Properties

Label 4032.2.v.e.3599.17
Level $4032$
Weight $2$
Character 4032.3599
Analytic conductor $32.196$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4032,2,Mod(1583,4032)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4032, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4032.1583");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.1956820950\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 1008)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3599.17
Character \(\chi\) \(=\) 4032.3599
Dual form 4032.2.v.e.1583.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.12043 - 2.12043i) q^{5} -1.00000 q^{7} +O(q^{10})\) \(q+(2.12043 - 2.12043i) q^{5} -1.00000 q^{7} +(-4.03827 - 4.03827i) q^{11} +(-4.91665 + 4.91665i) q^{13} +4.76253i q^{17} +(2.21762 + 2.21762i) q^{19} -6.91384i q^{23} -3.99241i q^{25} +(2.61285 + 2.61285i) q^{29} +0.712246i q^{31} +(-2.12043 + 2.12043i) q^{35} +(5.73777 + 5.73777i) q^{37} -3.59400 q^{41} +(-3.36325 + 3.36325i) q^{43} -6.04590 q^{47} +1.00000 q^{49} +(4.53235 - 4.53235i) q^{53} -17.1257 q^{55} +(4.82118 + 4.82118i) q^{59} +(-6.72581 + 6.72581i) q^{61} +20.8508i q^{65} +(3.87274 + 3.87274i) q^{67} +14.7448i q^{71} -4.61241i q^{73} +(4.03827 + 4.03827i) q^{77} +7.43429i q^{79} +(-2.44737 + 2.44737i) q^{83} +(10.0986 + 10.0986i) q^{85} +4.23689 q^{89} +(4.91665 - 4.91665i) q^{91} +9.40458 q^{95} -6.76292 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 40 q - 40 q^{7} - 24 q^{13} + 32 q^{19} - 8 q^{37} - 32 q^{43} + 40 q^{49} - 48 q^{55} - 24 q^{61} + 64 q^{85} + 24 q^{91} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.12043 2.12043i 0.948283 0.948283i −0.0504437 0.998727i \(-0.516064\pi\)
0.998727 + 0.0504437i \(0.0160635\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.03827 4.03827i −1.21759 1.21759i −0.968475 0.249110i \(-0.919862\pi\)
−0.249110 0.968475i \(-0.580138\pi\)
\(12\) 0 0
\(13\) −4.91665 + 4.91665i −1.36363 + 1.36363i −0.494396 + 0.869237i \(0.664611\pi\)
−0.869237 + 0.494396i \(0.835389\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.76253i 1.15508i 0.816361 + 0.577542i \(0.195988\pi\)
−0.816361 + 0.577542i \(0.804012\pi\)
\(18\) 0 0
\(19\) 2.21762 + 2.21762i 0.508756 + 0.508756i 0.914145 0.405388i \(-0.132864\pi\)
−0.405388 + 0.914145i \(0.632864\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.91384i 1.44164i −0.693125 0.720818i \(-0.743767\pi\)
0.693125 0.720818i \(-0.256233\pi\)
\(24\) 0 0
\(25\) 3.99241i 0.798482i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.61285 + 2.61285i 0.485193 + 0.485193i 0.906786 0.421592i \(-0.138529\pi\)
−0.421592 + 0.906786i \(0.638529\pi\)
\(30\) 0 0
\(31\) 0.712246i 0.127923i 0.997952 + 0.0639615i \(0.0203735\pi\)
−0.997952 + 0.0639615i \(0.979627\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.12043 + 2.12043i −0.358417 + 0.358417i
\(36\) 0 0
\(37\) 5.73777 + 5.73777i 0.943283 + 0.943283i 0.998476 0.0551925i \(-0.0175773\pi\)
−0.0551925 + 0.998476i \(0.517577\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.59400 −0.561288 −0.280644 0.959812i \(-0.590548\pi\)
−0.280644 + 0.959812i \(0.590548\pi\)
\(42\) 0 0
\(43\) −3.36325 + 3.36325i −0.512891 + 0.512891i −0.915411 0.402520i \(-0.868134\pi\)
0.402520 + 0.915411i \(0.368134\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.04590 −0.881885 −0.440942 0.897535i \(-0.645356\pi\)
−0.440942 + 0.897535i \(0.645356\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.53235 4.53235i 0.622566 0.622566i −0.323621 0.946187i \(-0.604900\pi\)
