Properties

Label 4046.2.a.p.1.1
Level $4046$
Weight $2$
Character 4046.1
Self dual yes
Analytic conductor $32.307$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4046,2,Mod(1,4046)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4046.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4046, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4046 = 2 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4046.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,1,1,-4,1,1,1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3074726578\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4046.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -4.00000 q^{5} +1.00000 q^{6} +1.00000 q^{7} +1.00000 q^{8} -2.00000 q^{9} -4.00000 q^{10} +1.00000 q^{12} -2.00000 q^{13} +1.00000 q^{14} -4.00000 q^{15} +1.00000 q^{16} -2.00000 q^{18} +3.00000 q^{19} -4.00000 q^{20} +1.00000 q^{21} -4.00000 q^{23} +1.00000 q^{24} +11.0000 q^{25} -2.00000 q^{26} -5.00000 q^{27} +1.00000 q^{28} -1.00000 q^{29} -4.00000 q^{30} +9.00000 q^{31} +1.00000 q^{32} -4.00000 q^{35} -2.00000 q^{36} +10.0000 q^{37} +3.00000 q^{38} -2.00000 q^{39} -4.00000 q^{40} -8.00000 q^{41} +1.00000 q^{42} +10.0000 q^{43} +8.00000 q^{45} -4.00000 q^{46} +13.0000 q^{47} +1.00000 q^{48} +1.00000 q^{49} +11.0000 q^{50} -2.00000 q^{52} +9.00000 q^{53} -5.00000 q^{54} +1.00000 q^{56} +3.00000 q^{57} -1.00000 q^{58} +5.00000 q^{59} -4.00000 q^{60} -8.00000 q^{61} +9.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} +8.00000 q^{65} +8.00000 q^{67} -4.00000 q^{69} -4.00000 q^{70} -2.00000 q^{71} -2.00000 q^{72} -2.00000 q^{73} +10.0000 q^{74} +11.0000 q^{75} +3.00000 q^{76} -2.00000 q^{78} -6.00000 q^{79} -4.00000 q^{80} +1.00000 q^{81} -8.00000 q^{82} -3.00000 q^{83} +1.00000 q^{84} +10.0000 q^{86} -1.00000 q^{87} -8.00000 q^{89} +8.00000 q^{90} -2.00000 q^{91} -4.00000 q^{92} +9.00000 q^{93} +13.0000 q^{94} -12.0000 q^{95} +1.00000 q^{96} +18.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 1.00000 0.500000
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) −2.00000 −0.666667
\(10\) −4.00000 −1.26491
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 1.00000 0.267261
\(15\) −4.00000 −1.03280
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −2.00000 −0.471405
\(19\) 3.00000 0.688247 0.344124 0.938924i \(-0.388176\pi\)
0.344124 + 0.938924i \(0.388176\pi\)
\(20\) −4.00000 −0.894427
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 1.00000 0.204124
\(25\) 11.0000 2.20000
\(26\) −2.00000 −0.392232
\(27\) −5.00000 −0.962250
\(28\) 1.00000 0.188982
\(29\) −1.00000 −0.185695 −0.0928477 0.995680i \(-0.529597\pi\)
−0.0928477 + 0.995680i \(0.529597\pi\)
\(30\) −4.00000 −0.730297
\(31\) 9.00000 1.61645 0.808224 0.588875i \(-0.200429\pi\)
0.808224 + 0.588875i \(0.200429\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) −2.00000 −0.333333
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 3.00000 0.486664
\(39\) −2.00000 −0.320256
\(40\) −4.00000 −0.632456
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 1.00000 0.154303
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 8.00000 1.19257
\(46\) −4.00000 −0.589768
\(47\) 13.0000 1.89624 0.948122 0.317905i \(-0.102979\pi\)
0.948122 + 0.317905i \(0.102979\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 0.142857
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 9.00000 1.23625 0.618123 0.786082i \(-0.287894\pi\)
0.618123 + 0.786082i \(0.287894\pi\)
\(54\) −5.00000 −0.680414
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) 3.00000 0.397360
\(58\) −1.00000 −0.131306
\(59\) 5.00000 0.650945 0.325472 0.945552i \(-0.394477\pi\)
0.325472 + 0.945552i \(0.394477\pi\)
\(60\) −4.00000 −0.516398
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 9.00000 1.14300
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 8.00000 0.992278
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) −4.00000 −0.478091
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) −2.00000 −0.235702
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 10.0000 1.16248
