Properties

Label 405.2.k.a.316.4
Level $405$
Weight $2$
Character 405.316
Analytic conductor $3.234$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(46,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.46"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.k (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 316.4
Character \(\chi\) \(=\) 405.316
Dual form 405.2.k.a.91.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.130038 - 0.737480i) q^{2} +(1.35242 + 0.492240i) q^{4} +(0.766044 - 0.642788i) q^{5} +(0.498180 - 0.181323i) q^{7} +(1.28774 - 2.23043i) q^{8} +(-0.374428 - 0.648529i) q^{10} +(0.148674 + 0.124752i) q^{11} +(0.315087 + 1.78695i) q^{13} +(-0.0689397 - 0.390976i) q^{14} +(0.727561 + 0.610496i) q^{16} +(-0.226222 - 0.391829i) q^{17} +(1.93374 - 3.34934i) q^{19} +(1.35242 - 0.492240i) q^{20} +(0.111336 - 0.0934217i) q^{22} +(-3.74433 - 1.36283i) q^{23} +(0.173648 - 0.984808i) q^{25} +1.35881 q^{26} +0.763002 q^{28} +(-1.67673 + 9.50919i) q^{29} +(8.56046 + 3.11575i) q^{31} +(4.49070 - 3.76814i) q^{32} +(-0.318383 + 0.115882i) q^{34} +(0.265076 - 0.459125i) q^{35} +(-5.33354 - 9.23795i) q^{37} +(-2.21861 - 1.86164i) q^{38} +(-0.447227 - 2.53635i) q^{40} +(-1.24032 - 7.03423i) q^{41} +(-0.876764 - 0.735692i) q^{43} +(0.139662 + 0.241901i) q^{44} +(-1.49196 + 2.58415i) q^{46} +(-3.81750 + 1.38946i) q^{47} +(-5.14701 + 4.31885i) q^{49} +(-0.703695 - 0.256124i) q^{50} +(-0.453478 + 2.57180i) q^{52} +3.04103 q^{53} +0.194080 q^{55} +(0.237098 - 1.34465i) q^{56} +(6.79480 + 2.47311i) q^{58} +(-2.03716 + 1.70938i) q^{59} +(-11.2031 + 4.07760i) q^{61} +(3.41099 - 5.90800i) q^{62} +(-1.24521 - 2.15676i) q^{64} +(1.39000 + 1.16635i) q^{65} +(-1.01879 - 5.77785i) q^{67} +(-0.113074 - 0.641272i) q^{68} +(-0.304126 - 0.255192i) q^{70} +(4.55517 + 7.88979i) q^{71} +(-2.99330 + 5.18454i) q^{73} +(-7.50637 + 2.73209i) q^{74} +(4.26391 - 3.57785i) q^{76} +(0.0966869 + 0.0351912i) q^{77} +(-2.17315 + 12.3246i) q^{79} +0.949763 q^{80} -5.34889 q^{82} +(-2.37738 + 13.4828i) q^{83} +(-0.425159 - 0.154745i) q^{85} +(-0.656570 + 0.550928i) q^{86} +(0.469705 - 0.170959i) q^{88} +(-1.94800 + 3.37404i) q^{89} +(0.480985 + 0.833090i) q^{91} +(-4.39307 - 3.68622i) q^{92} +(0.528278 + 2.99601i) q^{94} +(-0.671582 - 3.80873i) q^{95} +(-6.47950 - 5.43694i) q^{97} +(2.51576 + 4.35743i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 9 q^{8} + 3 q^{10} + 6 q^{11} + 3 q^{13} + 9 q^{14} + 12 q^{16} + 12 q^{17} + 24 q^{19} - 51 q^{22} - 18 q^{23} + 18 q^{26} - 60 q^{28} - 18 q^{29} + 12 q^{31} - 36 q^{32} - 69 q^{34} + 12 q^{35}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.130038 0.737480i 0.0919505 0.521477i −0.903689 0.428190i \(-0.859151\pi\)
0.995639 0.0932871i \(-0.0297375\pi\)
\(3\) 0 0
\(4\) 1.35242 + 0.492240i 0.676209 + 0.246120i
\(5\) 0.766044 0.642788i 0.342585 0.287463i
\(6\) 0 0
\(7\) 0.498180 0.181323i 0.188294 0.0685335i −0.246152 0.969231i \(-0.579166\pi\)
0.434446 + 0.900698i \(0.356944\pi\)
\(8\) 1.28774 2.23043i 0.455285 0.788576i
\(9\) 0 0
\(10\) −0.374428 0.648529i −0.118405 0.205083i
\(11\) 0.148674 + 0.124752i 0.0448270 + 0.0376143i 0.664926 0.746909i \(-0.268463\pi\)
−0.620099 + 0.784524i \(0.712908\pi\)
\(12\) 0 0
\(13\) 0.315087 + 1.78695i 0.0873895 + 0.495611i 0.996815 + 0.0797445i \(0.0254104\pi\)
−0.909426 + 0.415866i \(0.863478\pi\)
\(14\) −0.0689397 0.390976i −0.0184249 0.104493i
\(15\) 0 0
\(16\) 0.727561 + 0.610496i 0.181890 + 0.152624i
\(17\) −0.226222 0.391829i −0.0548670 0.0950324i 0.837287 0.546763i \(-0.184140\pi\)
−0.892154 + 0.451731i \(0.850807\pi\)
\(18\) 0 0
\(19\) 1.93374 3.34934i 0.443631 0.768392i −0.554325 0.832301i \(-0.687023\pi\)
0.997956 + 0.0639089i \(0.0203567\pi\)
\(20\) 1.35242 0.492240i 0.302410 0.110068i
\(21\) 0 0
\(22\) 0.111336 0.0934217i 0.0237368 0.0199176i
\(23\) −3.74433 1.36283i −0.780747 0.284169i −0.0792630 0.996854i \(-0.525257\pi\)
−0.701484 + 0.712685i \(0.747479\pi\)
\(24\) 0 0
\(25\) 0.173648 0.984808i 0.0347296 0.196962i
\(26\) 1.35881 0.266485
\(27\) 0 0
\(28\) 0.763002 0.144194
\(29\) −1.67673 + 9.50919i −0.311360 + 1.76581i 0.280579 + 0.959831i \(0.409473\pi\)
−0.591940 + 0.805982i \(0.701638\pi\)
\(30\) 0 0
\(31\) 8.56046 + 3.11575i 1.53750 + 0.559606i 0.965445 0.260607i \(-0.0839226\pi\)
0.572059 + 0.820213i \(0.306145\pi\)
\(32\) 4.49070 3.76814i 0.793851 0.666120i
\(33\) 0 0
\(34\) −0.318383 + 0.115882i −0.0546023 + 0.0198736i
\(35\) 0.265076 0.459125i 0.0448060 0.0776063i
\(36\) 0 0
\(37\) −5.33354 9.23795i −0.876828 1.51871i −0.854803 0.518953i \(-0.826322\pi\)
−0.0220251 0.999757i \(-0.507011\pi\)
\(38\) −2.21861 1.86164i −0.359907 0.301997i
\(39\) 0 0
\(40\) −0.447227 2.53635i −0.0707128 0.401032i
\(41\) −1.24032 7.03423i −0.193706 1.09856i −0.914249 0.405152i \(-0.867219\pi\)
0.720543 0.693410i \(-0.243893\pi\)
\(42\) 0 0
\(43\) −0.876764 0.735692i −0.133705 0.112192i 0.573483 0.819218i \(-0.305592\pi\)
−0.707188 + 0.707026i \(0.750036\pi\)
\(44\) 0.139662 + 0.241901i 0.0210548 + 0.0364679i
\(45\) 0 0
\(46\) −1.49196 + 2.58415i −0.219978 + 0.381012i
\(47\) −3.81750 + 1.38946i −0.556840 + 0.202673i −0.605083 0.796162i \(-0.706860\pi\)
0.0482429 + 0.998836i \(0.484638\pi\)
\(48\) 0 0
\(49\) −5.14701 + 4.31885i −0.735287 + 0.616979i
\(50\) −0.703695 0.256124i −0.0995175 0.0362214i
\(51\) 0 0
\(52\) −0.453478 + 2.57180i −0.0628861 + 0.356645i
\(53\) 3.04103 0.417717 0.208859 0.977946i \(-0.433025\pi\)
0.208859 + 0.977946i \(0.433025\pi\)
\(54\) 0 0
\(55\) 0.194080 0.0261698
\(56\) 0.237098 1.34465i 0.0316836 0.179687i
\(57\) 0 0
\(58\) 6.79480 + 2.47311i 0.892201 + 0.324735i
\(59\) −2.03716 + 1.70938i −0.265215 + 0.222542i −0.765691 0.643208i \(-0.777603\pi\)
0.500476 + 0.865751i \(0.333158\pi\)
\(60\) 0 0
\(61\) −11.2031 + 4.07760i −1.43441 + 0.522084i −0.938193 0.346113i \(-0.887501\pi\)
−0.496220 + 0.868197i \(0.665279\pi\)
\(62\) 3.41099 5.90800i 0.433196 0.750317i
\(63\) 0 0
\(64\) −1.24521 2.15676i −0.155651 0.269595i
\(65\) 1.39000 + 1.16635i 0.172408 + 0.144668i
\(66\) 0 0
\(67\) −1.01879 5.77785i −0.124465 0.705877i −0.981624 0.190825i \(-0.938884\pi\)
0.857159 0.515052i \(-0.172227\pi\)
\(68\) −0.113074 0.641272i −0.0137122 0.0777656i
\(69\) 0 0
\(70\) −0.304126 0.255192i −0.0363500 0.0305012i
\(71\) 4.55517 + 7.88979i 0.540599 + 0.936346i 0.998870 + 0.0475327i \(0.0151358\pi\)