0.946187 + 0.323621i \(0.104900\pi\)
\(54\) 0 0
\(55\) −17.1257 −2.30923
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.82118 + 4.82118i 0.627664 + 0.627664i 0.947480 0.319815i \(-0.103621\pi\)
−0.319815 + 0.947480i \(0.603621\pi\)
\(60\) 0 0
\(61\) −6.72581 + 6.72581i −0.861151 + 0.861151i −0.991472 0.130321i \(-0.958399\pi\)
0.130321 + 0.991472i \(0.458399\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 20.8508i 2.58622i
\(66\) 0 0
\(67\) 3.87274 + 3.87274i 0.473130 + 0.473130i 0.902926 0.429796i \(-0.141414\pi\)
−0.429796 + 0.902926i \(0.641414\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.7448i 1.74988i 0.484229 + 0.874941i \(0.339100\pi\)
−0.484229 + 0.874941i \(0.660900\pi\)
\(72\) 0 0
\(73\) 4.61241i 0.539842i −0.962882 0.269921i \(-0.913002\pi\)
0.962882 0.269921i \(-0.0869976\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.03827 + 4.03827i 0.460204 + 0.460204i
\(78\) 0 0
\(79\) 7.43429i 0.836423i 0.908350 + 0.418211i \(0.137343\pi\)
−0.908350 + 0.418211i \(0.862657\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.44737 + 2.44737i −0.268633 + 0.268633i −0.828549 0.559916i \(-0.810833\pi\)
0.559916 + 0.828549i \(0.310833\pi\)
\(84\) 0 0
\(85\) 10.0986 + 10.0986i 1.09535 + 1.09535i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.23689 0.449109 0.224555 0.974461i \(-0.427907\pi\)
0.224555 + 0.974461i \(0.427907\pi\)
\(90\) 0 0
\(91\) 4.91665 4.91665i 0.515405 0.515405i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9.40458 0.964890
\(96\) 0 0
\(97\) −6.76292 −0.686670 −0.343335 0.939213i \(-0.611557\pi\)
−0.343335 + 0.939213i \(0.611557\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.7637 + 12.7637i −1.27003 + 1.27003i −0.323963 + 0.946070i \(0.605015\pi\)
−0.946070 + 0.323963i \(0.894985\pi\)
\(102\) 0 0
\(103\) −5.09658 −0.502181 −0.251091 0.967964i \(-0.580789\pi\)
−0.251091 + 0.967964i \(0.580789\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.45316 + 3.45316i 0.333829 + 0.333829i 0.854039 0.520209i \(-0.174146\pi\)
−0.520209 + 0.854039i \(0.674146\pi\)
\(108\) 0 0
\(109\) 12.6452 12.6452i 1.21119 1.21119i 0.240558 0.970635i \(-0.422670\pi\)
0.970635 0.240558i \(-0.0773304\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.90657i 0.555644i −0.960633 0.277822i \(-0.910388\pi\)
0.960633 0.277822i \(-0.0896125\pi\)
\(114\) 0 0
\(115\) −14.6603 14.6603i −1.36708 1.36708i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.76253i 0.436581i
\(120\) 0 0
\(121\) 21.6153i 1.96503i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.13652 + 2.13652i 0.191096 + 0.191096i
\(126\) 0 0
\(127\) 3.07038i 0.272452i −0.990678 0.136226i \(-0.956503\pi\)
0.990678 0.136226i \(-0.0434974\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.95401 6.95401i 0.607575 0.607575i −0.334737 0.942312i \(-0.608647\pi\)
0.942312 + 0.334737i \(0.108647\pi\)
\(132\) 0 0
\(133\) −2.21762 2.21762i −0.192292 0.192292i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.5548 0.987193 0.493596 0.869691i \(-0.335682\pi\)
0.493596 + 0.869691i \(0.335682\pi\)
\(138\) 0 0
\(139\) −6.19355 + 6.19355i −0.525330 + 0.525330i −0.919176 0.393846i \(-0.871144\pi\)
0.393846 + 0.919176i \(0.371144\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 39.7095 3.32068
\(144\) 0 0
\(145\) 11.0807 0.920201
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.38965 2.38965i 0.195767 0.195767i −0.602415 0.798183i \(-0.705795\pi\)
0.798183 + 0.602415i \(0.205795\pi\)
\(150\) 0 0
