Properties

Label 405.2.e.g.136.1
Level $405$
Weight $2$
Character 405.136
Analytic conductor $3.234$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 136.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 405.136
Dual form 405.2.e.g.271.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +O(q^{10})\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +2.00000 q^{10} +(2.50000 - 4.33013i) q^{11} +(-2.00000 - 3.46410i) q^{13} +(2.00000 - 3.46410i) q^{16} +4.00000 q^{17} -5.00000 q^{19} +(1.00000 - 1.73205i) q^{20} +(-5.00000 - 8.66025i) q^{22} +(3.00000 + 5.19615i) q^{23} +(-0.500000 + 0.866025i) q^{25} -8.00000 q^{26} +(-2.50000 + 4.33013i) q^{29} +(4.50000 + 7.79423i) q^{31} +(-4.00000 - 6.92820i) q^{32} +(4.00000 - 6.92820i) q^{34} -10.0000 q^{37} +(-5.00000 + 8.66025i) q^{38} +(3.50000 + 6.06218i) q^{41} +(1.00000 - 1.73205i) q^{43} -10.0000 q^{44} +12.0000 q^{46} +(1.00000 - 1.73205i) q^{47} +(3.50000 + 6.06218i) q^{49} +(1.00000 + 1.73205i) q^{50} +(-4.00000 + 6.92820i) q^{52} -8.00000 q^{53} +5.00000 q^{55} +(5.00000 + 8.66025i) q^{58} +(-0.500000 - 0.866025i) q^{59} +(1.00000 - 1.73205i) q^{61} +18.0000 q^{62} -8.00000 q^{64} +(2.00000 - 3.46410i) q^{65} +(-3.00000 - 5.19615i) q^{67} +(-4.00000 - 6.92820i) q^{68} -1.00000 q^{71} -8.00000 q^{73} +(-10.0000 + 17.3205i) q^{74} +(5.00000 + 8.66025i) q^{76} +(-6.00000 + 10.3923i) q^{79} +4.00000 q^{80} +14.0000 q^{82} +(3.00000 - 5.19615i) q^{83} +(2.00000 + 3.46410i) q^{85} +(-2.00000 - 3.46410i) q^{86} +9.00000 q^{89} +(6.00000 - 10.3923i) q^{92} +(-2.00000 - 3.46410i) q^{94} +(-2.50000 - 4.33013i) q^{95} +(-7.00000 + 12.1244i) q^{97} +14.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{4} + q^{5} + 4 q^{10} + 5 q^{11} - 4 q^{13} + 4 q^{16} + 8 q^{17} - 10 q^{19} + 2 q^{20} - 10 q^{22} + 6 q^{23} - q^{25} - 16 q^{26} - 5 q^{29} + 9 q^{31} - 8 q^{32} + 8 q^{34} - 20 q^{37} - 10 q^{38} + 7 q^{41} + 2 q^{43} - 20 q^{44} + 24 q^{46} + 2 q^{47} + 7 q^{49} + 2 q^{50} - 8 q^{52} - 16 q^{53} + 10 q^{55} + 10 q^{58} - q^{59} + 2 q^{61} + 36 q^{62} - 16 q^{64} + 4 q^{65} - 6 q^{67} - 8 q^{68} - 2 q^{71} - 16 q^{73} - 20 q^{74} + 10 q^{76} - 12 q^{79} + 8 q^{80} + 28 q^{82} + 6 q^{83} + 4 q^{85} - 4 q^{86} + 18 q^{89} + 12 q^{92} - 4 q^{94} - 5 q^{95} - 14 q^{97} + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i \(-0.561563\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(12\) 0 0
\(13\) −2.00000 3.46410i −0.554700 0.960769i −0.997927 0.0643593i \(-0.979500\pi\)
0.443227 0.896410i \(-0.353834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 1.00000 1.73205i 0.223607 0.387298i
\(21\) 0 0
\(22\) −5.00000 8.66025i −1.06600 1.84637i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −8.00000 −1.56893
\(27\) 0 0
\(28\) 0 0
\(29\) −2.50000 + 4.33013i −0.464238 + 0.804084i −0.999167 0.0408130i \(-0.987005\pi\)
0.534928 + 0.844897i \(0.320339\pi\)
\(30\) 0 0
\(31\) 4.50000 + 7.79423i 0.808224 + 1.39988i 0.914093 + 0.405505i \(0.132904\pi\)
−0.105869 + 0.994380i \(0.533762\pi\)
\(32\) −4.00000 6.92820i −0.707107 1.22474i
\(33\) 0 0
\(34\) 4.00000 6.92820i 0.685994 1.18818i
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −5.00000 + 8.66025i −0.811107 + 1.40488i
\(39\) 0 0
\(40\) 0 0
\(41\) 3.50000 + 6.06218i 0.546608 + 0.946753i 0.998504 + 0.0546823i \(0.0174146\pi\)
−0.451896 + 0.892071i \(0.649252\pi\)
\(42\) 0 0
\(43\) 1.00000 1.73205i 0.152499 0.264135i −0.779647 0.626219i \(-0.784601\pi\)
0.932145 + 0.362084i \(0.117935\pi\)
\(44\) −10.0000 −1.50756
\(45\) 0 0
\(46\) 12.0000 1.76930
\(47\) 1.00000 1.73205i 0.145865 0.252646i −0.783830 0.620975i \(-0.786737\pi\)
0.929695 + 0.368329i \(0.120070\pi\)
\(48\) 0 0
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 1.00000 + 1.73205i 0.141421 + 0.244949i
