Properties

Label 405.2.e.l.271.1
Level $405$
Weight $2$
Character 405.271
Analytic conductor $3.234$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(136,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-4,-2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 405.271
Dual form 405.2.e.l.136.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 0.633975i) q^{2} +(0.732051 - 1.26795i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(2.36603 + 4.09808i) q^{7} -2.53590 q^{8} +0.732051 q^{10} +(2.86603 + 4.96410i) q^{11} +(-0.732051 + 1.26795i) q^{13} +(1.73205 - 3.00000i) q^{14} +(-0.535898 - 0.928203i) q^{16} -2.73205 q^{17} +4.46410 q^{19} +(0.732051 + 1.26795i) q^{20} +(2.09808 - 3.63397i) q^{22} +(1.73205 - 3.00000i) q^{23} +(-0.500000 - 0.866025i) q^{25} +1.07180 q^{26} +6.92820 q^{28} +(-1.59808 - 2.76795i) q^{29} +(1.50000 - 2.59808i) q^{31} +(-2.92820 + 5.07180i) q^{32} +(1.00000 + 1.73205i) q^{34} -4.73205 q^{35} -2.73205 q^{37} +(-1.63397 - 2.83013i) q^{38} +(1.26795 - 2.19615i) q^{40} +(3.59808 - 6.23205i) q^{41} +(-0.0980762 - 0.169873i) q^{43} +8.39230 q^{44} -2.53590 q^{46} +(4.36603 + 7.56218i) q^{47} +(-7.69615 + 13.3301i) q^{49} +(-0.366025 + 0.633975i) q^{50} +(1.07180 + 1.85641i) q^{52} +6.73205 q^{53} -5.73205 q^{55} +(-6.00000 - 10.3923i) q^{56} +(-1.16987 + 2.02628i) q^{58} +(4.13397 - 7.16025i) q^{59} +(-2.00000 - 3.46410i) q^{61} -2.19615 q^{62} +2.14359 q^{64} +(-0.732051 - 1.26795i) q^{65} +(-1.73205 + 3.00000i) q^{67} +(-2.00000 + 3.46410i) q^{68} +(1.73205 + 3.00000i) q^{70} -3.73205 q^{71} -7.66025 q^{73} +(1.00000 + 1.73205i) q^{74} +(3.26795 - 5.66025i) q^{76} +(-13.5622 + 23.4904i) q^{77} +(-7.73205 - 13.3923i) q^{79} +1.07180 q^{80} -5.26795 q^{82} +(-1.09808 - 1.90192i) q^{83} +(1.36603 - 2.36603i) q^{85} +(-0.0717968 + 0.124356i) q^{86} +(-7.26795 - 12.5885i) q^{88} +5.19615 q^{89} -6.92820 q^{91} +(-2.53590 - 4.39230i) q^{92} +(3.19615 - 5.53590i) q^{94} +(-2.23205 + 3.86603i) q^{95} +(4.83013 + 8.36603i) q^{97} +11.2679 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{4} - 2 q^{5} + 6 q^{7} - 24 q^{8} - 4 q^{10} + 8 q^{11} + 4 q^{13} - 16 q^{16} - 4 q^{17} + 4 q^{19} - 4 q^{20} - 2 q^{22} - 2 q^{25} + 32 q^{26} + 4 q^{29} + 6 q^{31} + 16 q^{32} + 4 q^{34}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 0.633975i −0.258819 0.448288i 0.707107 0.707107i \(-0.250000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) 0 0
\(4\) 0.732051 1.26795i 0.366025 0.633975i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.36603 + 4.09808i 0.894274 + 1.54893i 0.834701 + 0.550703i \(0.185640\pi\)
0.0595724 + 0.998224i \(0.481026\pi\)
\(8\) −2.53590 −0.896575
\(9\) 0 0
\(10\) 0.732051 0.231495
\(11\) 2.86603 + 4.96410i 0.864139 + 1.49673i 0.867899 + 0.496740i \(0.165470\pi\)
−0.00376022 + 0.999993i \(0.501197\pi\)
\(12\) 0 0
\(13\) −0.732051 + 1.26795i −0.203034 + 0.351666i −0.949505 0.313753i \(-0.898414\pi\)
0.746470 + 0.665419i \(0.231747\pi\)
\(14\) 1.73205 3.00000i 0.462910 0.801784i
\(15\) 0 0
\(16\) −0.535898 0.928203i −0.133975 0.232051i
\(17\) −2.73205 −0.662620 −0.331310 0.943522i \(-0.607491\pi\)
−0.331310 + 0.943522i \(0.607491\pi\)
\(18\) 0 0
\(19\) 4.46410 1.02414 0.512068 0.858945i \(-0.328880\pi\)
0.512068 + 0.858945i \(0.328880\pi\)
\(20\) 0.732051 + 1.26795i 0.163692 + 0.283522i
\(21\) 0 0
\(22\) 2.09808 3.63397i 0.447311 0.774766i
\(23\) 1.73205 3.00000i 0.361158 0.625543i −0.626994 0.779024i \(-0.715715\pi\)
0.988152 + 0.153481i \(0.0490483\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.07180 0.210197
\(27\) 0 0
\(28\) 6.92820 1.30931
\(29\) −1.59808 2.76795i −0.296755 0.513995i 0.678636 0.734474i \(-0.262571\pi\)
−0.975392 + 0.220479i \(0.929238\pi\)
\(30\) 0 0
\(31\) 1.50000 2.59808i 0.269408 0.466628i −0.699301 0.714827i \(-0.746505\pi\)
0.968709 + 0.248199i \(0.0798387\pi\)
\(32\) −2.92820 + 5.07180i −0.517638 + 0.896575i
\(33\) 0 0
\(34\) 1.00000 + 1.73205i 0.171499 + 0.297044i
\(35\) −4.73205 −0.799863
\(36\) 0 0
\(37\) −2.73205 −0.449146 −0.224573 0.974457i \(-0.572099\pi\)
−0.224573 + 0.974457i \(0.572099\pi\)
\(38\) −1.63397 2.83013i −0.265066 0.459107i
\(39\) 0 0
\(40\) 1.26795 2.19615i 0.200480 0.347242i
\(41\) 3.59808 6.23205i 0.561925 0.973283i −0.435403 0.900235i \(-0.643394\pi\)
0.997328 0.0730473i \(-0.0232724\pi\)
\(42\) 0 0
\(43\) −0.0980762 0.169873i −0.0149565 0.0259054i 0.858450 0.512897i \(-0.171428\pi\)
−0.873407 + 0.486991i \(0.838094\pi\)
\(44\) 8.39230 1.26519
\(45\) 0 0
\(46\) −2.53590 −0.373898
\(47\) 4.36603 + 7.56218i 0.636850 + 1.10306i 0.986120 + 0.166035i \(0.0530964\pi\)
−0.349270 + 0.937022i \(0.613570\pi\)
\(48\) 0 0
\(49\) −7.69615 + 13.3301i −1.09945 + 1.90430i
\(50\) −0.366025 + 0.633975i −0.0517638 + 0.0896575i
\(51\) 0 0
\(52\) 1.07180 + 1.85641i 0.148631 + 0.257437i
\(53\) 6.73205 0.924718 0.462359 0.886693i \(-0.347003\pi\)
0.462359 + 0.886693i \(0.347003\pi\)
\(54\) 0 0
\(55\) −5.73205 −0.772910
\(56\) −6.00000 10.3923i −0.801784 1.38873i
\(57\) 0 0
\(58\) −1.16987 + 2.02628i −0.153612 + 0.266064i
\(59\) 4.13397 7.16025i 0.538198 0.932186i −0.460804 0.887502i \(-0.652439\pi\)
0.999001 0.0446835i \(-0.0142279\pi\)
\(60\) 0 0
\(61\) −2.00000 3.46410i −0.256074 0.443533i 0.709113 0.705095i \(-0.249096\pi\)
−0.965187 + 0.261562i \(0.915762\pi\)
\(62\) −2.19615 −0.278912
\(63\) 0 0
\(64\) 2.14359 0.267949
\(65\) −0.732051 1.26795i −0.0907997 0.157270i
\(66\) 0 0
\(67\) −1.73205 + 3.00000i −0.211604 + 0.366508i −0.952217 0.305424i \(-0.901202\pi\)
0.740613 + 0.671932i \(0.234535\pi\)
\(68\) −2.00000 + 3.46410i −0.242536 + 0.420084i
\(69\) 0 0
\(70\) 1.73205 + 3.00000i 0.207020 + 0.358569i
\(71\) −3.73205 −0.442913 −0.221456 0.975170i \(-0.571081\pi\)
−0.221456 + 0.975170i \(0.571081\pi\)
\(72\) 0 0
\(73\) −7.66025 −0.896565 −0.448282 0.893892i \(-0.647964\pi\)