\(151\) −12.2639 −0.998018 −0.499009 0.866597i \(-0.666303\pi\)
−0.499009 + 0.866597i \(0.666303\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.51026 + 1.51026i 0.121307 + 0.121307i
\(156\) 0 0
\(157\) −4.81144 + 4.81144i −0.383995 + 0.383995i −0.872539 0.488544i \(-0.837528\pi\)
0.488544 + 0.872539i \(0.337528\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.91384i 0.544887i
\(162\) 0 0
\(163\) 6.02781 + 6.02781i 0.472134 + 0.472134i 0.902605 0.430470i \(-0.141652\pi\)
−0.430470 + 0.902605i \(0.641652\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.75117i 0.367656i −0.982958 0.183828i \(-0.941151\pi\)
0.982958 0.183828i \(-0.0588490\pi\)
\(168\) 0 0
\(169\) 35.3469i 2.71899i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.6615 + 13.6615i 1.03867 + 1.03867i 0.999222 + 0.0394449i \(0.0125590\pi\)
0.0394449 + 0.999222i \(0.487441\pi\)
\(174\) 0 0
\(175\) 3.99241i 0.301798i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.71026 9.71026i 0.725779 0.725779i −0.243997 0.969776i \(-0.578459\pi\)
0.969776 + 0.243997i \(0.0784588\pi\)
\(180\) 0 0
\(181\) −3.99969 3.99969i −0.297295 0.297295i 0.542659 0.839953i \(-0.317418\pi\)
−0.839953 + 0.542659i \(0.817418\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 24.3330 1.78900
\(186\) 0 0
\(187\) 19.2324 19.2324i 1.40641 1.40641i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.9802 −1.15629 −0.578143 0.815936i \(-0.696222\pi\)
−0.578143 + 0.815936i \(0.696222\pi\)
\(192\) 0 0
\(193\) −3.55024 −0.255552 −0.127776 0.991803i \(-0.540784\pi\)
−0.127776 + 0.991803i \(0.540784\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.4049 + 10.4049i −0.741320 + 0.741320i −0.972832 0.231512i \(-0.925633\pi\)
0.231512 + 0.972832i \(0.425633\pi\)
\(198\) 0 0
\(199\) −20.0463 −1.42104 −0.710521 0.703676i \(-0.751541\pi\)
−0.710521 + 0.703676i \(0.751541\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.61285 2.61285i −0.183386 0.183386i
\(204\) 0 0
\(205\) −7.62081 + 7.62081i −0.532260 + 0.532260i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 17.9107i 1.23891i
\(210\) 0 0
\(211\) 14.2434 + 14.2434i 0.980558 + 0.980558i 0.999815 0.0192564i \(-0.00612987\pi\)
−0.0192564 + 0.999815i \(0.506130\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.2630i 0.972731i
\(216\) 0 0
\(217\) 0.712246i 0.0483504i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −23.4157 23.4157i −1.57511 1.57511i
\(222\) 0 0
\(223\) 17.0811i 1.14384i 0.820311 + 0.571918i \(0.193801\pi\)
−0.820311 + 0.571918i \(0.806199\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.8882 + 15.8882i −1.05453 + 1.05453i −0.0561098 + 0.998425i \(0.517870\pi\)
−0.998425 + 0.0561098i \(0.982130\pi\)
\(228\) 0 0
\(229\) −17.2648 17.2648i −1.14089 1.14089i −0.988287 0.152605i \(-0.951234\pi\)
−0.152605 0.988287i \(-0.548766\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.37677 0.548780 0.274390 0.961618i \(-0.411524\pi\)
0.274390 + 0.961618i \(0.411524\pi\)
\(234\) 0 0
\(235\) −12.8199 + 12.8199i −0.836276 + 0.836276i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.24270 −0.403807 −0.201903 0.979405i \(-0.564713\pi\)
−0.201903 + 0.979405i \(0.564713\pi\)
\(240\) 0 0
\(241\) −2.39859 −0.154507 −0.0772535 0.997011i \(-0.524615\pi\)
−0.0772535 + 0.997011i \(0.524615\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.12043 2.12043i 0.135469 0.135469i
\(246\) 0 0
\(247\) −21.8065 −1.38751
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.5027 + 10.5027i 0.662927 + 0.662927i 0.956069 0.293142i \(-0.0947008\pi\)