\(51\) 0 0
\(52\) −4.00000 + 6.92820i −0.554700 + 0.960769i
\(53\) −8.00000 −1.09888 −0.549442 0.835532i \(-0.685160\pi\)
−0.549442 + 0.835532i \(0.685160\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) 0 0
\(58\) 5.00000 + 8.66025i 0.656532 + 1.13715i
\(59\) −0.500000 0.866025i −0.0650945 0.112747i 0.831641 0.555313i \(-0.187402\pi\)
−0.896736 + 0.442566i \(0.854068\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 18.0000 2.28600
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 2.00000 3.46410i 0.248069 0.429669i
\(66\) 0 0
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) −4.00000 6.92820i −0.485071 0.840168i
\(69\) 0 0
\(70\) 0 0
\(71\) −1.00000 −0.118678 −0.0593391 0.998238i \(-0.518899\pi\)
−0.0593391 + 0.998238i \(0.518899\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −10.0000 + 17.3205i −1.16248 + 2.01347i
\(75\) 0 0
\(76\) 5.00000 + 8.66025i 0.573539 + 0.993399i
\(77\) 0 0
\(78\) 0 0
\(79\) −6.00000 + 10.3923i −0.675053 + 1.16923i 0.301401 + 0.953498i \(0.402546\pi\)
−0.976453 + 0.215728i \(0.930788\pi\)
\(80\) 4.00000 0.447214
\(81\) 0 0
\(82\) 14.0000 1.54604
\(83\) 3.00000 5.19615i 0.329293 0.570352i −0.653079 0.757290i \(-0.726523\pi\)
0.982372 + 0.186938i \(0.0598564\pi\)
\(84\) 0 0
\(85\) 2.00000 + 3.46410i 0.216930 + 0.375735i
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000 10.3923i 0.625543 1.08347i
\(93\) 0 0
\(94\) −2.00000 3.46410i −0.206284 0.357295i
\(95\) −2.50000 4.33013i −0.256495 0.444262i
\(96\) 0 0
\(97\) −7.00000 + 12.1244i −0.710742 + 1.23104i 0.253837 + 0.967247i \(0.418307\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 14.0000 1.41421
\(99\) 0 0
\(100\) 2.00000 0.200000
\(101\) −1.50000 + 2.59808i −0.149256 + 0.258518i −0.930953 0.365140i \(-0.881021\pi\)
0.781697 + 0.623658i \(0.214354\pi\)
\(102\) 0 0
\(103\) −1.00000 1.73205i −0.0985329 0.170664i 0.812545 0.582899i \(-0.198082\pi\)
−0.911078 + 0.412235i \(0.864748\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −8.00000 + 13.8564i −0.777029 + 1.34585i
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 5.00000 8.66025i 0.476731 0.825723i
\(111\) 0 0
\(112\) 0 0
\(113\) −8.00000 13.8564i −0.752577 1.30350i −0.946570 0.322498i \(-0.895477\pi\)
0.193993 0.981003i \(-0.437856\pi\)
\(114\) 0 0
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) 10.0000 0.928477
\(117\) 0 0
\(118\) −2.00000 −0.184115
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) −2.00000 3.46410i −0.181071 0.313625i
\(123\) 0 0
\(124\) 9.00000 15.5885i 0.808224 1.39988i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −4.00000 6.92820i −0.350823 0.607644i
\(131\) 7.50000 + 12.9904i 0.655278 + 1.13497i 0.981824 + 0.189794i \(0.0607819\pi\)
−0.326546 + 0.945181i \(0.605885\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.0000 −1.03664
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) 9.50000 + 16.4545i 0.805779 + 1.39565i 0.915764 + 0.401718i \(0.131587\pi\)
−0.109984 + 0.993933i \(0.535080\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.00000 + 1.73205i −0.0839181 + 0.145350i
\(143\) −20.0000 −1.67248
\(144\) 0 0
\(145\) −5.00000 −0.415227
\(146\) −8.00000 + 13.8564i −0.662085 + 1.14676i
\(147\) 0 0
\(148\) 10.0000 + 17.3205i 0.821995 + 1.42374i
\(149\) −1.00000 1.73205i −0.0819232 0.141895i 0.822153 0.569267i \(-0.192773\pi\)
−0.904076 + 0.427372i \(0.859440\pi\)
\(150\) 0 0
\(151\) 2.50000 4.33013i 0.203447 0.352381i −0.746190 0.665733i \(-0.768119\pi\)
0.949637 + 0.313353i \(0.101452\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.50000 + 7.79423i −0.361449 + 0.626048i
\(156\) 0 0
\(157\) −1.00000 1.73205i −0.0798087 0.138233i 0.823359 0.567521i \(-0.192098\pi\)