−0.448282 + 0.893892i \(0.647964\pi\)
\(74\) 1.00000 + 1.73205i 0.116248 + 0.201347i
\(75\) 0 0
\(76\) 3.26795 5.66025i 0.374859 0.649276i
\(77\) −13.5622 + 23.4904i −1.54555 + 2.67698i
\(78\) 0 0
\(79\) −7.73205 13.3923i −0.869924 1.50675i −0.862074 0.506783i \(-0.830835\pi\)
−0.00784992 0.999969i \(-0.502499\pi\)
\(80\) 1.07180 0.119831
\(81\) 0 0
\(82\) −5.26795 −0.581748
\(83\) −1.09808 1.90192i −0.120530 0.208763i 0.799447 0.600737i \(-0.205126\pi\)
−0.919977 + 0.391973i \(0.871793\pi\)
\(84\) 0 0
\(85\) 1.36603 2.36603i 0.148166 0.256631i
\(86\) −0.0717968 + 0.124356i −0.00774204 + 0.0134096i
\(87\) 0 0
\(88\) −7.26795 12.5885i −0.774766 1.34193i
\(89\) 5.19615 0.550791 0.275396 0.961331i \(-0.411191\pi\)
0.275396 + 0.961331i \(0.411191\pi\)
\(90\) 0 0
\(91\) −6.92820 −0.726273
\(92\) −2.53590 4.39230i −0.264386 0.457929i
\(93\) 0 0
\(94\) 3.19615 5.53590i 0.329658 0.570984i
\(95\) −2.23205 + 3.86603i −0.229004 + 0.396646i
\(96\) 0 0
\(97\) 4.83013 + 8.36603i 0.490425 + 0.849441i 0.999939 0.0110211i \(-0.00350819\pi\)
−0.509514 + 0.860462i \(0.670175\pi\)
\(98\) 11.2679 1.13823
\(99\) 0 0
\(100\) −1.46410 −0.146410
\(101\) 1.33013 + 2.30385i 0.132353 + 0.229241i 0.924583 0.380981i \(-0.124414\pi\)
−0.792230 + 0.610222i \(0.791080\pi\)
\(102\) 0 0
\(103\) 0.267949 0.464102i 0.0264018 0.0457293i −0.852523 0.522690i \(-0.824928\pi\)
0.878924 + 0.476961i \(0.158262\pi\)
\(104\) 1.85641 3.21539i 0.182036 0.315295i
\(105\) 0 0
\(106\) −2.46410 4.26795i −0.239335 0.414540i
\(107\) −8.53590 −0.825196 −0.412598 0.910913i \(-0.635379\pi\)
−0.412598 + 0.910913i \(0.635379\pi\)
\(108\) 0 0
\(109\) −6.07180 −0.581573 −0.290786 0.956788i \(-0.593917\pi\)
−0.290786 + 0.956788i \(0.593917\pi\)
\(110\) 2.09808 + 3.63397i 0.200044 + 0.346486i
\(111\) 0 0
\(112\) 2.53590 4.39230i 0.239620 0.415034i
\(113\) 9.56218 16.5622i 0.899534 1.55804i 0.0714432 0.997445i \(-0.477240\pi\)
0.828091 0.560594i \(-0.189427\pi\)
\(114\) 0 0
\(115\) 1.73205 + 3.00000i 0.161515 + 0.279751i
\(116\) −4.67949 −0.434480
\(117\) 0 0
\(118\) −6.05256 −0.557183
\(119\) −6.46410 11.1962i −0.592563 1.02635i
\(120\) 0 0
\(121\) −10.9282 + 18.9282i −0.993473 + 1.72075i
\(122\) −1.46410 + 2.53590i −0.132554 + 0.229589i
\(123\) 0 0
\(124\) −2.19615 3.80385i −0.197220 0.341596i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −14.5885 −1.29452 −0.647258 0.762271i \(-0.724084\pi\)
−0.647258 + 0.762271i \(0.724084\pi\)
\(128\) 5.07180 + 8.78461i 0.448288 + 0.776457i
\(129\) 0 0
\(130\) −0.535898 + 0.928203i −0.0470014 + 0.0814088i
\(131\) −7.79423 + 13.5000i −0.680985 + 1.17950i 0.293696 + 0.955899i \(0.405115\pi\)
−0.974681 + 0.223602i \(0.928219\pi\)
\(132\) 0 0
\(133\) 10.5622 + 18.2942i 0.915857 + 1.58631i
\(134\) 2.53590 0.219068
\(135\) 0 0
\(136\) 6.92820 0.594089
\(137\) −1.26795 2.19615i −0.108328 0.187630i 0.806765 0.590873i \(-0.201216\pi\)
−0.915093 + 0.403243i \(0.867883\pi\)
\(138\) 0 0
\(139\) −0.303848 + 0.526279i −0.0257720 + 0.0446384i −0.878624 0.477515i \(-0.841538\pi\)
0.852852 + 0.522153i \(0.174871\pi\)
\(140\) −3.46410 + 6.00000i −0.292770 + 0.507093i
\(141\) 0 0
\(142\) 1.36603 + 2.36603i 0.114634 + 0.198552i
\(143\) −8.39230 −0.701800
\(144\) 0 0
\(145\) 3.19615 0.265426
\(146\) 2.80385 + 4.85641i 0.232048 + 0.401919i
\(147\) 0 0
\(148\) −2.00000 + 3.46410i −0.164399 + 0.284747i
\(149\) 4.00000 6.92820i 0.327693 0.567581i −0.654361 0.756182i \(-0.727062\pi\)
0.982054 + 0.188602i \(0.0603956\pi\)
\(150\) 0 0
\(151\) −2.69615 4.66987i −0.219410 0.380029i 0.735218 0.677831i \(-0.237080\pi\)
−0.954628 + 0.297802i \(0.903746\pi\)
\(152\) −11.3205 −0.918214
\(153\) 0 0
\(154\) 19.8564 1.60007
\(155\) 1.50000 + 2.59808i 0.120483 + 0.208683i
\(156\) 0 0
\(157\) 9.56218 16.5622i 0.763145 1.32181i −0.178077 0.984017i \(-0.556988\pi\)
0.941222 0.337789i \(-0.109679\pi\)
\(158\) −5.66025 + 9.80385i −0.450306 + 0.779952i
\(159\) 0 0
\(160\) −2.92820 5.07180i −0.231495 0.400961i
\(161\) 16.3923 1.29189
\(162\) 0 0
\(163\) 12.7321 0.997251 0.498626 0.866817i \(-0.333838\pi\)
0.498626 + 0.866817i \(0.333838\pi\)
\(164\) −5.26795 9.12436i −0.411358 0.712492i
\(165\) 0 0
\(166\) −0.803848 + 1.39230i −0.0623907 + 0.108064i
\(167\) 8.83013 15.2942i 0.683296 1.18350i −0.290673 0.956822i \(-0.593879\pi\)
0.973969 0.226681i \(-0.0727874\pi\)
\(168\) 0 0
\(169\) 5.42820 + 9.40192i 0.417554 + 0.723225i
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −0.287187 −0.0218978
\(173\) −4.26795 7.39230i −0.324486 0.562027i 0.656922 0.753958i \(-0.271858\pi\)
−0.981408 + 0.191932i \(0.938525\pi\)
\(174\) 0 0
\(175\) 2.36603 4.09808i 0.178855 0.309785i
\(176\) 3.07180 5.32051i 0.231545 0.401048i
\(177\) 0 0
\(178\) −1.90192 3.29423i −0.142555 0.246913i
\(179\) 8.12436 0.607243 0.303621 0.952793i \(-0.401804\pi\)
0.303621 + 0.952793i \(0.401804\pi\)
\(180\) 0 0
\(181\) 26.4641 1.96706 0.983531 0.180742i \(-0.0578498\pi\)
0.983531 + 0.180742i \(0.0578498\pi\)
\(182\) 2.53590 + 4.39230i 0.187973 + 0.325579i
\(183\) 0 0
\(184\) −4.39230 + 7.60770i −0.323805 + 0.560847i
\(185\) 1.36603 2.36603i 0.100432 0.173954i
\(186\) 0 0
\(187\) −7.83013 13.5622i −0.572596 0.991765i
\(188\) 12.7846 0.932413
\(189\) 0 0
\(190\) 3.26795 0.237082
\(191\) 4.06218 + 7.03590i 0.293929 + 0.509100i 0.974735 0.223364i \(-0.0717038\pi\)
−0.680806 + 0.732464i \(0.738370\pi\)
\(192\) 0 0
\(193\) 2.63397 4.56218i 0.189598 0.328393i −0.755519 0.655127i \(-0.772615\pi\)
0.945116 + 0.326735i \(0.105948\pi\)
\(194\) 3.53590 6.12436i 0.253863 0.439703i
\(195\) 0 0
\(196\) 11.2679 + 19.5167i 0.804854 + 1.39405i
\(197\) −13.8564 −0.987228 −0.493614 0.869681i \(-0.664324\pi\)
−0.493614 + 0.869681i \(0.664324\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 1.26795 + 2.19615i 0.0896575 + 0.155291i
\(201\) 0 0
\(202\) 0.973721 1.68653i 0.0685107 0.118664i