\(75\) 11.0000 1.27017
\(76\) 3.00000 0.344124
\(77\) 0 0
\(78\) −2.00000 −0.226455
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) −8.00000 −0.883452
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 1.00000 0.109109
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) −1.00000 −0.107211
\(88\) 0 0
\(89\) −8.00000 −0.847998 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(90\) 8.00000 0.843274
\(91\) −2.00000 −0.209657
\(92\) −4.00000 −0.417029
\(93\) 9.00000 0.933257
\(94\) 13.0000 1.34085
\(95\) −12.0000 −1.23117
\(96\) 1.00000 0.102062
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 11.0000 1.10000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 7.00000 0.689730 0.344865 0.938652i \(-0.387925\pi\)
0.344865 + 0.938652i \(0.387925\pi\)
\(104\) −2.00000 −0.196116
\(105\) −4.00000 −0.390360
\(106\) 9.00000 0.874157
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) −5.00000 −0.481125
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 1.00000 0.0944911
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 3.00000 0.280976
\(115\) 16.0000 1.49201
\(116\) −1.00000 −0.0928477
\(117\) 4.00000 0.369800
\(118\) 5.00000 0.460287
\(119\) 0 0
\(120\) −4.00000 −0.365148
\(121\) −11.0000 −1.00000
\(122\) −8.00000 −0.724286
\(123\) −8.00000 −0.721336
\(124\) 9.00000 0.808224
\(125\) −24.0000 −2.14663
\(126\) −2.00000 −0.178174
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 10.0000 0.880451
\(130\) 8.00000 0.701646
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 3.00000 0.260133
\(134\) 8.00000 0.691095
\(135\) 20.0000 1.72133
\(136\) 0 0
\(137\) 17.0000 1.45241 0.726204 0.687479i \(-0.241283\pi\)
0.726204 + 0.687479i \(0.241283\pi\)
\(138\) −4.00000 −0.340503
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −4.00000 −0.338062
\(141\) 13.0000 1.09480
\(142\) −2.00000 −0.167836
\(143\) 0 0
\(144\) −2.00000 −0.166667
\(145\) 4.00000 0.332182
\(146\) −2.00000 −0.165521
\(147\) 1.00000 0.0824786
\(148\) 10.0000 0.821995
\(149\) 13.0000 1.06500 0.532501 0.846430i \(-0.321252\pi\)
0.532501 + 0.846430i \(0.321252\pi\)
\(150\) 11.0000 0.898146
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 3.00000 0.243332
\(153\) 0 0
\(154\) 0 0
\(155\) −36.0000 −2.89159
\(156\) −2.00000 −0.160128
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) −6.00000 −0.477334
\(159\) 9.00000 0.713746
\(160\) −4.00000 −0.316228
\(161\) −4.00000 −0.315244
\(162\) 1.00000 0.0785674
\(163\) −2.00000 −0.156652 −0.0783260 0.996928i \(-0.524958\pi\)
−0.0783260 + 0.996928i \(0.524958\pi\)
\(164\) −8.00000 −0.624695
\(165\) 0 0
\(166\) −3.00000 −0.232845
\(167\) 17.0000 1.31550 0.657750 0.753237i \(-0.271508\pi\)
0.657750 + 0.753237i \(0.271508\pi\)
\(168\) 1.00000 0.0771517
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 10.0000 0.762493
\(173\) 4.00000 0.304114 0.152057 0.988372i \(-0.451410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) 5.00000 0.375823
\(178\) −8.00000 −0.599625
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 8.00000 0.596285
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −2.00000 −0.148250
\(183\) −8.00000 −0.591377
\(184\) −4.00000 −0.294884
\(185\) −40.0000 −2.94086
\(186\) 9.00000 0.659912
\(187\) 0 0
\(188\) 13.0000 0.948122
\(189\) −5.00000 −0.363696
\(190\) −12.0000 −0.870572
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 1.00000 0.0721688
\(193\) 23.0000 1.65558 0.827788 0.561041i \(-0.189599\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 18.0000 1.29232
\(195\) 8.00000 0.572892
\(196\) 1.00000 0.0714286
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 11.0000 0.777817
\(201\) 8.00000 0.564276
\(202\) −6.00000 −0.422159
\(203\) −1.00000 −0.0701862
\(204\) 0 0
\(205\) 32.0000 2.23498
\(206\) 7.00000 0.487713
\(207\) 8.00000 0.556038
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) 26.0000 1.78991 0.894957 0.446153i \(-0.147206\pi\)
0.894957 + 0.446153i \(0.147206\pi\)
\(212\) 9.00000 0.618123
\(213\) −2.00000 −0.137038
\(214\) −8.00000 −0.546869
\(215\) −40.0000 −2.72798
\(216\) −5.00000 −0.340207