−0.903167 + 0.429289i \(0.858764\pi\)
\(158\) 12.0000 + 20.7846i 0.954669 + 1.65353i
\(159\) 0 0
\(160\) 4.00000 6.92820i 0.316228 0.547723i
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 7.00000 12.1244i 0.546608 0.946753i
\(165\) 0 0
\(166\) −6.00000 10.3923i −0.465690 0.806599i
\(167\) 6.00000 + 10.3923i 0.464294 + 0.804181i 0.999169 0.0407502i \(-0.0129748\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 8.00000 0.613572
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −10.0000 17.3205i −0.753778 1.30558i
\(177\) 0 0
\(178\) 9.00000 15.5885i 0.674579 1.16840i
\(179\) −23.0000 −1.71910 −0.859550 0.511051i \(-0.829256\pi\)
−0.859550 + 0.511051i \(0.829256\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.00000 8.66025i −0.367607 0.636715i
\(186\) 0 0
\(187\) 10.0000 17.3205i 0.731272 1.26660i
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) −10.0000 −0.725476
\(191\) 0.500000 0.866025i 0.0361787 0.0626634i −0.847369 0.531004i \(-0.821815\pi\)
0.883548 + 0.468341i \(0.155148\pi\)
\(192\) 0 0
\(193\) −13.0000 22.5167i −0.935760 1.62078i −0.773272 0.634074i \(-0.781381\pi\)
−0.162488 0.986710i \(-0.551952\pi\)
\(194\) 14.0000 + 24.2487i 1.00514 + 1.74096i
\(195\) 0 0
\(196\) 7.00000 12.1244i 0.500000 0.866025i
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3.00000 + 5.19615i 0.211079 + 0.365600i
\(203\) 0 0
\(204\) 0 0
\(205\) −3.50000 + 6.06218i −0.244451 + 0.423401i
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) −16.0000 −1.10940
\(209\) −12.5000 + 21.6506i −0.864643 + 1.49761i
\(210\) 0 0
\(211\) −5.50000 9.52628i −0.378636 0.655816i 0.612228 0.790681i \(-0.290273\pi\)
−0.990864 + 0.134865i \(0.956940\pi\)
\(212\) 8.00000 + 13.8564i 0.549442 + 0.951662i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 2.00000 0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 0 0
\(220\) −5.00000 8.66025i −0.337100 0.583874i
\(221\) −8.00000 13.8564i −0.538138 0.932083i
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −32.0000 −2.12861
\(227\) 2.00000 3.46410i 0.132745 0.229920i −0.791989 0.610535i \(-0.790954\pi\)
0.924734 + 0.380615i \(0.124288\pi\)
\(228\) 0 0
\(229\) −3.00000 5.19615i −0.198246 0.343371i 0.749714 0.661762i \(-0.230191\pi\)
−0.947960 + 0.318390i \(0.896858\pi\)
\(230\) 6.00000 + 10.3923i 0.395628 + 0.685248i
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) −1.00000 + 1.73205i −0.0650945 + 0.112747i
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 13.8564i −0.517477 0.896296i −0.999794 0.0202996i \(-0.993538\pi\)
0.482317 0.875997i \(-0.339795\pi\)
\(240\) 0 0
\(241\) 5.50000 9.52628i 0.354286 0.613642i −0.632709 0.774389i \(-0.718057\pi\)
0.986996 + 0.160748i \(0.0513906\pi\)
\(242\) −28.0000 −1.79991
\(243\) 0 0
\(244\) −4.00000 −0.256074
\(245\) −3.50000 + 6.06218i −0.223607 + 0.387298i
\(246\) 0 0
\(247\) 10.0000 + 17.3205i 0.636285 + 1.10208i
\(248\) 0 0
\(249\) 0 0
\(250\) −1.00000 + 1.73205i −0.0632456 + 0.109545i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 30.0000 1.88608
\(254\) 16.0000 27.7128i 1.00393 1.73886i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −8.00000 −0.496139
\(261\) 0 0
\(262\) 30.0000 1.85341
\(263\) 5.00000 8.66025i 0.308313 0.534014i −0.669680 0.742650i \(-0.733569\pi\)
0.977993 + 0.208635i \(0.0669022\pi\)
\(264\) 0 0
\(265\) −4.00000 6.92820i −0.245718 0.425596i
\(266\) 0 0
\(267\) 0 0
\(268\) −6.00000 + 10.3923i −0.366508 + 0.634811i
\(269\) 31.0000 1.89010 0.945052 0.326921i \(-0.106011\pi\)
0.945052 + 0.326921i \(0.106011\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 8.00000 13.8564i 0.485071 0.840168i
\(273\) 0 0
\(274\) −12.0000 20.7846i −0.724947 1.25564i
\(275\) 2.50000 + 4.33013i 0.150756 + 0.261116i
\(276\) 0 0
