −2.46444 28.1686i −0.0811179 0.927182i
\(924\) 0 0
\(925\) −1.47173 0.719219i −0.0483902 0.0236478i
\(926\) 25.2375 14.5709i 0.829356 0.478829i
\(927\) 0 0
\(928\) −8.68545 32.4145i −0.285114 1.06406i
\(929\) 17.4189 14.6162i 0.571497 0.479543i −0.310645 0.950526i \(-0.600545\pi\)
0.882142 + 0.470983i \(0.156101\pi\)
\(930\) 0 0
\(931\) 0.856201 4.85576i 0.0280609 0.159141i
\(932\) −38.4998 54.9834i −1.26110 1.80104i
\(933\) 0 0
\(934\) −29.0481 34.6182i −0.950482 1.13274i
\(935\) 5.45651 3.74705i 0.178447 0.122542i
\(936\) 0 0
\(937\) −0.558400 + 2.08398i −0.0182421 + 0.0680806i −0.974447 0.224618i \(-0.927887\pi\)
0.956205 + 0.292699i \(0.0945532\pi\)
\(938\) 6.46077 + 13.8552i 0.210951 + 0.452387i
\(939\) 0 0
\(940\) 3.31622 + 7.28424i 0.108163 + 0.237586i
\(941\) −15.3914 42.2876i −0.501747 1.37854i −0.889568 0.456803i \(-0.848994\pi\)
0.387821 0.921735i \(-0.373228\pi\)
\(942\) 0 0
\(943\) 39.0167 + 27.3198i 1.27056 + 0.889654i
\(944\) 89.0054 2.89688
\(945\) 0 0
\(946\) 2.36576 0.0769175
\(947\) −13.6646 9.56806i −0.444040 0.310920i 0.330087 0.943950i \(-0.392922\pi\)
−0.774127 + 0.633030i \(0.781811\pi\)
\(948\) 0 0
\(949\) −5.58076 15.3330i −0.181159 0.497731i
\(950\) −25.0275 25.9569i −0.812001 0.842153i
\(951\) 0 0
\(952\) −16.5774 35.5504i −0.537277 1.15220i
\(953\) −4.70396 + 17.5554i −0.152376 + 0.568676i 0.846940 + 0.531689i \(0.178443\pi\)
−0.999316 + 0.0369865i \(0.988224\pi\)
\(954\) 0 0
\(955\) 8.35337 + 1.55155i 0.270309 + 0.0502068i
\(956\) 61.5462 + 73.3479i 1.99055 + 2.37224i
\(957\) 0 0
\(958\) −33.9991 48.5557i −1.09846 1.56876i
\(959\) −1.25123 + 7.09611i −0.0404045 + 0.229145i
\(960\) 0 0
\(961\) 2.09504 1.75795i 0.0675821 0.0567081i
\(962\) 0.879497 + 3.28233i 0.0283561 + 0.105826i
\(963\) 0 0
\(964\) 66.2491 38.2489i 2.13374 1.23192i
\(965\) −19.7194 + 19.3632i −0.634790 + 0.623325i
\(966\) 0 0
\(967\) 2.92397 + 33.4211i 0.0940285 + 1.07475i 0.885842 + 0.463988i \(0.153582\pi\)
−0.791813 + 0.610763i \(0.790863\pi\)
\(968\) 54.2314 + 25.2885i 1.74306 + 0.812804i
\(969\) 0 0
\(970\) 22.7466 + 40.2407i 0.730349 + 1.29205i
\(971\) 23.4452i 0.752393i −0.926540 0.376196i \(-0.877232\pi\)
0.926540 0.376196i \(-0.122768\pi\)
\(972\) 0 0
\(973\) −20.3704 + 20.3704i −0.653044 + 0.653044i
\(974\) 16.3102 + 92.5000i 0.522614 + 2.96389i
\(975\) 0 0
\(976\) −99.2811 + 36.1353i −3.17791 + 1.15666i
\(977\) −22.2971 + 1.95075i −0.713349 + 0.0624099i −0.438052 0.898949i \(-0.644332\pi\)
−0.275297 + 0.961359i \(0.588776\pi\)
\(978\) 0 0
\(979\) 4.52670 12.4370i 0.144674 0.397488i
\(980\) −14.1422 12.0880i −0.451755 0.386137i
\(981\) 0 0
\(982\) 34.4262 9.22446i 1.09858 0.294365i
\(983\) 2.49907 + 0.218640i 0.0797078 + 0.00697353i 0.126940 0.991910i \(-0.459484\pi\)
−0.0472321 + 0.998884i \(0.515040\pi\)
\(984\) 0 0
\(985\) −43.6892 31.1887i −1.39205 0.993754i
\(986\) 19.0022 + 3.35059i 0.605152 + 0.106705i
\(987\) 0 0
\(988\) −4.57346 + 52.2749i −0.145501 + 1.66309i
\(989\) −2.18999 + 3.79317i −0.0696376 + 0.120616i
\(990\) 0 0
\(991\) −11.7772 20.3987i −0.374116 0.647987i 0.616079 0.787685i \(-0.288720\pi\)
−0.990194 + 0.139697i \(0.955387\pi\)
\(992\) −44.8975 + 20.9361i −1.42550 + 0.664720i
\(993\) 0 0
\(994\) 34.7731 41.4409i 1.10294 1.31443i
\(995\) −9.41498 11.4303i −0.298475 0.362364i
\(996\) 0 0
\(997\) 8.96558 12.8042i 0.283943 0.405512i −0.651691 0.758484i \(-0.725940\pi\)
0.935634 + 0.352972i \(0.114829\pi\)
\(998\) 31.0316 + 31.0316i 0.982289 + 0.982289i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.152.15 192
3.2 odd 2 135.2.q.a.122.2 yes 192
5.3 odd 4 inner 405.2.r.a.233.15 192
15.2 even 4 675.2.ba.b.68.15 192
15.8 even 4 135.2.q.a.68.2 yes 192
15.14 odd 2 675.2.ba.b.257.15 192
27.2 odd 18 inner 405.2.r.a.332.15 192
27.25 even 9 135.2.q.a.2.2 192
135.52 odd 36 675.2.ba.b.218.15 192
135.79 even 18 675.2.ba.b.407.15 192
135.83 even 36 inner 405.2.r.a.8.15 192
135.133 odd 36 135.2.q.a.83.2 yes 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.2 192 27.25 even 9
135.2.q.a.68.2 yes 192 15.8 even 4
135.2.q.a.83.2 yes 192 135.133 odd 36
135.2.q.a.122.2 yes 192 3.2 odd 2
405.2.r.a.8.15 192 135.83 even 36 inner
405.2.r.a.152.15 192 1.1 even 1 trivial
405.2.r.a.233.15 192 5.3 odd 4 inner
405.2.r.a.332.15 192 27.2 odd 18 inner
675.2.ba.b.68.15 192 15.2 even 4
675.2.ba.b.218.15 192 135.52 odd 36
675.2.ba.b.257.15 192 15.14 odd 2
675.2.ba.b.407.15 192 135.79 even 18