\(217\) 9.00000 0.610960
\(218\) 19.0000 1.28684
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) 10.0000 0.671156
\(223\) −9.00000 −0.602685 −0.301342 0.953516i \(-0.597435\pi\)
−0.301342 + 0.953516i \(0.597435\pi\)
\(224\) 1.00000 0.0668153
\(225\) −22.0000 −1.46667
\(226\) −2.00000 −0.133038
\(227\) −11.0000 −0.730096 −0.365048 0.930989i \(-0.618947\pi\)
−0.365048 + 0.930989i \(0.618947\pi\)
\(228\) 3.00000 0.198680
\(229\) 26.0000 1.71813 0.859064 0.511868i \(-0.171046\pi\)
0.859064 + 0.511868i \(0.171046\pi\)
\(230\) 16.0000 1.05501
\(231\) 0 0
\(232\) −1.00000 −0.0656532
\(233\) 25.0000 1.63780 0.818902 0.573933i \(-0.194583\pi\)
0.818902 + 0.573933i \(0.194583\pi\)
\(234\) 4.00000 0.261488
\(235\) −52.0000 −3.39211
\(236\) 5.00000 0.325472
\(237\) −6.00000 −0.389742
\(238\) 0 0
\(239\) 14.0000 0.905585 0.452792 0.891616i \(-0.350428\pi\)
0.452792 + 0.891616i \(0.350428\pi\)
\(240\) −4.00000 −0.258199
\(241\) −20.0000 −1.28831 −0.644157 0.764894i \(-0.722792\pi\)
−0.644157 + 0.764894i \(0.722792\pi\)
\(242\) −11.0000 −0.707107
\(243\) 16.0000 1.02640
\(244\) −8.00000 −0.512148
\(245\) −4.00000 −0.255551
\(246\) −8.00000 −0.510061
\(247\) −6.00000 −0.381771
\(248\) 9.00000 0.571501
\(249\) −3.00000 −0.190117
\(250\) −24.0000 −1.51789
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 10.0000 0.622573
\(259\) 10.0000 0.621370
\(260\) 8.00000 0.496139
\(261\) 2.00000 0.123797
\(262\) −7.00000 −0.432461
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) −36.0000 −2.21146
\(266\) 3.00000 0.183942
\(267\) −8.00000 −0.489592
\(268\) 8.00000 0.488678
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 20.0000 1.21716
\(271\) −9.00000 −0.546711 −0.273356 0.961913i \(-0.588134\pi\)
−0.273356 + 0.961913i \(0.588134\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 17.0000 1.02701
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) 17.0000 1.02143 0.510716 0.859750i \(-0.329381\pi\)
0.510716 + 0.859750i \(0.329381\pi\)
\(278\) −4.00000 −0.239904
\(279\) −18.0000 −1.07763
\(280\) −4.00000 −0.239046
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 13.0000 0.774139
\(283\) −9.00000 −0.534994 −0.267497 0.963559i \(-0.586197\pi\)
−0.267497 + 0.963559i \(0.586197\pi\)
\(284\) −2.00000 −0.118678
\(285\) −12.0000 −0.710819
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) −2.00000 −0.117851
\(289\) 0 0
\(290\) 4.00000 0.234888
\(291\) 18.0000 1.05518
\(292\) −2.00000 −0.117041
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 1.00000 0.0583212
\(295\) −20.0000 −1.16445
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) 13.0000 0.753070
\(299\) 8.00000 0.462652
\(300\) 11.0000 0.635085
\(301\) 10.0000 0.576390
\(302\) −2.00000 −0.115087
\(303\) −6.00000 −0.344691
\(304\) 3.00000 0.172062
\(305\) 32.0000 1.83231
\(306\) 0 0
\(307\) −35.0000 −1.99756 −0.998778 0.0494267i \(-0.984261\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) −36.0000 −2.04466
\(311\) −7.00000 −0.396934 −0.198467 0.980108i \(-0.563596\pi\)
−0.198467 + 0.980108i \(0.563596\pi\)
\(312\) −2.00000 −0.113228
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) −14.0000 −0.790066
\(315\) 8.00000 0.450749
\(316\) −6.00000 −0.337526
\(317\) −11.0000 −0.617822 −0.308911 0.951091i \(-0.599964\pi\)
−0.308911 + 0.951091i \(0.599964\pi\)
\(318\) 9.00000 0.504695
\(319\) 0 0
\(320\) −4.00000 −0.223607
\(321\) −8.00000 −0.446516
\(322\) −4.00000 −0.222911
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −22.0000 −1.22034
\(326\) −2.00000 −0.110770
\(327\) 19.0000 1.05070
\(328\) −8.00000 −0.441726
\(329\) 13.0000 0.716713
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) −3.00000 −0.164646
\(333\) −20.0000 −1.09599
\(334\) 17.0000 0.930199
\(335\) −32.0000 −1.74835
\(336\) 1.00000 0.0545545
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) −9.00000 −0.489535
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 0 0
\(342\) −6.00000 −0.324443
\(343\) 1.00000 0.0539949
\(344\) 10.0000 0.539164
\(345\) 16.0000 0.861411
\(346\) 4.00000 0.215041
