Properties

Label 405.2.m
Level $405$
Weight $2$
Character orbit 405.m
Rep. character $\chi_{405}(53,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $88$
Newform subspaces $5$
Sturm bound $108$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.m (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 5 \)
Sturm bound: \(108\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(405, [\chi])\).

Total New Old
Modular forms 264 104 160
Cusp forms 168 88 80
Eisenstein series 96 16 80

Trace form

\( 88 q + 4 q^{7} - 8 q^{10} + 4 q^{13} + 40 q^{16} - 4 q^{22} - 8 q^{25} + 8 q^{28} + 8 q^{31} - 32 q^{37} - 12 q^{40} + 4 q^{43} - 184 q^{46} - 20 q^{52} + 8 q^{55} + 72 q^{58} - 16 q^{61} - 8 q^{67} + 24 q^{70}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(405, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
405.2.m.a 405.m 45.l $8$ $3.234$ \(\Q(\zeta_{24})\) None 45.2.f.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{12}]$ \(q+\zeta_{24}^{7}q^{2}+\zeta_{24}^{2}q^{4}+(-\zeta_{24}^{3}+2\zeta_{24}^{5}+\cdots)q^{5}+\cdots\)
405.2.m.b 405.m 45.l $16$ $3.234$ 16.0.\(\cdots\).2 None 135.2.f.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{9}-\beta _{10})q^{2}+(-2\beta _{1}-\beta _{13}-\beta _{14}+\cdots)q^{4}+\cdots\)
405.2.m.c 405.m 45.l $16$ $3.234$ 16.0.\(\cdots\).1 None 135.2.f.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q-\beta _{10}q^{2}+(-\beta _{9}-\beta _{15})q^{4}+(-\beta _{7}+\cdots)q^{5}+\cdots\)
405.2.m.d 405.m 45.l $24$ $3.234$ None 405.2.f.b \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{12}]$
405.2.m.e 405.m 45.l $24$ $3.234$ None 405.2.f.b \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(405, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(405, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)