Properties

Label 405.2.p.a.289.13
Level $405$
Weight $2$
Character 405.289
Analytic conductor $3.234$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(19,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.p (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.13
Character \(\chi\) \(=\) 405.289
Dual form 405.2.p.a.199.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06000 - 1.26326i) q^{2} +(-0.124928 - 0.708504i) q^{4} +(2.00944 - 0.980894i) q^{5} +(1.22191 + 0.215456i) q^{7} +(1.82882 + 1.05587i) q^{8} +(0.890884 - 3.57820i) q^{10} +(-3.30366 + 1.20243i) q^{11} +(-0.380059 - 0.452936i) q^{13} +(1.56741 - 1.31521i) q^{14} +(4.62449 - 1.68318i) q^{16} +(4.46967 - 2.58056i) q^{17} +(-1.41748 + 2.45515i) q^{19} +(-0.946003 - 1.30115i) q^{20} +(-1.98290 + 5.44797i) q^{22} +(-6.59324 + 1.16257i) q^{23} +(3.07569 - 3.94210i) q^{25} -0.975040 q^{26} -0.892646i q^{28} +(-7.21421 - 6.05345i) q^{29} +(0.196771 + 1.11595i) q^{31} +(1.33116 - 3.65733i) q^{32} +(1.47793 - 8.38176i) q^{34} +(2.66670 - 0.765621i) q^{35} +(4.06570 - 2.34734i) q^{37} +(1.59896 + 4.39311i) q^{38} +(4.71061 + 0.327827i) q^{40} +(-4.43129 + 3.71830i) q^{41} +(0.739520 + 2.03181i) q^{43} +(1.26465 + 2.19044i) q^{44} +(-5.52022 + 9.56131i) q^{46} +(-6.14268 - 1.08312i) q^{47} +(-5.13120 - 1.86760i) q^{49} +(-1.71966 - 8.06403i) q^{50} +(-0.273427 + 0.325858i) q^{52} +8.21098i q^{53} +(-5.45905 + 5.65676i) q^{55} +(2.00717 + 1.68421i) q^{56} +(-15.2942 + 2.69677i) q^{58} +(12.6981 + 4.62173i) q^{59} +(-1.38440 + 7.85133i) q^{61} +(1.61831 + 0.934331i) q^{62} +(1.71215 + 2.96553i) q^{64} +(-1.20799 - 0.537351i) q^{65} +(-2.83000 - 3.37266i) q^{67} +(-2.38673 - 2.84439i) q^{68} +(1.85953 - 4.18030i) q^{70} +(3.43788 + 5.95458i) q^{71} +(-1.23957 - 0.715668i) q^{73} +(1.34436 - 7.62423i) q^{74} +(1.91656 + 0.697573i) q^{76} +(-4.29586 + 0.757476i) q^{77} +(-0.970806 - 0.814603i) q^{79} +(7.64162 - 7.91838i) q^{80} +9.53928i q^{82} +(-0.982501 + 1.17090i) q^{83} +(6.45027 - 9.56976i) q^{85} +(3.35061 + 1.21952i) q^{86} +(-7.31144 - 1.28920i) q^{88} +(-6.52774 + 11.3064i) q^{89} +(-0.366811 - 0.635335i) q^{91} +(1.64736 + 4.52610i) q^{92} +(-7.87952 + 6.61170i) q^{94} +(-0.440100 + 6.32387i) q^{95} +(-4.74011 - 13.0234i) q^{97} +(-7.79835 + 4.50238i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} + 9 q^{5} - 3 q^{10} + 6 q^{11} + 18 q^{14} - 24 q^{16} - 6 q^{19} + 57 q^{20} + 3 q^{25} - 48 q^{26} + 30 q^{29} - 30 q^{31} - 24 q^{34} + 12 q^{35} - 9 q^{40} + 12 q^{41} - 78 q^{44} - 6 q^{46}+ \cdots - 87 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06000 1.26326i 0.749535 0.893261i −0.247604 0.968861i \(-0.579643\pi\)
0.997138 + 0.0756008i \(0.0240875\pi\)
\(3\) 0 0
\(4\) −0.124928 0.708504i −0.0624641 0.354252i
\(5\) 2.00944 0.980894i 0.898649 0.438669i
\(6\) 0 0
\(7\) 1.22191 + 0.215456i 0.461840 + 0.0814348i 0.399727 0.916634i \(-0.369105\pi\)
0.0621128 + 0.998069i \(0.480216\pi\)
\(8\) 1.82882 + 1.05587i 0.646587 + 0.373307i
\(9\) 0 0
\(10\) 0.890884 3.57820i 0.281722 1.13153i
\(11\) −3.30366 + 1.20243i −0.996092 + 0.362548i −0.788076 0.615578i \(-0.788923\pi\)
−0.208016 + 0.978125i \(0.566701\pi\)
\(12\) 0 0
\(13\) −0.380059 0.452936i −0.105409 0.125622i 0.710760 0.703434i \(-0.248351\pi\)
−0.816170 + 0.577812i \(0.803907\pi\)
\(14\) 1.56741 1.31521i 0.418907 0.351505i
\(15\) 0 0
\(16\) 4.62449 1.68318i 1.15612 0.420794i
\(17\) 4.46967 2.58056i 1.08405 0.625879i 0.152067 0.988370i \(-0.451407\pi\)
0.931987 + 0.362491i \(0.118074\pi\)
\(18\) 0 0
\(19\) −1.41748 + 2.45515i −0.325192 + 0.563250i −0.981551 0.191199i \(-0.938762\pi\)
0.656359 + 0.754449i \(0.272096\pi\)
\(20\) −0.946003 1.30115i −0.211533 0.290947i
\(21\) 0 0
\(22\) −1.98290 + 5.44797i −0.422756 + 1.16151i
\(23\) −6.59324 + 1.16257i −1.37479 + 0.242412i −0.811742 0.584016i \(-0.801481\pi\)
−0.563043 + 0.826427i \(0.690370\pi\)
\(24\) 0 0
\(25\) 3.07569 3.94210i 0.615138 0.788419i
\(26\) −0.975040 −0.191221
\(27\) 0 0
\(28\) 0.892646i 0.168694i
\(29\) −7.21421 6.05345i −1.33965 1.12410i −0.981717 0.190348i \(-0.939038\pi\)
−0.357929 0.933749i \(-0.616517\pi\)
\(30\) 0 0
\(31\) 0.196771 + 1.11595i 0.0353412 + 0.200430i 0.997366 0.0725319i \(-0.0231079\pi\)
−0.962025 + 0.272962i \(0.911997\pi\)
\(32\) 1.33116 3.65733i 0.235318 0.646531i
\(33\) 0 0
\(34\) 1.47793 8.38176i 0.253463 1.43746i
\(35\) 2.66670 0.765621i 0.450754 0.129414i
\(36\) 0 0
\(37\) 4.06570 2.34734i 0.668398 0.385900i −0.127072 0.991894i \(-0.540558\pi\)
0.795469 + 0.605994i \(0.207224\pi\)
\(38\) 1.59896 + 4.39311i 0.259386 + 0.712657i
\(39\) 0 0
\(40\) 4.71061 + 0.327827i 0.744813 + 0.0518341i
\(41\) −4.43129 + 3.71830i −0.692052 + 0.580700i −0.919500 0.393090i \(-0.871406\pi\)
0.227448 + 0.973790i \(0.426962\pi\)
\(42\) 0 0
\(43\) 0.739520 + 2.03181i 0.112776 + 0.309849i 0.983222 0.182415i \(-0.0583916\pi\)
−0.870446 + 0.492264i \(0.836169\pi\)
\(44\) 1.26465 + 2.19044i 0.190653 + 0.330221i
\(45\) 0 0
\(46\) −5.52022 + 9.56131i −0.813913 + 1.40974i
\(47\) −6.14268 1.08312i −0.896002 0.157989i −0.293361 0.956002i \(-0.594774\pi\)
−0.602641 + 0.798012i \(0.705885\pi\)
\(48\) 0 0
\(49\) −5.13120 1.86760i −0.733029 0.266801i
\(50\) −1.71966 8.06403i −0.243196 1.14043i
\(51\) 0 0
\(52\) −0.273427 + 0.325858i −0.0379175 + 0.0451883i
\(53\) 8.21098i 1.12787i 0.825821 + 0.563933i \(0.190712\pi\)
−0.825821 + 0.563933i \(0.809288\pi\)
\(54\) 0 0
\(55\) −5.45905 + 5.65676i −0.736098 + 0.762758i
\(56\) 2.00717 + 1.68421i 0.268219 + 0.225063i
\(57\) 0 0
\(58\) −15.2942 + 2.69677i −2.00822 + 0.354104i
\(59\) 12.6981 + 4.62173i 1.65315 + 0.601698i 0.989265 0.146136i \(-0.0466836\pi\)
0.663886 + 0.747833i \(0.268906\pi\)
\(60\) 0 0
\(61\) −1.38440 + 7.85133i −0.177254 + 1.00526i 0.758255 + 0.651958i \(0.226052\pi\)
−0.935509 + 0.353302i \(0.885059\pi\)
\(62\) 1.61831 + 0.934331i 0.205525 + 0.118660i
\(63\) 0 0
\(64\) 1.71215 + 2.96553i 0.214019 + 0.370691i
\(65\) −1.20799 0.537351i −0.149832 0.0666502i
\(66\) 0 0
\(67\) −2.83000 3.37266i −0.345739 0.412036i 0.564952 0.825124i \(-0.308895\pi\)
−0.910691 + 0.413088i \(0.864450\pi\)
\(68\) −2.38673 2.84439i −0.289433 0.344933i
\(69\) 0 0
\(70\) 1.85953 4.18030i 0.222256 0.499641i
\(71\) 3.43788 + 5.95458i 0.408001 + 0.706679i 0.994666 0.103151i \(-0.0328925\pi\)
−0.586664 + 0.809830i \(0.699559\pi\)