\(203\) 7.56218 13.0981i 0.530761 0.919305i
\(204\) 0 0
\(205\) 3.59808 + 6.23205i 0.251301 + 0.435265i
\(206\) −0.392305 −0.0273332
\(207\) 0 0
\(208\) 1.56922 0.108806
\(209\) 12.7942 + 22.1603i 0.884995 + 1.53286i
\(210\) 0 0
\(211\) 4.42820 7.66987i 0.304850 0.528016i −0.672378 0.740208i \(-0.734727\pi\)
0.977228 + 0.212192i \(0.0680603\pi\)
\(212\) 4.92820 8.53590i 0.338470 0.586248i
\(213\) 0 0
\(214\) 3.12436 + 5.41154i 0.213577 + 0.369925i
\(215\) 0.196152 0.0133775
\(216\) 0 0
\(217\) 14.1962 0.963698
\(218\) 2.22243 + 3.84936i 0.150522 + 0.260712i
\(219\) 0 0
\(220\) −4.19615 + 7.26795i −0.282905 + 0.490005i
\(221\) 2.00000 3.46410i 0.134535 0.233021i
\(222\) 0 0
\(223\) −8.39230 14.5359i −0.561990 0.973396i −0.997323 0.0731260i \(-0.976702\pi\)
0.435332 0.900270i \(-0.356631\pi\)
\(224\) −27.7128 −1.85164
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 9.02628 + 15.6340i 0.599095 + 1.03766i 0.992955 + 0.118493i \(0.0378062\pi\)
−0.393860 + 0.919171i \(0.628860\pi\)
\(228\) 0 0
\(229\) 6.00000 10.3923i 0.396491 0.686743i −0.596799 0.802391i \(-0.703561\pi\)
0.993290 + 0.115648i \(0.0368944\pi\)
\(230\) 1.26795 2.19615i 0.0836061 0.144810i
\(231\) 0 0
\(232\) 4.05256 + 7.01924i 0.266064 + 0.460836i
\(233\) −28.0526 −1.83778 −0.918892 0.394509i \(-0.870915\pi\)
−0.918892 + 0.394509i \(0.870915\pi\)
\(234\) 0 0
\(235\) −8.73205 −0.569616
\(236\) −6.05256 10.4833i −0.393988 0.682407i
\(237\) 0 0
\(238\) −4.73205 + 8.19615i −0.306733 + 0.531278i
\(239\) 0.267949 0.464102i 0.0173322 0.0300202i −0.857229 0.514935i \(-0.827816\pi\)
0.874561 + 0.484915i \(0.161149\pi\)
\(240\) 0 0
\(241\) 8.16025 + 14.1340i 0.525648 + 0.910449i 0.999554 + 0.0298736i \(0.00951049\pi\)
−0.473906 + 0.880576i \(0.657156\pi\)
\(242\) 16.0000 1.02852
\(243\) 0 0
\(244\) −5.85641 −0.374918
\(245\) −7.69615 13.3301i −0.491689 0.851631i
\(246\) 0 0
\(247\) −3.26795 + 5.66025i −0.207935 + 0.360153i
\(248\) −3.80385 + 6.58846i −0.241545 + 0.418367i
\(249\) 0 0
\(250\) −0.366025 0.633975i −0.0231495 0.0400961i
\(251\) −10.3923 −0.655956 −0.327978 0.944685i \(-0.606367\pi\)
−0.327978 + 0.944685i \(0.606367\pi\)
\(252\) 0 0
\(253\) 19.8564 1.24836
\(254\) 5.33975 + 9.24871i 0.335045 + 0.580316i
\(255\) 0 0
\(256\) 5.85641 10.1436i 0.366025 0.633975i
\(257\) −5.19615 + 9.00000i −0.324127 + 0.561405i −0.981335 0.192304i \(-0.938404\pi\)
0.657208 + 0.753709i \(0.271737\pi\)
\(258\) 0 0
\(259\) −6.46410 11.1962i −0.401660 0.695695i
\(260\) −2.14359 −0.132940
\(261\) 0 0
\(262\) 11.4115 0.705007
\(263\) −10.6603 18.4641i −0.657339 1.13855i −0.981302 0.192475i \(-0.938348\pi\)
0.323962 0.946070i \(-0.394985\pi\)
\(264\) 0 0
\(265\) −3.36603 + 5.83013i −0.206773 + 0.358142i
\(266\) 7.73205 13.3923i 0.474082 0.821135i
\(267\) 0 0
\(268\) 2.53590 + 4.39230i 0.154905 + 0.268303i
\(269\) 10.6603 0.649967 0.324984 0.945720i \(-0.394641\pi\)
0.324984 + 0.945720i \(0.394641\pi\)
\(270\) 0 0
\(271\) −2.92820 −0.177876 −0.0889378 0.996037i \(-0.528347\pi\)
−0.0889378 + 0.996037i \(0.528347\pi\)
\(272\) 1.46410 + 2.53590i 0.0887742 + 0.153761i
\(273\) 0 0
\(274\) −0.928203 + 1.60770i −0.0560748 + 0.0971244i
\(275\) 2.86603 4.96410i 0.172828 0.299347i
\(276\) 0 0
\(277\) −1.90192 3.29423i −0.114276 0.197931i 0.803214 0.595690i \(-0.203121\pi\)
−0.917490 + 0.397759i \(0.869788\pi\)
\(278\) 0.444864 0.0266812
\(279\) 0 0
\(280\) 12.0000 0.717137
\(281\) −7.73205 13.3923i −0.461255 0.798918i 0.537768 0.843093i \(-0.319268\pi\)
−0.999024 + 0.0441747i \(0.985934\pi\)
\(282\) 0 0
\(283\) 14.6603 25.3923i 0.871462 1.50942i 0.0109768 0.999940i \(-0.496506\pi\)
0.860485 0.509476i \(-0.170161\pi\)
\(284\) −2.73205 + 4.73205i −0.162117 + 0.280796i
\(285\) 0 0
\(286\) 3.07180 + 5.32051i 0.181639 + 0.314608i
\(287\) 34.0526 2.01006
\(288\) 0 0
\(289\) −9.53590 −0.560935
\(290\) −1.16987 2.02628i −0.0686973 0.118987i
\(291\) 0 0
\(292\) −5.60770 + 9.71281i −0.328166 + 0.568399i
\(293\) −14.3660 + 24.8827i −0.839272 + 1.45366i 0.0512319 + 0.998687i \(0.483685\pi\)
−0.890504 + 0.454975i \(0.849648\pi\)
\(294\) 0 0
\(295\) 4.13397 + 7.16025i 0.240689 + 0.416886i
\(296\) 6.92820 0.402694
\(297\) 0 0
\(298\) −5.85641 −0.339253
\(299\) 2.53590 + 4.39230i 0.146655 + 0.254014i
\(300\) 0 0
\(301\) 0.464102 0.803848i 0.0267504 0.0463330i
\(302\) −1.97372 + 3.41858i −0.113575 + 0.196717i
\(303\) 0 0
\(304\) −2.39230 4.14359i −0.137208 0.237651i
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 14.0526 0.802022 0.401011 0.916073i \(-0.368659\pi\)
0.401011 + 0.916073i \(0.368659\pi\)
\(308\) 19.8564 + 34.3923i 1.13142 + 1.95968i
\(309\) 0 0
\(310\) 1.09808 1.90192i 0.0623665 0.108022i
\(311\) −9.86603 + 17.0885i −0.559451 + 0.968998i 0.438091 + 0.898930i \(0.355655\pi\)
−0.997542 + 0.0700670i \(0.977679\pi\)
\(312\) 0 0
\(313\) 4.53590 + 7.85641i 0.256384 + 0.444070i 0.965271 0.261252i \(-0.0841355\pi\)
−0.708886 + 0.705323i \(0.750802\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) −22.6410 −1.27366
\(317\) −3.09808 5.36603i −0.174005 0.301386i 0.765811 0.643065i \(-0.222338\pi\)
−0.939817 + 0.341679i \(0.889004\pi\)
\(318\) 0 0
\(319\) 9.16025 15.8660i 0.512876 0.888327i
\(320\) −1.07180 + 1.85641i −0.0599153 + 0.103776i
\(321\) 0 0
\(322\) −6.00000 10.3923i −0.334367 0.579141i
\(323\) −12.1962 −0.678612
\(324\) 0 0
\(325\) 1.46410 0.0812137
\(326\) −4.66025 8.07180i −0.258108 0.447055i
\(327\) 0 0
\(328\) −9.12436 + 15.8038i −0.503808 + 0.872622i
\(329\) −20.6603 + 35.7846i −1.13904 + 1.97287i
\(330\) 0 0
\(331\) 0.232051 + 0.401924i 0.0127547 + 0.0220917i 0.872332 0.488913i \(-0.162607\pi\)
−0.859578 + 0.511005i \(0.829273\pi\)
\(332\) −3.21539 −0.176467
\(333\) 0 0
\(334\) −12.9282 −0.707400
\(335\) −1.73205 3.00000i −0.0946320 0.163908i
\(336\) 0 0
\(337\) −13.6603 + 23.6603i −0.744121 + 1.28886i 0.206483 + 0.978450i \(0.433798\pi\)