\(277\) 9.00000 15.5885i 0.540758 0.936620i −0.458103 0.888899i \(-0.651471\pi\)
0.998861 0.0477206i \(-0.0151957\pi\)
\(278\) 38.0000 2.27909
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000 5.19615i 0.178965 0.309976i −0.762561 0.646916i \(-0.776058\pi\)
0.941526 + 0.336939i \(0.109392\pi\)
\(282\) 0 0
\(283\) −3.00000 5.19615i −0.178331 0.308879i 0.762978 0.646425i \(-0.223737\pi\)
−0.941309 + 0.337546i \(0.890403\pi\)
\(284\) 1.00000 + 1.73205i 0.0593391 + 0.102778i
\(285\) 0 0
\(286\) −20.0000 + 34.6410i −1.18262 + 2.04837i
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) −5.00000 + 8.66025i −0.293610 + 0.508548i
\(291\) 0 0
\(292\) 8.00000 + 13.8564i 0.468165 + 0.810885i
\(293\) 9.00000 + 15.5885i 0.525786 + 0.910687i 0.999549 + 0.0300351i \(0.00956192\pi\)
−0.473763 + 0.880652i \(0.657105\pi\)
\(294\) 0 0
\(295\) 0.500000 0.866025i 0.0291111 0.0504219i
\(296\) 0 0
\(297\) 0 0
\(298\) −4.00000 −0.231714
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) 0 0
\(302\) −5.00000 8.66025i −0.287718 0.498342i
\(303\) 0 0
\(304\) −10.0000 + 17.3205i −0.573539 + 0.993399i
\(305\) 2.00000 0.114520
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.00000 + 15.5885i 0.511166 + 0.885365i
\(311\) −4.50000 7.79423i −0.255172 0.441970i 0.709771 0.704433i \(-0.248799\pi\)
−0.964942 + 0.262463i \(0.915465\pi\)
\(312\) 0 0
\(313\) 2.00000 3.46410i 0.113047 0.195803i −0.803951 0.594696i \(-0.797272\pi\)
0.916997 + 0.398894i \(0.130606\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 24.0000 1.35011
\(317\) −1.00000 + 1.73205i −0.0561656 + 0.0972817i −0.892741 0.450570i \(-0.851221\pi\)
0.836576 + 0.547852i \(0.184554\pi\)
\(318\) 0 0
\(319\) 12.5000 + 21.6506i 0.699866 + 1.21220i
\(320\) −4.00000 6.92820i −0.223607 0.387298i
\(321\) 0 0
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.5000 18.1865i 0.577132 0.999622i −0.418674 0.908137i \(-0.637505\pi\)
0.995806 0.0914858i \(-0.0291616\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 24.0000 1.31322
\(335\) 3.00000 5.19615i 0.163908 0.283896i
\(336\) 0 0
\(337\) 4.00000 + 6.92820i 0.217894 + 0.377403i 0.954164 0.299285i \(-0.0967480\pi\)
−0.736270 + 0.676688i \(0.763415\pi\)
\(338\) 3.00000 + 5.19615i 0.163178 + 0.282633i
\(339\) 0 0
\(340\) 4.00000 6.92820i 0.216930 0.375735i
\(341\) 45.0000 2.43689
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 6.00000 + 10.3923i 0.322562 + 0.558694i
\(347\) 10.0000 + 17.3205i 0.536828 + 0.929814i 0.999072 + 0.0430610i \(0.0137110\pi\)
−0.462244 + 0.886753i \(0.652956\pi\)
\(348\) 0 0
\(349\) −6.50000 + 11.2583i −0.347937 + 0.602645i −0.985883 0.167437i \(-0.946451\pi\)
0.637946 + 0.770081i \(0.279784\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −40.0000 −2.13201
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) −0.500000 0.866025i −0.0265372 0.0459639i
\(356\) −9.00000 15.5885i −0.476999 0.826187i
\(357\) 0 0
\(358\) −23.0000 + 39.8372i −1.21559 + 2.10546i
\(359\) 27.0000 1.42501 0.712503 0.701669i \(-0.247562\pi\)
0.712503 + 0.701669i \(0.247562\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) −25.0000 + 43.3013i −1.31397 + 2.27586i
\(363\) 0 0
\(364\) 0 0
\(365\) −4.00000 6.92820i −0.209370 0.362639i
\(366\) 0 0
\(367\) −9.00000 + 15.5885i −0.469796 + 0.813711i −0.999404 0.0345320i \(-0.989006\pi\)
0.529607 + 0.848243i \(0.322339\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) −20.0000 −1.03975
\(371\) 0 0
\(372\) 0 0
\(373\) −8.00000 13.8564i −0.414224 0.717458i 0.581122 0.813816i \(-0.302614\pi\)
−0.995347 + 0.0963587i \(0.969280\pi\)
\(374\) −20.0000 34.6410i −1.03418 1.79124i
\(375\) 0 0
\(376\) 0 0
\(377\) 20.0000 1.03005
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) −5.00000 + 8.66025i −0.256495 + 0.444262i