−0.458270 + 0.888813i \(0.651531\pi\)
\(72\) 0 0
\(73\) −2.99330 + 5.18454i −0.350339 + 0.606804i −0.986309 0.164909i \(-0.947267\pi\)
0.635970 + 0.771714i \(0.280600\pi\)
\(74\) −7.50637 + 2.73209i −0.872597 + 0.317599i
\(75\) 0 0
\(76\) 4.26391 3.57785i 0.489104 0.410407i
\(77\) 0.0966869 + 0.0351912i 0.0110185 + 0.00401041i
\(78\) 0 0
\(79\) −2.17315 + 12.3246i −0.244499 + 1.38662i 0.577154 + 0.816635i \(0.304163\pi\)
−0.821653 + 0.569987i \(0.806948\pi\)
\(80\) 0.949763 0.106187
\(81\) 0 0
\(82\) −5.34889 −0.590686
\(83\) −2.37738 + 13.4828i −0.260951 + 1.47993i 0.519371 + 0.854549i \(0.326166\pi\)
−0.780322 + 0.625378i \(0.784945\pi\)
\(84\) 0 0
\(85\) −0.425159 0.154745i −0.0461150 0.0167845i
\(86\) −0.656570 + 0.550928i −0.0707998 + 0.0594081i
\(87\) 0 0
\(88\) 0.469705 0.170959i 0.0500707 0.0182243i
\(89\) −1.94800 + 3.37404i −0.206488 + 0.357648i −0.950606 0.310401i \(-0.899537\pi\)
0.744118 + 0.668048i \(0.232870\pi\)
\(90\) 0 0
\(91\) 0.480985 + 0.833090i 0.0504209 + 0.0873316i
\(92\) −4.39307 3.68622i −0.458009 0.384315i
\(93\) 0 0
\(94\) 0.528278 + 2.99601i 0.0544877 + 0.309015i
\(95\) −0.671582 3.80873i −0.0689029 0.390768i
\(96\) 0 0
\(97\) −6.47950 5.43694i −0.657893 0.552038i 0.251561 0.967841i \(-0.419056\pi\)
−0.909455 + 0.415803i \(0.863500\pi\)
\(98\) 2.51576 + 4.35743i 0.254130 + 0.440167i
\(99\) 0 0
\(100\) 0.719607 1.24640i 0.0719607 0.124640i
\(101\) 4.71752 1.71704i 0.469411 0.170852i −0.0964746 0.995335i \(-0.530757\pi\)
0.565885 + 0.824484i \(0.308534\pi\)
\(102\) 0 0
\(103\) −8.67406 + 7.27840i −0.854680 + 0.717162i −0.960815 0.277190i \(-0.910597\pi\)
0.106135 + 0.994352i \(0.466152\pi\)
\(104\) 4.39142 + 1.59834i 0.430614 + 0.156731i
\(105\) 0 0
\(106\) 0.395448 2.24270i 0.0384093 0.217830i
\(107\) 10.1961 0.985690 0.492845 0.870117i \(-0.335957\pi\)
0.492845 + 0.870117i \(0.335957\pi\)
\(108\) 0 0
\(109\) 1.18543 0.113544 0.0567718 0.998387i \(-0.481919\pi\)
0.0567718 + 0.998387i \(0.481919\pi\)
\(110\) 0.0252377 0.143130i 0.00240632 0.0136469i
\(111\) 0 0
\(112\) 0.473153 + 0.172214i 0.0447087 + 0.0162727i
\(113\) −14.4355 + 12.1128i −1.35797 + 1.13948i −0.381372 + 0.924422i \(0.624548\pi\)
−0.976602 + 0.215054i \(0.931007\pi\)
\(114\) 0 0
\(115\) −3.74433 + 1.36283i −0.349161 + 0.127084i
\(116\) −6.94844 + 12.0351i −0.645147 + 1.11743i
\(117\) 0 0
\(118\) 0.995725 + 1.72465i 0.0916639 + 0.158767i
\(119\) −0.183747 0.154182i −0.0168440 0.0141338i
\(120\) 0 0
\(121\) −1.90359 10.7958i −0.173054 0.981435i
\(122\) 1.55032 + 8.79232i 0.140360 + 0.796019i
\(123\) 0 0
\(124\) 10.0436 + 8.42760i 0.901944 + 0.756821i
\(125\) −0.500000 0.866025i −0.0447214 0.0774597i
\(126\) 0 0
\(127\) 9.57059 16.5768i 0.849253 1.47095i −0.0326233 0.999468i \(-0.510386\pi\)
0.881876 0.471481i \(-0.156281\pi\)
\(128\) 9.26483 3.37212i 0.818903 0.298056i
\(129\) 0 0
\(130\) 1.04091 0.873428i 0.0912939 0.0766047i
\(131\) −9.43779 3.43507i −0.824583 0.300124i −0.104949 0.994478i \(-0.533468\pi\)
−0.719634 + 0.694354i \(0.755690\pi\)
\(132\) 0 0
\(133\) 0.356040 2.01921i 0.0308726 0.175087i
\(134\) −4.39353 −0.379543
\(135\) 0 0
\(136\) −1.16526 −0.0999203
\(137\) 0.145522 0.825297i 0.0124328 0.0705099i −0.977960 0.208792i \(-0.933047\pi\)
0.990393 + 0.138282i \(0.0441580\pi\)
\(138\) 0 0
\(139\) 7.81972 + 2.84614i 0.663260 + 0.241407i 0.651643 0.758526i \(-0.274080\pi\)
0.0116166 + 0.999933i \(0.496302\pi\)
\(140\) 0.584493 0.490448i 0.0493987 0.0414504i
\(141\) 0 0
\(142\) 6.41090 2.33338i 0.537991 0.195813i
\(143\) −0.176081 + 0.304981i −0.0147246 + 0.0255038i
\(144\) 0 0
\(145\) 4.82794 + 8.36225i 0.400939 + 0.694447i
\(146\) 3.43425 + 2.88168i 0.284221 + 0.238490i
\(147\) 0 0
\(148\) −2.66588 15.1190i −0.219134 1.24277i
\(149\) −0.504757 2.86262i −0.0413513 0.234515i 0.957126 0.289670i \(-0.0935457\pi\)
−0.998478 + 0.0551555i \(0.982435\pi\)
\(150\) 0 0
\(151\) −8.94423 7.50510i −0.727871 0.610757i 0.201679 0.979452i \(-0.435360\pi\)
−0.929550 + 0.368695i \(0.879805\pi\)
\(152\) −4.98031 8.62616i −0.403957 0.699674i
\(153\) 0 0
\(154\) 0.0385257 0.0667285i 0.00310449 0.00537714i
\(155\) 8.56046 3.11575i 0.687593 0.250263i
\(156\) 0 0
\(157\) −17.2442 + 14.4696i −1.37624 + 1.15480i −0.405659 + 0.914025i \(0.632958\pi\)
−0.970580 + 0.240777i \(0.922598\pi\)
\(158\) 8.80653 + 3.20532i 0.700610 + 0.255001i
\(159\) 0 0
\(160\) 1.01796 5.77313i 0.0804767 0.456406i
\(161\) −2.11246 −0.166485
\(162\) 0 0
\(163\) 9.62546 0.753924 0.376962 0.926229i \(-0.376969\pi\)
0.376962 + 0.926229i \(0.376969\pi\)
\(164\) 1.78509 10.1238i 0.139392 0.790533i
\(165\) 0 0
\(166\) 9.63412 + 3.50653i 0.747753 + 0.272160i
\(167\) 12.2334 10.2651i 0.946651 0.794334i −0.0320795 0.999485i \(-0.510213\pi\)
0.978730 + 0.205151i \(0.0657685\pi\)
\(168\) 0 0
\(169\) 9.12209 3.32017i 0.701700 0.255398i
\(170\) −0.169408 + 0.293423i −0.0129930 + 0.0225046i
\(171\) 0 0
\(172\) −0.823614 1.42654i −0.0628000 0.108773i
\(173\) −4.38627 3.68052i −0.333482 0.279825i 0.460635 0.887590i \(-0.347622\pi\)
−0.794117 + 0.607765i \(0.792066\pi\)
\(174\) 0 0
\(175\) −0.0920599 0.522098i −0.00695908 0.0394669i
\(176\) 0.0320086 + 0.181530i 0.00241274 + 0.0136833i
\(177\) 0 0
\(178\) 2.23497 + 1.87537i 0.167518 + 0.140565i
\(179\) −6.34218 10.9850i −0.474037 0.821056i 0.525521 0.850781i \(-0.323870\pi\)
−0.999558 + 0.0297242i \(0.990537\pi\)
\(180\) 0 0
\(181\) −4.56381 + 7.90474i −0.339225 + 0.587555i −0.984287 0.176575i \(-0.943498\pi\)
0.645062 + 0.764130i \(0.276831\pi\)
\(182\) 0.676933 0.246384i 0.0501776 0.0182632i
\(183\) 0 0
\(184\) −7.86141 + 6.59651i −0.579551 + 0.486301i
\(185\) −10.0238 3.64835i −0.736962 0.268232i
\(186\) 0 0
\(187\) 0.0152482 0.0864766i 0.00111506 0.00632380i
\(188\) −5.84681 −0.426422
\(189\) 0 0
\(190\) −2.89619 −0.210112
\(191\) 4.29300 24.3468i 0.310631 1.76167i −0.285108 0.958496i \(-0.592029\pi\)
0.595738 0.803179i \(-0.296860\pi\)
\(192\) 0 0
\(193\) −4.52691 1.64766i −0.325854 0.118601i 0.173913 0.984761i \(-0.444359\pi\)
−0.499767 + 0.866160i \(0.666581\pi\)
\(194\) −4.85222 + 4.07149i −0.348369 + 0.292316i
\(195\) 0 0
\(196\) −9.08682 + 3.30733i −0.649058 + 0.236238i
\(197\) 8.57097 14.8454i 0.610656 1.05769i −0.380474 0.924792i \(-0.624239\pi\)
0.991130 0.132896i \(-0.0424276\pi\)
\(198\) 0 0