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) −1.00000 −0.0536056
\(349\) 4.00000 0.214115 0.107058 0.994253i \(-0.465857\pi\)
0.107058 + 0.994253i \(0.465857\pi\)
\(350\) 11.0000 0.587975
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 5.00000 0.265747
\(355\) 8.00000 0.424596
\(356\) −8.00000 −0.423999
\(357\) 0 0
\(358\) −18.0000 −0.951330
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 8.00000 0.421637
\(361\) −10.0000 −0.526316
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) −2.00000 −0.104828
\(365\) 8.00000 0.418739
\(366\) −8.00000 −0.418167
\(367\) −33.0000 −1.72259 −0.861293 0.508109i \(-0.830345\pi\)
−0.861293 + 0.508109i \(0.830345\pi\)
\(368\) −4.00000 −0.208514
\(369\) 16.0000 0.832927
\(370\) −40.0000 −2.07950
\(371\) 9.00000 0.467257
\(372\) 9.00000 0.466628
\(373\) −11.0000 −0.569558 −0.284779 0.958593i \(-0.591920\pi\)
−0.284779 + 0.958593i \(0.591920\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 13.0000 0.670424
\(377\) 2.00000 0.103005
\(378\) −5.00000 −0.257172
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) −12.0000 −0.615587
\(381\) −4.00000 −0.204926
\(382\) 6.00000 0.306987
\(383\) 11.0000 0.562074 0.281037 0.959697i \(-0.409322\pi\)
0.281037 + 0.959697i \(0.409322\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 23.0000 1.17067
\(387\) −20.0000 −1.01666
\(388\) 18.0000 0.913812
\(389\) 15.0000 0.760530 0.380265 0.924878i \(-0.375833\pi\)
0.380265 + 0.924878i \(0.375833\pi\)
\(390\) 8.00000 0.405096
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) −7.00000 −0.353103
\(394\) −3.00000 −0.151138
\(395\) 24.0000 1.20757
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) −16.0000 −0.802008
\(399\) 3.00000 0.150188
\(400\) 11.0000 0.550000
\(401\) −15.0000 −0.749064 −0.374532 0.927214i \(-0.622197\pi\)
−0.374532 + 0.927214i \(0.622197\pi\)
\(402\) 8.00000 0.399004
\(403\) −18.0000 −0.896644
\(404\) −6.00000 −0.298511
\(405\) −4.00000 −0.198762
\(406\) −1.00000 −0.0496292
\(407\) 0 0
\(408\) 0 0
\(409\) 8.00000 0.395575 0.197787 0.980245i \(-0.436624\pi\)
0.197787 + 0.980245i \(0.436624\pi\)
\(410\) 32.0000 1.58037
\(411\) 17.0000 0.838548
\(412\) 7.00000 0.344865
\(413\) 5.00000 0.246034
\(414\) 8.00000 0.393179
\(415\) 12.0000 0.589057
\(416\) −2.00000 −0.0980581
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 4.00000 0.195413 0.0977064 0.995215i \(-0.468849\pi\)
0.0977064 + 0.995215i \(0.468849\pi\)
\(420\) −4.00000 −0.195180
\(421\) −15.0000 −0.731055 −0.365528 0.930800i \(-0.619111\pi\)
−0.365528 + 0.930800i \(0.619111\pi\)
\(422\) 26.0000 1.26566
\(423\) −26.0000 −1.26416
\(424\) 9.00000 0.437079
\(425\) 0 0
\(426\) −2.00000 −0.0969003
\(427\) −8.00000 −0.387147
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) −40.0000 −1.92897
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) −5.00000 −0.240563
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 9.00000 0.432014
\(435\) 4.00000 0.191785
\(436\) 19.0000 0.909935
\(437\) −12.0000 −0.574038
\(438\) −2.00000 −0.0955637
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) 2.00000 0.0950229 0.0475114 0.998871i \(-0.484871\pi\)
0.0475114 + 0.998871i \(0.484871\pi\)
\(444\) 10.0000 0.474579
\(445\) 32.0000 1.51695
\(446\) −9.00000 −0.426162
\(447\) 13.0000 0.614879
\(448\) 1.00000 0.0472456
\(449\) −33.0000 −1.55737 −0.778683 0.627417i \(-0.784112\pi\)
−0.778683 + 0.627417i \(0.784112\pi\)
\(450\) −22.0000 −1.03709
\(451\) 0 0
\(452\) −2.00000 −0.0940721
\(453\) −2.00000 −0.0939682
\(454\) −11.0000 −0.516256
\(455\) 8.00000 0.375046
\(456\) 3.00000 0.140488
\(457\) 19.0000 0.888783 0.444391 0.895833i \(-0.353420\pi\)
0.444391 + 0.895833i \(0.353420\pi\)
\(458\) 26.0000 1.21490
\(459\) 0 0
\(460\) 16.0000 0.746004
\(461\) 42.0000 1.95614 0.978068 0.208288i \(-0.0667892\pi\)
0.978068 + 0.208288i \(0.0667892\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −36.0000 −1.66946
\(466\) 25.0000 1.15810
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 4.00000 0.184900
\(469\) 8.00000 0.369406
\(470\) −52.0000 −2.39858
\(471\) −14.0000 −0.645086
\(472\) 5.00000 0.230144
