Defining parameters
Level: | \( N \) | \(=\) | \( 405 = 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 405.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(405, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 28 | 38 |
Cusp forms | 42 | 20 | 22 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(405, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
405.2.b.a | $4$ | $3.234$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q-\beta _{2}q^{2}+(-2+\beta _{1}+\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\) |
405.2.b.b | $4$ | $3.234$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(0\) | \(0\) | \(3\) | \(0\) | \(q-\beta _{2}q^{2}+(-2+\beta _{1}+\beta _{3})q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\) |
405.2.b.c | $4$ | $3.234$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{1}+\beta _{2}-\beta _{3})q^{5}+\cdots\) |
405.2.b.d | $4$ | $3.234$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{1}-\beta _{2}-\beta _{3})q^{5}+\cdots\) |
405.2.b.e | $4$ | $3.234$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{5}+\beta _{3}q^{7}-2\beta _{1}q^{8}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(405, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(405, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)