\(199\) 9.54372 + 16.5302i 0.676537 + 1.17180i 0.976017 + 0.217693i \(0.0698533\pi\)
−0.299481 + 0.954102i \(0.596813\pi\)
\(200\) −1.97293 1.65549i −0.139507 0.117060i
\(201\) 0 0
\(202\) −0.652825 3.70236i −0.0459326 0.260497i
\(203\) 0.888920 + 5.04132i 0.0623900 + 0.353831i
\(204\) 0 0
\(205\) −5.47166 4.59127i −0.382157 0.320668i
\(206\) 4.23972 + 7.34341i 0.295395 + 0.511639i
\(207\) 0 0
\(208\) −0.861681 + 1.49247i −0.0597468 + 0.103484i
\(209\) 0.705336 0.256721i 0.0487891 0.0177578i
\(210\) 0 0
\(211\) 6.00165 5.03598i 0.413171 0.346691i −0.412387 0.911009i \(-0.635305\pi\)
0.825558 + 0.564317i \(0.190861\pi\)
\(212\) 4.11274 + 1.49692i 0.282464 + 0.102809i
\(213\) 0 0
\(214\) 1.32587 7.51939i 0.0906346 0.514015i
\(215\) −1.14453 −0.0780565
\(216\) 0 0
\(217\) 4.82960 0.327855
\(218\) 0.154151 0.874231i 0.0104404 0.0592104i
\(219\) 0 0
\(220\) 0.262478 + 0.0955341i 0.0176963 + 0.00644091i
\(221\) 0.628898 0.527708i 0.0423043 0.0354975i
\(222\) 0 0
\(223\) 13.6246 4.95897i 0.912374 0.332077i 0.157174 0.987571i \(-0.449762\pi\)
0.755200 + 0.655494i \(0.227540\pi\)
\(224\) 1.55393 2.69148i 0.103826 0.179832i
\(225\) 0 0
\(226\) 7.05579 + 12.2210i 0.469344 + 0.812928i
\(227\) −0.344364 0.288955i −0.0228562 0.0191786i 0.631288 0.775549i \(-0.282527\pi\)
−0.654144 + 0.756370i \(0.726971\pi\)
\(228\) 0 0
\(229\) −2.41140 13.6757i −0.159350 0.903716i −0.954701 0.297567i \(-0.903825\pi\)
0.795351 0.606149i \(-0.207286\pi\)
\(230\) 0.518152 + 2.93859i 0.0341660 + 0.193765i
\(231\) 0 0
\(232\) 19.0504 + 15.9852i 1.25072 + 1.04948i
\(233\) −9.85639 17.0718i −0.645713 1.11841i −0.984136 0.177414i \(-0.943227\pi\)
0.338423 0.940994i \(-0.390107\pi\)
\(234\) 0 0
\(235\) −2.03125 + 3.51823i −0.132504 + 0.229504i
\(236\) −3.59652 + 1.30902i −0.234113 + 0.0852102i
\(237\) 0 0
\(238\) −0.137600 + 0.115460i −0.00891928 + 0.00748417i
\(239\) 18.7092 + 6.80960i 1.21020 + 0.440477i 0.866773 0.498703i \(-0.166190\pi\)
0.343427 + 0.939180i \(0.388412\pi\)
\(240\) 0 0
\(241\) 1.30157 7.38156i 0.0838414 0.475488i −0.913759 0.406256i \(-0.866834\pi\)
0.997601 0.0692320i \(-0.0220549\pi\)
\(242\) −8.20922 −0.527708
\(243\) 0 0
\(244\) −17.1585 −1.09846
\(245\) −1.16673 + 6.61686i −0.0745397 + 0.422736i
\(246\) 0 0
\(247\) 6.59440 + 2.40017i 0.419592 + 0.152719i
\(248\) 17.9731 15.0812i 1.14129 0.957659i
\(249\) 0 0
\(250\) −0.703695 + 0.256124i −0.0445056 + 0.0161987i
\(251\) −7.99942 + 13.8554i −0.504919 + 0.874545i 0.495065 + 0.868856i \(0.335144\pi\)
−0.999984 + 0.00568921i \(0.998189\pi\)
\(252\) 0 0
\(253\) −0.386670 0.669732i −0.0243097 0.0421057i
\(254\) −10.9805 9.21372i −0.688977 0.578120i
\(255\) 0 0
\(256\) −2.14701 12.1763i −0.134188 0.761018i
\(257\) 2.82207 + 16.0048i 0.176036 + 0.998350i 0.936941 + 0.349487i \(0.113644\pi\)
−0.760905 + 0.648863i \(0.775245\pi\)
\(258\) 0 0
\(259\) −4.33211 3.63507i −0.269184 0.225872i
\(260\) 1.30574 + 2.26161i 0.0809785 + 0.140259i
\(261\) 0 0
\(262\) −3.76056 + 6.51349i −0.232328 + 0.402405i
\(263\) 8.91004 3.24299i 0.549417 0.199971i −0.0523707 0.998628i \(-0.516678\pi\)
0.601787 + 0.798656i \(0.294456\pi\)
\(264\) 0 0
\(265\) 2.32956 1.95473i 0.143104 0.120078i
\(266\) −1.44283 0.525145i −0.0884653 0.0321987i
\(267\) 0 0
\(268\) 1.46626 8.31556i 0.0895660 0.507954i
\(269\) 7.66734 0.467486 0.233743 0.972298i \(-0.424903\pi\)
0.233743 + 0.972298i \(0.424903\pi\)
\(270\) 0 0
\(271\) 4.50868 0.273883 0.136941 0.990579i \(-0.456273\pi\)
0.136941 + 0.990579i \(0.456273\pi\)
\(272\) 0.0746193 0.423187i 0.00452446 0.0256595i
\(273\) 0 0
\(274\) −0.589716 0.214639i −0.0356261 0.0129668i
\(275\) 0.148674 0.124752i 0.00896539 0.00752286i
\(276\) 0 0
\(277\) 21.0211 7.65104i 1.26303 0.459707i 0.378248 0.925704i \(-0.376527\pi\)
0.884786 + 0.465998i \(0.154305\pi\)
\(278\) 3.11583 5.39678i 0.186875 0.323677i
\(279\) 0 0
\(280\) −0.682697 1.18247i −0.0407990 0.0706659i
\(281\) 21.4261 + 17.9786i 1.27817 + 1.07252i 0.993493 + 0.113893i \(0.0363320\pi\)
0.284681 + 0.958622i \(0.408112\pi\)
\(282\) 0 0
\(283\) 1.06339 + 6.03078i 0.0632119 + 0.358493i 0.999964 + 0.00849869i \(0.00270525\pi\)
−0.936752 + 0.349994i \(0.886184\pi\)
\(284\) 2.27683 + 12.9125i 0.135105 + 0.766218i
\(285\) 0 0
\(286\) 0.202020 + 0.169515i 0.0119457 + 0.0100236i
\(287\) −1.89337 3.27941i −0.111762 0.193578i
\(288\) 0 0
\(289\) 8.39765 14.5452i 0.493979 0.855597i
\(290\) 6.79480 2.47311i 0.399004 0.145226i
\(291\) 0 0
\(292\) −6.60023 + 5.53825i −0.386249 + 0.324101i
\(293\) −4.43261 1.61334i −0.258956 0.0942523i 0.209280 0.977856i \(-0.432888\pi\)
−0.468236 + 0.883604i \(0.655110\pi\)
\(294\) 0 0
\(295\) −0.461786 + 2.61892i −0.0268862 + 0.152479i
\(296\) −27.4728 −1.59682
\(297\) 0 0
\(298\) −2.17676 −0.126096
\(299\) 1.25551 7.12034i 0.0726079 0.411780i
\(300\) 0 0
\(301\) −0.570184 0.207530i −0.0328648 0.0119618i
\(302\) −6.69795 + 5.62025i −0.385424 + 0.323409i
\(303\) 0 0
\(304\) 3.45168 1.25631i 0.197967 0.0720542i
\(305\) −5.96106 + 10.3249i −0.341329 + 0.591200i
\(306\) 0 0
\(307\) −3.57293 6.18850i −0.203918 0.353196i 0.745870 0.666092i \(-0.232034\pi\)
−0.949787 + 0.312896i \(0.898701\pi\)
\(308\) 0.113439 + 0.0951864i 0.00646377 + 0.00542375i
\(309\) 0 0
\(310\) −1.18462 6.71833i −0.0672821 0.381576i
\(311\) −2.13051 12.0827i −0.120810 0.685147i −0.983709 0.179770i \(-0.942465\pi\)
0.862899 0.505377i \(-0.168647\pi\)
\(312\) 0 0
\(313\) 3.81932 + 3.20479i 0.215881 + 0.181146i 0.744315 0.667829i \(-0.232776\pi\)
−0.528434 + 0.848974i \(0.677221\pi\)
\(314\) 8.42866 + 14.5989i 0.475657 + 0.823862i
\(315\) 0 0
\(316\) −9.00566 + 15.5983i −0.506608 + 0.877471i
\(317\) −28.8548 + 10.5023i −1.62065 + 0.589868i −0.983506 0.180877i \(-0.942106\pi\)
−0.637144 + 0.770745i \(0.719884\pi\)
\(318\) 0 0
\(319\) −1.43558 + 1.20460i −0.0803771 + 0.0674444i
\(320\) −2.34023 0.851772i −0.130823 0.0476155i
\(321\) 0 0
\(322\) −0.274699 + 1.55790i −0.0153084 + 0.0868183i
\(323\) −1.74982 −0.0973628
\(324\) 0 0
\(325\) 1.81452 0.100651
\(326\) 1.25167 7.09858i 0.0693237 0.393154i
\(327\) 0 0
\(328\) −17.2866 6.29180i −0.954491 0.347406i
\(329\) −1.64986 + 1.38440i −0.0909599 + 0.0763244i
\(330\) 0 0
\(331\) 8.70541 3.16851i 0.478493 0.174157i −0.0915030 0.995805i \(-0.529167\pi\)
0.569996 + 0.821648i \(0.306945\pi\)
\(332\) −9.85197 + 17.0641i −0.540697 + 0.936515i