−0.950604 + 0.310406i \(0.899535\pi\)
\(338\) 3.97372 6.88269i 0.216142 0.374369i
\(339\) 0 0
\(340\) −2.00000 3.46410i −0.108465 0.187867i
\(341\) 17.1962 0.931224
\(342\) 0 0
\(343\) −39.7128 −2.14429
\(344\) 0.248711 + 0.430781i 0.0134096 + 0.0232261i
\(345\) 0 0
\(346\) −3.12436 + 5.41154i −0.167966 + 0.290926i
\(347\) 14.2942 24.7583i 0.767354 1.32910i −0.171638 0.985160i \(-0.554906\pi\)
0.938993 0.343937i \(-0.111761\pi\)
\(348\) 0 0
\(349\) 9.42820 + 16.3301i 0.504680 + 0.874132i 0.999985 + 0.00541263i \(0.00172290\pi\)
−0.495305 + 0.868719i \(0.664944\pi\)
\(350\) −3.46410 −0.185164
\(351\) 0 0
\(352\) −33.5692 −1.78925
\(353\) −12.7583 22.0981i −0.679057 1.17616i −0.975265 0.221038i \(-0.929055\pi\)
0.296208 0.955124i \(-0.404278\pi\)
\(354\) 0 0
\(355\) 1.86603 3.23205i 0.0990383 0.171539i
\(356\) 3.80385 6.58846i 0.201604 0.349188i
\(357\) 0 0
\(358\) −2.97372 5.15064i −0.157166 0.272220i
\(359\) −6.12436 −0.323231 −0.161616 0.986854i \(-0.551670\pi\)
−0.161616 + 0.986854i \(0.551670\pi\)
\(360\) 0 0
\(361\) 0.928203 0.0488528
\(362\) −9.68653 16.7776i −0.509113 0.881809i
\(363\) 0 0
\(364\) −5.07180 + 8.78461i −0.265834 + 0.460439i
\(365\) 3.83013 6.63397i 0.200478 0.347238i
\(366\) 0 0
\(367\) −15.5885 27.0000i −0.813711 1.40939i −0.910250 0.414059i \(-0.864111\pi\)
0.0965390 0.995329i \(-0.469223\pi\)
\(368\) −3.71281 −0.193544
\(369\) 0 0
\(370\) −2.00000 −0.103975
\(371\) 15.9282 + 27.5885i 0.826951 + 1.43232i
\(372\) 0 0
\(373\) −10.0263 + 17.3660i −0.519141 + 0.899179i 0.480611 + 0.876934i \(0.340415\pi\)
−0.999753 + 0.0222451i \(0.992919\pi\)
\(374\) −5.73205 + 9.92820i −0.296397 + 0.513375i
\(375\) 0 0
\(376\) −11.0718 19.1769i −0.570984 0.988974i
\(377\) 4.67949 0.241006
\(378\) 0 0
\(379\) 2.39230 0.122884 0.0614422 0.998111i \(-0.480430\pi\)
0.0614422 + 0.998111i \(0.480430\pi\)
\(380\) 3.26795 + 5.66025i 0.167642 + 0.290365i
\(381\) 0 0
\(382\) 2.97372 5.15064i 0.152149 0.263529i
\(383\) −1.26795 + 2.19615i −0.0647892 + 0.112218i −0.896600 0.442840i \(-0.853971\pi\)
0.831811 + 0.555059i \(0.187304\pi\)
\(384\) 0 0
\(385\) −13.5622 23.4904i −0.691193 1.19718i
\(386\) −3.85641 −0.196286
\(387\) 0 0
\(388\) 14.1436 0.718032
\(389\) −13.7321 23.7846i −0.696243 1.20593i −0.969760 0.244061i \(-0.921520\pi\)
0.273517 0.961867i \(-0.411813\pi\)
\(390\) 0 0
\(391\) −4.73205 + 8.19615i −0.239310 + 0.414497i
\(392\) 19.5167 33.8038i 0.985740 1.70735i
\(393\) 0 0
\(394\) 5.07180 + 8.78461i 0.255513 + 0.442562i
\(395\) 15.4641 0.778083
\(396\) 0 0
\(397\) 14.3923 0.722329 0.361165 0.932502i \(-0.382379\pi\)
0.361165 + 0.932502i \(0.382379\pi\)
\(398\) 0.732051 + 1.26795i 0.0366944 + 0.0635566i
\(399\) 0 0
\(400\) −0.535898 + 0.928203i −0.0267949 + 0.0464102i
\(401\) −12.4641 + 21.5885i −0.622428 + 1.07808i 0.366605 + 0.930377i \(0.380520\pi\)
−0.989032 + 0.147699i \(0.952813\pi\)
\(402\) 0 0
\(403\) 2.19615 + 3.80385i 0.109398 + 0.189483i
\(404\) 3.89488 0.193778
\(405\) 0 0
\(406\) −11.0718 −0.549484
\(407\) −7.83013 13.5622i −0.388125 0.672252i
\(408\) 0 0
\(409\) 8.92820 15.4641i 0.441471 0.764651i −0.556328 0.830963i \(-0.687790\pi\)
0.997799 + 0.0663124i \(0.0211234\pi\)
\(410\) 2.63397 4.56218i 0.130083 0.225310i
\(411\) 0 0
\(412\) −0.392305 0.679492i −0.0193275 0.0334762i
\(413\) 39.1244 1.92518
\(414\) 0 0
\(415\) 2.19615 0.107805
\(416\) −4.28719 7.42563i −0.210197 0.364071i
\(417\) 0 0
\(418\) 9.36603 16.2224i 0.458107 0.793465i
\(419\) −10.1962 + 17.6603i −0.498115 + 0.862760i −0.999998 0.00217566i \(-0.999307\pi\)
0.501883 + 0.864936i \(0.332641\pi\)
\(420\) 0 0
\(421\) −16.8923 29.2583i −0.823281 1.42596i −0.903226 0.429165i \(-0.858808\pi\)
0.0799458 0.996799i \(-0.474525\pi\)
\(422\) −6.48334 −0.315604
\(423\) 0 0
\(424\) −17.0718 −0.829080
\(425\) 1.36603 + 2.36603i 0.0662620 + 0.114769i
\(426\) 0 0
\(427\) 9.46410 16.3923i 0.458000 0.793279i
\(428\) −6.24871 + 10.8231i −0.302043 + 0.523154i
\(429\) 0 0
\(430\) −0.0717968 0.124356i −0.00346235 0.00599696i
\(431\) −21.3397 −1.02790 −0.513950 0.857820i \(-0.671818\pi\)
−0.513950 + 0.857820i \(0.671818\pi\)
\(432\) 0 0
\(433\) −35.4641 −1.70430 −0.852148 0.523301i \(-0.824700\pi\)
−0.852148 + 0.523301i \(0.824700\pi\)
\(434\) −5.19615 9.00000i −0.249423 0.432014i
\(435\) 0 0
\(436\) −4.44486 + 7.69873i −0.212870 + 0.368702i
\(437\) 7.73205 13.3923i 0.369874 0.640641i
\(438\) 0 0
\(439\) −2.69615 4.66987i −0.128680 0.222881i 0.794485 0.607284i \(-0.207741\pi\)
−0.923166 + 0.384403i \(0.874407\pi\)
\(440\) 14.5359 0.692972
\(441\) 0 0
\(442\) −2.92820 −0.139280
\(443\) 0.169873 + 0.294229i 0.00807091 + 0.0139792i 0.870033 0.492994i \(-0.164098\pi\)
−0.861962 + 0.506973i \(0.830764\pi\)
\(444\) 0 0
\(445\) −2.59808 + 4.50000i −0.123161 + 0.213320i
\(446\) −6.14359 + 10.6410i −0.290908 + 0.503867i
\(447\) 0 0
\(448\) 5.07180 + 8.78461i 0.239620 + 0.415034i
\(449\) 8.12436 0.383412 0.191706 0.981452i \(-0.438598\pi\)
0.191706 + 0.981452i \(0.438598\pi\)
\(450\) 0 0
\(451\) 41.2487 1.94233
\(452\) −14.0000 24.2487i −0.658505 1.14056i
\(453\) 0 0
\(454\) 6.60770 11.4449i 0.310114 0.537134i
\(455\) 3.46410 6.00000i 0.162400 0.281284i
\(456\) 0 0
\(457\) −1.36603 2.36603i −0.0639000 0.110678i 0.832306 0.554317i \(-0.187021\pi\)
−0.896206 + 0.443639i \(0.853687\pi\)
\(458\) −8.78461 −0.410478
\(459\) 0 0
\(460\) 5.07180 0.236474
\(461\) 18.5263 + 32.0885i 0.862855 + 1.49451i 0.869162 + 0.494528i \(0.164659\pi\)
−0.00630665 + 0.999980i \(0.502007\pi\)
\(462\) 0 0
\(463\) 5.19615 9.00000i 0.241486 0.418265i −0.719652 0.694335i \(-0.755699\pi\)
0.961138 + 0.276069i \(0.0890320\pi\)
\(464\) −1.71281 + 2.96668i −0.0795153 + 0.137725i
\(465\) 0 0
\(466\) 10.2679 + 17.7846i 0.475654 + 0.823856i
\(467\) 37.3731 1.72942 0.864710 0.502272i \(-0.167502\pi\)