−0.293142 + 0.956069i \(0.594701\pi\)
\(252\) 0 0
\(253\) −27.9200 + 27.9200i −1.75531 + 1.75531i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.99198i 0.124256i −0.998068 0.0621282i \(-0.980211\pi\)
0.998068 0.0621282i \(-0.0197888\pi\)
\(258\) 0 0
\(259\) −5.73777 5.73777i −0.356528 0.356528i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.76661i 0.293922i −0.989142 0.146961i \(-0.953051\pi\)
0.989142 0.146961i \(-0.0469492\pi\)
\(264\) 0 0
\(265\) 19.2210i 1.18074i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.1764 + 10.1764i 0.620468 + 0.620468i 0.945651 0.325183i \(-0.105426\pi\)
−0.325183 + 0.945651i \(0.605426\pi\)
\(270\) 0 0
\(271\) 29.8185i 1.81135i −0.423977 0.905673i \(-0.639366\pi\)
0.423977 0.905673i \(-0.360634\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.1224 + 16.1224i −0.972220 + 0.972220i
\(276\) 0 0
\(277\) 10.3689 + 10.3689i 0.623007 + 0.623007i 0.946299 0.323292i \(-0.104790\pi\)
−0.323292 + 0.946299i \(0.604790\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.1234 0.603909 0.301954 0.953322i \(-0.402361\pi\)
0.301954 + 0.953322i \(0.402361\pi\)
\(282\) 0 0
\(283\) −13.7990 + 13.7990i −0.820266 + 0.820266i −0.986146 0.165880i \(-0.946954\pi\)
0.165880 + 0.986146i \(0.446954\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.59400 0.212147
\(288\) 0 0
\(289\) −5.68174 −0.334220
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.85735 + 4.85735i −0.283770 + 0.283770i −0.834610 0.550841i \(-0.814307\pi\)
0.550841 + 0.834610i \(0.314307\pi\)
\(294\) 0 0
\(295\) 20.4459 1.19041
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 33.9929 + 33.9929i 1.96586 + 1.96586i
\(300\) 0 0
\(301\) 3.36325 3.36325i 0.193854 0.193854i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 28.5231i 1.63323i
\(306\) 0 0
\(307\) 21.4100 + 21.4100i 1.22193 + 1.22193i 0.966944 + 0.254989i \(0.0820719\pi\)
0.254989 + 0.966944i \(0.417928\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.23033i 0.183175i −0.995797 0.0915876i \(-0.970806\pi\)
0.995797 0.0915876i \(-0.0291941\pi\)
\(312\) 0 0
\(313\) 6.53030i 0.369114i 0.982822 + 0.184557i \(0.0590851\pi\)
−0.982822 + 0.184557i \(0.940915\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.7296 12.7296i −0.714965 0.714965i 0.252605 0.967570i \(-0.418713\pi\)
−0.967570 + 0.252605i \(0.918713\pi\)
\(318\) 0 0
\(319\) 21.1028i 1.18153i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.5615 + 10.5615i −0.587656 + 0.587656i
\(324\) 0 0
\(325\) 19.6293 + 19.6293i 1.08884 + 1.08884i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.04590 0.333321
\(330\) 0 0
\(331\) −7.98204 + 7.98204i −0.438732 + 0.438732i −0.891585 0.452853i \(-0.850406\pi\)
0.452853 + 0.891585i \(0.350406\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.4237 0.897323
\(336\) 0 0
\(337\) −1.43831 −0.0783498 −0.0391749 0.999232i \(-0.512473\pi\)
−0.0391749 + 0.999232i \(0.512473\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.87624 2.87624i 0.155757 0.155757i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.3928 + 13.3928i 0.718966 + 0.718966i 0.968393 0.249428i \(-0.0802425\pi\)
−0.249428 + 0.968393i \(0.580242\pi\)
\(348\) 0 0
\(349\) −2.01384 + 2.01384i −0.107798 + 0.107798i −0.758949 0.651150i \(-0.774287\pi\)
0.651150 + 0.758949i \(0.274287\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.9746i 0.584119i −0.956400 0.292060i \(-0.905659\pi\)
0.956400 0.292060i \(-0.0943406\pi\)
\(354\) 0 0