\(333\) 0 0
\(334\) −5.97947 10.3567i −0.327182 0.566696i
\(335\) −4.49437 3.77123i −0.245554 0.206044i
\(336\) 0 0
\(337\) 2.94490 + 16.7013i 0.160419 + 0.909780i 0.953663 + 0.300877i \(0.0972792\pi\)
−0.793244 + 0.608904i \(0.791610\pi\)
\(338\) −1.26234 7.15911i −0.0686625 0.389404i
\(339\) 0 0
\(340\) −0.498821 0.418561i −0.0270524 0.0226996i
\(341\) 0.884022 + 1.53117i 0.0478725 + 0.0829175i
\(342\) 0 0
\(343\) −3.63656 + 6.29871i −0.196356 + 0.340098i
\(344\) −2.76995 + 1.00818i −0.149346 + 0.0543574i
\(345\) 0 0
\(346\) −3.28469 + 2.75618i −0.176586 + 0.148173i
\(347\) 20.8779 + 7.59893i 1.12078 + 0.407932i 0.834938 0.550344i \(-0.185503\pi\)
0.285845 + 0.958276i \(0.407726\pi\)
\(348\) 0 0
\(349\) 3.49006 19.7931i 0.186819 1.05950i −0.736777 0.676135i \(-0.763653\pi\)
0.923596 0.383367i \(-0.125235\pi\)
\(350\) −0.397008 −0.0212210
\(351\) 0 0
\(352\) 1.13774 0.0606416
\(353\) −2.28369 + 12.9515i −0.121549 + 0.689337i 0.861749 + 0.507334i \(0.169369\pi\)
−0.983298 + 0.182003i \(0.941742\pi\)
\(354\) 0 0
\(355\) 8.56092 + 3.11592i 0.454367 + 0.165376i
\(356\) −4.29536 + 3.60423i −0.227653 + 0.191024i
\(357\) 0 0
\(358\) −8.92593 + 3.24877i −0.471750 + 0.171703i
\(359\) 10.1145 17.5188i 0.533822 0.924608i −0.465397 0.885102i \(-0.654088\pi\)
0.999219 0.0395056i \(-0.0125783\pi\)
\(360\) 0 0
\(361\) 2.02127 + 3.50095i 0.106383 + 0.184260i
\(362\) 5.23612 + 4.39363i 0.275204 + 0.230924i
\(363\) 0 0
\(364\) 0.240412 + 1.36345i 0.0126010 + 0.0714640i
\(365\) 1.03956 + 5.89564i 0.0544131 + 0.308592i
\(366\) 0 0
\(367\) 15.3312 + 12.8644i 0.800285 + 0.671519i 0.948268 0.317471i \(-0.102834\pi\)
−0.147983 + 0.988990i \(0.547278\pi\)
\(368\) −1.89223 3.27744i −0.0986393 0.170848i
\(369\) 0 0
\(370\) −3.99405 + 6.91790i −0.207641 + 0.359645i
\(371\) 1.51498 0.551407i 0.0786538 0.0286276i
\(372\) 0 0
\(373\) −17.7658 + 14.9073i −0.919877 + 0.771869i −0.973972 0.226667i \(-0.927217\pi\)
0.0540952 + 0.998536i \(0.482773\pi\)
\(374\) −0.0617919 0.0224904i −0.00319518 0.00116295i
\(375\) 0 0
\(376\) −1.81686 + 10.3039i −0.0936974 + 0.531385i
\(377\) −17.5208 −0.902366
\(378\) 0 0
\(379\) −16.0635 −0.825125 −0.412562 0.910929i \(-0.635366\pi\)
−0.412562 + 0.910929i \(0.635366\pi\)
\(380\) 0.966550 5.48158i 0.0495830 0.281199i
\(381\) 0 0
\(382\) −17.3970 6.33200i −0.890110 0.323974i
\(383\) −3.84624 + 3.22738i −0.196534 + 0.164911i −0.735744 0.677260i \(-0.763167\pi\)
0.539210 + 0.842171i \(0.318723\pi\)
\(384\) 0 0
\(385\) 0.0966869 0.0351912i 0.00492762 0.00179351i
\(386\) −1.80378 + 3.12425i −0.0918102 + 0.159020i
\(387\) 0 0
\(388\) −6.08671 10.5425i −0.309006 0.535214i
\(389\) 23.2082 + 19.4740i 1.17670 + 0.987371i 0.999995 + 0.00310704i \(0.000989004\pi\)
0.176707 + 0.984263i \(0.443455\pi\)
\(390\) 0 0
\(391\) 0.313058 + 1.77544i 0.0158320 + 0.0897878i
\(392\) 3.00489 + 17.0416i 0.151770 + 0.860730i
\(393\) 0 0
\(394\) −9.83360 8.25137i −0.495410 0.415698i
\(395\) 6.25735 + 10.8380i 0.314841 + 0.545321i
\(396\) 0 0
\(397\) −7.31880 + 12.6765i −0.367320 + 0.636217i −0.989146 0.146939i \(-0.953058\pi\)
0.621826 + 0.783156i \(0.286391\pi\)
\(398\) 13.4317 4.88875i 0.673272 0.245051i
\(399\) 0 0
\(400\) 0.727561 0.610496i 0.0363780 0.0305248i
\(401\) −10.4806 3.81464i −0.523378 0.190494i 0.0668011 0.997766i \(-0.478721\pi\)
−0.590179 + 0.807272i \(0.700943\pi\)
\(402\) 0 0
\(403\) −2.87040 + 16.2788i −0.142985 + 0.810907i
\(404\) 7.22526 0.359470
\(405\) 0 0
\(406\) 3.83346 0.190252
\(407\) 0.359498 2.03882i 0.0178197 0.101060i
\(408\) 0 0
\(409\) −16.7073 6.08096i −0.826123 0.300684i −0.105856 0.994381i \(-0.533758\pi\)
−0.720267 + 0.693697i \(0.755981\pi\)
\(410\) −4.09749 + 3.43820i −0.202361 + 0.169801i
\(411\) 0 0
\(412\) −15.3137 + 5.57372i −0.754451 + 0.274598i
\(413\) −0.704922 + 1.22096i −0.0346870 + 0.0600796i
\(414\) 0 0
\(415\) 6.84538 + 11.8565i 0.336027 + 0.582015i
\(416\) 8.14845 + 6.83736i 0.399511 + 0.335229i
\(417\) 0 0
\(418\) −0.0976066 0.553555i −0.00477410 0.0270753i
\(419\) −1.90918 10.8275i −0.0932697 0.528959i −0.995264 0.0972104i \(-0.969008\pi\)
0.901994 0.431748i \(-0.142103\pi\)
\(420\) 0 0
\(421\) −28.0171 23.5092i −1.36547 1.14577i −0.974250 0.225469i \(-0.927608\pi\)
−0.391221 0.920297i \(-0.627947\pi\)
\(422\) −2.93350 5.08096i −0.142800 0.247337i
\(423\) 0 0
\(424\) 3.91605 6.78280i 0.190180 0.329402i
\(425\) −0.425159 + 0.154745i −0.0206232 + 0.00750624i
\(426\) 0 0
\(427\) −4.84181 + 4.06276i −0.234312 + 0.196611i
\(428\) 13.7893 + 5.01891i 0.666533 + 0.242598i
\(429\) 0 0
\(430\) −0.148832 + 0.844070i −0.00717734 + 0.0407047i
\(431\) 25.0324 1.20577 0.602883 0.797829i \(-0.294018\pi\)
0.602883 + 0.797829i \(0.294018\pi\)
\(432\) 0 0
\(433\) 8.75430 0.420705 0.210352 0.977626i \(-0.432539\pi\)
0.210352 + 0.977626i \(0.432539\pi\)
\(434\) 0.628030 3.56174i 0.0301464 0.170969i
\(435\) 0 0
\(436\) 1.60320 + 0.583516i 0.0767793 + 0.0279454i
\(437\) −11.8051 + 9.90569i −0.564717 + 0.473854i
\(438\) 0 0
\(439\) −9.76542 + 3.55432i −0.466078 + 0.169638i −0.564375 0.825519i \(-0.690883\pi\)
0.0982969 + 0.995157i \(0.468661\pi\)
\(440\) 0.249925 0.432883i 0.0119147 0.0206369i
\(441\) 0 0
\(442\) −0.307394 0.532422i −0.0146212 0.0253247i
\(443\) −30.3175 25.4394i −1.44043 1.20866i −0.939211 0.343340i \(-0.888442\pi\)
−0.501217 0.865322i \(-0.667114\pi\)
\(444\) 0 0
\(445\) 0.676535 + 3.83682i 0.0320708 + 0.181883i
\(446\) −1.88542 10.6928i −0.0892773 0.506317i
\(447\) 0 0
\(448\) −1.01141 0.848672i −0.0477845 0.0400960i
\(449\) −9.88388 17.1194i −0.466449 0.807914i 0.532816 0.846231i \(-0.321134\pi\)
−0.999266 + 0.0383171i \(0.987800\pi\)
\(450\) 0 0
\(451\) 0.693133 1.20054i 0.0326384 0.0565313i
\(452\) −25.4852 + 9.27585i −1.19872 + 0.436299i
\(453\) 0 0
\(454\) −0.257879 + 0.216386i −0.0121029 + 0.0101555i
\(455\) 0.903956 + 0.329013i 0.0423781 + 0.0154244i
\(456\) 0 0
\(457\) −1.84752 + 10.4778i −0.0864232 + 0.490131i 0.910617 + 0.413251i \(0.135607\pi\)
−0.997040 + 0.0768795i \(0.975504\pi\)
\(458\) −10.3991 −0.485919
\(459\) 0 0
\(460\) −5.73474 −0.267384
\(461\) 4.81686 27.3178i 0.224343 1.27231i −0.639593 0.768714i \(-0.720897\pi\)
0.863936 0.503601i \(-0.167992\pi\)
\(462\) 0 0
\(463\) 23.3502 + 8.49879i 1.08518 + 0.394972i 0.821832 0.569730i \(-0.192952\pi\)
0.263345 + 0.964702i \(0.415174\pi\)