\(473\) 0 0
\(474\) −6.00000 −0.275589
\(475\) 33.0000 1.51414
\(476\) 0 0
\(477\) −18.0000 −0.824163
\(478\) 14.0000 0.640345
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) −4.00000 −0.182574
\(481\) −20.0000 −0.911922
\(482\) −20.0000 −0.910975
\(483\) −4.00000 −0.182006
\(484\) −11.0000 −0.500000
\(485\) −72.0000 −3.26935
\(486\) 16.0000 0.725775
\(487\) 34.0000 1.54069 0.770344 0.637629i \(-0.220085\pi\)
0.770344 + 0.637629i \(0.220085\pi\)
\(488\) −8.00000 −0.362143
\(489\) −2.00000 −0.0904431
\(490\) −4.00000 −0.180702
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) −8.00000 −0.360668
\(493\) 0 0
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) 9.00000 0.404112
\(497\) −2.00000 −0.0897123
\(498\) −3.00000 −0.134433
\(499\) 30.0000 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(500\) −24.0000 −1.07331
\(501\) 17.0000 0.759504
\(502\) 0 0
\(503\) −33.0000 −1.47140 −0.735699 0.677309i \(-0.763146\pi\)
−0.735699 + 0.677309i \(0.763146\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 24.0000 1.06799
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) −4.00000 −0.177471
\(509\) −4.00000 −0.177297 −0.0886484 0.996063i \(-0.528255\pi\)
−0.0886484 + 0.996063i \(0.528255\pi\)
\(510\) 0 0
\(511\) −2.00000 −0.0884748
\(512\) 1.00000 0.0441942
\(513\) −15.0000 −0.662266
\(514\) 30.0000 1.32324
\(515\) −28.0000 −1.23383
\(516\) 10.0000 0.440225
\(517\) 0 0
\(518\) 10.0000 0.439375
\(519\) 4.00000 0.175581
\(520\) 8.00000 0.350823
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 2.00000 0.0875376
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) −7.00000 −0.305796
\(525\) 11.0000 0.480079
\(526\) 16.0000 0.697633
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −36.0000 −1.56374
\(531\) −10.0000 −0.433963
\(532\) 3.00000 0.130066
\(533\) 16.0000 0.693037
\(534\) −8.00000 −0.346194
\(535\) 32.0000 1.38348
\(536\) 8.00000 0.345547
\(537\) −18.0000 −0.776757
\(538\) 18.0000 0.776035
\(539\) 0 0
\(540\) 20.0000 0.860663
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) −9.00000 −0.386583
\(543\) 0 0
\(544\) 0 0
\(545\) −76.0000 −3.25548
\(546\) −2.00000 −0.0855921
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 17.0000 0.726204
\(549\) 16.0000 0.682863
\(550\) 0 0
\(551\) −3.00000 −0.127804
\(552\) −4.00000 −0.170251
\(553\) −6.00000 −0.255146
\(554\) 17.0000 0.722261
\(555\) −40.0000 −1.69791
\(556\) −4.00000 −0.169638
\(557\) −34.0000 −1.44063 −0.720313 0.693649i \(-0.756002\pi\)
−0.720313 + 0.693649i \(0.756002\pi\)
\(558\) −18.0000 −0.762001
\(559\) −20.0000 −0.845910
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 2.00000 0.0843649
\(563\) 9.00000 0.379305 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(564\) 13.0000 0.547399
\(565\) 8.00000 0.336563
\(566\) −9.00000 −0.378298
\(567\) 1.00000 0.0419961
\(568\) −2.00000 −0.0839181
\(569\) −39.0000 −1.63497 −0.817483 0.575953i \(-0.804631\pi\)
−0.817483 + 0.575953i \(0.804631\pi\)
\(570\) −12.0000 −0.502625
\(571\) 42.0000 1.75765 0.878823 0.477149i \(-0.158330\pi\)
0.878823 + 0.477149i \(0.158330\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) −8.00000 −0.333914
\(575\) −44.0000 −1.83493
\(576\) −2.00000 −0.0833333
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) 23.0000 0.955847
\(580\) 4.00000 0.166091
\(581\) −3.00000 −0.124461
\(582\) 18.0000 0.746124
\(583\) 0 0
\(584\) −2.00000 −0.0827606
\(585\) −16.0000 −0.661519
\(586\) 12.0000 0.495715
\(587\) −11.0000 −0.454019 −0.227009 0.973893i \(-0.572895\pi\)
−0.227009 + 0.973893i \(0.572895\pi\)
\(588\) 1.00000 0.0412393
\(589\) 27.0000 1.11252
\(590\) −20.0000 −0.823387
\(591\) −3.00000 −0.123404
\(592\) 10.0000 0.410997
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 13.0000 0.532501
\(597\) −16.0000 −0.654836
\(598\) 8.00000 0.327144
\(599\) 38.0000 1.55264 0.776319 0.630340i \(-0.217085\pi\)
0.776319 + 0.630340i \(0.217085\pi\)
\(600\) 11.0000 0.449073
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 10.0000 0.407570
\(603\) −16.0000 −0.651570
\(604\) −2.00000 −0.0813788