\(72\) 0 0
\(73\) −1.23957 0.715668i −0.145081 0.0837626i 0.425702 0.904863i \(-0.360027\pi\)
−0.570783 + 0.821101i \(0.693360\pi\)
\(74\) 1.34436 7.62423i 0.156278 0.886298i
\(75\) 0 0
\(76\) 1.91656 + 0.697573i 0.219845 + 0.0800171i
\(77\) −4.29586 + 0.757476i −0.489559 + 0.0863224i
\(78\) 0 0
\(79\) −0.970806 0.814603i −0.109224 0.0916500i 0.586540 0.809920i \(-0.300490\pi\)
−0.695764 + 0.718270i \(0.744934\pi\)
\(80\) 7.64162 7.91838i 0.854359 0.885302i
\(81\) 0 0
\(82\) 9.53928i 1.05344i
\(83\) −0.982501 + 1.17090i −0.107844 + 0.128523i −0.817266 0.576260i \(-0.804511\pi\)
0.709423 + 0.704783i \(0.248956\pi\)
\(84\) 0 0
\(85\) 6.45027 9.56976i 0.699630 1.03799i
\(86\) 3.35061 + 1.21952i 0.361305 + 0.131504i
\(87\) 0 0
\(88\) −7.31144 1.28920i −0.779402 0.137430i
\(89\) −6.52774 + 11.3064i −0.691939 + 1.19847i 0.279262 + 0.960215i \(0.409910\pi\)
−0.971202 + 0.238259i \(0.923423\pi\)
\(90\) 0 0
\(91\) −0.366811 0.635335i −0.0384522 0.0666012i
\(92\) 1.64736 + 4.52610i 0.171750 + 0.471878i
\(93\) 0 0
\(94\) −7.87952 + 6.61170i −0.812711 + 0.681945i
\(95\) −0.440100 + 6.32387i −0.0451533 + 0.648815i
\(96\) 0 0
\(97\) −4.74011 13.0234i −0.481286 1.32232i −0.908392 0.418120i \(-0.862689\pi\)
0.427106 0.904202i \(-0.359533\pi\)
\(98\) −7.79835 + 4.50238i −0.787753 + 0.454809i
\(99\) 0 0
\(100\) −3.17723 1.68666i −0.317723 0.168666i
\(101\) −2.04974 + 11.6247i −0.203957 + 1.15670i 0.695115 + 0.718898i \(0.255353\pi\)
−0.899072 + 0.437800i \(0.855758\pi\)
\(102\) 0 0
\(103\) 0.837596 2.30128i 0.0825308 0.226751i −0.891563 0.452897i \(-0.850390\pi\)
0.974093 + 0.226146i \(0.0726126\pi\)
\(104\) −0.216818 1.22963i −0.0212607 0.120576i
\(105\) 0 0
\(106\) 10.3726 + 8.70366i 1.00748 + 0.845374i
\(107\) 6.83945i 0.661195i −0.943772 0.330597i \(-0.892750\pi\)
0.943772 0.330597i \(-0.107250\pi\)
\(108\) 0 0
\(109\) 18.7944 1.80018 0.900088 0.435708i \(-0.143502\pi\)
0.900088 + 0.435708i \(0.143502\pi\)
\(110\) 1.35937 + 12.8924i 0.129611 + 1.22924i
\(111\) 0 0
\(112\) 6.01338 1.06032i 0.568211 0.100191i
\(113\) 4.71959 12.9670i 0.443982 1.21983i −0.492870 0.870103i \(-0.664052\pi\)
0.936852 0.349727i \(-0.113726\pi\)
\(114\) 0 0
\(115\) −12.1084 + 8.80338i −1.12911 + 0.820919i
\(116\) −3.38763 + 5.86754i −0.314533 + 0.544788i
\(117\) 0 0
\(118\) 19.2985 11.1420i 1.77657 1.02570i
\(119\) 6.01754 2.19021i 0.551627 0.200776i
\(120\) 0 0
\(121\) 1.04185 0.874216i 0.0947136 0.0794742i
\(122\) 8.45081 + 10.0713i 0.765101 + 0.911811i
\(123\) 0 0
\(124\) 0.766069 0.278826i 0.0687950 0.0250393i
\(125\) 2.31364 10.9383i 0.206938 0.978354i
\(126\) 0 0
\(127\) −7.40277 4.27399i −0.656890 0.379255i 0.134201 0.990954i \(-0.457153\pi\)
−0.791091 + 0.611699i \(0.790486\pi\)
\(128\) 13.2270 + 2.33227i 1.16911 + 0.206146i
\(129\) 0 0
\(130\) −1.95928 + 0.956412i −0.171841 + 0.0838828i
\(131\) −1.68189 9.53845i −0.146947 0.833379i −0.965783 0.259351i \(-0.916491\pi\)
0.818836 0.574028i \(-0.194620\pi\)
\(132\) 0 0
\(133\) −2.26101 + 2.69457i −0.196055 + 0.233649i
\(134\) −7.26035 −0.627198
\(135\) 0 0
\(136\) 10.8990 0.934580
\(137\) −9.51323 + 11.3374i −0.812770 + 0.968622i −0.999906 0.0137123i \(-0.995635\pi\)
0.187136 + 0.982334i \(0.440080\pi\)
\(138\) 0 0
\(139\) −0.474713 2.69223i −0.0402646 0.228352i 0.958034 0.286653i \(-0.0925428\pi\)
−0.998299 + 0.0583011i \(0.981432\pi\)
\(140\) −0.875591 1.79372i −0.0740010 0.151597i
\(141\) 0 0
\(142\) 11.1664 + 1.96893i 0.937060 + 0.165229i
\(143\) 1.80021 + 1.03935i 0.150541 + 0.0869151i
\(144\) 0 0
\(145\) −20.4343 5.08765i −1.69698 0.422506i
\(146\) −2.21803 + 0.807296i −0.183565 + 0.0668123i
\(147\) 0 0
\(148\) −2.17102 2.58732i −0.178456 0.212676i
\(149\) 14.9253 12.5238i 1.22273 1.02599i 0.224054 0.974577i \(-0.428071\pi\)
0.998677 0.0514162i \(-0.0163735\pi\)
\(150\) 0 0
\(151\) −12.9070 + 4.69775i −1.05035 + 0.382297i −0.808796 0.588089i \(-0.799880\pi\)
−0.241557 + 0.970387i \(0.577658\pi\)
\(152\) −5.18465 + 2.99336i −0.420530 + 0.242793i
\(153\) 0 0
\(154\) −3.59673 + 6.22972i −0.289833 + 0.502005i
\(155\) 1.49002 + 2.04941i 0.119682 + 0.164613i
\(156\) 0 0
\(157\) 4.04287 11.1077i 0.322656 0.886491i −0.667258 0.744826i \(-0.732532\pi\)
0.989915 0.141665i \(-0.0452455\pi\)
\(158\) −2.05811 + 0.362901i −0.163735 + 0.0288708i
\(159\) 0 0
\(160\) −0.912572 8.65492i −0.0721451 0.684231i
\(161\) −8.30684 −0.654671
\(162\) 0 0
\(163\) 13.4522i 1.05366i 0.849972 + 0.526828i \(0.176619\pi\)
−0.849972 + 0.526828i \(0.823381\pi\)
\(164\) 3.18802 + 2.67507i 0.248943 + 0.208888i
\(165\) 0 0
\(166\) 0.437699 + 2.48231i 0.0339720 + 0.192665i
\(167\) −0.885201 + 2.43207i −0.0684989 + 0.188199i −0.969219 0.246201i \(-0.920818\pi\)
0.900720 + 0.434401i \(0.143040\pi\)
\(168\) 0 0
\(169\) 2.19672 12.4582i 0.168978 0.958324i
\(170\) −5.25181 18.2923i −0.402796 1.40296i
\(171\) 0 0
\(172\) 1.34716 0.777784i 0.102720 0.0593055i
\(173\) −5.65820 15.5458i −0.430185 1.18192i −0.945699 0.325042i \(-0.894621\pi\)
0.515515 0.856881i \(-0.327601\pi\)
\(174\) 0 0
\(175\) 4.60758 4.15422i 0.348300 0.314029i
\(176\) −13.2539 + 11.1213i −0.999047 + 0.838300i
\(177\) 0 0
\(178\) 7.36349 + 20.2310i 0.551917 + 1.51638i
\(179\) 0.606831 + 1.05106i 0.0453567 + 0.0785601i 0.887812 0.460205i \(-0.152224\pi\)
−0.842456 + 0.538765i \(0.818891\pi\)
\(180\) 0 0
\(181\) 1.84215 3.19070i 0.136926 0.237163i −0.789405 0.613872i \(-0.789611\pi\)
0.926332 + 0.376709i \(0.122944\pi\)
\(182\) −1.19141 0.210078i −0.0883135 0.0155720i
\(183\) 0 0
\(184\) −13.2854 4.83549i −0.979413 0.356477i
\(185\) 5.86730 8.70485i 0.431372 0.639994i
\(186\) 0 0
\(187\) −11.6633 + 13.8998i −0.852906 + 1.01645i
\(188\) 4.48743i 0.327279i
\(189\) 0 0
\(190\) 7.52219 + 7.25928i 0.545717 + 0.526643i
\(191\) −2.91058 2.44226i −0.210602 0.176716i 0.531385 0.847131i \(-0.321672\pi\)
−0.741987 + 0.670415i \(0.766116\pi\)
\(192\) 0 0
\(193\) 8.95492 1.57899i 0.644589 0.113658i 0.158209 0.987406i \(-0.449428\pi\)
0.486380 + 0.873747i \(0.338317\pi\)
\(194\) −21.4764 7.81678i −1.54192 0.561212i
\(195\) 0 0
\(196\) −0.682172 + 3.86879i −0.0487266 + 0.276342i
\(197\) −5.83859 3.37091i −0.415982 0.240167i 0.277375 0.960762i \(-0.410536\pi\)
−0.693357 + 0.720594i \(0.743869\pi\)
\(198\) 0 0
\(199\) −5.30284 9.18479i −0.375909 0.651093i 0.614554 0.788875i \(-0.289336\pi\)