\(464\) −7.02525 + 5.89488i −0.326139 + 0.273663i
\(465\) 0 0
\(466\) −13.8718 + 5.04892i −0.642598 + 0.233886i
\(467\) 4.20002 7.27465i 0.194354 0.336630i −0.752335 0.658781i \(-0.771072\pi\)
0.946688 + 0.322151i \(0.104406\pi\)
\(468\) 0 0
\(469\) −1.55520 2.69368i −0.0718123 0.124383i
\(470\) 2.33048 + 1.95551i 0.107497 + 0.0902009i
\(471\) 0 0
\(472\) 1.18932 + 6.74497i 0.0547429 + 0.310463i
\(473\) −0.0385727 0.218757i −0.00177358 0.0100585i
\(474\) 0 0
\(475\) −2.96267 2.48597i −0.135936 0.114064i
\(476\) −0.172608 0.298966i −0.00791148 0.0137031i
\(477\) 0 0
\(478\) 7.45485 12.9122i 0.340977 0.590589i
\(479\) −1.81040 + 0.658932i −0.0827193 + 0.0301074i −0.383048 0.923728i \(-0.625126\pi\)
0.300329 + 0.953836i \(0.402904\pi\)
\(480\) 0 0
\(481\) 14.8272 12.4415i 0.676064 0.567285i
\(482\) −5.27450 1.91976i −0.240247 0.0874427i
\(483\) 0 0
\(484\) 2.73967 15.5374i 0.124531 0.706248i
\(485\) −8.45838 −0.384075
\(486\) 0 0
\(487\) 6.91110 0.313172 0.156586 0.987664i \(-0.449951\pi\)
0.156586 + 0.987664i \(0.449951\pi\)
\(488\) −5.33189 + 30.2387i −0.241364 + 1.36884i
\(489\) 0 0
\(490\) 4.72808 + 1.72088i 0.213593 + 0.0777415i
\(491\) 9.83941 8.25624i 0.444046 0.372599i −0.393175 0.919464i \(-0.628623\pi\)
0.837221 + 0.546865i \(0.184179\pi\)
\(492\) 0 0
\(493\) 4.10529 1.49420i 0.184893 0.0672955i
\(494\) 2.62760 4.55113i 0.118221 0.204765i
\(495\) 0 0
\(496\) 4.32610 + 7.49303i 0.194248 + 0.336447i
\(497\) 3.69989 + 3.10458i 0.165963 + 0.139259i
\(498\) 0 0
\(499\) 0.867688 + 4.92090i 0.0388431 + 0.220290i 0.998050 0.0624137i \(-0.0198798\pi\)
−0.959207 + 0.282704i \(0.908769\pi\)
\(500\) −0.249917 1.41735i −0.0111766 0.0633858i
\(501\) 0 0
\(502\) 9.17785 + 7.70113i 0.409628 + 0.343718i
\(503\) 11.2981 + 19.5689i 0.503757 + 0.872532i 0.999991 + 0.00434323i \(0.00138250\pi\)
−0.496234 + 0.868189i \(0.665284\pi\)
\(504\) 0 0
\(505\) 2.51014 4.34769i 0.111700 0.193470i
\(506\) −0.544195 + 0.198071i −0.0241924 + 0.00880532i
\(507\) 0 0
\(508\) 21.1032 17.7077i 0.936303 0.785651i
\(509\) −9.21782 3.35501i −0.408573 0.148708i 0.129554 0.991572i \(-0.458646\pi\)
−0.538127 + 0.842864i \(0.680868\pi\)
\(510\) 0 0
\(511\) −0.551125 + 3.12559i −0.0243803 + 0.138268i
\(512\) 10.4599 0.462266
\(513\) 0 0
\(514\) 12.1702 0.536803
\(515\) −1.96625 + 11.1512i −0.0866433 + 0.491378i
\(516\) 0 0
\(517\) −0.740902 0.269666i −0.0325849 0.0118599i
\(518\) −3.24413 + 2.72215i −0.142539 + 0.119604i
\(519\) 0 0
\(520\) 4.39142 1.59834i 0.192576 0.0700921i
\(521\) 8.46385 14.6598i 0.370808 0.642258i −0.618882 0.785484i \(-0.712414\pi\)
0.989690 + 0.143226i \(0.0457474\pi\)
\(522\) 0 0
\(523\) −18.8074 32.5754i −0.822390 1.42442i −0.903898 0.427749i \(-0.859307\pi\)
0.0815076 0.996673i \(-0.474027\pi\)
\(524\) −11.0730 9.29131i −0.483724 0.405893i
\(525\) 0 0
\(526\) −1.23300 6.99268i −0.0537613 0.304896i
\(527\) −0.715726 4.05909i −0.0311775 0.176817i
\(528\) 0 0
\(529\) −5.45629 4.57837i −0.237230 0.199060i
\(530\) −1.13865 1.97219i −0.0494597 0.0856666i
\(531\) 0 0
\(532\) 1.47545 2.55555i 0.0639689 0.110797i
\(533\) 12.1790 4.43280i 0.527531 0.192006i
\(534\) 0 0
\(535\) 7.81063 6.55390i 0.337683 0.283350i
\(536\) −14.1990 5.16802i −0.613305 0.223225i
\(537\) 0 0
\(538\) 0.997042 5.65451i 0.0429855 0.243783i
\(539\) −1.30401 −0.0561679
\(540\) 0 0
\(541\) 17.1610 0.737810 0.368905 0.929467i \(-0.379733\pi\)
0.368905 + 0.929467i \(0.379733\pi\)
\(542\) 0.586298 3.32506i 0.0251837 0.142824i
\(543\) 0 0
\(544\) −2.49236 0.907146i −0.106859 0.0388936i
\(545\) 0.908093 0.761980i 0.0388984 0.0326396i
\(546\) 0 0
\(547\) −12.1470 + 4.42115i −0.519368 + 0.189035i −0.588385 0.808581i \(-0.700236\pi\)
0.0690169 + 0.997615i \(0.478014\pi\)
\(548\) 0.603051 1.04451i 0.0257611 0.0446195i
\(549\) 0 0
\(550\) −0.0726692 0.125867i −0.00309862 0.00536698i
\(551\) 28.6072 + 24.0043i 1.21871 + 1.02262i
\(552\) 0 0
\(553\) 1.15210 + 6.53389i 0.0489924 + 0.277849i
\(554\) −2.90896 16.4975i −0.123590 0.700913i
\(555\) 0 0
\(556\) 9.17454 + 7.69836i 0.389087 + 0.326483i
\(557\) 6.44842 + 11.1690i 0.273229 + 0.473246i 0.969687 0.244352i \(-0.0785751\pi\)
−0.696458 + 0.717597i \(0.745242\pi\)
\(558\) 0 0
\(559\) 1.03839 1.79854i 0.0439191 0.0760701i
\(560\) 0.473153 0.172214i 0.0199944 0.00727735i
\(561\) 0 0
\(562\) 16.0451 13.4634i 0.676821 0.567920i
\(563\) 2.66099 + 0.968522i 0.112147 + 0.0408183i 0.397484 0.917609i \(-0.369883\pi\)
−0.285337 + 0.958427i \(0.592106\pi\)
\(564\) 0 0
\(565\) −3.27225 + 18.5579i −0.137665 + 0.780736i
\(566\) 4.58586 0.192758
\(567\) 0 0
\(568\) 23.4635 0.984506
\(569\) 0.717987 4.07191i 0.0300996 0.170703i −0.966052 0.258346i \(-0.916822\pi\)
0.996152 + 0.0876432i \(0.0279335\pi\)
\(570\) 0 0
\(571\) −5.29347 1.92667i −0.221525 0.0806285i 0.228873 0.973456i \(-0.426496\pi\)
−0.450398 + 0.892828i \(0.648718\pi\)
\(572\) −0.388259 + 0.325788i −0.0162339 + 0.0136219i
\(573\) 0 0
\(574\) −2.66471 + 0.969875i −0.111223 + 0.0404818i
\(575\) −1.99232 + 3.45080i −0.0830854 + 0.143908i
\(576\) 0 0
\(577\) 3.00546 + 5.20561i 0.125119 + 0.216712i 0.921779 0.387715i \(-0.126735\pi\)
−0.796661 + 0.604427i \(0.793402\pi\)
\(578\) −9.63475 8.08451i −0.400753 0.336271i
\(579\) 0 0
\(580\) 2.41317 + 13.6858i 0.100201 + 0.568270i
\(581\) 1.26037 + 7.14792i 0.0522890 + 0.296546i
\(582\) 0 0
\(583\) 0.452122 + 0.379376i 0.0187250 + 0.0157121i
\(584\) 7.70917 + 13.3527i 0.319008 + 0.552537i
\(585\) 0 0
\(586\) −1.76621 + 3.05917i −0.0729615 + 0.126373i
\(587\) −12.7934 + 4.65641i −0.528039 + 0.192190i −0.592262 0.805745i \(-0.701765\pi\)
0.0642236 + 0.997936i \(0.479543\pi\)
\(588\) 0 0
\(589\) 26.9895 22.6468i 1.11208 0.933147i
\(590\) 1.87135 + 0.681116i 0.0770423 + 0.0280411i
\(591\) 0 0
\(592\) 1.75926 9.97728i 0.0723053 0.410064i
\(593\) 38.9303 1.59868 0.799338 0.600882i \(-0.205184\pi\)
0.799338 + 0.600882i \(0.205184\pi\)
\(594\) 0 0
\(595\) −0.239864 −0.00983348
\(596\) 0.726453 4.11992i 0.0297567 0.168758i
\(597\) 0 0
\(598\) −5.08785 1.85182i −0.208058 0.0757267i
\(599\) 27.2995 22.9070i 1.11543 0.935954i 0.117062 0.993125i \(-0.462653\pi\)
0.998364 + 0.0571711i \(0.0182081\pi\)
\(600\) 0 0
\(601\) 35.5884 12.9531i 1.45168 0.528369i 0.508621 0.860991i \(-0.330156\pi\)
0.943060 + 0.332622i \(0.107933\pi\)
\(602\) −0.227194 + 0.393512i −0.00925975 + 0.0160384i
\(603\) 0 0