0.864710 + 0.502272i \(0.167502\pi\)
\(468\) 0 0
\(469\) −16.3923 −0.756926
\(470\) 3.19615 + 5.53590i 0.147428 + 0.255352i
\(471\) 0 0
\(472\) −10.4833 + 18.1577i −0.482535 + 0.835775i
\(473\) 0.562178 0.973721i 0.0258490 0.0447717i
\(474\) 0 0
\(475\) −2.23205 3.86603i −0.102414 0.177385i
\(476\) −18.9282 −0.867573
\(477\) 0 0
\(478\) −0.392305 −0.0179436
\(479\) 5.93782 + 10.2846i 0.271306 + 0.469916i 0.969197 0.246289i \(-0.0792111\pi\)
−0.697890 + 0.716204i \(0.745878\pi\)
\(480\) 0 0
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) 5.97372 10.3468i 0.272096 0.471283i
\(483\) 0 0
\(484\) 16.0000 + 27.7128i 0.727273 + 1.25967i
\(485\) −9.66025 −0.438650
\(486\) 0 0
\(487\) 24.3923 1.10532 0.552660 0.833407i \(-0.313613\pi\)
0.552660 + 0.833407i \(0.313613\pi\)
\(488\) 5.07180 + 8.78461i 0.229589 + 0.397661i
\(489\) 0 0
\(490\) −5.63397 + 9.75833i −0.254517 + 0.440836i
\(491\) 6.93782 12.0167i 0.313100 0.542304i −0.665932 0.746012i \(-0.731966\pi\)
0.979032 + 0.203708i \(0.0652993\pi\)
\(492\) 0 0
\(493\) 4.36603 + 7.56218i 0.196636 + 0.340583i
\(494\) 4.78461 0.215270
\(495\) 0 0
\(496\) −3.21539 −0.144375
\(497\) −8.83013 15.2942i −0.396085 0.686040i
\(498\) 0 0
\(499\) −12.1603 + 21.0622i −0.544368 + 0.942873i 0.454279 + 0.890860i \(0.349897\pi\)
−0.998646 + 0.0520129i \(0.983436\pi\)
\(500\) 0.732051 1.26795i 0.0327383 0.0567044i
\(501\) 0 0
\(502\) 3.80385 + 6.58846i 0.169774 + 0.294057i
\(503\) −7.32051 −0.326405 −0.163203 0.986593i \(-0.552182\pi\)
−0.163203 + 0.986593i \(0.552182\pi\)
\(504\) 0 0
\(505\) −2.66025 −0.118380
\(506\) −7.26795 12.5885i −0.323100 0.559625i
\(507\) 0 0
\(508\) −10.6795 + 18.4974i −0.473826 + 0.820690i
\(509\) 3.39230 5.87564i 0.150361 0.260433i −0.780999 0.624532i \(-0.785290\pi\)
0.931360 + 0.364099i \(0.118623\pi\)
\(510\) 0 0
\(511\) −18.1244 31.3923i −0.801774 1.38871i
\(512\) 11.7128 0.517638
\(513\) 0 0
\(514\) 7.60770 0.335561
\(515\) 0.267949 + 0.464102i 0.0118073 + 0.0204508i
\(516\) 0 0
\(517\) −25.0263 + 43.3468i −1.10065 + 1.90639i
\(518\) −4.73205 + 8.19615i −0.207914 + 0.360118i
\(519\) 0 0
\(520\) 1.85641 + 3.21539i 0.0814088 + 0.141004i
\(521\) 19.4641 0.852738 0.426369 0.904549i \(-0.359793\pi\)
0.426369 + 0.904549i \(0.359793\pi\)
\(522\) 0 0
\(523\) 22.2487 0.972868 0.486434 0.873717i \(-0.338297\pi\)
0.486434 + 0.873717i \(0.338297\pi\)
\(524\) 11.4115 + 19.7654i 0.498516 + 0.863454i
\(525\) 0 0
\(526\) −7.80385 + 13.5167i −0.340264 + 0.589354i
\(527\) −4.09808 + 7.09808i −0.178515 + 0.309197i
\(528\) 0 0
\(529\) 5.50000 + 9.52628i 0.239130 + 0.414186i
\(530\) 4.92820 0.214067
\(531\) 0 0
\(532\) 30.9282 1.34091
\(533\) 5.26795 + 9.12436i 0.228180 + 0.395220i
\(534\) 0 0
\(535\) 4.26795 7.39230i 0.184520 0.319597i
\(536\) 4.39230 7.60770i 0.189719 0.328602i
\(537\) 0 0
\(538\) −3.90192 6.75833i −0.168224 0.291372i
\(539\) −88.2295 −3.80031
\(540\) 0 0
\(541\) −24.4641 −1.05179 −0.525897 0.850548i \(-0.676270\pi\)
−0.525897 + 0.850548i \(0.676270\pi\)
\(542\) 1.07180 + 1.85641i 0.0460376 + 0.0797395i
\(543\) 0 0
\(544\) 8.00000 13.8564i 0.342997 0.594089i
\(545\) 3.03590 5.25833i 0.130044 0.225242i
\(546\) 0 0
\(547\) 16.9282 + 29.3205i 0.723798 + 1.25365i 0.959467 + 0.281821i \(0.0909385\pi\)
−0.235669 + 0.971833i \(0.575728\pi\)
\(548\) −3.71281 −0.158604
\(549\) 0 0
\(550\) −4.19615 −0.178925
\(551\) −7.13397 12.3564i −0.303918 0.526401i
\(552\) 0 0
\(553\) 36.5885 63.3731i 1.55590 2.69490i
\(554\) −1.39230 + 2.41154i −0.0591534 + 0.102457i
\(555\) 0 0
\(556\) 0.444864 + 0.770527i 0.0188664 + 0.0326776i
\(557\) −2.53590 −0.107449 −0.0537247 0.998556i \(-0.517109\pi\)
−0.0537247 + 0.998556i \(0.517109\pi\)
\(558\) 0 0
\(559\) 0.287187 0.0121467
\(560\) 2.53590 + 4.39230i 0.107161 + 0.185609i
\(561\) 0 0
\(562\) −5.66025 + 9.80385i −0.238763 + 0.413550i
\(563\) 8.36603 14.4904i 0.352586 0.610697i −0.634116 0.773238i \(-0.718636\pi\)
0.986702 + 0.162541i \(0.0519691\pi\)
\(564\) 0 0
\(565\) 9.56218 + 16.5622i 0.402284 + 0.696776i
\(566\) −21.4641 −0.902203
\(567\) 0 0
\(568\) 9.46410 0.397105
\(569\) 16.4545 + 28.5000i 0.689808 + 1.19478i 0.971900 + 0.235395i \(0.0756383\pi\)
−0.282092 + 0.959387i \(0.591028\pi\)
\(570\) 0 0
\(571\) 19.8923 34.4545i 0.832467 1.44188i −0.0636091 0.997975i \(-0.520261\pi\)
0.896076 0.443900i \(-0.146406\pi\)
\(572\) −6.14359 + 10.6410i −0.256877 + 0.444923i
\(573\) 0 0
\(574\) −12.4641 21.5885i −0.520242 0.901085i
\(575\) −3.46410 −0.144463
\(576\) 0 0
\(577\) 15.2679 0.635613 0.317807 0.948156i \(-0.397054\pi\)
0.317807 + 0.948156i \(0.397054\pi\)
\(578\) 3.49038 + 6.04552i 0.145181 + 0.251460i
\(579\) 0 0
\(580\) 2.33975 4.05256i 0.0971527 0.168273i
\(581\) 5.19615 9.00000i 0.215573 0.373383i
\(582\) 0 0
\(583\) 19.2942 + 33.4186i 0.799085 + 1.38406i
\(584\) 19.4256 0.803838
\(585\) 0 0
\(586\) 21.0333 0.868878
\(587\) 5.83013 + 10.0981i 0.240635 + 0.416792i 0.960895 0.276912i \(-0.0893110\pi\)
−0.720260 + 0.693704i \(0.755978\pi\)
\(588\) 0 0
\(589\) 6.69615 11.5981i 0.275910 0.477890i
\(590\) 3.02628 5.24167i 0.124590 0.215796i
\(591\) 0 0
\(592\) 1.46410 + 2.53590i 0.0601742 + 0.104225i
\(593\) −0.143594 −0.00589668 −0.00294834 0.999996i \(-0.500938\pi\)
−0.00294834 + 0.999996i \(0.500938\pi\)
\(594\) 0 0
\(595\) 12.9282 0.530005
\(596\) −5.85641 10.1436i −0.239888 0.415498i
\(597\) 0 0
\(598\) 1.85641 3.21539i 0.0759141 0.131487i
\(599\) −13.5981 + 23.5526i −0.555602 + 0.962331i 0.442254 + 0.896890i \(0.354179\pi\)
−0.997856 + 0.0654417i \(0.979154\pi\)
\(600\) 0 0
\(601\) 15.6244 + 27.0622i 0.637331 + 1.10389i 0.986016 + 0.166649i \(0.0532948\pi\)
−0.348685 + 0.937240i \(0.613372\pi\)
\(602\) −0.679492 −0.0276940
\(603\) 0 0
\(604\) −7.89488 −0.321238
\(605\) −10.9282 18.9282i −0.444295 0.769541i
\(606\) 0 0
\(607\) 8.09808 14.0263i 0.328691 0.569309i −0.653562 0.756873i \(-0.726726\pi\)