−0.990463 + 0.137782i \(0.956003\pi\)
\(200\) 9.78725 3.96186i 0.692063 0.280146i
\(201\) 0 0
\(202\) 12.5123 + 14.9115i 0.880360 + 1.04917i
\(203\) −7.51089 8.95113i −0.527161 0.628246i
\(204\) 0 0
\(205\) −5.25716 + 11.8183i −0.367176 + 0.825427i
\(206\) −2.01926 3.49746i −0.140688 0.243680i
\(207\) 0 0
\(208\) −2.51995 1.45489i −0.174727 0.100879i
\(209\) 1.73072 9.81541i 0.119717 0.678946i
\(210\) 0 0
\(211\) 16.7832 + 6.10860i 1.15541 + 0.420534i 0.847454 0.530868i \(-0.178134\pi\)
0.307952 + 0.951402i \(0.400356\pi\)
\(212\) 5.81751 1.02578i 0.399548 0.0704511i
\(213\) 0 0
\(214\) −8.64002 7.24983i −0.590619 0.495588i
\(215\) 3.47902 + 3.35742i 0.237267 + 0.228974i
\(216\) 0 0
\(217\) 1.40598i 0.0954443i
\(218\) 19.9221 23.7422i 1.34929 1.60803i
\(219\) 0 0
\(220\) 4.68983 + 3.16107i 0.316188 + 0.213119i
\(221\) −2.86757 1.04371i −0.192894 0.0702075i
\(222\) 0 0
\(223\) 19.2137 + 3.38789i 1.28664 + 0.226870i 0.774798 0.632209i \(-0.217851\pi\)
0.511844 + 0.859078i \(0.328963\pi\)
\(224\) 2.41456 4.18213i 0.161329 0.279431i
\(225\) 0 0
\(226\) −11.3779 19.7071i −0.756846 1.31090i
\(227\) −1.25836 3.45732i −0.0835203 0.229470i 0.890902 0.454196i \(-0.150073\pi\)
−0.974422 + 0.224726i \(0.927851\pi\)
\(228\) 0 0
\(229\) −3.32291 + 2.78825i −0.219584 + 0.184253i −0.745943 0.666009i \(-0.768001\pi\)
0.526360 + 0.850262i \(0.323557\pi\)
\(230\) −1.71392 + 24.6276i −0.113013 + 1.62390i
\(231\) 0 0
\(232\) −6.80187 18.6880i −0.446564 1.22693i
\(233\) 6.83118 3.94398i 0.447525 0.258379i −0.259259 0.965808i \(-0.583478\pi\)
0.706784 + 0.707429i \(0.250145\pi\)
\(234\) 0 0
\(235\) −13.4058 + 3.84886i −0.874496 + 0.251072i
\(236\) 1.68816 9.57403i 0.109890 0.623216i
\(237\) 0 0
\(238\) 3.61180 9.92335i 0.234119 0.643235i
\(239\) 4.95815 + 28.1191i 0.320716 + 1.81887i 0.538210 + 0.842811i \(0.319101\pi\)
−0.217493 + 0.976062i \(0.569788\pi\)
\(240\) 0 0
\(241\) −10.0815 8.45937i −0.649405 0.544916i 0.257485 0.966282i \(-0.417106\pi\)
−0.906890 + 0.421367i \(0.861551\pi\)
\(242\) 2.24280i 0.144173i
\(243\) 0 0
\(244\) 5.73565 0.367187
\(245\) −12.1428 + 1.28033i −0.775772 + 0.0817972i
\(246\) 0 0
\(247\) 1.65075 0.291072i 0.105035 0.0185205i
\(248\) −0.818435 + 2.24863i −0.0519707 + 0.142788i
\(249\) 0 0
\(250\) −11.3655 14.5174i −0.718818 0.918160i
\(251\) 13.5512 23.4713i 0.855341 1.48149i −0.0209869 0.999780i \(-0.506681\pi\)
0.876328 0.481715i \(-0.159986\pi\)
\(252\) 0 0
\(253\) 20.3839 11.7687i 1.28153 0.739890i
\(254\) −13.2461 + 4.82119i −0.831135 + 0.302509i
\(255\) 0 0
\(256\) 11.7205 9.83471i 0.732534 0.614669i
\(257\) −1.21645 1.44970i −0.0758798 0.0904300i 0.726769 0.686882i \(-0.241021\pi\)
−0.802649 + 0.596452i \(0.796577\pi\)
\(258\) 0 0
\(259\) 5.47368 1.99226i 0.340118 0.123793i
\(260\) −0.229803 + 0.922994i −0.0142518 + 0.0572417i
\(261\) 0 0
\(262\) −13.8324 7.98612i −0.854566 0.493384i
\(263\) 20.7228 + 3.65398i 1.27782 + 0.225314i 0.771054 0.636770i \(-0.219730\pi\)
0.506766 + 0.862084i \(0.330841\pi\)
\(264\) 0 0
\(265\) 8.05411 + 16.4995i 0.494760 + 1.01355i
\(266\) 1.00727 + 5.71250i 0.0617596 + 0.350256i
\(267\) 0 0
\(268\) −2.03599 + 2.42640i −0.124368 + 0.148216i
\(269\) −1.06528 −0.0649512 −0.0324756 0.999473i \(-0.510339\pi\)
−0.0324756 + 0.999473i \(0.510339\pi\)
\(270\) 0 0
\(271\) −5.32687 −0.323585 −0.161792 0.986825i \(-0.551727\pi\)
−0.161792 + 0.986825i \(0.551727\pi\)
\(272\) 16.3264 19.4571i 0.989934 1.17976i
\(273\) 0 0
\(274\) 4.23809 + 24.0354i 0.256032 + 1.45203i
\(275\) −5.42094 + 16.7217i −0.326895 + 1.00835i
\(276\) 0 0
\(277\) 16.9171 + 2.98294i 1.01645 + 0.179228i 0.656963 0.753923i \(-0.271841\pi\)
0.359487 + 0.933150i \(0.382952\pi\)
\(278\) −3.90419 2.25408i −0.234158 0.135191i
\(279\) 0 0
\(280\) 5.68532 + 1.41551i 0.339763 + 0.0845927i
\(281\) 11.6900 4.25480i 0.697365 0.253820i 0.0310798 0.999517i \(-0.490105\pi\)
0.666286 + 0.745697i \(0.267883\pi\)
\(282\) 0 0
\(283\) −13.3156 15.8689i −0.791528 0.943306i 0.207865 0.978158i \(-0.433349\pi\)
−0.999393 + 0.0348514i \(0.988904\pi\)
\(284\) 3.78936 3.17965i 0.224857 0.188677i
\(285\) 0 0
\(286\) 3.22120 1.17242i 0.190474 0.0693268i
\(287\) −6.21578 + 3.58868i −0.366906 + 0.211833i
\(288\) 0 0
\(289\) 4.81863 8.34611i 0.283449 0.490948i
\(290\) −28.0874 + 20.4210i −1.64935 + 1.19916i
\(291\) 0 0
\(292\) −0.352196 + 0.967650i −0.0206107 + 0.0566274i
\(293\) −6.16081 + 1.08632i −0.359919 + 0.0634634i −0.350684 0.936494i \(-0.614051\pi\)
−0.00923499 + 0.999957i \(0.502940\pi\)
\(294\) 0 0
\(295\) 30.0495 3.16841i 1.74955 0.184472i
\(296\) 9.91394 0.576236
\(297\) 0 0
\(298\) 32.1299i 1.86123i
\(299\) 3.03239 + 2.54448i 0.175367 + 0.147151i
\(300\) 0 0
\(301\) 0.465862 + 2.64203i 0.0268518 + 0.152284i
\(302\) −7.74692 + 21.2845i −0.445785 + 1.22478i
\(303\) 0 0
\(304\) −2.42268 + 13.7397i −0.138950 + 0.788025i
\(305\) 4.91946 + 17.1347i 0.281687 + 0.981131i
\(306\) 0 0
\(307\) −15.8040 + 9.12444i −0.901981 + 0.520759i −0.877843 0.478949i \(-0.841018\pi\)
−0.0241389 + 0.999709i \(0.507684\pi\)
\(308\) 1.07335 + 2.94900i 0.0611597 + 0.168035i
\(309\) 0 0
\(310\) 4.16837 + 0.290091i 0.236748 + 0.0164761i
\(311\) 3.62362 3.04058i 0.205477 0.172416i −0.534242 0.845332i \(-0.679403\pi\)
0.739719 + 0.672916i \(0.234958\pi\)
\(312\) 0 0
\(313\) 11.8489 + 32.5545i 0.669737 + 1.84009i 0.526026 + 0.850469i \(0.323681\pi\)
0.143711 + 0.989620i \(0.454096\pi\)
\(314\) −9.74647 16.8814i −0.550025 0.952672i
\(315\) 0 0
\(316\) −0.455868 + 0.789587i −0.0256446 + 0.0444177i
\(317\) 1.01556 + 0.179070i 0.0570395 + 0.0100576i 0.202095 0.979366i \(-0.435225\pi\)
−0.145056 + 0.989424i \(0.546336\pi\)
\(318\) 0 0
\(319\) 31.1122 + 11.3239i 1.74195 + 0.634018i
\(320\) 6.34933 + 4.27961i 0.354938 + 0.239238i
\(321\) 0 0
\(322\) −8.80527 + 10.4937i −0.490699 + 0.584792i
\(323\) 14.6316i 0.814124i
\(324\) 0 0
\(325\) −2.95446 + 0.105135i −0.163884 + 0.00583185i
\(326\) 16.9936 + 14.2593i 0.941189 + 0.789752i
\(327\) 0 0
\(328\) −12.0301 + 2.12123i −0.664251 + 0.117125i
\(329\) −7.27246 2.64696i −0.400943 0.145931i
\(330\) 0 0
\(331\) 2.20443 12.5020i 0.121167 0.687170i −0.862344 0.506322i \(-0.831005\pi\)
0.983511 0.180848i \(-0.0578842\pi\)
\(332\) 0.952329 + 0.549827i 0.0522658 + 0.0301757i
\(333\) 0 0
\(334\) 2.13403 + 3.69624i 0.116769 + 0.202249i