\(604\) −8.40203 14.5528i −0.341874 0.592143i
\(605\) −8.39763 7.04645i −0.341412 0.286479i
\(606\) 0 0
\(607\) 3.11194 + 17.6487i 0.126310 + 0.716338i 0.980521 + 0.196412i \(0.0629291\pi\)
−0.854212 + 0.519925i \(0.825960\pi\)
\(608\) −3.93694 22.3275i −0.159664 0.905500i
\(609\) 0 0
\(610\) 6.83921 + 5.73878i 0.276912 + 0.232356i
\(611\) −3.68574 6.38389i −0.149109 0.258264i
\(612\) 0 0
\(613\) −6.89087 + 11.9353i −0.278320 + 0.482064i −0.970967 0.239212i \(-0.923111\pi\)
0.692648 + 0.721276i \(0.256444\pi\)
\(614\) −5.02851 + 1.83023i −0.202934 + 0.0738620i
\(615\) 0 0
\(616\) 0.202999 0.170336i 0.00817906 0.00686305i
\(617\) −36.2761 13.2034i −1.46042 0.531550i −0.514940 0.857226i \(-0.672186\pi\)
−0.945481 + 0.325677i \(0.894408\pi\)
\(618\) 0 0
\(619\) −6.89620 + 39.1103i −0.277182 + 1.57198i 0.454763 + 0.890612i \(0.349724\pi\)
−0.731945 + 0.681364i \(0.761387\pi\)
\(620\) 13.1110 0.526551
\(621\) 0 0
\(622\) −9.18780 −0.368397
\(623\) −0.358666 + 2.03410i −0.0143697 + 0.0814944i
\(624\) 0 0
\(625\) −0.939693 0.342020i −0.0375877 0.0136808i
\(626\) 2.86012 2.39993i 0.114314 0.0959205i
\(627\) 0 0
\(628\) −30.4439 + 11.0807i −1.21485 + 0.442168i
\(629\) −2.41313 + 4.17966i −0.0962178 + 0.166654i
\(630\) 0 0
\(631\) −9.71146 16.8207i −0.386607 0.669623i 0.605384 0.795934i \(-0.293020\pi\)
−0.991991 + 0.126311i \(0.959686\pi\)
\(632\) 24.6906 + 20.7179i 0.982141 + 0.824114i
\(633\) 0 0
\(634\) 3.99302 + 22.6456i 0.158583 + 0.899370i
\(635\) −3.32383 18.8504i −0.131902 0.748055i
\(636\) 0 0
\(637\) −9.33933 7.83663i −0.370038 0.310498i
\(638\) 0.701686 + 1.21536i 0.0277800 + 0.0481164i
\(639\) 0 0
\(640\) 4.92971 8.53851i 0.194864 0.337514i
\(641\) −32.2397 + 11.7343i −1.27339 + 0.463476i −0.888241 0.459378i \(-0.848072\pi\)
−0.385149 + 0.922854i \(0.625850\pi\)
\(642\) 0 0
\(643\) 24.8918 20.8867i 0.981637 0.823691i −0.00269885 0.999996i \(-0.500859\pi\)
0.984336 + 0.176305i \(0.0564146\pi\)
\(644\) −2.85693 1.03984i −0.112579 0.0409754i
\(645\) 0 0
\(646\) −0.227543 + 1.29046i −0.00895256 + 0.0507725i
\(647\) 19.6313 0.771787 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(648\) 0 0
\(649\) −0.516122 −0.0202596
\(650\) 0.235955 1.33817i 0.00925493 0.0524873i
\(651\) 0 0
\(652\) 13.0176 + 4.73804i 0.509810 + 0.185556i
\(653\) 9.18189 7.70452i 0.359315 0.301501i −0.445202 0.895430i \(-0.646868\pi\)
0.804518 + 0.593929i \(0.202424\pi\)
\(654\) 0 0
\(655\) −9.43779 + 3.43507i −0.368765 + 0.134219i
\(656\) 3.39196 5.87505i 0.132434 0.229382i
\(657\) 0 0
\(658\) 0.806422 + 1.39676i 0.0314376 + 0.0544516i
\(659\) −14.3096 12.0072i −0.557423 0.467733i 0.320022 0.947410i \(-0.396310\pi\)
−0.877445 + 0.479677i \(0.840754\pi\)
\(660\) 0 0
\(661\) 3.73208 + 21.1657i 0.145161 + 0.823250i 0.967238 + 0.253873i \(0.0817044\pi\)
−0.822077 + 0.569377i \(0.807184\pi\)
\(662\) −1.20468 6.83209i −0.0468213 0.265537i
\(663\) 0 0
\(664\) 27.0109 + 22.6649i 1.04823 + 0.879567i
\(665\) −1.02518 1.77566i −0.0397547 0.0688571i
\(666\) 0 0
\(667\) 19.2376 33.3205i 0.744883 1.29017i
\(668\) 21.5976 7.86088i 0.835636 0.304147i
\(669\) 0 0
\(670\) −3.36564 + 2.82411i −0.130026 + 0.109105i
\(671\) −2.17431 0.791383i −0.0839382 0.0305510i
\(672\) 0 0
\(673\) −1.40383 + 7.96152i −0.0541137 + 0.306894i −0.999837 0.0180803i \(-0.994245\pi\)
0.945723 + 0.324974i \(0.105356\pi\)
\(674\) 12.6999 0.489180
\(675\) 0 0
\(676\) 13.9712 0.537354
\(677\) −1.86299 + 10.5656i −0.0716006 + 0.406067i 0.927851 + 0.372951i \(0.121654\pi\)
−0.999452 + 0.0331158i \(0.989457\pi\)
\(678\) 0 0
\(679\) −4.21380 1.53370i −0.161711 0.0588579i
\(680\) −0.892642 + 0.749016i −0.0342313 + 0.0287234i
\(681\) 0 0
\(682\) 1.24416 0.452838i 0.0476415 0.0173401i
\(683\) −7.36365 + 12.7542i −0.281762 + 0.488027i −0.971819 0.235729i \(-0.924252\pi\)
0.690057 + 0.723755i \(0.257586\pi\)
\(684\) 0 0
\(685\) −0.419014 0.725754i −0.0160097 0.0277296i
\(686\) 4.17228 + 3.50096i 0.159298 + 0.133667i
\(687\) 0 0
\(688\) −0.188762 1.07052i −0.00719648 0.0408132i
\(689\) 0.958190 + 5.43416i 0.0365041 + 0.207025i
\(690\) 0 0
\(691\) −5.28360 4.43347i −0.200998 0.168657i 0.536733 0.843752i \(-0.319658\pi\)
−0.737731 + 0.675095i \(0.764103\pi\)
\(692\) −4.12038 7.13671i −0.156633 0.271297i
\(693\) 0 0
\(694\) 8.31897 14.4089i 0.315784 0.546953i
\(695\) 7.81972 2.84614i 0.296619 0.107960i
\(696\) 0 0
\(697\) −2.47562 + 2.07730i −0.0937710 + 0.0786832i
\(698\) −14.1432 5.14770i −0.535328 0.194843i
\(699\) 0 0
\(700\) 0.132494 0.751410i 0.00500780 0.0284006i
\(701\) 21.5524 0.814024 0.407012 0.913423i \(-0.366571\pi\)
0.407012 + 0.913423i \(0.366571\pi\)
\(702\) 0 0
\(703\) −41.2548 −1.55595
\(704\) 0.0839313 0.475998i 0.00316328 0.0179398i
\(705\) 0 0
\(706\) 9.25448 + 3.36835i 0.348297 + 0.126770i
\(707\) 2.03884 1.71079i 0.0766783 0.0643407i
\(708\) 0 0
\(709\) −8.74711 + 3.18369i −0.328505 + 0.119566i −0.501007 0.865443i \(-0.667037\pi\)
0.172502 + 0.985009i \(0.444815\pi\)
\(710\) 3.41117 5.90832i 0.128019 0.221735i
\(711\) 0 0
\(712\) 5.01704 + 8.68977i 0.188022 + 0.325663i
\(713\) −27.8070 23.3328i −1.04138 0.873821i
\(714\) 0 0
\(715\) 0.0611523 + 0.346812i 0.00228697 + 0.0129700i
\(716\) −3.17004 17.9782i −0.118470 0.671876i
\(717\) 0 0
\(718\) −11.6045 9.73734i −0.433076 0.363394i
\(719\) −8.27715 14.3364i −0.308686 0.534659i 0.669389 0.742912i \(-0.266556\pi\)
−0.978075 + 0.208252i \(0.933222\pi\)
\(720\) 0 0
\(721\) −3.00150 + 5.19875i −0.111782 + 0.193612i
\(722\) 2.84472 1.03539i 0.105870 0.0385334i
\(723\) 0 0
\(724\) −10.0632 + 8.44403i −0.373996 + 0.313820i
\(725\) 9.07357 + 3.30251i 0.336984 + 0.122652i
\(726\) 0 0
\(727\) 0.00349359 0.0198131i 0.000129570 0.000734829i −0.984743 0.174016i \(-0.944326\pi\)
0.984872 + 0.173281i \(0.0554368\pi\)
\(728\) 2.47753 0.0918234
\(729\) 0 0
\(730\) 4.48310 0.165927
\(731\) −0.0899217 + 0.509971i −0.00332587 + 0.0188620i
\(732\) 0 0
\(733\) −6.82912 2.48559i −0.252239 0.0918075i 0.212806 0.977094i \(-0.431740\pi\)
−0.465045 + 0.885287i \(0.653962\pi\)
\(734\) 11.4809 9.63363i 0.423768 0.355584i
\(735\) 0 0
\(736\) −21.9500 + 7.98915i −0.809088 + 0.294484i
\(737\) 0.569333 0.986114i 0.0209717 0.0363240i
\(738\) 0 0
\(739\) 12.5613 + 21.7568i 0.462074 + 0.800336i 0.999064 0.0432525i \(-0.0137720\pi\)
−0.536990 + 0.843589i \(0.680439\pi\)