\(355\) 31.2652 + 31.2652i 1.65938 + 1.65938i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.8112i 0.728926i −0.931218 0.364463i \(-0.881253\pi\)
0.931218 0.364463i \(-0.118747\pi\)
\(360\) 0 0
\(361\) 9.16435i 0.482334i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.78028 9.78028i −0.511923 0.511923i
\(366\) 0 0
\(367\) 1.72353i 0.0899673i −0.998988 0.0449837i \(-0.985676\pi\)
0.998988 0.0449837i \(-0.0143236\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.53235 + 4.53235i −0.235308 + 0.235308i
\(372\) 0 0
\(373\) 5.17122 + 5.17122i 0.267756 + 0.267756i 0.828195 0.560440i \(-0.189368\pi\)
−0.560440 + 0.828195i \(0.689368\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −25.6929 −1.32325
\(378\) 0 0
\(379\) 4.73174 4.73174i 0.243053 0.243053i −0.575059 0.818112i \(-0.695021\pi\)
0.818112 + 0.575059i \(0.195021\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.9260 −0.609388 −0.304694 0.952450i \(-0.598554\pi\)
−0.304694 + 0.952450i \(0.598554\pi\)
\(384\) 0 0
\(385\) 17.1257 0.872807
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −21.5999 + 21.5999i −1.09516 + 1.09516i −0.100189 + 0.994968i \(0.531945\pi\)
−0.994968 + 0.100189i \(0.968055\pi\)
\(390\) 0 0
\(391\) 32.9274 1.66521
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.7639 + 15.7639i 0.793165 + 0.793165i
\(396\) 0 0
\(397\) −24.1706 + 24.1706i −1.21309 + 1.21309i −0.243084 + 0.970005i \(0.578159\pi\)
−0.970005 + 0.243084i \(0.921841\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.3793i 1.61694i 0.588536 + 0.808471i \(0.299705\pi\)
−0.588536 + 0.808471i \(0.700295\pi\)
\(402\) 0 0
\(403\) −3.50186 3.50186i −0.174440 0.174440i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 46.3413i 2.29706i
\(408\) 0 0
\(409\) 15.5253i 0.767676i −0.923400 0.383838i \(-0.874602\pi\)
0.923400 0.383838i \(-0.125398\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.82118 4.82118i −0.237235 0.237235i
\(414\) 0 0
\(415\) 10.3789i 0.509481i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.1080 + 24.1080i −1.17775 + 1.17775i −0.197438 + 0.980315i \(0.563262\pi\)
−0.980315 + 0.197438i \(0.936738\pi\)
\(420\) 0 0
\(421\) −21.4110 21.4110i −1.04351 1.04351i −0.999010 0.0444969i \(-0.985832\pi\)
−0.0444969 0.999010i \(-0.514168\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 19.0140 0.922314
\(426\) 0 0
\(427\) 6.72581 6.72581i 0.325485 0.325485i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.7984 −0.905485 −0.452742 0.891641i \(-0.649554\pi\)
−0.452742 + 0.891641i \(0.649554\pi\)
\(432\) 0 0
\(433\) 26.4453 1.27088 0.635440 0.772150i \(-0.280819\pi\)
0.635440 + 0.772150i \(0.280819\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.3322 15.3322i 0.733441 0.733441i
\(438\) 0 0
\(439\) −7.11296 −0.339483 −0.169742 0.985489i \(-0.554293\pi\)
−0.169742 + 0.985489i \(0.554293\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.0108636 0.0108636i −0.000516147 0.000516147i 0.706849 0.707365i \(-0.250116\pi\)
−0.707365 + 0.706849i \(0.750116\pi\)
\(444\) 0 0
\(445\) 8.98401 8.98401i 0.425883 0.425883i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.7577i 1.54593i −0.634448 0.772966i \(-0.718772\pi\)
0.634448 0.772966i \(-0.281228\pi\)
\(450\) 0 0
\(451\) 14.5135 + 14.5135i 0.683416 + 0.683416i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20.8508i 0.977499i
\(456\) 0 0
\(457\) 10.0528i 0.470252i 0.971965 + 0.235126i \(0.0755502\pi\)
−0.971965 + 0.235126i \(0.924450\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.1351 15.1351i −0.704910 0.704910i 0.260550 0.965460i \(-0.416096\pi\)