0.982252 + 0.187564i \(0.0600593\pi\)
\(608\) −13.0718 + 22.6410i −0.530131 + 0.918214i
\(609\) 0 0
\(610\) −1.46410 2.53590i −0.0592797 0.102676i
\(611\) −12.7846 −0.517210
\(612\) 0 0
\(613\) 1.46410 0.0591345 0.0295673 0.999563i \(-0.490587\pi\)
0.0295673 + 0.999563i \(0.490587\pi\)
\(614\) −5.14359 8.90897i −0.207579 0.359537i
\(615\) 0 0
\(616\) 34.3923 59.5692i 1.38571 2.40011i
\(617\) 3.46410 6.00000i 0.139459 0.241551i −0.787833 0.615889i \(-0.788797\pi\)
0.927292 + 0.374338i \(0.122130\pi\)
\(618\) 0 0
\(619\) 5.92820 + 10.2679i 0.238275 + 0.412704i 0.960219 0.279247i \(-0.0900848\pi\)
−0.721945 + 0.691951i \(0.756752\pi\)
\(620\) 4.39230 0.176399
\(621\) 0 0
\(622\) 14.4449 0.579186
\(623\) 12.2942 + 21.2942i 0.492558 + 0.853135i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 3.32051 5.75129i 0.132714 0.229868i
\(627\) 0 0
\(628\) −14.0000 24.2487i −0.558661 0.967629i
\(629\) 7.46410 0.297613
\(630\) 0 0
\(631\) −32.7128 −1.30228 −0.651138 0.758959i \(-0.725708\pi\)
−0.651138 + 0.758959i \(0.725708\pi\)
\(632\) 19.6077 + 33.9615i 0.779952 + 1.35092i
\(633\) 0 0
\(634\) −2.26795 + 3.92820i −0.0900718 + 0.156009i
\(635\) 7.29423 12.6340i 0.289463 0.501364i
\(636\) 0 0
\(637\) −11.2679 19.5167i −0.446452 0.773278i
\(638\) −13.4115 −0.530968
\(639\) 0 0
\(640\) −10.1436 −0.400961
\(641\) −4.66987 8.08846i −0.184449 0.319475i 0.758942 0.651158i \(-0.225717\pi\)
−0.943391 + 0.331684i \(0.892383\pi\)
\(642\) 0 0
\(643\) −20.8301 + 36.0788i −0.821460 + 1.42281i 0.0831349 + 0.996538i \(0.473507\pi\)
−0.904595 + 0.426272i \(0.859827\pi\)
\(644\) 12.0000 20.7846i 0.472866 0.819028i
\(645\) 0 0
\(646\) 4.46410 + 7.73205i 0.175638 + 0.304213i
\(647\) 11.4641 0.450700 0.225350 0.974278i \(-0.427647\pi\)
0.225350 + 0.974278i \(0.427647\pi\)
\(648\) 0 0
\(649\) 47.3923 1.86031
\(650\) −0.535898 0.928203i −0.0210197 0.0364071i
\(651\) 0 0
\(652\) 9.32051 16.1436i 0.365019 0.632232i
\(653\) 8.73205 15.1244i 0.341712 0.591862i −0.643039 0.765833i \(-0.722327\pi\)
0.984751 + 0.173972i \(0.0556601\pi\)
\(654\) 0 0
\(655\) −7.79423 13.5000i −0.304546 0.527489i
\(656\) −7.71281 −0.301135
\(657\) 0 0
\(658\) 30.2487 1.17922
\(659\) 0.732051 + 1.26795i 0.0285167 + 0.0493923i 0.879932 0.475101i \(-0.157588\pi\)
−0.851415 + 0.524493i \(0.824255\pi\)
\(660\) 0 0
\(661\) −9.16025 + 15.8660i −0.356293 + 0.617117i −0.987338 0.158629i \(-0.949293\pi\)
0.631046 + 0.775746i \(0.282626\pi\)
\(662\) 0.169873 0.294229i 0.00660230 0.0114355i
\(663\) 0 0
\(664\) 2.78461 + 4.82309i 0.108064 + 0.187172i
\(665\) −21.1244 −0.819167
\(666\) 0 0
\(667\) −11.0718 −0.428702
\(668\) −12.9282 22.3923i −0.500207 0.866384i
\(669\) 0 0
\(670\) −1.26795 + 2.19615i −0.0489852 + 0.0848448i
\(671\) 11.4641 19.8564i 0.442567 0.766548i
\(672\) 0 0
\(673\) 5.19615 + 9.00000i 0.200297 + 0.346925i 0.948624 0.316405i \(-0.102476\pi\)
−0.748327 + 0.663330i \(0.769143\pi\)
\(674\) 20.0000 0.770371
\(675\) 0 0
\(676\) 15.8949 0.611342
\(677\) 9.00000 + 15.5885i 0.345898 + 0.599113i 0.985517 0.169580i \(-0.0542410\pi\)
−0.639618 + 0.768693i \(0.720908\pi\)
\(678\) 0 0
\(679\) −22.8564 + 39.5885i −0.877148 + 1.51927i
\(680\) −3.46410 + 6.00000i −0.132842 + 0.230089i
\(681\) 0 0
\(682\) −6.29423 10.9019i −0.241018 0.417456i
\(683\) −19.6077 −0.750268 −0.375134 0.926971i \(-0.622403\pi\)
−0.375134 + 0.926971i \(0.622403\pi\)
\(684\) 0 0
\(685\) 2.53590 0.0968917
\(686\) 14.5359 + 25.1769i 0.554983 + 0.961259i
\(687\) 0 0
\(688\) −0.105118 + 0.182069i −0.00400758 + 0.00694133i
\(689\) −4.92820 + 8.53590i −0.187750 + 0.325192i
\(690\) 0 0
\(691\) 8.85641 + 15.3397i 0.336914 + 0.583551i 0.983851 0.178992i \(-0.0572836\pi\)
−0.646937 + 0.762544i \(0.723950\pi\)
\(692\) −12.4974 −0.475081
\(693\) 0 0
\(694\) −20.9282 −0.794424
\(695\) −0.303848 0.526279i −0.0115256 0.0199629i
\(696\) 0 0
\(697\) −9.83013 + 17.0263i −0.372343 + 0.644916i
\(698\) 6.90192 11.9545i 0.261242 0.452484i
\(699\) 0 0
\(700\) −3.46410 6.00000i −0.130931 0.226779i
\(701\) −20.8038 −0.785750 −0.392875 0.919592i \(-0.628520\pi\)
−0.392875 + 0.919592i \(0.628520\pi\)
\(702\) 0 0
\(703\) −12.1962 −0.459987
\(704\) 6.14359 + 10.6410i 0.231545 + 0.401048i
\(705\) 0 0
\(706\) −9.33975 + 16.1769i −0.351506 + 0.608826i
\(707\) −6.29423 + 10.9019i −0.236719 + 0.410009i
\(708\) 0 0
\(709\) 11.2679 + 19.5167i 0.423177 + 0.732964i 0.996248 0.0865418i \(-0.0275816\pi\)
−0.573072 + 0.819505i \(0.694248\pi\)
\(710\) −2.73205 −0.102532
\(711\) 0 0
\(712\) −13.1769 −0.493826
\(713\) −5.19615 9.00000i −0.194597 0.337053i
\(714\) 0 0
\(715\) 4.19615 7.26795i 0.156927 0.271806i
\(716\) 5.94744 10.3013i 0.222266 0.384977i
\(717\) 0 0
\(718\) 2.24167 + 3.88269i 0.0836584 + 0.144901i
\(719\) 8.41154 0.313698 0.156849 0.987623i \(-0.449866\pi\)
0.156849 + 0.987623i \(0.449866\pi\)
\(720\) 0 0
\(721\) 2.53590 0.0944418
\(722\) −0.339746 0.588457i −0.0126440 0.0219001i
\(723\) 0 0
\(724\) 19.3731 33.5551i 0.719994 1.24707i
\(725\) −1.59808 + 2.76795i −0.0593511 + 0.102799i
\(726\) 0 0
\(727\) 4.19615 + 7.26795i 0.155627 + 0.269553i 0.933287 0.359131i \(-0.116927\pi\)
−0.777660 + 0.628685i \(0.783594\pi\)
\(728\) 17.5692 0.651159
\(729\) 0 0
\(730\) −5.60770 −0.207550
\(731\) 0.267949 + 0.464102i 0.00991046 + 0.0171654i
\(732\) 0 0
\(733\) −17.3923 + 30.1244i −0.642399 + 1.11267i 0.342496 + 0.939519i \(0.388728\pi\)
−0.984896 + 0.173149i \(0.944606\pi\)
\(734\) −11.4115 + 19.7654i −0.421208 + 0.729553i
\(735\) 0 0
\(736\) 10.1436 + 17.5692i 0.373898 + 0.647610i
\(737\) −19.8564 −0.731420
\(738\) 0 0
\(739\) 22.4641 0.826355 0.413178 0.910650i \(-0.364419\pi\)
0.413178 + 0.910650i \(0.364419\pi\)
\(740\) −2.00000 3.46410i −0.0735215 0.127343i
\(741\) 0 0
\(742\) 11.6603 20.1962i 0.428061 0.741424i
\(743\) −9.95448 + 17.2417i −0.365195 + 0.632536i −0.988807 0.149198i \(-0.952331\pi\)