\(335\) −8.99492 4.00122i −0.491445 0.218610i
\(336\) 0 0
\(337\) −5.97195 7.11709i −0.325313 0.387693i 0.578456 0.815714i \(-0.303655\pi\)
−0.903769 + 0.428021i \(0.859211\pi\)
\(338\) −13.4095 15.9808i −0.729378 0.869239i
\(339\) 0 0
\(340\) −7.58603 3.37450i −0.411410 0.183008i
\(341\) −1.99192 3.45010i −0.107868 0.186833i
\(342\) 0 0
\(343\) −13.3892 7.73027i −0.722950 0.417395i
\(344\) −0.792885 + 4.49667i −0.0427495 + 0.242444i
\(345\) 0 0
\(346\) −25.6361 9.33077i −1.37820 0.501625i
\(347\) 24.7495 4.36400i 1.32862 0.234272i 0.536120 0.844142i \(-0.319889\pi\)
0.792502 + 0.609870i \(0.208778\pi\)
\(348\) 0 0
\(349\) −1.83471 1.53950i −0.0982096 0.0824076i 0.592361 0.805673i \(-0.298196\pi\)
−0.690570 + 0.723265i \(0.742640\pi\)
\(350\) −0.363825 10.2241i −0.0194473 0.546499i
\(351\) 0 0
\(352\) 13.6832i 0.729319i
\(353\) 8.23024 9.80842i 0.438051 0.522049i −0.501176 0.865346i \(-0.667099\pi\)
0.939227 + 0.343296i \(0.111543\pi\)
\(354\) 0 0
\(355\) 12.7490 + 8.59318i 0.676648 + 0.456078i
\(356\) 8.82611 + 3.21244i 0.467783 + 0.170259i
\(357\) 0 0
\(358\) 1.97101 + 0.347542i 0.104171 + 0.0183682i
\(359\) −0.774475 + 1.34143i −0.0408753 + 0.0707980i −0.885739 0.464183i \(-0.846348\pi\)
0.844864 + 0.534981i \(0.179681\pi\)
\(360\) 0 0
\(361\) 5.48150 + 9.49423i 0.288500 + 0.499696i
\(362\) −2.07800 5.70927i −0.109218 0.300073i
\(363\) 0 0
\(364\) −0.404312 + 0.339258i −0.0211917 + 0.0177819i
\(365\) −3.19284 0.222201i −0.167121 0.0116305i
\(366\) 0 0
\(367\) −1.69337 4.65249i −0.0883931 0.242858i 0.887617 0.460582i \(-0.152359\pi\)
−0.976011 + 0.217723i \(0.930137\pi\)
\(368\) −28.5336 + 16.4739i −1.48742 + 0.858760i
\(369\) 0 0
\(370\) −4.77716 16.6391i −0.248353 0.865025i
\(371\) −1.76911 + 10.0331i −0.0918474 + 0.520893i
\(372\) 0 0
\(373\) −5.91918 + 16.2628i −0.306484 + 0.842057i 0.686852 + 0.726798i \(0.258992\pi\)
−0.993335 + 0.115260i \(0.963230\pi\)
\(374\) 5.19594 + 29.4676i 0.268676 + 1.52374i
\(375\) 0 0
\(376\) −10.0903 8.46673i −0.520365 0.436638i
\(377\) 5.56825i 0.286779i
\(378\) 0 0
\(379\) −8.91774 −0.458073 −0.229037 0.973418i \(-0.573558\pi\)
−0.229037 + 0.973418i \(0.573558\pi\)
\(380\) 4.53547 0.478218i 0.232664 0.0245321i
\(381\) 0 0
\(382\) −6.17043 + 1.08801i −0.315707 + 0.0556676i
\(383\) −8.44098 + 23.1914i −0.431314 + 1.18502i 0.513693 + 0.857974i \(0.328277\pi\)
−0.945007 + 0.327051i \(0.893945\pi\)
\(384\) 0 0
\(385\) −7.88926 + 5.73589i −0.402074 + 0.292328i
\(386\) 7.49755 12.9861i 0.381615 0.660977i
\(387\) 0 0
\(388\) −8.63492 + 4.98537i −0.438372 + 0.253094i
\(389\) 6.71441 2.44385i 0.340434 0.123908i −0.166145 0.986101i \(-0.553132\pi\)
0.506579 + 0.862193i \(0.330910\pi\)
\(390\) 0 0
\(391\) −26.4695 + 22.2106i −1.33862 + 1.12324i
\(392\) −7.41211 8.83341i −0.374368 0.446155i
\(393\) 0 0
\(394\) −10.4473 + 3.80249i −0.526325 + 0.191567i
\(395\) −2.74982 0.684637i −0.138358 0.0344478i
\(396\) 0 0
\(397\) 3.87921 + 2.23966i 0.194692 + 0.112405i 0.594177 0.804334i \(-0.297478\pi\)
−0.399485 + 0.916740i \(0.630811\pi\)
\(398\) −17.2238 3.03702i −0.863352 0.152232i
\(399\) 0 0
\(400\) 7.58827 23.4071i 0.379413 1.17036i
\(401\) −0.799427 4.53377i −0.0399215 0.226406i 0.958319 0.285700i \(-0.0922261\pi\)
−0.998241 + 0.0592942i \(0.981115\pi\)
\(402\) 0 0
\(403\) 0.430668 0.513250i 0.0214531 0.0255668i
\(404\) 8.49220 0.422503
\(405\) 0 0
\(406\) −19.2692 −0.956313
\(407\) −10.6092 + 12.6435i −0.525878 + 0.626717i
\(408\) 0 0
\(409\) −2.13917 12.1318i −0.105775 0.599880i −0.990908 0.134542i \(-0.957044\pi\)
0.885133 0.465339i \(-0.154067\pi\)
\(410\) 9.35703 + 19.1686i 0.462111 + 0.946670i
\(411\) 0 0
\(412\) −1.73510 0.305945i −0.0854823 0.0150728i
\(413\) 14.5202 + 8.38323i 0.714491 + 0.412512i
\(414\) 0 0
\(415\) −0.825748 + 3.31658i −0.0405344 + 0.162805i
\(416\) −2.16246 + 0.787071i −0.106023 + 0.0385893i
\(417\) 0 0
\(418\) −10.5649 12.5907i −0.516744 0.615832i
\(419\) 12.8029 10.7429i 0.625462 0.524825i −0.274053 0.961715i \(-0.588364\pi\)
0.899515 + 0.436890i \(0.143920\pi\)
\(420\) 0 0
\(421\) 7.93497 2.88809i 0.386727 0.140757i −0.141338 0.989961i \(-0.545140\pi\)
0.528064 + 0.849205i \(0.322918\pi\)
\(422\) 25.5070 14.7265i 1.24166 0.716875i
\(423\) 0 0
\(424\) −8.66975 + 15.0164i −0.421040 + 0.729263i
\(425\) 3.57449 25.5569i 0.173388 1.23969i
\(426\) 0 0
\(427\) −3.38323 + 9.29536i −0.163726 + 0.449834i
\(428\) −4.84578 + 0.854441i −0.234229 + 0.0413010i
\(429\) 0 0
\(430\) 7.92906 0.836038i 0.382373 0.0403173i
\(431\) 11.6530 0.561306 0.280653 0.959809i \(-0.409449\pi\)
0.280653 + 0.959809i \(0.409449\pi\)
\(432\) 0 0
\(433\) 10.8242i 0.520178i −0.965585 0.260089i \(-0.916248\pi\)
0.965585 0.260089i \(-0.0837519\pi\)
\(434\) 1.77612 + 1.49034i 0.0852567 + 0.0715388i
\(435\) 0 0
\(436\) −2.34795 13.3159i −0.112446 0.637716i
\(437\) 6.49152 17.8353i 0.310531 0.853178i
\(438\) 0 0
\(439\) −4.86673 + 27.6006i −0.232276 + 1.31731i 0.615998 + 0.787748i \(0.288753\pi\)
−0.848274 + 0.529557i \(0.822358\pi\)
\(440\) −15.9565 + 4.58117i −0.760694 + 0.218399i
\(441\) 0 0
\(442\) −4.35811 + 2.51615i −0.207294 + 0.119681i
\(443\) 9.57265 + 26.3006i 0.454810 + 1.24958i 0.929302 + 0.369321i \(0.120410\pi\)
−0.474491 + 0.880260i \(0.657368\pi\)
\(444\) 0 0
\(445\) −2.02673 + 29.1225i −0.0960764 + 1.38054i
\(446\) 24.6463 20.6807i 1.16704 0.979260i
\(447\) 0 0
\(448\) 1.45315 + 3.99251i 0.0686551 + 0.188628i
\(449\) 12.5470 + 21.7321i 0.592130 + 1.02560i 0.993945 + 0.109878i \(0.0350461\pi\)
−0.401815 + 0.915721i \(0.631621\pi\)
\(450\) 0 0
\(451\) 10.1685 17.6123i 0.478815 0.829333i
\(452\) −9.77675 1.72391i −0.459860 0.0810857i
\(453\) 0 0
\(454\) −5.70136 2.07512i −0.267578 0.0973904i
\(455\) −1.36028 0.916864i −0.0637709 0.0429832i
\(456\) 0 0
\(457\) −10.7750 + 12.8412i −0.504036 + 0.600686i −0.956729 0.290980i \(-0.906019\pi\)
0.452694 + 0.891666i \(0.350463\pi\)
\(458\) 7.15325i 0.334249i
\(459\) 0 0
\(460\) 7.74990 + 7.47903i 0.361341 + 0.348711i
\(461\) −19.8382 16.6462i −0.923956 0.775291i 0.0507663 0.998711i \(-0.483834\pi\)
−0.974722 + 0.223419i \(0.928278\pi\)
\(462\) 0 0
\(463\) −17.0551 + 3.00727i −0.792616 + 0.139760i −0.555275 0.831667i \(-0.687387\pi\)
−0.237341 + 0.971426i \(0.576276\pi\)
\(464\) −43.5511 15.8513i −2.02181 0.735878i
\(465\) 0 0
\(466\) 2.25878 12.8102i 0.104636 0.593420i