−0.965460 + 0.260550i \(0.916096\pi\)
\(462\) 0 0
\(463\) 10.6714i 0.495940i 0.968768 + 0.247970i \(0.0797635\pi\)
−0.968768 + 0.247970i \(0.920236\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.67348 3.67348i 0.169989 0.169989i −0.616986 0.786974i \(-0.711646\pi\)
0.786974 + 0.616986i \(0.211646\pi\)
\(468\) 0 0
\(469\) −3.87274 3.87274i −0.178826 0.178826i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 27.1634 1.24898
\(474\) 0 0
\(475\) 8.85363 8.85363i 0.406233 0.406233i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.41155 −0.201569 −0.100784 0.994908i \(-0.532135\pi\)
−0.100784 + 0.994908i \(0.532135\pi\)
\(480\) 0 0
\(481\) −56.4212 −2.57258
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.3403 + 14.3403i −0.651158 + 0.651158i
\(486\) 0 0
\(487\) −9.97116 −0.451837 −0.225918 0.974146i \(-0.572538\pi\)
−0.225918 + 0.974146i \(0.572538\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −30.2732 30.2732i −1.36621 1.36621i −0.865771 0.500440i \(-0.833172\pi\)
−0.500440 0.865771i \(-0.666828\pi\)
\(492\) 0 0
\(493\) −12.4438 + 12.4438i −0.560439 + 0.560439i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.7448i 0.661394i
\(498\) 0 0
\(499\) −10.4161 10.4161i −0.466289 0.466289i 0.434421 0.900710i \(-0.356953\pi\)
−0.900710 + 0.434421i \(0.856953\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.37172i 0.373277i −0.982429 0.186638i \(-0.940241\pi\)
0.982429 0.186638i \(-0.0597592\pi\)
\(504\) 0 0
\(505\) 54.1288i 2.40870i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.0580 17.0580i −0.756083 0.756083i 0.219524 0.975607i \(-0.429550\pi\)
−0.975607 + 0.219524i \(0.929550\pi\)
\(510\) 0 0
\(511\) 4.61241i 0.204041i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.8069 + 10.8069i −0.476210 + 0.476210i
\(516\) 0 0
\(517\) 24.4150 + 24.4150i 1.07377 + 1.07377i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.2025 −0.534601 −0.267300 0.963613i \(-0.586132\pi\)
−0.267300 + 0.963613i \(0.586132\pi\)
\(522\) 0 0
\(523\) 8.77429 8.77429i 0.383673 0.383673i −0.488751 0.872423i \(-0.662547\pi\)
0.872423 + 0.488751i \(0.162547\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.39209 −0.147762
\(528\) 0 0
\(529\) −24.8012 −1.07831
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.6704 17.6704i 0.765391 0.765391i
\(534\) 0 0
\(535\) 14.6443 0.633129
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.03827 4.03827i −0.173941 0.173941i
\(540\) 0 0
\(541\) −23.2625 + 23.2625i −1.00013 + 1.00013i −0.000132738 1.00000i \(0.500042\pi\)
−1.00000 0.000132738i \(0.999958\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 53.6265i 2.29711i
\(546\) 0 0
\(547\) −24.7224 24.7224i −1.05705 1.05705i −0.998271 0.0587833i \(-0.981278\pi\)
−0.0587833 0.998271i \(-0.518722\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.5886i 0.493690i
\(552\) 0 0
\(553\) 7.43429i 0.316138i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15.9473 15.9473i −0.675708 0.675708i 0.283318 0.959026i \(-0.408565\pi\)
−0.959026 + 0.283318i \(0.908565\pi\)
\(558\) 0 0
\(559\) 33.0718i 1.39879i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.75478 8.75478i 0.368970 0.368970i −0.498132 0.867101i \(-0.665980\pi\)
0.867101 + 0.498132i \(0.165980\pi\)
\(564\) 0 0
\(565\) −12.5244 12.5244i −0.526908 0.526908i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.3805 1.02209 0.511043 0.859555i \(-0.329259\pi\)
0.511043 + 0.859555i \(0.329259\pi\)
\(570\) 0 0