0.623613 + 0.781733i \(0.285664\pi\)
\(744\) 0 0
\(745\) 4.00000 + 6.92820i 0.146549 + 0.253830i
\(746\) 14.6795 0.537454
\(747\) 0 0
\(748\) −22.9282 −0.838338
\(749\) −20.1962 34.9808i −0.737951 1.27817i
\(750\) 0 0
\(751\) −24.3923 + 42.2487i −0.890088 + 1.54168i −0.0503191 + 0.998733i \(0.516024\pi\)
−0.839769 + 0.542944i \(0.817310\pi\)
\(752\) 4.67949 8.10512i 0.170644 0.295563i
\(753\) 0 0
\(754\) −1.71281 2.96668i −0.0623770 0.108040i
\(755\) 5.39230 0.196246
\(756\) 0 0
\(757\) −9.17691 −0.333541 −0.166770 0.985996i \(-0.553334\pi\)
−0.166770 + 0.985996i \(0.553334\pi\)
\(758\) −0.875644 1.51666i −0.0318048 0.0550876i
\(759\) 0 0
\(760\) 5.66025 9.80385i 0.205319 0.355623i
\(761\) −11.7224 + 20.3038i −0.424938 + 0.736014i −0.996415 0.0846043i \(-0.973037\pi\)
0.571477 + 0.820618i \(0.306371\pi\)
\(762\) 0 0
\(763\) −14.3660 24.8827i −0.520085 0.900814i
\(764\) 11.8949 0.430342
\(765\) 0 0
\(766\) 1.85641 0.0670747
\(767\) 6.05256 + 10.4833i 0.218545 + 0.378531i
\(768\) 0 0
\(769\) 4.76795 8.25833i 0.171937 0.297803i −0.767160 0.641456i \(-0.778331\pi\)
0.939097 + 0.343653i \(0.111664\pi\)
\(770\) −9.92820 + 17.1962i −0.357788 + 0.619706i
\(771\) 0 0
\(772\) −3.85641 6.67949i −0.138795 0.240400i
\(773\) 1.51666 0.0545505 0.0272752 0.999628i \(-0.491317\pi\)
0.0272752 + 0.999628i \(0.491317\pi\)
\(774\) 0 0
\(775\) −3.00000 −0.107763
\(776\) −12.2487 21.2154i −0.439703 0.761588i
\(777\) 0 0
\(778\) −10.0526 + 17.4115i −0.360402 + 0.624234i
\(779\) 16.0622 27.8205i 0.575487 0.996773i
\(780\) 0 0
\(781\) −10.6962 18.5263i −0.382738 0.662922i
\(782\) 6.92820 0.247752
\(783\) 0 0
\(784\) 16.4974 0.589194
\(785\) 9.56218 + 16.5622i 0.341289 + 0.591129i
\(786\) 0 0
\(787\) 24.0263 41.6147i 0.856444 1.48341i −0.0188542 0.999822i \(-0.506002\pi\)
0.875299 0.483583i \(-0.160665\pi\)
\(788\) −10.1436 + 17.5692i −0.361351 + 0.625878i
\(789\) 0 0
\(790\) −5.66025 9.80385i −0.201383 0.348805i
\(791\) 90.4974 3.21772
\(792\) 0 0
\(793\) 5.85641 0.207967
\(794\) −5.26795 9.12436i −0.186953 0.323811i
\(795\) 0 0
\(796\) −1.46410 + 2.53590i −0.0518937 + 0.0898825i
\(797\) 7.80385 13.5167i 0.276426 0.478785i −0.694068 0.719910i \(-0.744183\pi\)
0.970494 + 0.241125i \(0.0775164\pi\)
\(798\) 0 0
\(799\) −11.9282 20.6603i −0.421989 0.730907i
\(800\) 5.85641 0.207055
\(801\) 0 0
\(802\) 18.2487 0.644384
\(803\) −21.9545 38.0263i −0.774757 1.34192i
\(804\) 0 0
\(805\) −8.19615 + 14.1962i −0.288876 + 0.500349i
\(806\) 1.60770 2.78461i 0.0566286 0.0980837i
\(807\) 0 0
\(808\) −3.37307 5.84232i −0.118664 0.205532i
\(809\) 45.4449 1.59776 0.798878 0.601493i \(-0.205427\pi\)
0.798878 + 0.601493i \(0.205427\pi\)
\(810\) 0 0
\(811\) −18.4641 −0.648362 −0.324181 0.945995i \(-0.605089\pi\)
−0.324181 + 0.945995i \(0.605089\pi\)
\(812\) −11.0718 19.1769i −0.388544 0.672978i
\(813\) 0 0
\(814\) −5.73205 + 9.92820i −0.200908 + 0.347983i
\(815\) −6.36603 + 11.0263i −0.222992 + 0.386234i
\(816\) 0 0
\(817\) −0.437822 0.758330i −0.0153175 0.0265306i
\(818\) −13.0718 −0.457045
\(819\) 0 0
\(820\) 10.5359 0.367930
\(821\) 18.8660 + 32.6769i 0.658429 + 1.14043i 0.981022 + 0.193895i \(0.0621120\pi\)
−0.322594 + 0.946538i \(0.604555\pi\)
\(822\) 0 0
\(823\) −1.92820 + 3.33975i −0.0672129 + 0.116416i −0.897673 0.440661i \(-0.854744\pi\)
0.830461 + 0.557077i \(0.188077\pi\)
\(824\) −0.679492 + 1.17691i −0.0236712 + 0.0409998i
\(825\) 0 0
\(826\) −14.3205 24.8038i −0.498274 0.863036i
\(827\) −11.6077 −0.403639 −0.201820 0.979423i \(-0.564685\pi\)
−0.201820 + 0.979423i \(0.564685\pi\)
\(828\) 0 0
\(829\) −23.7846 −0.826074 −0.413037 0.910714i \(-0.635532\pi\)
−0.413037 + 0.910714i \(0.635532\pi\)
\(830\) −0.803848 1.39230i −0.0279020 0.0483276i
\(831\) 0 0
\(832\) −1.56922 + 2.71797i −0.0544029 + 0.0942286i
\(833\) 21.0263 36.4186i 0.728517 1.26183i
\(834\) 0 0
\(835\) 8.83013 + 15.2942i 0.305579 + 0.529279i
\(836\) 37.4641 1.29572
\(837\) 0 0
\(838\) 14.9282 0.515686
\(839\) −16.5981 28.7487i −0.573029 0.992516i −0.996253 0.0864904i \(-0.972435\pi\)
0.423223 0.906025i \(-0.360899\pi\)
\(840\) 0 0
\(841\) 9.39230 16.2679i 0.323873 0.560964i
\(842\) −12.3660 + 21.4186i −0.426161 + 0.738133i
\(843\) 0 0
\(844\) −6.48334 11.2295i −0.223166 0.386534i
\(845\) −10.8564 −0.373472
\(846\) 0 0
\(847\) −103.426 −3.55375
\(848\) −3.60770 6.24871i −0.123889 0.214582i
\(849\) 0 0
\(850\) 1.00000 1.73205i 0.0342997 0.0594089i
\(851\) −4.73205 + 8.19615i −0.162213 + 0.280960i
\(852\) 0 0
\(853\) −5.24167 9.07884i −0.179471 0.310854i 0.762228 0.647308i \(-0.224105\pi\)
−0.941700 + 0.336455i \(0.890772\pi\)
\(854\) −13.8564 −0.474156
\(855\) 0 0
\(856\) 21.6462 0.739851
\(857\) −22.2487 38.5359i −0.760002 1.31636i −0.942849 0.333220i \(-0.891865\pi\)
0.182848 0.983141i \(-0.441469\pi\)
\(858\) 0 0
\(859\) 5.50000 9.52628i 0.187658 0.325032i −0.756811 0.653633i \(-0.773244\pi\)
0.944469 + 0.328601i \(0.106577\pi\)
\(860\) 0.143594 0.248711i 0.00489650 0.00848099i
\(861\) 0 0
\(862\) 7.81089 + 13.5289i 0.266040 + 0.460795i
\(863\) −23.1244 −0.787162 −0.393581 0.919290i \(-0.628764\pi\)
−0.393581 + 0.919290i \(0.628764\pi\)
\(864\) 0 0
\(865\) 8.53590 0.290229
\(866\) 12.9808 + 22.4833i 0.441104 + 0.764015i
\(867\) 0 0
\(868\) 10.3923 18.0000i 0.352738 0.610960i
\(869\) 44.3205 76.7654i 1.50347 2.60409i
\(870\) 0 0
\(871\) −2.53590 4.39230i −0.0859256 0.148828i
\(872\) 15.3975 0.521424
\(873\) 0 0
\(874\) −11.3205 −0.382922
\(875\) 2.36603 + 4.09808i 0.0799863 + 0.138540i
\(876\) 0 0
\(877\) −16.7321 + 28.9808i −0.565001 + 0.978611i 0.432048 + 0.901850i \(0.357791\pi\)
−0.997050 + 0.0767604i \(0.975542\pi\)
\(878\) −1.97372 + 3.41858i −0.0666098 + 0.115372i
\(879\) 0 0
\(880\) 3.07180 + 5.32051i 0.103550 + 0.179354i
\(881\) −47.0526 −1.58524 −0.792620 0.609715i \(-0.791284\pi\)
