Properties

Label 4033.2.a.e
Level 4033
Weight 2
Character orbit 4033.a
Self dual yes
Analytic conductor 32.204
Analytic rank 0
Dimension 82
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4033 = 37 \cdot 109 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4033.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.2036671352\)
Analytic rank: \(0\)
Dimension: \(82\)
Coefficient ring index: multiple of None
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 82q + 10q^{2} + 17q^{3} + 88q^{4} + 22q^{5} + 4q^{6} + 15q^{7} + 33q^{8} + 91q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 82q + 10q^{2} + 17q^{3} + 88q^{4} + 22q^{5} + 4q^{6} + 15q^{7} + 33q^{8} + 91q^{9} + 13q^{10} + 2q^{11} + 36q^{12} + 23q^{13} + 24q^{14} + 35q^{15} + 104q^{16} + 43q^{17} + 42q^{18} + 15q^{19} + 59q^{20} + 9q^{21} + 6q^{22} + 70q^{23} + 15q^{24} + 98q^{25} + 10q^{26} + 65q^{27} + 37q^{28} + 27q^{29} + 17q^{30} + 59q^{31} + 46q^{32} + 16q^{33} - 16q^{34} + 80q^{35} + 88q^{36} - 82q^{37} + 82q^{38} + 13q^{39} + 14q^{40} + 3q^{41} + 62q^{42} + 7q^{43} - 11q^{44} + 42q^{45} - 11q^{46} + 123q^{47} + 45q^{48} + 105q^{49} + 27q^{50} + 3q^{51} - 30q^{52} + 82q^{53} - 27q^{54} + 37q^{55} + 66q^{56} + 29q^{57} - 34q^{58} + 60q^{59} + 94q^{60} + 9q^{61} - 2q^{62} + 106q^{63} + 93q^{64} + 9q^{65} + 63q^{66} + 113q^{68} + 48q^{69} + 47q^{70} + 59q^{71} + 63q^{72} + 21q^{73} - 10q^{74} + 77q^{75} + 22q^{76} + 30q^{77} + 29q^{78} + 55q^{79} + 88q^{80} + 42q^{81} + 4q^{82} + 92q^{83} + 43q^{84} - 7q^{85} + 17q^{86} + 147q^{87} - 13q^{88} + 100q^{89} + 91q^{90} + 28q^{91} + 127q^{92} + 3q^{93} + 30q^{94} + 48q^{95} - 31q^{96} + 53q^{97} + 101q^{98} - 20q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.75814 1.25704 5.60732 1.25507 −3.46708 2.38515 −9.94947 −1.41986 −3.46166
1.2 −2.62838 −1.37635 4.90837 −2.91482 3.61757 −1.06759 −7.64429 −1.10566 7.66124
1.3 −2.58504 −2.45542 4.68242 2.00515 6.34735 −0.0308722 −6.93416 3.02908 −5.18339
1.4 −2.58335 3.13276 4.67371 4.37342 −8.09303 0.189689 −6.90713 6.81421 −11.2981
1.5 −2.53999 0.468124 4.45153 3.58258 −1.18903 0.512106 −6.22686 −2.78086 −9.09972
1.6 −2.52769 2.28955 4.38920 −2.00544 −5.78727 −4.48140 −6.03914 2.24205 5.06913
1.7 −2.40882 −0.455887 3.80243 1.02492 1.09815 3.87779 −4.34175 −2.79217 −2.46884
1.8 −2.37038 1.65069 3.61871 −2.32287 −3.91275 −2.51278 −3.83696 −0.275237 5.50608
1.9 −2.34943 −2.83343 3.51983 −1.24434 6.65694 2.59127 −3.57074 5.02830 2.92348
1.10 −2.33134 −0.785356 3.43514 0.539311 1.83093 −3.00025 −3.34579 −2.38322 −1.25731
1.11 −2.32285 2.68333 3.39564 −2.18288 −6.23298 1.55979 −3.24187 4.20026 5.07050
1.12 −2.23087 −0.522576 2.97676 0.778391 1.16580 −1.74225 −2.17903 −2.72691 −1.73649
1.13 −1.92046 1.69690 1.68818 −0.668171 −3.25884 1.48884 0.598834 −0.120514 1.28320
1.14 −1.75973 1.54621 1.09665 4.09824 −2.72090 −4.10916 1.58965 −0.609248 −7.21180
1.15 −1.75361 −2.25140 1.07516 −3.95285 3.94809 2.44850 1.62182 2.06881 6.93177
1.16 −1.67615 2.74461 0.809463 2.71622 −4.60037 4.10502 1.99551 4.53291 −4.55277
1.17 −1.62784 −2.32510 0.649851 2.52480 3.78489 −3.47012 2.19782 2.40611 −4.10996
1.18 −1.58741 −1.76709 0.519871 4.42213 2.80509 5.11364 2.34957 0.122598 −7.01973
1.19 −1.58089 0.557711 0.499209 2.89052 −0.881678 1.64472 2.37258 −2.68896 −4.56959
1.20 −1.52363 −2.34833 0.321441 0.104108 3.57798 −3.33397 2.55750 2.51466 −0.158621
See all 82 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.82
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4033.2.a.e 82
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4033.2.a.e 82 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(37\) \(1\)
\(109\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{82} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4033))\).