Defining parameters
| Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 405.m (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(108\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(405, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 264 | 104 | 160 |
| Cusp forms | 168 | 88 | 80 |
| Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(405, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 405.2.m.a | $8$ | $3.234$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\zeta_{24}^{7}q^{2}+\zeta_{24}^{2}q^{4}+(-\zeta_{24}^{3}+2\zeta_{24}^{5}+\cdots)q^{5}+\cdots\) |
| 405.2.m.b | $16$ | $3.234$ | 16.0.\(\cdots\).2 | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+(\beta _{9}-\beta _{10})q^{2}+(-2\beta _{1}-\beta _{13}-\beta _{14}+\cdots)q^{4}+\cdots\) |
| 405.2.m.c | $16$ | $3.234$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q-\beta _{10}q^{2}+(-\beta _{9}-\beta _{15})q^{4}+(-\beta _{7}+\cdots)q^{5}+\cdots\) |
| 405.2.m.d | $24$ | $3.234$ | None | \(0\) | \(0\) | \(0\) | \(-12\) | ||
| 405.2.m.e | $24$ | $3.234$ | None | \(0\) | \(0\) | \(0\) | \(12\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(405, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(405, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)