\(605\) 44.0000 1.78885
\(606\) −6.00000 −0.243733
\(607\) 31.0000 1.25825 0.629126 0.777304i \(-0.283413\pi\)
0.629126 + 0.777304i \(0.283413\pi\)
\(608\) 3.00000 0.121666
\(609\) −1.00000 −0.0405220
\(610\) 32.0000 1.29564
\(611\) −26.0000 −1.05185
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) −35.0000 −1.41249
\(615\) 32.0000 1.29036
\(616\) 0 0
\(617\) −3.00000 −0.120775 −0.0603877 0.998175i \(-0.519234\pi\)
−0.0603877 + 0.998175i \(0.519234\pi\)
\(618\) 7.00000 0.281581
\(619\) −35.0000 −1.40677 −0.703384 0.710810i \(-0.748329\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(620\) −36.0000 −1.44579
\(621\) 20.0000 0.802572
\(622\) −7.00000 −0.280674
\(623\) −8.00000 −0.320513
\(624\) −2.00000 −0.0800641
\(625\) 41.0000 1.64000
\(626\) 6.00000 0.239808
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 0 0
\(630\) 8.00000 0.318728
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) −6.00000 −0.238667
\(633\) 26.0000 1.03341
\(634\) −11.0000 −0.436866
\(635\) 16.0000 0.634941
\(636\) 9.00000 0.356873
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 4.00000 0.158238
\(640\) −4.00000 −0.158114
\(641\) 13.0000 0.513469 0.256735 0.966482i \(-0.417353\pi\)
0.256735 + 0.966482i \(0.417353\pi\)
\(642\) −8.00000 −0.315735
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) −4.00000 −0.157622
\(645\) −40.0000 −1.57500
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −22.0000 −0.862911
\(651\) 9.00000 0.352738
\(652\) −2.00000 −0.0783260
\(653\) 23.0000 0.900060 0.450030 0.893014i \(-0.351413\pi\)
0.450030 + 0.893014i \(0.351413\pi\)
\(654\) 19.0000 0.742959
\(655\) 28.0000 1.09405
\(656\) −8.00000 −0.312348
\(657\) 4.00000 0.156055
\(658\) 13.0000 0.506793
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) −12.0000 −0.466393
\(663\) 0 0
\(664\) −3.00000 −0.116423
\(665\) −12.0000 −0.465340
\(666\) −20.0000 −0.774984
\(667\) 4.00000 0.154881
\(668\) 17.0000 0.657750
\(669\) −9.00000 −0.347960
\(670\) −32.0000 −1.23627
\(671\) 0 0
\(672\) 1.00000 0.0385758
\(673\) 37.0000 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(674\) 5.00000 0.192593
\(675\) −55.0000 −2.11695
\(676\) −9.00000 −0.346154
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) −2.00000 −0.0768095
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) −11.0000 −0.421521
\(682\) 0 0
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) −6.00000 −0.229416
\(685\) −68.0000 −2.59815
\(686\) 1.00000 0.0381802
\(687\) 26.0000 0.991962
\(688\) 10.0000 0.381246
\(689\) −18.0000 −0.685745
\(690\) 16.0000 0.609110
\(691\) −37.0000 −1.40755 −0.703773 0.710425i \(-0.748503\pi\)
−0.703773 + 0.710425i \(0.748503\pi\)
\(692\) 4.00000 0.152057
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 16.0000 0.606915
\(696\) −1.00000 −0.0379049
\(697\) 0 0
\(698\) 4.00000 0.151402
\(699\) 25.0000 0.945587
\(700\) 11.0000 0.415761
\(701\) −29.0000 −1.09531 −0.547657 0.836703i \(-0.684480\pi\)
−0.547657 + 0.836703i \(0.684480\pi\)
\(702\) 10.0000 0.377426
\(703\) 30.0000 1.13147
\(704\) 0 0
\(705\) −52.0000 −1.95843
\(706\) −24.0000 −0.903252
\(707\) −6.00000 −0.225653
\(708\) 5.00000 0.187912
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 8.00000 0.300235
\(711\) 12.0000 0.450035
\(712\) −8.00000 −0.299813
\(713\) −36.0000 −1.34821
\(714\) 0 0
\(715\) 0 0
\(716\) −18.0000 −0.672692
\(717\) 14.0000 0.522840
\(718\) 4.00000 0.149279
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 8.00000 0.298142
\(721\) 7.00000 0.260694
\(722\) −10.0000 −0.372161
\(723\) −20.0000 −0.743808
\(724\) 0 0
\(725\) −11.0000 −0.408530
\(726\) −11.0000 −0.408248
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 13.0000 0.481481
\(730\) 8.00000 0.296093
\(731\) 0 0
\(732\) −8.00000 −0.295689
\(733\) −24.0000 −0.886460 −0.443230 0.896408i \(-0.646168\pi\)
−0.443230 + 0.896408i \(0.646168\pi\)
\(734\) −33.0000 −1.21805
\(735\) −4.00000 −0.147542
\(736\) −4.00000 −0.147442
\(737\) 0 0
\(738\) 16.0000 0.588968
\(739\) 30.0000 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(740\) −40.0000 −1.47043