\(571\) 9.52629 9.52629i 0.398663 0.398663i −0.479098 0.877761i \(-0.659036\pi\)
0.877761 + 0.479098i \(0.159036\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −27.6029 −1.15112
\(576\) 0 0
\(577\) 1.46394 0.0609448 0.0304724 0.999536i \(-0.490299\pi\)
0.0304724 + 0.999536i \(0.490299\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.44737 2.44737i 0.101534 0.101534i
\(582\) 0 0
\(583\) −36.6057 −1.51605
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.13883 7.13883i −0.294651 0.294651i 0.544263 0.838914i \(-0.316809\pi\)
−0.838914 + 0.544263i \(0.816809\pi\)
\(588\) 0 0
\(589\) −1.57949 + 1.57949i −0.0650816 + 0.0650816i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.7385i 0.605237i 0.953112 + 0.302619i \(0.0978609\pi\)
−0.953112 + 0.302619i \(0.902139\pi\)
\(594\) 0 0
\(595\) −10.0986 10.0986i −0.414002 0.414002i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 17.8924i 0.731062i 0.930799 + 0.365531i \(0.119113\pi\)
−0.930799 + 0.365531i \(0.880887\pi\)
\(600\) 0 0
\(601\) 6.69170i 0.272960i −0.990643 0.136480i \(-0.956421\pi\)
0.990643 0.136480i \(-0.0435790\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 45.8336 + 45.8336i 1.86340 + 1.86340i
\(606\) 0 0
\(607\) 27.0776i 1.09904i 0.835479 + 0.549522i \(0.185190\pi\)
−0.835479 + 0.549522i \(0.814810\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.7255 29.7255i 1.20257 1.20257i
\(612\) 0 0
\(613\) 22.9059 + 22.9059i 0.925159 + 0.925159i 0.997388 0.0722294i \(-0.0230114\pi\)
−0.0722294 + 0.997388i \(0.523011\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.3945 −0.418466 −0.209233 0.977866i \(-0.567097\pi\)
−0.209233 + 0.977866i \(0.567097\pi\)
\(618\) 0 0
\(619\) 8.53232 8.53232i 0.342943 0.342943i −0.514530 0.857473i \(-0.672033\pi\)
0.857473 + 0.514530i \(0.172033\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.23689 −0.169747
\(624\) 0 0
\(625\) 29.0227 1.16091
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −27.3263 + 27.3263i −1.08957 + 1.08957i
\(630\) 0 0
\(631\) 3.74199 0.148966 0.0744831 0.997222i \(-0.476269\pi\)
0.0744831 + 0.997222i \(0.476269\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.51051 6.51051i −0.258362 0.258362i
\(636\) 0 0
\(637\) −4.91665 + 4.91665i −0.194805 + 0.194805i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.1283i 0.597531i 0.954326 + 0.298766i \(0.0965749\pi\)
−0.954326 + 0.298766i \(0.903425\pi\)
\(642\) 0 0
\(643\) 0.845317 + 0.845317i 0.0333361 + 0.0333361i 0.723578 0.690242i \(-0.242496\pi\)
−0.690242 + 0.723578i \(0.742496\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.9117i 0.940064i 0.882649 + 0.470032i \(0.155758\pi\)
−0.882649 + 0.470032i \(0.844242\pi\)
\(648\) 0 0
\(649\) 38.9385i 1.52847i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.8544 + 19.8544i 0.776964 + 0.776964i 0.979313 0.202350i \(-0.0648578\pi\)
−0.202350 + 0.979313i \(0.564858\pi\)
\(654\) 0 0
\(655\) 29.4909i 1.15231i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.03903 9.03903i 0.352111 0.352111i −0.508784 0.860894i \(-0.669905\pi\)
0.860894 + 0.508784i \(0.169905\pi\)
\(660\) 0 0
\(661\) −31.4210 31.4210i −1.22213 1.22213i −0.966872 0.255261i \(-0.917839\pi\)
−0.255261 0.966872i \(-0.582161\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9.40458 −0.364694
\(666\) 0 0
\(667\) 18.0648 18.0648i 0.699472 0.699472i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 54.3213 2.09705
\(672\) 0 0
\(673\) 16.8543 0.649684 0.324842 0.945768i \(-0.394689\pi\)