\(381\) 0 0
\(382\) −1.00000 1.73205i −0.0511645 0.0886194i
\(383\) −18.0000 31.1769i −0.919757 1.59307i −0.799783 0.600289i \(-0.795052\pi\)
−0.119974 0.992777i \(-0.538281\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −52.0000 −2.64673
\(387\) 0 0
\(388\) 28.0000 1.42148
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 0 0
\(391\) 12.0000 + 20.7846i 0.606866 + 1.05112i
\(392\) 0 0
\(393\) 0 0
\(394\) −12.0000 + 20.7846i −0.604551 + 1.04711i
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −38.0000 −1.90717 −0.953583 0.301131i \(-0.902636\pi\)
−0.953583 + 0.301131i \(0.902636\pi\)
\(398\) 16.0000 27.7128i 0.802008 1.38912i
\(399\) 0 0
\(400\) 2.00000 + 3.46410i 0.100000 + 0.173205i
\(401\) 15.0000 + 25.9808i 0.749064 + 1.29742i 0.948272 + 0.317460i \(0.102830\pi\)
−0.199207 + 0.979957i \(0.563837\pi\)
\(402\) 0 0
\(403\) 18.0000 31.1769i 0.896644 1.55303i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) −25.0000 + 43.3013i −1.23920 + 2.14636i
\(408\) 0 0
\(409\) −7.00000 12.1244i −0.346128 0.599511i 0.639430 0.768849i \(-0.279170\pi\)
−0.985558 + 0.169338i \(0.945837\pi\)
\(410\) 7.00000 + 12.1244i 0.345705 + 0.598779i
\(411\) 0 0
\(412\) −2.00000 + 3.46410i −0.0985329 + 0.170664i
\(413\) 0 0
\(414\) 0 0
\(415\) 6.00000 0.294528
\(416\) −16.0000 + 27.7128i −0.784465 + 1.35873i
\(417\) 0 0
\(418\) 25.0000 + 43.3013i 1.22279 + 2.11793i
\(419\) 8.00000 + 13.8564i 0.390826 + 0.676930i 0.992559 0.121768i \(-0.0388562\pi\)
−0.601733 + 0.798697i \(0.705523\pi\)
\(420\) 0 0
\(421\) −6.50000 + 11.2583i −0.316791 + 0.548697i −0.979817 0.199899i \(-0.935939\pi\)
0.663026 + 0.748596i \(0.269272\pi\)
\(422\) −22.0000 −1.07094
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 + 3.46410i −0.0970143 + 0.168034i
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 10.3923i −0.290021 0.502331i
\(429\) 0 0
\(430\) 2.00000 3.46410i 0.0964486 0.167054i
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.00000 + 1.73205i 0.0478913 + 0.0829502i
\(437\) −15.0000 25.9808i −0.717547 1.24283i
\(438\) 0 0
\(439\) 14.5000 25.1147i 0.692047 1.19866i −0.279119 0.960257i \(-0.590042\pi\)
0.971166 0.238404i \(-0.0766244\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −32.0000 −1.52208
\(443\) 3.00000 5.19615i 0.142534 0.246877i −0.785916 0.618333i \(-0.787808\pi\)
0.928450 + 0.371457i \(0.121142\pi\)
\(444\) 0 0
\(445\) 4.50000 + 7.79423i 0.213320 + 0.369482i
\(446\) 8.00000 + 13.8564i 0.378811 + 0.656120i
\(447\) 0 0
\(448\) 0 0
\(449\) −17.0000 −0.802280 −0.401140 0.916017i \(-0.631386\pi\)
−0.401140 + 0.916017i \(0.631386\pi\)
\(450\) 0 0
\(451\) 35.0000 1.64809
\(452\) −16.0000 + 27.7128i −0.752577 + 1.30350i
\(453\) 0 0
\(454\) −4.00000 6.92820i −0.187729 0.325157i
\(455\) 0 0
\(456\) 0 0
\(457\) 19.0000 32.9090i 0.888783 1.53942i 0.0474665 0.998873i \(-0.484885\pi\)
0.841316 0.540544i \(-0.181781\pi\)
\(458\) −12.0000 −0.560723
\(459\) 0 0
\(460\) 12.0000 0.559503
\(461\) −7.50000 + 12.9904i −0.349310 + 0.605022i −0.986127 0.165992i \(-0.946917\pi\)
0.636817 + 0.771015i \(0.280251\pi\)
\(462\) 0 0
\(463\) 3.00000 + 5.19615i 0.139422 + 0.241486i 0.927278 0.374374i \(-0.122142\pi\)
−0.787856 + 0.615859i \(0.788809\pi\)
\(464\) 10.0000 + 17.3205i 0.464238 + 0.804084i
\(465\) 0 0
\(466\) −6.00000 + 10.3923i −0.277945 + 0.481414i
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 2.00000 3.46410i 0.0922531 0.159787i
\(471\) 0 0
\(472\) 0 0
\(473\) −5.00000 8.66025i −0.229900 0.398199i
\(474\) 0 0
\(475\) 2.50000 4.33013i 0.114708 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) −32.0000 −1.46365
\(479\) −7.50000 + 12.9904i −0.342684 + 0.593546i −0.984930 0.172953i \(-0.944669\pi\)
0.642246 + 0.766498i \(0.278003\pi\)