\(741\) −6.00000 −0.220416
\(742\) 9.00000 0.330400
\(743\) 28.0000 1.02722 0.513610 0.858024i \(-0.328308\pi\)
0.513610 + 0.858024i \(0.328308\pi\)
\(744\) 9.00000 0.329956
\(745\) −52.0000 −1.90513
\(746\) −11.0000 −0.402739
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −8.00000 −0.292314
\(750\) −24.0000 −0.876356
\(751\) −30.0000 −1.09472 −0.547358 0.836899i \(-0.684366\pi\)
−0.547358 + 0.836899i \(0.684366\pi\)
\(752\) 13.0000 0.474061
\(753\) 0 0
\(754\) 2.00000 0.0728357
\(755\) 8.00000 0.291150
\(756\) −5.00000 −0.181848
\(757\) −33.0000 −1.19941 −0.599703 0.800223i \(-0.704714\pi\)
−0.599703 + 0.800223i \(0.704714\pi\)
\(758\) 28.0000 1.01701
\(759\) 0 0
\(760\) −12.0000 −0.435286
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) −4.00000 −0.144905
\(763\) 19.0000 0.687846
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 11.0000 0.397446
\(767\) −10.0000 −0.361079
\(768\) 1.00000 0.0360844
\(769\) 4.00000 0.144244 0.0721218 0.997396i \(-0.477023\pi\)
0.0721218 + 0.997396i \(0.477023\pi\)
\(770\) 0 0
\(771\) 30.0000 1.08042
\(772\) 23.0000 0.827788
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −20.0000 −0.718885
\(775\) 99.0000 3.55618
\(776\) 18.0000 0.646162
\(777\) 10.0000 0.358748
\(778\) 15.0000 0.537776
\(779\) −24.0000 −0.859889
\(780\) 8.00000 0.286446
\(781\) 0 0
\(782\) 0 0
\(783\) 5.00000 0.178685
\(784\) 1.00000 0.0357143
\(785\) 56.0000 1.99873
\(786\) −7.00000 −0.249682
\(787\) −20.0000 −0.712923 −0.356462 0.934310i \(-0.616017\pi\)
−0.356462 + 0.934310i \(0.616017\pi\)
\(788\) −3.00000 −0.106871
\(789\) 16.0000 0.569615
\(790\) 24.0000 0.853882
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) 8.00000 0.283909
\(795\) −36.0000 −1.27679
\(796\) −16.0000 −0.567105
\(797\) 48.0000 1.70025 0.850124 0.526583i \(-0.176527\pi\)
0.850124 + 0.526583i \(0.176527\pi\)
\(798\) 3.00000 0.106199
\(799\) 0 0
\(800\) 11.0000 0.388909
\(801\) 16.0000 0.565332
\(802\) −15.0000 −0.529668
\(803\) 0 0
\(804\) 8.00000 0.282138
\(805\) 16.0000 0.563926
\(806\) −18.0000 −0.634023
\(807\) 18.0000 0.633630
\(808\) −6.00000 −0.211079
\(809\) −38.0000 −1.33601 −0.668004 0.744157i \(-0.732851\pi\)
−0.668004 + 0.744157i \(0.732851\pi\)
\(810\) −4.00000 −0.140546
\(811\) 43.0000 1.50993 0.754967 0.655763i \(-0.227653\pi\)
0.754967 + 0.655763i \(0.227653\pi\)
\(812\) −1.00000 −0.0350931
\(813\) −9.00000 −0.315644
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 30.0000 1.04957
\(818\) 8.00000 0.279713
\(819\) 4.00000 0.139771
\(820\) 32.0000 1.11749
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 17.0000 0.592943
\(823\) −54.0000 −1.88232 −0.941161 0.337959i \(-0.890263\pi\)
−0.941161 + 0.337959i \(0.890263\pi\)
\(824\) 7.00000 0.243857
\(825\) 0 0
\(826\) 5.00000 0.173972
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 8.00000 0.278019
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 12.0000 0.416526
\(831\) 17.0000 0.589723
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) −4.00000 −0.138509
\(835\) −68.0000 −2.35324
\(836\) 0 0
\(837\) −45.0000 −1.55543
\(838\) 4.00000 0.138178
\(839\) 51.0000 1.76072 0.880358 0.474310i \(-0.157302\pi\)
0.880358 + 0.474310i \(0.157302\pi\)
\(840\) −4.00000 −0.138013
\(841\) −28.0000 −0.965517
\(842\) −15.0000 −0.516934
\(843\) 2.00000 0.0688837
\(844\) 26.0000 0.894957
\(845\) 36.0000 1.23844
\(846\) −26.0000 −0.893898
\(847\) −11.0000 −0.377964
\(848\) 9.00000 0.309061
\(849\) −9.00000 −0.308879
\(850\) 0 0
\(851\) −40.0000 −1.37118
\(852\) −2.00000 −0.0685189
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) −8.00000 −0.273754
\(855\) 24.0000 0.820783
\(856\) −8.00000 −0.273434
\(857\) −8.00000 −0.273275 −0.136637 0.990621i \(-0.543630\pi\)
−0.136637 + 0.990621i \(0.543630\pi\)
\(858\) 0 0
\(859\) 9.00000 0.307076 0.153538 0.988143i \(-0.450933\pi\)
0.153538 + 0.988143i \(0.450933\pi\)
\(860\) −40.0000 −1.36399
\(861\) −8.00000 −0.272639
\(862\) 12.0000 0.408722
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) −5.00000 −0.170103
\(865\) −16.0000 −0.544016
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) 9.00000 0.305480