\(467\) −10.7327 6.19652i −0.496649 0.286741i 0.230679 0.973030i \(-0.425905\pi\)
−0.727329 + 0.686289i \(0.759238\pi\)
\(468\) 0 0
\(469\) −2.73135 4.73083i −0.126122 0.218449i
\(470\) −9.34804 + 21.0148i −0.431193 + 0.969340i
\(471\) 0 0
\(472\) 18.3426 + 21.8599i 0.844288 + 1.00618i
\(473\) −4.88625 5.82321i −0.224670 0.267751i
\(474\) 0 0
\(475\) 5.31870 + 13.1391i 0.244039 + 0.602864i
\(476\) −2.30353 3.98983i −0.105582 0.182874i
\(477\) 0 0
\(478\) 40.7774 + 23.5429i 1.86512 + 1.07682i
\(479\) −3.96462 + 22.4845i −0.181148 + 1.02734i 0.749657 + 0.661826i \(0.230218\pi\)
−0.930805 + 0.365515i \(0.880893\pi\)
\(480\) 0 0
\(481\) −2.60840 0.949380i −0.118933 0.0432880i
\(482\) −21.3728 + 3.76860i −0.973503 + 0.171655i
\(483\) 0 0
\(484\) −0.749542 0.628940i −0.0340701 0.0285882i
\(485\) −22.2995 21.5201i −1.01257 0.977177i
\(486\) 0 0
\(487\) 3.22215i 0.146009i −0.997332 0.0730047i \(-0.976741\pi\)
0.997332 0.0730047i \(-0.0232588\pi\)
\(488\) −10.8218 + 12.8970i −0.489881 + 0.583818i
\(489\) 0 0
\(490\) −11.2540 + 16.6966i −0.508402 + 0.754277i
\(491\) −24.5814 8.94691i −1.10934 0.403768i −0.278591 0.960410i \(-0.589868\pi\)
−0.830753 + 0.556641i \(0.812090\pi\)
\(492\) 0 0
\(493\) −47.8665 8.44015i −2.15580 0.380125i
\(494\) 1.38210 2.39387i 0.0621836 0.107705i
\(495\) 0 0
\(496\) 2.78830 + 4.82948i 0.125198 + 0.216850i
\(497\) 2.91784 + 8.01669i 0.130883 + 0.359598i
\(498\) 0 0
\(499\) 26.2418 22.0195i 1.17474 0.985727i 0.174745 0.984614i \(-0.444090\pi\)
0.999999 0.00111367i \(-0.000354492\pi\)
\(500\) −8.03889 0.272713i −0.359510 0.0121961i
\(501\) 0 0
\(502\) −15.2861 41.9983i −0.682253 1.87447i
\(503\) −13.7378 + 7.93150i −0.612537 + 0.353648i −0.773958 0.633237i \(-0.781726\pi\)
0.161421 + 0.986886i \(0.448392\pi\)
\(504\) 0 0
\(505\) 7.28375 + 25.3697i 0.324122 + 1.12894i
\(506\) 6.74011 38.2250i 0.299634 1.69931i
\(507\) 0 0
\(508\) −2.10332 + 5.77883i −0.0933198 + 0.256394i
\(509\) 2.38054 + 13.5007i 0.105516 + 0.598410i 0.991013 + 0.133765i \(0.0427068\pi\)
−0.885497 + 0.464645i \(0.846182\pi\)
\(510\) 0 0
\(511\) −1.36046 1.14156i −0.0601830 0.0504995i
\(512\) 1.63110i 0.0720849i
\(513\) 0 0
\(514\) −3.12079 −0.137652
\(515\) −0.574211 5.44587i −0.0253027 0.239974i
\(516\) 0 0
\(517\) 21.5957 3.80791i 0.949779 0.167472i
\(518\) 3.28537 9.02649i 0.144351 0.396601i
\(519\) 0 0
\(520\) −1.64182 2.25820i −0.0719988 0.0990287i
\(521\) −13.9166 + 24.1042i −0.609697 + 1.05603i 0.381593 + 0.924330i \(0.375375\pi\)
−0.991290 + 0.131696i \(0.957958\pi\)
\(522\) 0 0
\(523\) −7.94269 + 4.58572i −0.347310 + 0.200519i −0.663500 0.748177i \(-0.730930\pi\)
0.316190 + 0.948696i \(0.397596\pi\)
\(524\) −6.54791 + 2.38325i −0.286047 + 0.104113i
\(525\) 0 0
\(526\) 26.5821 22.3050i 1.15903 0.972545i
\(527\) 3.75927 + 4.48012i 0.163756 + 0.195157i
\(528\) 0 0
\(529\) 20.5063 7.46369i 0.891579 0.324508i
\(530\) 29.3805 + 7.31503i 1.27621 + 0.317745i
\(531\) 0 0
\(532\) 2.19158 + 1.26531i 0.0950170 + 0.0548581i
\(533\) 3.36830 + 0.593923i 0.145897 + 0.0257257i
\(534\) 0 0
\(535\) −6.70878 13.7435i −0.290046 0.594182i
\(536\) −1.61447 9.15611i −0.0697345 0.395484i
\(537\) 0 0
\(538\) −1.12920 + 1.34572i −0.0486832 + 0.0580183i
\(539\) 19.1974 0.826892
\(540\) 0 0
\(541\) 25.6800 1.10407 0.552035 0.833821i \(-0.313852\pi\)
0.552035 + 0.833821i \(0.313852\pi\)
\(542\) −5.64650 + 6.72923i −0.242538 + 0.289045i
\(543\) 0 0
\(544\) −3.48814 19.7822i −0.149553 0.848155i
\(545\) 37.7662 18.4353i 1.61773 0.789682i
\(546\) 0 0
\(547\) 38.7852 + 6.83888i 1.65834 + 0.292409i 0.922858 0.385140i \(-0.125847\pi\)
0.735477 + 0.677549i \(0.236958\pi\)
\(548\) 9.22108 + 5.32379i 0.393905 + 0.227421i
\(549\) 0 0
\(550\) 15.3776 + 24.5731i 0.655705 + 1.04780i
\(551\) 25.0881 9.13133i 1.06879 0.389008i
\(552\) 0 0
\(553\) −1.01073 1.20454i −0.0429806 0.0512222i
\(554\) 21.7004 18.2088i 0.921962 0.773618i
\(555\) 0 0
\(556\) −1.84815 + 0.672672i −0.0783790 + 0.0285276i
\(557\) −3.57754 + 2.06550i −0.151585 + 0.0875178i −0.573874 0.818944i \(-0.694560\pi\)
0.422289 + 0.906461i \(0.361227\pi\)
\(558\) 0 0
\(559\) 0.639222 1.10716i 0.0270362 0.0468281i
\(560\) 11.0435 8.02914i 0.466671 0.339293i
\(561\) 0 0
\(562\) 7.01647 19.2776i 0.295972 0.813176i
\(563\) 17.1381 3.02191i 0.722286 0.127358i 0.199592 0.979879i \(-0.436038\pi\)
0.522694 + 0.852521i \(0.324927\pi\)
\(564\) 0 0
\(565\) −3.23550 30.6858i −0.136118 1.29096i
\(566\) −34.1610 −1.43590
\(567\) 0 0
\(568\) 14.5199i 0.609239i
\(569\) 3.52883 + 2.96104i 0.147936 + 0.124133i 0.713752 0.700398i \(-0.246994\pi\)
−0.565816 + 0.824532i \(0.691439\pi\)
\(570\) 0 0
\(571\) −2.79686 15.8618i −0.117045 0.663794i −0.985717 0.168407i \(-0.946138\pi\)
0.868673 0.495386i \(-0.164974\pi\)
\(572\) 0.511488 1.40530i 0.0213864 0.0587586i
\(573\) 0 0
\(574\) −2.05530 + 11.6562i −0.0857864 + 0.486519i
\(575\) −15.6958 + 29.5669i −0.654561 + 1.23302i
\(576\) 0 0
\(577\) 23.9756 13.8423i 0.998116 0.576262i 0.0904254 0.995903i \(-0.471177\pi\)
0.907690 + 0.419641i \(0.137844\pi\)
\(578\) −5.43556 14.9341i −0.226089 0.621176i
\(579\) 0 0
\(580\) −1.05179 + 15.1134i −0.0436733 + 0.627549i
\(581\) −1.45281 + 1.21905i −0.0602726 + 0.0505748i
\(582\) 0 0
\(583\) −9.87317 27.1263i −0.408905 1.12346i
\(584\) −1.51131 2.61766i −0.0625384 0.108320i
\(585\) 0 0
\(586\) −5.15817 + 8.93422i −0.213082 + 0.369069i
\(587\) 16.8114 + 2.96430i 0.693880 + 0.122350i 0.509455 0.860497i \(-0.329847\pi\)
0.184424 + 0.982847i \(0.440958\pi\)
\(588\) 0 0
\(589\) −3.01873 1.09873i −0.124385 0.0452723i
\(590\) 27.8500 41.3189i 1.14657 1.70107i
\(591\) 0 0
\(592\) 14.8508 17.6985i 0.610366 0.727405i
\(593\) 7.85373i 0.322514i 0.986912 + 0.161257i \(0.0515548\pi\)
−0.986912 + 0.161257i \(0.948445\pi\)
\(594\) 0 0
\(595\) 9.94353 10.3037i 0.407645 0.422409i
\(596\) −10.7378 9.01007i −0.439837 0.369067i
\(597\) 0 0
\(598\) 6.42867 1.13355i 0.262888 0.0463543i
\(599\) −45.0491 16.3965i −1.84066 0.669944i −0.989404 0.145188i \(-0.953621\pi\)
−0.851253 0.524756i \(-0.824157\pi\)
\(600\) 0 0
\(601\) 4.31451 24.4688i 0.175993 0.998104i −0.760999 0.648753i \(-0.775291\pi\)
0.936992 0.349351i \(-0.113598\pi\)
\(602\) 3.83139 + 2.21206i 0.156156 + 0.0901567i
\(603\) 0 0
\(604\) 4.94082 + 8.55775i 0.201039 + 0.348210i
\(605\) 1.23602 2.77863i 0.0502514 0.112967i
\(606\) 0 0