\(480\) 0 0
\(481\) 20.0000 + 34.6410i 0.911922 + 1.57949i
\(482\) −11.0000 19.0526i −0.501036 0.867820i
\(483\) 0 0
\(484\) −14.0000 + 24.2487i −0.636364 + 1.10221i
\(485\) −14.0000 −0.635707
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 7.00000 + 12.1244i 0.316228 + 0.547723i
\(491\) 21.5000 + 37.2391i 0.970281 + 1.68058i 0.694701 + 0.719299i \(0.255537\pi\)
0.275581 + 0.961278i \(0.411130\pi\)
\(492\) 0 0
\(493\) −10.0000 + 17.3205i −0.450377 + 0.780076i
\(494\) 40.0000 1.79969
\(495\) 0 0
\(496\) 36.0000 1.61645
\(497\) 0 0
\(498\) 0 0
\(499\) −3.50000 6.06218i −0.156682 0.271380i 0.776989 0.629515i \(-0.216746\pi\)
−0.933670 + 0.358134i \(0.883413\pi\)
\(500\) 1.00000 + 1.73205i 0.0447214 + 0.0774597i
\(501\) 0 0
\(502\) 12.0000 20.7846i 0.535586 0.927663i
\(503\) 20.0000 0.891756 0.445878 0.895094i \(-0.352892\pi\)
0.445878 + 0.895094i \(0.352892\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 30.0000 51.9615i 1.33366 2.30997i
\(507\) 0 0
\(508\) −16.0000 27.7128i −0.709885 1.22956i
\(509\) 1.00000 + 1.73205i 0.0443242 + 0.0767718i 0.887336 0.461123i \(-0.152553\pi\)
−0.843012 + 0.537895i \(0.819220\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) 1.00000 1.73205i 0.0440653 0.0763233i
\(516\) 0 0
\(517\) −5.00000 8.66025i −0.219900 0.380878i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 15.0000 25.9808i 0.655278 1.13497i
\(525\) 0 0
\(526\) −10.0000 17.3205i −0.436021 0.755210i
\(527\) 18.0000 + 31.1769i 0.784092 + 1.35809i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −16.0000 −0.694996
\(531\) 0 0
\(532\) 0 0
\(533\) 14.0000 24.2487i 0.606407 1.05033i
\(534\) 0 0
\(535\) 3.00000 + 5.19615i 0.129701 + 0.224649i
\(536\) 0 0
\(537\) 0 0
\(538\) 31.0000 53.6936i 1.33650 2.31489i
\(539\) 35.0000 1.50756
\(540\) 0 0
\(541\) 3.00000 0.128980 0.0644900 0.997918i \(-0.479458\pi\)
0.0644900 + 0.997918i \(0.479458\pi\)
\(542\) −8.00000 + 13.8564i −0.343629 + 0.595184i
\(543\) 0 0
\(544\) −16.0000 27.7128i −0.685994 1.18818i
\(545\) −0.500000 0.866025i −0.0214176 0.0370965i
\(546\) 0 0
\(547\) −14.0000 + 24.2487i −0.598597 + 1.03680i 0.394432 + 0.918925i \(0.370941\pi\)
−0.993028 + 0.117875i \(0.962392\pi\)
\(548\) −24.0000 −1.02523
\(549\) 0 0
\(550\) 10.0000 0.426401
\(551\) 12.5000 21.6506i 0.532518 0.922348i
\(552\) 0 0
\(553\) 0 0
\(554\) −18.0000 31.1769i −0.764747 1.32458i
\(555\) 0 0
\(556\) 19.0000 32.9090i 0.805779 1.39565i
\(557\) 24.0000 1.01691 0.508456 0.861088i \(-0.330216\pi\)
0.508456 + 0.861088i \(0.330216\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −6.00000 10.3923i −0.253095 0.438373i
\(563\) −9.00000 15.5885i −0.379305 0.656975i 0.611656 0.791123i \(-0.290503\pi\)
−0.990961 + 0.134148i \(0.957170\pi\)
\(564\) 0 0
\(565\) 8.00000 13.8564i 0.336563 0.582943i
\(566\) −12.0000 −0.504398
\(567\) 0 0
\(568\) 0 0
\(569\) −1.50000 + 2.59808i −0.0628833 + 0.108917i −0.895753 0.444552i \(-0.853363\pi\)
0.832870 + 0.553469i \(0.186696\pi\)
\(570\) 0 0
\(571\) −2.50000 4.33013i −0.104622 0.181210i 0.808962 0.587861i \(-0.200030\pi\)
−0.913584 + 0.406651i \(0.866697\pi\)
\(572\) 20.0000 + 34.6410i 0.836242 + 1.44841i
\(573\) 0 0
\(574\) 0 0
\(575\) −6.00000 −0.250217
\(576\) 0 0
\(577\) −16.0000 −0.666089 −0.333044 0.942911i \(-0.608076\pi\)
−0.333044 + 0.942911i \(0.608076\pi\)
\(578\) −1.00000 + 1.73205i −0.0415945 + 0.0720438i
\(579\) 0 0
\(580\) 5.00000 + 8.66025i 0.207614 + 0.359597i
\(581\) 0 0
\(582\) 0 0
\(583\) −20.0000 + 34.6410i −0.828315 + 1.43468i
\(584\) 0 0
\(585\) 0 0
\(586\) 36.0000 1.48715
\(587\) 9.00000 15.5885i 0.371470 0.643404i −0.618322 0.785925i \(-0.712187\pi\)
0.989792 + 0.142520i \(0.0455206\pi\)
\(588\) 0 0
\(589\) −22.5000 38.9711i −0.927096 1.60578i