\(869\) 0 0
\(870\) 4.00000 0.135613
\(871\) −16.0000 −0.542139
\(872\) 19.0000 0.643421
\(873\) −36.0000 −1.21842
\(874\) −12.0000 −0.405906
\(875\) −24.0000 −0.811348
\(876\) −2.00000 −0.0675737
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) −25.0000 −0.843709
\(879\) 12.0000 0.404750
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) −2.00000 −0.0673435
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) 0 0
\(885\) −20.0000 −0.672293
\(886\) 2.00000 0.0671913
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 10.0000 0.335578
\(889\) −4.00000 −0.134156
\(890\) 32.0000 1.07264
\(891\) 0 0
\(892\) −9.00000 −0.301342
\(893\) 39.0000 1.30509
\(894\) 13.0000 0.434785
\(895\) 72.0000 2.40669
\(896\) 1.00000 0.0334077
\(897\) 8.00000 0.267112
\(898\) −33.0000 −1.10122
\(899\) −9.00000 −0.300167
\(900\) −22.0000 −0.733333
\(901\) 0 0
\(902\) 0 0
\(903\) 10.0000 0.332779
\(904\) −2.00000 −0.0665190
\(905\) 0 0
\(906\) −2.00000 −0.0664455
\(907\) −10.0000 −0.332045 −0.166022 0.986122i \(-0.553092\pi\)
−0.166022 + 0.986122i \(0.553092\pi\)
\(908\) −11.0000 −0.365048
\(909\) 12.0000 0.398015
\(910\) 8.00000 0.265197
\(911\) 50.0000 1.65657 0.828287 0.560304i \(-0.189316\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(912\) 3.00000 0.0993399
\(913\) 0 0
\(914\) 19.0000 0.628464
\(915\) 32.0000 1.05789
\(916\) 26.0000 0.859064
\(917\) −7.00000 −0.231160
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 16.0000 0.527504
\(921\) −35.0000 −1.15329
\(922\) 42.0000 1.38320
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) 110.000 3.61678
\(926\) −40.0000 −1.31448
\(927\) −14.0000 −0.459820
\(928\) −1.00000 −0.0328266
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) −36.0000 −1.18049
\(931\) 3.00000 0.0983210
\(932\) 25.0000 0.818902
\(933\) −7.00000 −0.229170
\(934\) −28.0000 −0.916188
\(935\) 0 0
\(936\) 4.00000 0.130744
\(937\) 20.0000 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(938\) 8.00000 0.261209
\(939\) 6.00000 0.195803
\(940\) −52.0000 −1.69605
\(941\) 16.0000 0.521585 0.260793 0.965395i \(-0.416016\pi\)
0.260793 + 0.965395i \(0.416016\pi\)
\(942\) −14.0000 −0.456145
\(943\) 32.0000 1.04206
\(944\) 5.00000 0.162736
\(945\) 20.0000 0.650600
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) −6.00000 −0.194871
\(949\) 4.00000 0.129845
\(950\) 33.0000 1.07066
\(951\) −11.0000 −0.356699
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) −18.0000 −0.582772
\(955\) −24.0000 −0.776622
\(956\) 14.0000 0.452792
\(957\) 0 0
\(958\) −4.00000 −0.129234
\(959\) 17.0000 0.548959
\(960\) −4.00000 −0.129099
\(961\) 50.0000 1.61290
\(962\) −20.0000 −0.644826
\(963\) 16.0000 0.515593
\(964\) −20.0000 −0.644157
\(965\) −92.0000 −2.96158
\(966\) −4.00000 −0.128698
\(967\) 18.0000 0.578841 0.289420 0.957202i \(-0.406537\pi\)
0.289420 + 0.957202i \(0.406537\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) −72.0000 −2.31178
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 16.0000 0.513200
\(973\) −4.00000 −0.128234
\(974\) 34.0000 1.08943
\(975\) −22.0000 −0.704564
\(976\) −8.00000 −0.256074
\(977\) −35.0000 −1.11975 −0.559875 0.828577i \(-0.689151\pi\)
−0.559875 + 0.828577i \(0.689151\pi\)
\(978\) −2.00000 −0.0639529
\(979\) 0 0
\(980\) −4.00000 −0.127775
\(981\) −38.0000 −1.21325
\(982\) −18.0000 −0.574403
\(983\) 9.00000 0.287055 0.143528 0.989646i \(-0.454155\pi\)
0.143528 + 0.989646i \(0.454155\pi\)
\(984\) −8.00000 −0.255031
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 13.0000 0.413795
\(988\) −6.00000 −0.190885
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 9.00000 0.285750
\(993\) −12.0000 −0.380808
\(994\) −2.00000 −0.0634361
\(995\) 64.0000 2.02894
\(996\) −3.00000 −0.0950586
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) 30.0000 0.949633
\(999\) −50.0000 −1.58193
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4046.2.a.p.1.1 yes 1
17.16 even 2 4046.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4046.2.a.l.1.1 1 17.16 even 2
4046.2.a.p.1.1 yes 1 1.1 even 1 trivial