\(740\) −11.7605 9.86820i −0.432323 0.362762i
\(741\) 0 0
\(742\) −0.209647 1.18897i −0.00769640 0.0436485i
\(743\) 5.15289 + 29.2235i 0.189041 + 1.07211i 0.920652 + 0.390383i \(0.127658\pi\)
−0.731611 + 0.681722i \(0.761231\pi\)
\(744\) 0 0
\(745\) −2.22672 1.86844i −0.0815808 0.0684544i
\(746\) 8.68358 + 15.0404i 0.317929 + 0.550668i
\(747\) 0 0
\(748\) 0.0631891 0.109447i 0.00231042 0.00400177i
\(749\) 5.07947 1.84878i 0.185600 0.0675528i
\(750\) 0 0
\(751\) 22.2113 18.6375i 0.810502 0.680092i −0.140226 0.990120i \(-0.544783\pi\)
0.950728 + 0.310028i \(0.100338\pi\)
\(752\) −3.62572 1.31966i −0.132217 0.0481229i
\(753\) 0 0
\(754\) −2.27836 + 12.9212i −0.0829729 + 0.470563i
\(755\) −11.6759 −0.424928
\(756\) 0 0
\(757\) −0.0752608 −0.00273540 −0.00136770 0.999999i \(-0.500435\pi\)
−0.00136770 + 0.999999i \(0.500435\pi\)
\(758\) −2.08885 + 11.8465i −0.0758706 + 0.430284i
\(759\) 0 0
\(760\) −9.35993 3.40674i −0.339520 0.123575i
\(761\) −35.5809 + 29.8559i −1.28981 + 1.08228i −0.297996 + 0.954567i \(0.596318\pi\)
−0.991812 + 0.127709i \(0.959238\pi\)
\(762\) 0 0
\(763\) 0.590558 0.214945i 0.0213796 0.00778155i
\(764\) 17.7904 30.8139i 0.643635 1.11481i
\(765\) 0 0
\(766\) 1.87997 + 3.25621i 0.0679261 + 0.117652i
\(767\) −3.69646 3.10170i −0.133471 0.111996i
\(768\) 0 0
\(769\) −5.06818 28.7431i −0.182763 1.03650i −0.928795 0.370593i \(-0.879155\pi\)
0.746032 0.665910i \(-0.231957\pi\)
\(770\) −0.0133798 0.0758808i −0.000482176 0.00273456i
\(771\) 0 0
\(772\) −5.31123 4.45665i −0.191155 0.160398i
\(773\) 5.94544 + 10.2978i 0.213843 + 0.370387i 0.952914 0.303241i \(-0.0980687\pi\)
−0.739071 + 0.673627i \(0.764735\pi\)
\(774\) 0 0
\(775\) 4.55493 7.88936i 0.163618 0.283394i
\(776\) −20.4706 + 7.45070i −0.734853 + 0.267464i
\(777\) 0 0
\(778\) 17.3796 14.5832i 0.623089 0.522834i
\(779\) −25.9585 9.44813i −0.930060 0.338514i
\(780\) 0 0
\(781\) −0.307034 + 1.74128i −0.0109865 + 0.0623078i
\(782\) 1.35006 0.0482780
\(783\) 0 0
\(784\) −6.38140 −0.227907
\(785\) −3.90895 + 22.1688i −0.139516 + 0.791237i
\(786\) 0 0
\(787\) −12.7571 4.64320i −0.454741 0.165512i 0.104486 0.994526i \(-0.466680\pi\)
−0.559228 + 0.829014i \(0.688902\pi\)
\(788\) 18.8990 15.8582i 0.673249 0.564923i
\(789\) 0 0
\(790\) 8.80653 3.20532i 0.313322 0.114040i
\(791\) −4.99513 + 8.65183i −0.177607 + 0.307623i
\(792\) 0 0
\(793\) −10.8164 18.7346i −0.384103 0.665286i
\(794\) 8.39697 + 7.04589i 0.297997 + 0.250049i
\(795\) 0 0
\(796\) 4.77027 + 27.0536i 0.169078 + 0.958888i
\(797\) −5.91972 33.5724i −0.209687 1.18919i −0.889892 0.456172i \(-0.849220\pi\)
0.680204 0.733022i \(-0.261891\pi\)
\(798\) 0 0
\(799\) 1.40803 + 1.18148i 0.0498126 + 0.0417978i
\(800\) −2.93110 5.07681i −0.103630 0.179492i
\(801\) 0 0
\(802\) −4.17610 + 7.23321i −0.147463 + 0.255414i
\(803\) −1.09181 + 0.397386i −0.0385291 + 0.0140235i
\(804\) 0 0
\(805\) −1.61824 + 1.35786i −0.0570355 + 0.0478584i
\(806\) 11.6321 + 4.23372i 0.409722 + 0.149127i
\(807\) 0 0
\(808\) 2.24521 12.7332i 0.0789860 0.447952i
\(809\) −33.2161 −1.16781 −0.583907 0.811821i \(-0.698477\pi\)
−0.583907 + 0.811821i \(0.698477\pi\)
\(810\) 0 0
\(811\) −45.6200 −1.60194 −0.800968 0.598708i \(-0.795681\pi\)
−0.800968 + 0.598708i \(0.795681\pi\)
\(812\) −1.27935 + 7.25553i −0.0448962 + 0.254619i
\(813\) 0 0
\(814\) −1.45684 0.530246i −0.0510622 0.0185851i
\(815\) 7.37353 6.18712i 0.258283 0.216725i
\(816\) 0 0
\(817\) −4.15952 + 1.51394i −0.145523 + 0.0529661i
\(818\) −6.65717 + 11.5305i −0.232762 + 0.403156i
\(819\) 0 0
\(820\) −5.13997 8.90269i −0.179496 0.310895i
\(821\) −1.74217 1.46185i −0.0608021 0.0510190i 0.611880 0.790950i \(-0.290413\pi\)
−0.672682 + 0.739931i \(0.734858\pi\)
\(822\) 0 0
\(823\) 6.20317 + 35.1799i 0.216229 + 1.22629i 0.878761 + 0.477261i \(0.158371\pi\)
−0.662533 + 0.749033i \(0.730518\pi\)
\(824\) 5.06403 + 28.7195i 0.176414 + 1.00049i
\(825\) 0 0
\(826\) 0.808768 + 0.678637i 0.0281406 + 0.0236128i
\(827\) 6.66996 + 11.5527i 0.231937 + 0.401727i 0.958378 0.285502i \(-0.0921602\pi\)
−0.726441 + 0.687229i \(0.758827\pi\)
\(828\) 0 0
\(829\) −5.82120 + 10.0826i −0.202179 + 0.350184i −0.949230 0.314582i \(-0.898136\pi\)
0.747051 + 0.664766i \(0.231469\pi\)
\(830\) 9.63412 3.50653i 0.334405 0.121714i
\(831\) 0 0
\(832\) 3.46168 2.90469i 0.120012 0.100702i
\(833\) 2.85662 + 1.03972i 0.0989759 + 0.0360243i
\(834\) 0 0
\(835\) 2.77309 15.7270i 0.0959668 0.544255i
\(836\) 1.08028 0.0373622
\(837\) 0 0
\(838\) −8.23334 −0.284416
\(839\) −6.96649 + 39.5089i −0.240510 + 1.36400i 0.590184 + 0.807269i \(0.299055\pi\)
−0.830694 + 0.556730i \(0.812056\pi\)
\(840\) 0 0
\(841\) −60.3623 21.9701i −2.08146 0.757589i
\(842\) −20.9808 + 17.6050i −0.723046 + 0.606708i
\(843\) 0 0
\(844\) 10.5957 3.85650i 0.364718 0.132746i
\(845\) 4.85376 8.40697i 0.166975 0.289208i
\(846\) 0 0
\(847\) −2.90585 5.03308i −0.0998462 0.172939i
\(848\) 2.21253 + 1.85654i 0.0759787 + 0.0637537i
\(849\) 0 0
\(850\) 0.0588348 + 0.333669i 0.00201802 + 0.0114447i
\(851\) 7.38081 + 41.8586i 0.253011 + 1.43490i
\(852\) 0 0
\(853\) −1.23431 1.03571i −0.0422621 0.0354621i 0.621412 0.783484i \(-0.286559\pi\)
−0.663674 + 0.748022i \(0.731004\pi\)
\(854\) 2.36659 + 4.09905i 0.0809829 + 0.140267i
\(855\) 0 0
\(856\) 13.1299 22.7416i 0.448769 0.777291i
\(857\) 23.2290 8.45466i 0.793487 0.288806i 0.0867023 0.996234i \(-0.472367\pi\)
0.706785 + 0.707429i \(0.250145\pi\)
\(858\) 0 0
\(859\) −2.74608 + 2.30424i −0.0936951 + 0.0786196i −0.688432 0.725301i \(-0.741701\pi\)
0.594737 + 0.803920i \(0.297256\pi\)
\(860\) −1.54789 0.563385i −0.0527826 0.0192113i
\(861\) 0 0
\(862\) 3.25515 18.4609i 0.110871 0.628779i
\(863\) −30.2496 −1.02971 −0.514853 0.857278i \(-0.672154\pi\)
−0.514853 + 0.857278i \(0.672154\pi\)
\(864\) 0 0
\(865\) −5.72588 −0.194686
\(866\) 1.13839 6.45612i 0.0386840 0.219388i
\(867\) 0 0
\(868\) 6.53165 + 2.37732i 0.221699 + 0.0806917i
\(869\) −1.86061 + 1.56124i −0.0631170 + 0.0529614i
\(870\) 0 0
\(871\) 10.0037 3.64106i 0.338963 0.123373i
\(872\) 1.52653 2.64402i 0.0516947 0.0895378i
\(873\) 0 0
\(874\) 5.77014 + 9.99417i 0.195178 + 0.338058i
\(875\) −0.406120 0.340775i −0.0137294 0.0115203i
\(876\) 0 0
\(877\) 1.47134 + 8.34440i 0.0496837 + 0.281771i 0.999520 0.0309768i \(-0.00986180\pi\)
−0.949836 + 0.312747i \(0.898751\pi\)
\(878\) 1.35137 + 7.66399i 0.0456065 + 0.258647i