\(590\) −1.00000 1.73205i −0.0411693 0.0713074i
\(591\) 0 0
\(592\) −20.0000 + 34.6410i −0.821995 + 1.42374i
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.00000 + 3.46410i −0.0819232 + 0.141895i
\(597\) 0 0
\(598\) −24.0000 41.5692i −0.981433 1.69989i
\(599\) −8.50000 14.7224i −0.347301 0.601542i 0.638468 0.769648i \(-0.279568\pi\)
−0.985769 + 0.168106i \(0.946235\pi\)
\(600\) 0 0
\(601\) 9.50000 16.4545i 0.387513 0.671192i −0.604601 0.796528i \(-0.706668\pi\)
0.992114 + 0.125336i \(0.0400009\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) −17.0000 29.4449i −0.690009 1.19513i −0.971834 0.235665i \(-0.924273\pi\)
0.281826 0.959466i \(-0.409060\pi\)
\(608\) 20.0000 + 34.6410i 0.811107 + 1.40488i
\(609\) 0 0
\(610\) 2.00000 3.46410i 0.0809776 0.140257i
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 4.00000 0.161558 0.0807792 0.996732i \(-0.474259\pi\)
0.0807792 + 0.996732i \(0.474259\pi\)
\(614\) 10.0000 17.3205i 0.403567 0.698999i
\(615\) 0 0
\(616\) 0 0
\(617\) −12.0000 20.7846i −0.483102 0.836757i 0.516710 0.856161i \(-0.327157\pi\)
−0.999812 + 0.0194037i \(0.993823\pi\)
\(618\) 0 0
\(619\) 14.0000 24.2487i 0.562708 0.974638i −0.434551 0.900647i \(-0.643093\pi\)
0.997259 0.0739910i \(-0.0235736\pi\)
\(620\) 18.0000 0.722897
\(621\) 0 0
\(622\) −18.0000 −0.721734
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −4.00000 6.92820i −0.159872 0.276907i
\(627\) 0 0
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) −40.0000 −1.59490
\(630\) 0 0
\(631\) −17.0000 −0.676759 −0.338380 0.941010i \(-0.609879\pi\)
−0.338380 + 0.941010i \(0.609879\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.00000 + 3.46410i 0.0794301 + 0.137577i
\(635\) 8.00000 + 13.8564i 0.317470 + 0.549875i
\(636\) 0 0
\(637\) 14.0000 24.2487i 0.554700 0.960769i
\(638\) 50.0000 1.97952
\(639\) 0 0
\(640\) 0 0
\(641\) 1.50000 2.59808i 0.0592464 0.102618i −0.834881 0.550431i \(-0.814464\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(642\) 0 0
\(643\) −3.00000 5.19615i −0.118308 0.204916i 0.800789 0.598947i \(-0.204414\pi\)
−0.919097 + 0.394030i \(0.871080\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −20.0000 + 34.6410i −0.786889 + 1.36293i
\(647\) 10.0000 0.393141 0.196570 0.980490i \(-0.437020\pi\)
0.196570 + 0.980490i \(0.437020\pi\)
\(648\) 0 0
\(649\) −5.00000 −0.196267
\(650\) 4.00000 6.92820i 0.156893 0.271746i
\(651\) 0 0
\(652\) −8.00000 13.8564i −0.313304 0.542659i
\(653\) −4.00000 6.92820i −0.156532 0.271122i 0.777084 0.629397i \(-0.216698\pi\)
−0.933616 + 0.358276i \(0.883365\pi\)
\(654\) 0 0
\(655\) −7.50000 + 12.9904i −0.293049 + 0.507576i
\(656\) 28.0000 1.09322
\(657\) 0 0
\(658\) 0 0
\(659\) 22.0000 38.1051i 0.856998 1.48436i −0.0177803 0.999842i \(-0.505660\pi\)
0.874779 0.484523i \(-0.161007\pi\)
\(660\) 0 0
\(661\) −12.5000 21.6506i −0.486194 0.842112i 0.513680 0.857982i \(-0.328282\pi\)
−0.999874 + 0.0158695i \(0.994948\pi\)
\(662\) −21.0000 36.3731i −0.816188 1.41368i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −30.0000 −1.16160
\(668\) 12.0000 20.7846i 0.464294 0.804181i
\(669\) 0 0
\(670\) −6.00000 10.3923i −0.231800 0.401490i
\(671\) −5.00000 8.66025i −0.193023 0.334325i
\(672\) 0 0
\(673\) −21.0000 + 36.3731i −0.809491 + 1.40208i 0.103727 + 0.994606i \(0.466923\pi\)
−0.913217 + 0.407473i \(0.866410\pi\)
\(674\) 16.0000 0.616297
\(675\) 0 0
\(676\) 6.00000 0.230769
\(677\) 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i \(-0.796551\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 45.0000 77.9423i 1.72314 2.98456i
\(683\) −48.0000 −1.83667 −0.918334 0.395805i \(-0.870466\pi\)
−0.918334 + 0.395805i \(0.870466\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) −4.00000 6.92820i −0.152499 0.264135i