\(607\) −28.6468 34.1399i −1.16274 1.38570i −0.908148 0.418648i \(-0.862504\pi\)
−0.254590 0.967049i \(-0.581940\pi\)
\(608\) 7.09240 + 8.45239i 0.287635 + 0.342790i
\(609\) 0 0
\(610\) 26.8603 + 11.9483i 1.08754 + 0.483772i
\(611\) 1.84400 + 3.19389i 0.0746001 + 0.129211i
\(612\) 0 0
\(613\) −5.10015 2.94457i −0.205993 0.118930i 0.393455 0.919344i \(-0.371280\pi\)
−0.599448 + 0.800414i \(0.704613\pi\)
\(614\) −5.22571 + 29.6365i −0.210893 + 1.19603i
\(615\) 0 0
\(616\) −8.65617 3.15059i −0.348767 0.126941i
\(617\) 30.2359 5.33141i 1.21725 0.214635i 0.472110 0.881539i \(-0.343492\pi\)
0.745143 + 0.666905i \(0.232381\pi\)
\(618\) 0 0
\(619\) 34.9350 + 29.3139i 1.40416 + 1.17823i 0.959219 + 0.282666i \(0.0912187\pi\)
0.444938 + 0.895561i \(0.353226\pi\)
\(620\) 1.26587 1.31172i 0.0508385 0.0526798i
\(621\) 0 0
\(622\) 7.80060i 0.312776i
\(623\) −10.4124 + 12.4090i −0.417162 + 0.497155i
\(624\) 0 0
\(625\) −6.08024 24.2493i −0.243209 0.969974i
\(626\) 53.6846 + 19.5396i 2.14567 + 0.780960i
\(627\) 0 0
\(628\) −8.37491 1.47672i −0.334195 0.0589277i
\(629\) 12.1149 20.9836i 0.483053 0.836672i
\(630\) 0 0
\(631\) −6.80759 11.7911i −0.271006 0.469396i 0.698114 0.715987i \(-0.254023\pi\)
−0.969120 + 0.246591i \(0.920690\pi\)
\(632\) −0.915317 2.51481i −0.0364094 0.100034i
\(633\) 0 0
\(634\) 1.30271 1.09310i 0.0517371 0.0434126i
\(635\) −19.0677 1.32699i −0.756680 0.0526600i
\(636\) 0 0
\(637\) 1.10425 + 3.03391i 0.0437520 + 0.120208i
\(638\) 47.2841 27.2995i 1.87199 1.08080i
\(639\) 0 0
\(640\) 28.8665 8.28770i 1.14105 0.327600i
\(641\) −1.38566 + 7.85848i −0.0547304 + 0.310391i −0.999867 0.0162827i \(-0.994817\pi\)
0.945137 + 0.326674i \(0.105928\pi\)
\(642\) 0 0
\(643\) −5.16505 + 14.1909i −0.203690 + 0.559633i −0.998909 0.0466885i \(-0.985133\pi\)
0.795220 + 0.606321i \(0.207355\pi\)
\(644\) 1.03776 + 5.88543i 0.0408935 + 0.231918i
\(645\) 0 0
\(646\) 18.4835 + 15.5095i 0.727225 + 0.610214i
\(647\) 44.8366i 1.76271i −0.472455 0.881355i \(-0.656632\pi\)
0.472455 0.881355i \(-0.343368\pi\)
\(648\) 0 0
\(649\) −47.5075 −1.86483
\(650\) −2.99892 + 3.84370i −0.117627 + 0.150762i
\(651\) 0 0
\(652\) 9.53092 1.68056i 0.373260 0.0658157i
\(653\) 6.37556 17.5167i 0.249495 0.685482i −0.750210 0.661199i \(-0.770048\pi\)
0.999705 0.0242823i \(-0.00773004\pi\)
\(654\) 0 0
\(655\) −12.7359 17.5172i −0.497632 0.684453i
\(656\) −14.2339 + 24.6539i −0.555742 + 0.962573i
\(657\) 0 0
\(658\) −11.0526 + 6.38123i −0.430876 + 0.248766i
\(659\) 8.86949 3.22823i 0.345506 0.125754i −0.163438 0.986554i \(-0.552258\pi\)
0.508944 + 0.860800i \(0.330036\pi\)
\(660\) 0 0
\(661\) −21.0425 + 17.6567i −0.818457 + 0.686767i −0.952610 0.304194i \(-0.901613\pi\)
0.134153 + 0.990961i \(0.457169\pi\)
\(662\) −13.4565 16.0369i −0.523003 0.623291i
\(663\) 0 0
\(664\) −3.03314 + 1.10397i −0.117709 + 0.0428425i
\(665\) −1.90028 + 7.63239i −0.0736897 + 0.295972i
\(666\) 0 0
\(667\) 54.6026 + 31.5248i 2.11422 + 1.22065i
\(668\) 1.83372 + 0.323334i 0.0709486 + 0.0125102i
\(669\) 0 0
\(670\) −14.5892 + 7.12163i −0.563631 + 0.275133i
\(671\) −4.86712 27.6028i −0.187893 1.06559i
\(672\) 0 0
\(673\) 17.1645 20.4558i 0.661642 0.788514i −0.325979 0.945377i \(-0.605694\pi\)
0.987620 + 0.156863i \(0.0501382\pi\)
\(674\) −15.3210 −0.590144
\(675\) 0 0
\(676\) −9.10112 −0.350043
\(677\) −21.7428 + 25.9121i −0.835645 + 0.995883i 0.164310 + 0.986409i \(0.447460\pi\)
−0.999955 + 0.00947415i \(0.996984\pi\)
\(678\) 0 0
\(679\) −2.98604 16.9347i −0.114594 0.649894i
\(680\) 21.9009 10.6908i 0.839859 0.409972i
\(681\) 0 0
\(682\) −6.46982 1.14080i −0.247742 0.0436836i
\(683\) −15.0388 8.68268i −0.575445 0.332233i 0.183876 0.982949i \(-0.441136\pi\)
−0.759321 + 0.650716i \(0.774469\pi\)
\(684\) 0 0
\(685\) −7.99544 + 32.1133i −0.305490 + 1.22699i
\(686\) −23.9579 + 8.71998i −0.914718 + 0.332930i
\(687\) 0 0
\(688\) 6.83981 + 8.15137i 0.260765 + 0.310768i
\(689\) 3.71905 3.12066i 0.141685 0.118888i
\(690\) 0 0
\(691\) −13.7800 + 5.01549i −0.524214 + 0.190798i −0.590553 0.806999i \(-0.701090\pi\)
0.0663389 + 0.997797i \(0.478868\pi\)
\(692\) −10.3074 + 5.95096i −0.391827 + 0.226222i
\(693\) 0 0
\(694\) 20.7216 35.8909i 0.786582 1.36240i
\(695\) −3.59470 4.94423i −0.136355 0.187545i
\(696\) 0 0
\(697\) −10.2111 + 28.0548i −0.386773 + 1.06265i
\(698\) −3.88958 + 0.685839i −0.147223 + 0.0259594i
\(699\) 0 0
\(700\) −3.51890 2.74550i −0.133002 0.103770i
\(701\) 28.8893 1.09113 0.545567 0.838067i \(-0.316314\pi\)
0.545567 + 0.838067i \(0.316314\pi\)
\(702\) 0 0
\(703\) 13.3092i 0.501966i
\(704\) −9.22221 7.73836i −0.347575 0.291650i
\(705\) 0 0
\(706\) −3.66652 20.7939i −0.137991 0.782588i
\(707\) −5.00922 + 13.7627i −0.188391 + 0.517600i
\(708\) 0 0
\(709\) −0.360524 + 2.04463i −0.0135398 + 0.0767878i −0.990829 0.135122i \(-0.956857\pi\)
0.977289 + 0.211910i \(0.0679684\pi\)
\(710\) 24.3694 6.99657i 0.914568 0.262577i
\(711\) 0 0
\(712\) −23.8762 + 13.7849i −0.894798 + 0.516612i
\(713\) −2.59472 7.12893i −0.0971730 0.266981i
\(714\) 0 0
\(715\) 4.63691 + 0.322699i 0.173411 + 0.0120682i
\(716\) 0.668871 0.561249i 0.0249969 0.0209749i
\(717\) 0 0
\(718\) 0.873632 + 2.40028i 0.0326037 + 0.0895778i
\(719\) −9.24248 16.0084i −0.344686 0.597014i 0.640610 0.767866i \(-0.278681\pi\)
−0.985297 + 0.170852i \(0.945348\pi\)
\(720\) 0 0
\(721\) 1.51929 2.63149i 0.0565814 0.0980019i
\(722\) 17.8041 + 3.13934i 0.662600 + 0.116834i
\(723\) 0 0
\(724\) −2.49076 0.906563i −0.0925684 0.0336921i
\(725\) −46.0520 + 9.82059i −1.71033 + 0.364728i
\(726\) 0 0
\(727\) −26.3979 + 31.4598i −0.979045 + 1.16678i 0.00694522 + 0.999976i \(0.497789\pi\)
−0.985990 + 0.166804i \(0.946655\pi\)
\(728\) 1.54922i 0.0574179i
\(729\) 0 0
\(730\) −3.66512 + 3.79786i −0.135652 + 0.140565i
\(731\) 8.54864 + 7.17316i 0.316183 + 0.265309i
\(732\) 0 0
\(733\) 3.29255 0.580566i 0.121613 0.0214437i −0.112510 0.993651i \(-0.535889\pi\)
0.234123 + 0.972207i \(0.424778\pi\)
\(734\) −7.67229 2.79248i −0.283189 0.103072i
\(735\) 0 0
\(736\) −4.52477 + 25.6612i −0.166785 + 0.945886i
\(737\) 13.4048 + 7.73924i 0.493770 + 0.285078i
\(738\) 0 0
\(739\) 9.86291 + 17.0831i 0.362813 + 0.628411i 0.988423 0.151726i \(-0.0484830\pi\)
−0.625610 + 0.780136i \(0.715150\pi\)
\(740\) −6.90041 3.06952i −0.253664 0.112838i
\(741\) 0 0
\(742\) 10.7992 + 12.8700i 0.396450 + 0.472471i