\(879\) 0 0
\(880\) 0.141205 + 0.118485i 0.00476003 + 0.00399414i
\(881\) −13.2335 22.9211i −0.445848 0.772232i 0.552263 0.833670i \(-0.313765\pi\)
−0.998111 + 0.0614383i \(0.980431\pi\)
\(882\) 0 0
\(883\) 4.54571 7.87340i 0.152975 0.264961i −0.779345 0.626595i \(-0.784448\pi\)
0.932320 + 0.361635i \(0.117781\pi\)
\(884\) 1.11029 0.404114i 0.0373432 0.0135918i
\(885\) 0 0
\(886\) −22.7035 + 19.0505i −0.762738 + 0.640013i
\(887\) 47.5180 + 17.2951i 1.59550 + 0.580714i 0.978499 0.206251i \(-0.0661263\pi\)
0.616998 + 0.786964i \(0.288349\pi\)
\(888\) 0 0
\(889\) 1.76214 9.99357i 0.0591001 0.335174i
\(890\) 2.91755 0.0977966
\(891\) 0 0
\(892\) 20.8672 0.698686
\(893\) −2.72830 + 15.4730i −0.0912992 + 0.517783i
\(894\) 0 0
\(895\) −11.9194 4.33831i −0.398422 0.145014i
\(896\) 4.00411 3.35984i 0.133768 0.112245i
\(897\) 0 0
\(898\) −13.9105 + 5.06300i −0.464199 + 0.168955i
\(899\) −43.9819 + 76.1788i −1.46688 + 2.54071i
\(900\) 0 0
\(901\) −0.687948 1.19156i −0.0229189 0.0396967i
\(902\) −0.795242 0.667288i −0.0264787 0.0222182i
\(903\) 0 0
\(904\) 8.42762 + 47.7954i 0.280298 + 1.58965i
\(905\) 1.58499 + 8.98894i 0.0526869 + 0.298803i
\(906\) 0 0
\(907\) −34.2189 28.7131i −1.13622 0.953403i −0.136913 0.990583i \(-0.543718\pi\)
−0.999309 + 0.0371802i \(0.988162\pi\)
\(908\) −0.323488 0.560298i −0.0107353 0.0185942i
\(909\) 0 0
\(910\) 0.360189 0.623865i 0.0119401 0.0206809i
\(911\) −17.1655 + 6.24774i −0.568719 + 0.206997i −0.610344 0.792136i \(-0.708969\pi\)
0.0416249 + 0.999133i \(0.486747\pi\)
\(912\) 0 0
\(913\) −2.03546 + 1.70796i −0.0673640 + 0.0565251i
\(914\) 7.48692 + 2.72501i 0.247645 + 0.0901355i
\(915\) 0 0
\(916\) 3.47051 19.6823i 0.114669 0.650320i
\(917\) −5.32457 −0.175833
\(918\) 0 0
\(919\) −15.3472 −0.506259 −0.253129 0.967432i \(-0.581460\pi\)
−0.253129 + 0.967432i \(0.581460\pi\)
\(920\) −1.78204 + 10.1064i −0.0587520 + 0.333199i
\(921\) 0 0
\(922\) −19.5199 7.10467i −0.642854 0.233980i
\(923\) −12.6634 + 10.6258i −0.416820 + 0.349754i
\(924\) 0 0
\(925\) −10.0238 + 3.64835i −0.329579 + 0.119957i
\(926\) 9.30409 16.1152i 0.305751 0.529577i
\(927\) 0 0
\(928\) 28.3023 + 49.0211i 0.929070 + 1.60920i
\(929\) 41.2347 + 34.6000i 1.35287 + 1.13519i 0.978115 + 0.208064i \(0.0667163\pi\)
0.374751 + 0.927125i \(0.377728\pi\)
\(930\) 0 0
\(931\) 4.51232 + 25.5906i 0.147885 + 0.838699i
\(932\) −4.92655 27.9399i −0.161375 0.915201i
\(933\) 0 0
\(934\) −4.81874 4.04341i −0.157674 0.132304i
\(935\) −0.0439053 0.0760462i −0.00143586 0.00248698i
\(936\) 0 0
\(937\) −29.8115 + 51.6351i −0.973900 + 1.68684i −0.290380 + 0.956911i \(0.593782\pi\)
−0.683519 + 0.729932i \(0.739552\pi\)
\(938\) −2.18877 + 0.796647i −0.0714658 + 0.0260114i
\(939\) 0 0
\(940\) −4.47891 + 3.75826i −0.146086 + 0.122581i
\(941\) 31.2201 + 11.3632i 1.01775 + 0.370430i 0.796403 0.604766i \(-0.206733\pi\)
0.221344 + 0.975196i \(0.428956\pi\)
\(942\) 0 0
\(943\) −4.94224 + 28.0288i −0.160942 + 0.912745i
\(944\) −2.52573 −0.0822054
\(945\) 0 0
\(946\) −0.166345 −0.00540833
\(947\) 8.65820 49.1031i 0.281354 1.59564i −0.436673 0.899620i \(-0.643843\pi\)
0.718026 0.696016i \(-0.245046\pi\)
\(948\) 0 0
\(949\) −10.2077 3.71529i −0.331355 0.120603i
\(950\) −2.21861 + 1.86164i −0.0719813 + 0.0603995i
\(951\) 0 0
\(952\) −0.580510 + 0.211288i −0.0188144 + 0.00684789i
\(953\) 4.87188 8.43834i 0.157816 0.273345i −0.776265 0.630407i \(-0.782888\pi\)
0.934081 + 0.357062i \(0.116222\pi\)
\(954\) 0 0
\(955\) −12.3612 21.4102i −0.399999 0.692819i
\(956\) 21.9508 + 18.4189i 0.709938 + 0.595709i
\(957\) 0 0
\(958\) 0.250529 + 1.42082i 0.00809422 + 0.0459046i
\(959\) −0.0771488 0.437533i −0.00249127 0.0141287i
\(960\) 0 0
\(961\) 39.8262 + 33.4181i 1.28472 + 1.07800i
\(962\) −7.24728 12.5527i −0.233662 0.404714i
\(963\) 0 0
\(964\) 5.39377 9.34228i 0.173722 0.300895i
\(965\) −4.52691 + 1.64766i −0.145726 + 0.0530401i
\(966\) 0 0
\(967\) 36.8948 30.9584i 1.18646 0.995554i 0.186541 0.982447i \(-0.440272\pi\)
0.999914 0.0131071i \(-0.00417224\pi\)
\(968\) −26.5306 9.65634i −0.852725 0.310367i
\(969\) 0 0
\(970\) −1.09991 + 6.23789i −0.0353159 + 0.200287i
\(971\) −41.0170 −1.31630 −0.658149 0.752888i \(-0.728660\pi\)
−0.658149 + 0.752888i \(0.728660\pi\)
\(972\) 0 0
\(973\) 4.41170 0.141432
\(974\) 0.898702 5.09679i 0.0287963 0.163312i
\(975\) 0 0
\(976\) −10.6403 3.87276i −0.340588 0.123964i
\(977\) 5.88186 4.93546i 0.188177 0.157899i −0.543832 0.839194i \(-0.683027\pi\)
0.732009 + 0.681295i \(0.238583\pi\)
\(978\) 0 0
\(979\) −0.710538 + 0.258615i −0.0227089 + 0.00826536i
\(980\) −4.83499 + 8.37446i −0.154448 + 0.267512i
\(981\) 0 0
\(982\) −4.80932 8.32999i −0.153472 0.265821i
\(983\) −42.6130 35.7566i −1.35914 1.14046i −0.976245 0.216668i \(-0.930481\pi\)
−0.382899 0.923790i \(-0.625074\pi\)
\(984\) 0 0
\(985\) −2.97667 16.8815i −0.0948445 0.537890i
\(986\) −0.568103 3.22187i −0.0180921 0.102605i
\(987\) 0 0
\(988\) 7.73694 + 6.49206i 0.246145 + 0.206540i
\(989\) 2.28027 + 3.94955i 0.0725085 + 0.125588i
\(990\) 0 0
\(991\) 0.876303 1.51780i 0.0278367 0.0482145i −0.851771 0.523914i \(-0.824471\pi\)
0.879608 + 0.475699i \(0.157805\pi\)
\(992\) 50.1831 18.2651i 1.59331 0.579919i
\(993\) 0 0
\(994\) 2.77069 2.32488i 0.0878809 0.0737408i
\(995\) 17.9363 + 6.52829i 0.568620 + 0.206961i
\(996\) 0 0
\(997\) 1.48133 8.40103i 0.0469141 0.266063i −0.952324 0.305088i \(-0.901314\pi\)
0.999238 + 0.0390249i \(0.0124252\pi\)
\(998\) 3.74190 0.118448
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.k.a.316.4 30
3.2 odd 2 135.2.k.a.106.2 30
15.2 even 4 675.2.u.c.349.4 60
15.8 even 4 675.2.u.c.349.7 60
15.14 odd 2 675.2.l.d.376.4 30
27.11 odd 18 3645.2.a.h.1.5 15
27.13 even 9 inner 405.2.k.a.91.4 30
27.14 odd 18 135.2.k.a.121.2 yes 30
27.16 even 9 3645.2.a.g.1.11 15
135.14 odd 18 675.2.l.d.526.4 30
135.68 even 36 675.2.u.c.499.4 60
135.122 even 36 675.2.u.c.499.7 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.k.a.106.2 30 3.2 odd 2
135.2.k.a.121.2 yes 30 27.14 odd 18
405.2.k.a.91.4 30 27.13 even 9 inner
405.2.k.a.316.4 30 1.1 even 1 trivial
675.2.l.d.376.4 30 15.14 odd 2
675.2.l.d.526.4 30 135.14 odd 18
675.2.u.c.349.4 60 15.2 even 4
675.2.u.c.349.7 60 15.8 even 4
675.2.u.c.499.4 60 135.68 even 36
675.2.u.c.499.7 60 135.122 even 36
3645.2.a.g.1.11 15 27.16 even 9
3645.2.a.h.1.5 15 27.11 odd 18