\(689\) 16.0000 + 27.7128i 0.609551 + 1.05577i
\(690\) 0 0
\(691\) −2.00000 + 3.46410i −0.0760836 + 0.131781i −0.901557 0.432660i \(-0.857575\pi\)
0.825473 + 0.564441i \(0.190908\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 40.0000 1.51838
\(695\) −9.50000 + 16.4545i −0.360356 + 0.624154i
\(696\) 0 0
\(697\) 14.0000 + 24.2487i 0.530288 + 0.918485i
\(698\) 13.0000 + 22.5167i 0.492057 + 0.852268i
\(699\) 0 0
\(700\) 0 0
\(701\) −19.0000 −0.717620 −0.358810 0.933411i \(-0.616817\pi\)
−0.358810 + 0.933411i \(0.616817\pi\)
\(702\) 0 0
\(703\) 50.0000 1.88579
\(704\) −20.0000 + 34.6410i −0.753778 + 1.30558i
\(705\) 0 0
\(706\) 18.0000 + 31.1769i 0.677439 + 1.17336i
\(707\) 0 0
\(708\) 0 0
\(709\) −11.0000 + 19.0526i −0.413114 + 0.715534i −0.995228 0.0975728i \(-0.968892\pi\)
0.582115 + 0.813107i \(0.302225\pi\)
\(710\) −2.00000 −0.0750587
\(711\) 0 0
\(712\) 0 0
\(713\) −27.0000 + 46.7654i −1.01116 + 1.75138i
\(714\) 0 0
\(715\) −10.0000 17.3205i −0.373979 0.647750i
\(716\) 23.0000 + 39.8372i 0.859550 + 1.48878i
\(717\) 0 0
\(718\) 27.0000 46.7654i 1.00763 1.74527i
\(719\) −27.0000 −1.00693 −0.503465 0.864016i \(-0.667942\pi\)
−0.503465 + 0.864016i \(0.667942\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 6.00000 10.3923i 0.223297 0.386762i
\(723\) 0 0
\(724\) 25.0000 + 43.3013i 0.929118 + 1.60928i
\(725\) −2.50000 4.33013i −0.0928477 0.160817i
\(726\) 0 0
\(727\) −22.0000 + 38.1051i −0.815935 + 1.41324i 0.0927199 + 0.995692i \(0.470444\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −16.0000 −0.592187
\(731\) 4.00000 6.92820i 0.147945 0.256249i
\(732\) 0 0
\(733\) 23.0000 + 39.8372i 0.849524 + 1.47142i 0.881633 + 0.471935i \(0.156444\pi\)
−0.0321090 + 0.999484i \(0.510222\pi\)
\(734\) 18.0000 + 31.1769i 0.664392 + 1.15076i
\(735\) 0 0
\(736\) 24.0000 41.5692i 0.884652 1.53226i
\(737\) −30.0000 −1.10506
\(738\) 0 0
\(739\) −35.0000 −1.28750 −0.643748 0.765238i \(-0.722621\pi\)
−0.643748 + 0.765238i \(0.722621\pi\)
\(740\) −10.0000 + 17.3205i −0.367607 + 0.636715i
\(741\) 0 0
\(742\) 0 0
\(743\) −2.00000 3.46410i −0.0733729 0.127086i 0.827005 0.562195i \(-0.190043\pi\)
−0.900378 + 0.435110i \(0.856710\pi\)
\(744\) 0 0
\(745\) 1.00000 1.73205i 0.0366372 0.0634574i
\(746\) −32.0000 −1.17160
\(747\) 0 0
\(748\) −40.0000 −1.46254
\(749\) 0 0
\(750\) 0 0
\(751\) 16.0000 + 27.7128i 0.583848 + 1.01125i 0.995018 + 0.0996961i \(0.0317870\pi\)
−0.411170 + 0.911559i \(0.634880\pi\)
\(752\) −4.00000 6.92820i −0.145865 0.252646i
\(753\) 0 0
\(754\) 20.0000 34.6410i 0.728357 1.26155i
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) 4.00000 6.92820i 0.145287 0.251644i
\(759\) 0 0
\(760\) 0 0
\(761\) −13.5000 23.3827i −0.489375 0.847622i 0.510551 0.859848i \(-0.329442\pi\)
−0.999925 + 0.0122260i \(0.996108\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.00000 −0.0723575
\(765\) 0 0
\(766\) −72.0000 −2.60147
\(767\) −2.00000 + 3.46410i −0.0722158 + 0.125081i
\(768\) 0 0
\(769\) −2.50000 4.33013i −0.0901523 0.156148i 0.817423 0.576038i \(-0.195402\pi\)
−0.907575 + 0.419890i \(0.862069\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −26.0000 + 45.0333i −0.935760 + 1.62078i
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) −9.00000 −0.323290
\(776\) 0 0
\(777\) 0 0
\(778\) −6.00000 10.3923i −0.215110 0.372582i
\(779\) −17.5000 30.3109i −0.627003 1.08600i
\(780\) 0 0
\(781\) −2.50000 + 4.33013i −0.0894570 + 0.154944i
\(782\) 48.0000 1.71648
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 1.00000 1.73205i 0.0356915 0.0618195i
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 12.0000 + 20.7846i 0.427482 + 0.740421i
\(789\) 0 0
\(790\) −12.0000 + 20.7846i −0.426941 + 0.739483i
\(791\) 0 0
\(792\) 0 0
\(793\)