\(743\) −14.4345 17.2023i −0.529549 0.631092i 0.433262 0.901268i \(-0.357362\pi\)
−0.962811 + 0.270176i \(0.912918\pi\)
\(744\) 0 0
\(745\) 17.7070 39.8061i 0.648734 1.45838i
\(746\) 14.2698 + 24.7161i 0.522456 + 0.904921i
\(747\) 0 0
\(748\) 11.3051 + 6.52702i 0.413357 + 0.238652i
\(749\) 1.47360 8.35721i 0.0538442 0.305366i
\(750\) 0 0
\(751\) −23.9497 8.71699i −0.873938 0.318088i −0.134177 0.990957i \(-0.542839\pi\)
−0.739761 + 0.672870i \(0.765061\pi\)
\(752\) −30.2299 + 5.33034i −1.10237 + 0.194378i
\(753\) 0 0
\(754\) 7.03415 + 5.90235i 0.256169 + 0.214951i
\(755\) −21.3278 + 22.1002i −0.776197 + 0.804309i
\(756\) 0 0
\(757\) 43.0981i 1.56643i −0.621753 0.783214i \(-0.713579\pi\)
0.621753 0.783214i \(-0.286421\pi\)
\(758\) −9.45282 + 11.2654i −0.343342 + 0.409179i
\(759\) 0 0
\(760\) −7.48206 + 11.1006i −0.271403 + 0.402660i
\(761\) 26.5013 + 9.64570i 0.960673 + 0.349656i 0.774297 0.632822i \(-0.218104\pi\)
0.186376 + 0.982479i \(0.440326\pi\)
\(762\) 0 0
\(763\) 22.9651 + 4.04937i 0.831393 + 0.146597i
\(764\) −1.36674 + 2.36726i −0.0494469 + 0.0856445i
\(765\) 0 0
\(766\) 20.3493 + 35.2461i 0.735251 + 1.27349i
\(767\) −2.73267 7.50796i −0.0986711 0.271097i
\(768\) 0 0
\(769\) 0.986304 0.827608i 0.0355670 0.0298443i −0.624831 0.780760i \(-0.714832\pi\)
0.660398 + 0.750916i \(0.270388\pi\)
\(770\) −1.11671 + 16.0463i −0.0402436 + 0.578267i
\(771\) 0 0
\(772\) −2.23745 6.14733i −0.0805274 0.221247i
\(773\) −4.24332 + 2.44988i −0.152622 + 0.0881162i −0.574366 0.818599i \(-0.694751\pi\)
0.421744 + 0.906715i \(0.361418\pi\)
\(774\) 0 0
\(775\) 5.00437 + 2.65661i 0.179762 + 0.0954283i
\(776\) 5.08217 28.8224i 0.182439 1.03466i
\(777\) 0 0
\(778\) 4.03007 11.0725i 0.144485 0.396970i
\(779\) −2.84770 16.1501i −0.102029 0.578637i
\(780\) 0 0
\(781\) −18.5176 15.5381i −0.662612 0.555997i
\(782\) 56.9812i 2.03764i
\(783\) 0 0
\(784\) −26.8727 −0.959739
\(785\) −2.77158 26.2859i −0.0989218 0.938183i
\(786\) 0 0
\(787\) −31.1341 + 5.48979i −1.10981 + 0.195690i −0.698363 0.715743i \(-0.746088\pi\)
−0.411448 + 0.911433i \(0.634977\pi\)
\(788\) −1.65890 + 4.55778i −0.0590958 + 0.162364i
\(789\) 0 0
\(790\) −3.77969 + 2.74802i −0.134475 + 0.0977701i
\(791\) 8.56074 14.8276i 0.304385 0.527210i
\(792\) 0 0
\(793\) 4.08231 2.35692i 0.144967 0.0836967i
\(794\) 6.94125 2.52641i 0.246336 0.0896589i
\(795\) 0 0
\(796\) −5.84498 + 4.90452i −0.207170 + 0.173836i
\(797\) 16.6580 + 19.8522i 0.590057 + 0.703202i 0.975617 0.219480i \(-0.0704362\pi\)
−0.385560 + 0.922683i \(0.625992\pi\)
\(798\) 0 0
\(799\) −30.2508 + 11.0104i −1.07020 + 0.389520i
\(800\) −10.3233 16.4964i −0.364984 0.583235i
\(801\) 0 0
\(802\) −6.57473 3.79592i −0.232162 0.134039i
\(803\) 4.95568 + 0.873820i 0.174882 + 0.0308364i
\(804\) 0 0
\(805\) −16.6921 + 8.14814i −0.588319 + 0.287184i
\(806\) −0.191860 1.08809i −0.00675797 0.0383264i
\(807\) 0 0
\(808\) −16.0228 + 19.0952i −0.563680 + 0.671768i
\(809\) −16.8506 −0.592435 −0.296217 0.955121i \(-0.595725\pi\)
−0.296217 + 0.955121i \(0.595725\pi\)
\(810\) 0 0
\(811\) −26.5505 −0.932313 −0.466156 0.884702i \(-0.654362\pi\)
−0.466156 + 0.884702i \(0.654362\pi\)
\(812\) −5.40358 + 6.43974i −0.189629 + 0.225991i
\(813\) 0 0
\(814\) 4.72633 + 26.8044i 0.165658 + 0.939493i
\(815\) 13.1952 + 27.0313i 0.462207 + 0.946866i
\(816\) 0 0
\(817\) −6.03666 1.06443i −0.211196 0.0372396i
\(818\) −17.5932 10.1574i −0.615132 0.355146i
\(819\) 0 0
\(820\) 9.03009 + 2.24827i 0.315344 + 0.0785131i
\(821\) −43.6959 + 15.9040i −1.52500 + 0.555054i −0.962390 0.271670i \(-0.912424\pi\)
−0.562608 + 0.826724i \(0.690202\pi\)
\(822\) 0 0
\(823\) 0.257495 + 0.306870i 0.00897570 + 0.0106968i 0.770514 0.637424i \(-0.220000\pi\)
−0.761538 + 0.648120i \(0.775555\pi\)
\(824\) 3.96167 3.32424i 0.138011 0.115805i
\(825\) 0 0
\(826\) 25.9816 9.45654i 0.904017 0.329035i
\(827\) 0.954191 0.550903i 0.0331805 0.0191568i −0.483318 0.875445i \(-0.660569\pi\)
0.516498 + 0.856288i \(0.327235\pi\)
\(828\) 0 0
\(829\) −2.63061 + 4.55635i −0.0913648 + 0.158249i −0.908086 0.418784i \(-0.862456\pi\)
0.816721 + 0.577033i \(0.195790\pi\)
\(830\) 3.31441 + 4.55872i 0.115045 + 0.158235i
\(831\) 0 0
\(832\) 0.692479 1.90257i 0.0240074 0.0659597i
\(833\) −27.7542 + 4.89382i −0.961627 + 0.169561i
\(834\) 0 0
\(835\) 0.606846 + 5.75539i 0.0210008 + 0.199173i
\(836\) −7.17047 −0.247996
\(837\) 0 0
\(838\) 27.5609i 0.952075i
\(839\) 27.5648 + 23.1296i 0.951642 + 0.798523i 0.979573 0.201087i \(-0.0644474\pi\)
−0.0279310 + 0.999610i \(0.508892\pi\)
\(840\) 0 0
\(841\) 10.3649 + 58.7823i 0.357410 + 2.02698i
\(842\) 4.76267 13.0853i 0.164132 0.450950i
\(843\) 0 0
\(844\) 2.23126 12.6541i 0.0768033 0.435573i
\(845\) −7.80602 27.1888i −0.268535 0.935322i
\(846\) 0 0
\(847\) 1.46140 0.843742i 0.0502145 0.0289913i
\(848\) 13.8205 + 37.9716i 0.474599 + 1.30395i
\(849\) 0 0
\(850\) −28.4961 31.6059i −0.977407 1.08407i
\(851\) −24.0772 + 20.2032i −0.825357 + 0.692557i
\(852\) 0 0
\(853\) 0.137118 + 0.376728i 0.00469483 + 0.0128989i 0.942018 0.335563i \(-0.108926\pi\)
−0.937323 + 0.348462i \(0.886704\pi\)
\(854\) 8.15623 + 14.1270i 0.279101 + 0.483416i
\(855\) 0 0
\(856\) 7.22159 12.5082i 0.246829 0.427520i
\(857\) −38.0088 6.70198i −1.29836 0.228935i −0.518599 0.855018i \(-0.673546\pi\)
−0.779757 + 0.626083i \(0.784657\pi\)
\(858\) 0 0
\(859\) 16.0641 + 5.84684i 0.548099 + 0.199492i 0.601202 0.799097i \(-0.294689\pi\)
−0.0531029 + 0.998589i \(0.516911\pi\)
\(860\) 1.94411 2.88433i 0.0662938 0.0983549i
\(861\) 0 0
\(862\) 12.3522 14.7208i 0.420719 0.501393i
\(863\) 23.2510i 0.791472i −0.918364 0.395736i \(-0.870489\pi\)
0.918364 0.395736i \(-0.129511\pi\)
\(864\) 0 0
\(865\) −26.6186 25.6882i −0.905058 0.873425i
\(866\) −13.6738 11.4737i −0.464654 0.389891i
\(867\) 0 0
\(868\) 0.996144 0.175647i 0.0338113 0.00596185i
\(869\) 4.18672 + 1.52384i 0.142025 + 0.0516928i
\(870\) 0 0
\(871\) −0.452035 + 2.56362i −0.0153166 + 0.0868648i
\(872\) 34.3716 + 19.8445i 1.16397 + 0.672019i
\(873\) 0 0
\(874\) −15.6496 27.1059i −0.529356 0.916872i
\(875\) 5.18379 12.8672i 0.175244 0.434991i
\(876\) 0 0
\(877\) 0.503887 + 0.600510i 0.0170151 + 0.0202778i 0.774485 0.632592i \(-0.218009\pi\)
−0.757470 + 0.652870i \(0.773565\pi\)
\(878\) 29.7080 + 35.4047i 1.00260 + 1.19485i
\(879\) 0 0
\(880\) −15.7240 + 35.3482i −0.530056 + 1.19159i