−0.792620 + 0.609715i \(0.791284\pi\)
\(882\) 0 0
\(883\) −30.1962 −1.01618 −0.508091 0.861304i \(-0.669649\pi\)
−0.508091 + 0.861304i \(0.669649\pi\)
\(884\) −2.92820 5.07180i −0.0984861 0.170583i
\(885\) 0 0
\(886\) 0.124356 0.215390i 0.00417781 0.00723618i
\(887\) −16.9019 + 29.2750i −0.567511 + 0.982958i 0.429300 + 0.903162i \(0.358760\pi\)
−0.996811 + 0.0797961i \(0.974573\pi\)
\(888\) 0 0
\(889\) −34.5167 59.7846i −1.15765 2.00511i
\(890\) 3.80385 0.127505
\(891\) 0 0
\(892\) −24.5744 −0.822811
\(893\) 19.4904 + 33.7583i 0.652221 + 1.12968i
\(894\) 0 0
\(895\) −4.06218 + 7.03590i −0.135784 + 0.235184i
\(896\) −24.0000 + 41.5692i −0.801784 + 1.38873i
\(897\) 0 0
\(898\) −2.97372 5.15064i −0.0992343 0.171879i
\(899\) −9.58846 −0.319793
\(900\) 0 0
\(901\) −18.3923 −0.612737
\(902\) −15.0981 26.1506i −0.502711 0.870721i
\(903\) 0 0
\(904\) −24.2487 + 42.0000i −0.806500 + 1.39690i
\(905\) −13.2321 + 22.9186i −0.439848 + 0.761840i
\(906\) 0 0
\(907\) 15.0000 + 25.9808i 0.498067 + 0.862677i 0.999998 0.00223080i \(-0.000710087\pi\)
−0.501931 + 0.864908i \(0.667377\pi\)
\(908\) 26.4308 0.877136
\(909\) 0 0
\(910\) −5.07180 −0.168128
\(911\) −11.7942 20.4282i −0.390760 0.676817i 0.601790 0.798655i \(-0.294455\pi\)
−0.992550 + 0.121838i \(0.961121\pi\)
\(912\) 0 0
\(913\) 6.29423 10.9019i 0.208309 0.360801i
\(914\) −1.00000 + 1.73205i −0.0330771 + 0.0572911i
\(915\) 0 0
\(916\) −8.78461 15.2154i −0.290252 0.502731i
\(917\) −73.7654 −2.43595
\(918\) 0 0
\(919\) −56.9615 −1.87899 −0.939494 0.342566i \(-0.888704\pi\)
−0.939494 + 0.342566i \(0.888704\pi\)
\(920\) −4.39230 7.60770i −0.144810 0.250818i
\(921\) 0 0
\(922\) 13.5622 23.4904i 0.446647 0.773615i
\(923\) 2.73205 4.73205i 0.0899265 0.155757i
\(924\) 0 0
\(925\) 1.36603 + 2.36603i 0.0449146 + 0.0777944i
\(926\) −7.60770 −0.250004
\(927\) 0 0
\(928\) 18.7180 0.614447
\(929\) 22.1865 + 38.4282i 0.727917 + 1.26079i 0.957762 + 0.287561i \(0.0928445\pi\)
−0.229846 + 0.973227i \(0.573822\pi\)
\(930\) 0 0
\(931\) −34.3564 + 59.5070i −1.12599 + 1.95026i
\(932\) −20.5359 + 35.5692i −0.672676 + 1.16511i
\(933\) 0 0
\(934\) −13.6795 23.6936i −0.447607 0.775277i
\(935\) 15.6603 0.512145
\(936\) 0 0
\(937\) −4.14359 −0.135365 −0.0676827 0.997707i \(-0.521561\pi\)
−0.0676827 + 0.997707i \(0.521561\pi\)
\(938\) 6.00000 + 10.3923i 0.195907 + 0.339321i
\(939\) 0 0
\(940\) −6.39230 + 11.0718i −0.208494 + 0.361122i
\(941\) −17.5885 + 30.4641i −0.573367 + 0.993101i 0.422850 + 0.906200i \(0.361030\pi\)
−0.996217 + 0.0869015i \(0.972303\pi\)
\(942\) 0 0
\(943\) −12.4641 21.5885i −0.405887 0.703017i
\(944\) −8.86156 −0.288419
\(945\) 0 0
\(946\) −0.823085 −0.0267608
\(947\) 28.8564 + 49.9808i 0.937707 + 1.62416i 0.769734 + 0.638365i \(0.220389\pi\)
0.167973 + 0.985792i \(0.446278\pi\)
\(948\) 0 0
\(949\) 5.60770 9.71281i 0.182033 0.315291i
\(950\) −1.63397 + 2.83013i −0.0530131 + 0.0918214i
\(951\) 0 0
\(952\) 16.3923 + 28.3923i 0.531278 + 0.920200i
\(953\) 36.3923 1.17886 0.589431 0.807819i \(-0.299352\pi\)
0.589431 + 0.807819i \(0.299352\pi\)
\(954\) 0 0
\(955\) −8.12436 −0.262898
\(956\) −0.392305 0.679492i −0.0126880 0.0219763i
\(957\) 0 0
\(958\) 4.34679 7.52886i 0.140438 0.243246i
\(959\) 6.00000 10.3923i 0.193750 0.335585i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) −2.92820 −0.0944091
\(963\) 0 0
\(964\) 23.8949 0.769602
\(965\) 2.63397 + 4.56218i 0.0847906 + 0.146862i
\(966\) 0 0
\(967\) 12.9019 22.3468i 0.414898 0.718624i −0.580520 0.814246i \(-0.697151\pi\)
0.995418 + 0.0956219i \(0.0304840\pi\)
\(968\) 27.7128 48.0000i 0.890724 1.54278i
\(969\) 0 0
\(970\) 3.53590 + 6.12436i 0.113531 + 0.196641i
\(971\) 17.4449 0.559832 0.279916 0.960024i \(-0.409693\pi\)
0.279916 + 0.960024i \(0.409693\pi\)
\(972\) 0 0
\(973\) −2.87564 −0.0921889
\(974\) −8.92820 15.4641i −0.286078 0.495502i
\(975\) 0 0
\(976\) −2.14359 + 3.71281i −0.0686148 + 0.118844i
\(977\) −2.73205 + 4.73205i −0.0874060 + 0.151392i −0.906414 0.422391i \(-0.861191\pi\)
0.819008 + 0.573782i \(0.194524\pi\)
\(978\) 0 0
\(979\) 14.8923 + 25.7942i 0.475960 + 0.824387i
\(980\) −22.5359 −0.719883
\(981\) 0 0
\(982\) −10.1577 −0.324144
\(983\) −24.2942 42.0788i −0.774866 1.34211i −0.934870 0.354990i \(-0.884484\pi\)
0.160004 0.987116i \(-0.448849\pi\)
\(984\) 0 0
\(985\) 6.92820 12.0000i 0.220751 0.382352i
\(986\) 3.19615 5.53590i 0.101786 0.176299i
\(987\) 0 0
\(988\) 4.78461 + 8.28719i 0.152219 + 0.263651i
\(989\) −0.679492 −0.0216066
\(990\) 0 0
\(991\) 30.8564 0.980186 0.490093 0.871670i \(-0.336963\pi\)
0.490093 + 0.871670i \(0.336963\pi\)
\(992\) 8.78461 + 15.2154i 0.278912 + 0.483089i
\(993\) 0 0
\(994\) −6.46410 + 11.1962i −0.205029 + 0.355120i
\(995\) 1.00000 1.73205i 0.0317021 0.0549097i
\(996\) 0 0
\(997\) −12.7583 22.0981i −0.404060 0.699853i 0.590151 0.807293i \(-0.299068\pi\)
−0.994212 + 0.107440i \(0.965735\pi\)
\(998\) 17.8038 0.563571
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.e.l.271.1 4
3.2 odd 2 405.2.e.i.271.2 4
9.2 odd 6 405.2.e.i.136.2 4
9.4 even 3 405.2.a.g.1.2 2
9.5 odd 6 405.2.a.h.1.1 yes 2
9.7 even 3 inner 405.2.e.l.136.1 4
36.23 even 6 6480.2.a.bi.1.2 2
36.31 odd 6 6480.2.a.br.1.2 2
45.4 even 6 2025.2.a.m.1.1 2
45.13 odd 12 2025.2.b.g.649.2 4
45.14 odd 6 2025.2.a.g.1.2 2
45.22 odd 12 2025.2.b.g.649.3 4
45.23 even 12 2025.2.b.h.649.3 4
45.32 even 12 2025.2.b.h.649.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.2.a.g.1.2 2 9.4 even 3
405.2.a.h.1.1 yes 2 9.5 odd 6
405.2.e.i.136.2 4 9.2 odd 6
405.2.e.i.271.2 4 3.2 odd 2
405.2.e.l.136.1 4 9.7 even 3 inner
405.2.e.l.271.1 4 1.1 even 1 trivial
2025.2.a.g.1.2 2 45.14 odd 6
2025.2.a.m.1.1 2 45.4 even 6
2025.2.b.g.649.2 4 45.13 odd 12
2025.2.b.g.649.3 4 45.22 odd 12
2025.2.b.h.649.2 4 45.32 even 12
2025.2.b.h.649.3 4 45.23 even 12
6480.2.a.bi.1.2 2 36.23 even 6
6480.2.a.br.1.2 2 36.31 odd 6