\(881\) −4.60962 7.98410i −0.155302 0.268991i 0.777867 0.628429i \(-0.216302\pi\)
−0.933169 + 0.359438i \(0.882968\pi\)
\(882\) 0 0
\(883\) −31.4539 18.1599i −1.05851 0.611129i −0.133488 0.991050i \(-0.542618\pi\)
−0.925019 + 0.379921i \(0.875951\pi\)
\(884\) −0.381232 + 2.16207i −0.0128222 + 0.0727183i
\(885\) 0 0
\(886\) 43.3716 + 15.7860i 1.45710 + 0.530340i
\(887\) −33.0505 + 5.82770i −1.10973 + 0.195675i −0.698326 0.715779i \(-0.746072\pi\)
−0.411401 + 0.911454i \(0.634960\pi\)
\(888\) 0 0
\(889\) −8.12468 6.81741i −0.272493 0.228649i
\(890\) 34.6410 + 33.4302i 1.16117 + 1.12058i
\(891\) 0 0
\(892\) 14.0362i 0.469967i
\(893\) 11.3664 13.5459i 0.380361 0.453296i
\(894\) 0 0
\(895\) 2.25037 + 1.51681i 0.0752216 + 0.0507013i
\(896\) 15.6597 + 5.69966i 0.523154 + 0.190412i
\(897\) 0 0
\(898\) 40.7531 + 7.18587i 1.35995 + 0.239796i
\(899\) 5.33576 9.24181i 0.177958 0.308232i
\(900\) 0 0
\(901\) 21.1890 + 36.7004i 0.705907 + 1.22267i
\(902\) −11.4704 31.5146i −0.381921 1.04932i
\(903\) 0 0
\(904\) 22.3228 18.7310i 0.742444 0.622985i
\(905\) 0.571952 8.21848i 0.0190123 0.273192i
\(906\) 0 0
\(907\) 3.34276 + 9.18415i 0.110994 + 0.304955i 0.982737 0.185010i \(-0.0592318\pi\)
−0.871742 + 0.489965i \(0.837010\pi\)
\(908\) −2.29232 + 1.32347i −0.0760732 + 0.0439209i
\(909\) 0 0
\(910\) −2.60014 + 0.746511i −0.0861937 + 0.0247466i
\(911\) −6.63575 + 37.6332i −0.219852 + 1.24684i 0.652433 + 0.757847i \(0.273748\pi\)
−0.872285 + 0.488998i \(0.837363\pi\)
\(912\) 0 0
\(913\) 1.83792 5.04965i 0.0608264 0.167119i
\(914\) 4.80022 + 27.2234i 0.158777 + 0.900470i
\(915\) 0 0
\(916\) 2.39061 + 2.00596i 0.0789880 + 0.0662788i
\(917\) 12.0175i 0.396854i
\(918\) 0 0
\(919\) −15.3144 −0.505176 −0.252588 0.967574i \(-0.581282\pi\)
−0.252588 + 0.967574i \(0.581282\pi\)
\(920\) −31.4393 + 3.31495i −1.03652 + 0.109291i
\(921\) 0 0
\(922\) −42.0570 + 7.41579i −1.38507 + 0.244226i
\(923\) 1.39045 3.82023i 0.0457673 0.125745i
\(924\) 0 0
\(925\) 3.25143 23.2471i 0.106906 0.764359i
\(926\) −14.2794 + 24.7327i −0.469252 + 0.812768i
\(927\) 0 0
\(928\) −31.7427 + 18.3267i −1.04201 + 0.601603i
\(929\) −0.281736 + 0.102544i −0.00924347 + 0.00336435i −0.346638 0.937999i \(-0.612677\pi\)
0.337394 + 0.941363i \(0.390454\pi\)
\(930\) 0 0
\(931\) 11.8586 9.95056i 0.388651 0.326117i
\(932\) −3.64773 4.34720i −0.119485 0.142397i
\(933\) 0 0
\(934\) −19.2045 + 6.98986i −0.628390 + 0.228715i
\(935\) −9.80249 + 39.3713i −0.320576 + 1.28758i
\(936\) 0 0
\(937\) −13.1951 7.61820i −0.431065 0.248876i 0.268735 0.963214i \(-0.413394\pi\)
−0.699800 + 0.714338i \(0.746728\pi\)
\(938\) −8.87151 1.56429i −0.289665 0.0510758i
\(939\) 0 0
\(940\) 4.40169 + 9.01721i 0.143567 + 0.294109i
\(941\) 1.63828 + 9.29115i 0.0534064 + 0.302883i 0.999797 0.0201414i \(-0.00641163\pi\)
−0.946391 + 0.323024i \(0.895301\pi\)
\(942\) 0 0
\(943\) 24.8938 29.6673i 0.810654 0.966100i
\(944\) 66.5014 2.16444
\(945\) 0 0
\(946\) −12.5357 −0.407570
\(947\) 36.2626 43.2160i 1.17837 1.40433i 0.282941 0.959137i \(-0.408690\pi\)
0.895433 0.445195i \(-0.146866\pi\)
\(948\) 0 0
\(949\) 0.146959 + 0.833444i 0.00477048 + 0.0270547i
\(950\) 22.2360 + 7.20860i 0.721430 + 0.233878i
\(951\) 0 0
\(952\) 13.3176 + 2.34825i 0.431626 + 0.0761073i
\(953\) 13.0557 + 7.53769i 0.422915 + 0.244170i 0.696324 0.717728i \(-0.254818\pi\)
−0.273409 + 0.961898i \(0.588151\pi\)
\(954\) 0 0
\(955\) −8.24423 2.05261i −0.266777 0.0664210i
\(956\) 19.3031 7.02574i 0.624306 0.227229i
\(957\) 0 0
\(958\) 24.2012 + 28.8419i 0.781907 + 0.931840i
\(959\) −14.0671 + 11.8037i −0.454249 + 0.381160i
\(960\) 0 0
\(961\) 27.9239 10.1635i 0.900770 0.327853i
\(962\) −3.96422 + 2.28875i −0.127812 + 0.0737921i
\(963\) 0 0
\(964\) −4.73403 + 8.19958i −0.152473 + 0.264091i
\(965\) 16.4455 11.9567i 0.529401 0.384900i
\(966\) 0 0
\(967\) −3.00739 + 8.26273i −0.0967110 + 0.265711i −0.978609 0.205729i \(-0.934043\pi\)
0.881898 + 0.471440i \(0.156266\pi\)
\(968\) 2.82842 0.498727i 0.0909089 0.0160297i
\(969\) 0 0
\(970\) −50.8230 + 5.35877i −1.63183 + 0.172060i
\(971\) 1.79910 0.0577358 0.0288679 0.999583i \(-0.490810\pi\)
0.0288679 + 0.999583i \(0.490810\pi\)
\(972\) 0 0
\(973\) 3.39195i 0.108741i
\(974\) −4.07041 3.41548i −0.130424 0.109439i
\(975\) 0 0
\(976\) 6.81303 + 38.6386i 0.218080 + 1.23679i
\(977\) 4.35167 11.9561i 0.139222 0.382510i −0.850413 0.526116i \(-0.823648\pi\)
0.989635 + 0.143606i \(0.0458699\pi\)
\(978\) 0 0
\(979\) 7.97027 45.2017i 0.254731 1.44465i
\(980\) 2.42409 + 8.44324i 0.0774348 + 0.269709i
\(981\) 0 0
\(982\) −37.3586 + 21.5690i −1.19216 + 0.688295i
\(983\) −17.9343 49.2740i −0.572015 1.57160i −0.801315 0.598242i \(-0.795866\pi\)
0.229301 0.973356i \(-0.426356\pi\)
\(984\) 0 0
\(985\) −15.0388 1.04660i −0.479176 0.0333475i
\(986\) −61.4007 + 51.5213i −1.95540 + 1.64077i
\(987\) 0 0
\(988\) −0.412451 1.13320i −0.0131218 0.0360519i
\(989\) −7.23795 12.5365i −0.230154 0.398638i
\(990\) 0 0
\(991\) −7.43264 + 12.8737i −0.236106 + 0.408947i −0.959593 0.281390i \(-0.909204\pi\)
0.723488 + 0.690337i \(0.242538\pi\)
\(992\) 4.34332 + 0.765844i 0.137900 + 0.0243156i
\(993\) 0 0
\(994\) 13.2201 + 4.81172i 0.419316 + 0.152618i
\(995\) −19.6651 13.2548i −0.623424 0.420204i
\(996\) 0 0
\(997\) −14.5685 + 17.3621i −0.461390 + 0.549864i −0.945703 0.325031i \(-0.894625\pi\)
0.484313 + 0.874895i \(0.339070\pi\)
\(998\) 56.4909i 1.78819i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.p.a.289.13 96
3.2 odd 2 135.2.p.a.124.4 yes 96
5.4 even 2 inner 405.2.p.a.289.4 96
15.2 even 4 675.2.l.h.151.4 96
15.8 even 4 675.2.l.h.151.13 96
15.14 odd 2 135.2.p.a.124.13 yes 96
27.5 odd 18 135.2.p.a.49.13 yes 96
27.22 even 9 inner 405.2.p.a.199.4 96
135.32 even 36 675.2.l.h.76.4 96
135.49 even 18 inner 405.2.p.a.199.13 96
135.59 odd 18 135.2.p.a.49.4 96
135.113 even 36 675.2.l.h.76.13 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.4 96 135.59 odd 18
135.2.p.a.49.13 yes 96 27.5 odd 18
135.2.p.a.124.4 yes 96 3.2 odd 2
135.2.p.a.124.13 yes 96 15.14 odd 2
405.2.p.a.199.4 96 27.22 even 9 inner
405.2.p.a.199.13 96 135.49 even 18 inner
405.2.p.a.289.4 96 5.4 even 2 inner
405.2.p.a.289.13 96 1.1 even 1 trivial
675.2.l.h.76.4 96 135.32 even 36
675.2.l.h.76.13 96 135.113 even 36
675.2.l.h.151.4 96 15.2 even 4
675.2.l.h.151.13 96 15.8 even 4