0.324842 + 0.945768i \(0.394689\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.8816 20.8816i 0.802545 0.802545i −0.180948 0.983493i \(-0.557916\pi\)
0.983493 + 0.180948i \(0.0579165\pi\)
\(678\) 0 0
\(679\) 6.76292 0.259537
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.9351 18.9351i −0.724533 0.724533i 0.244992 0.969525i \(-0.421215\pi\)
−0.969525 + 0.244992i \(0.921215\pi\)
\(684\) 0 0
\(685\) 24.5011 24.5011i 0.936138 0.936138i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 44.5679i 1.69790i
\(690\) 0 0
\(691\) 2.24775 + 2.24775i 0.0855083 + 0.0855083i 0.748567 0.663059i \(-0.230742\pi\)
−0.663059 + 0.748567i \(0.730742\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 26.2659i 0.996323i
\(696\) 0 0
\(697\) 17.1165i 0.648335i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.17318 8.17318i −0.308697 0.308697i 0.535707 0.844404i \(-0.320045\pi\)
−0.844404 + 0.535707i \(0.820045\pi\)
\(702\) 0 0
\(703\) 25.4483i 0.959802i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.7637 12.7637i 0.480027 0.480027i
\(708\) 0 0
\(709\) −11.4595 11.4595i −0.430372 0.430372i 0.458383 0.888755i \(-0.348429\pi\)
−0.888755 + 0.458383i \(0.848429\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.92435 0.184418
\(714\) 0 0
\(715\) 84.2011 84.2011i 3.14894 3.14894i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23.6156 −0.880714 −0.440357 0.897823i \(-0.645148\pi\)
−0.440357 + 0.897823i \(0.645148\pi\)
\(720\) 0 0
\(721\) 5.09658 0.189807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.4316 10.4316i 0.387418 0.387418i
\(726\) 0 0
\(727\) 11.2623 0.417695 0.208848 0.977948i \(-0.433029\pi\)
0.208848 + 0.977948i \(0.433029\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0176 16.0176i −0.592432 0.592432i
\(732\) 0 0
\(733\) 8.10898 8.10898i 0.299512 0.299512i −0.541311 0.840823i \(-0.682072\pi\)
0.840823 + 0.541311i \(0.182072\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.2783i 1.15215i
\(738\) 0 0
\(739\) 35.7952 + 35.7952i 1.31675 + 1.31675i 0.916336 + 0.400410i \(0.131132\pi\)
0.400410 + 0.916336i \(0.368868\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0620i 0.882748i −0.897323 0.441374i \(-0.854491\pi\)
0.897323 0.441374i \(-0.145509\pi\)
\(744\) 0 0
\(745\) 10.1341i 0.371286i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.45316 3.45316i −0.126176 0.126176i
\(750\) 0 0
\(751\) 39.8810i 1.45528i 0.685961 + 0.727639i \(0.259382\pi\)
−0.685961 + 0.727639i \(0.740618\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −26.0046 + 26.0046i −0.946404 + 0.946404i
\(756\) 0 0
\(757\) −11.5955 11.5955i −0.421446 0.421446i 0.464255 0.885701i \(-0.346322\pi\)
−0.885701 + 0.464255i \(0.846322\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.8050 −0.645430 −0.322715 0.946496i \(-0.604596\pi\)
−0.322715 + 0.946496i \(0.604596\pi\)
\(762\) 0 0
\(763\) −12.6452 + 12.6452i −0.457788 + 0.457788i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −47.4081 −1.71181
\(768\) 0 0
\(769\) −6.78949 −0.244835 −0.122418 0.992479i \(-0.539065\pi\)
−0.122418 + 0.992479i \(0.539065\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.3304 + 20.3304i −0.731235 + 0.731235i −0.970864 0.239629i \(-0.922974\pi\)
0.239629 + 0.970864i \(0.422974\pi\)
\(774\) 0 0
\(775\) 2.84358 0.102144
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.97011 7.97011i −0.285559 0.285559i
\(780\) 0 0
\(781\) 59.5434 59.5434i 2.13063 2.13063i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20.4046i 0.728272i
\(786\) 0 0
\(787\) 11.8828 + 11.8828i 0.423577 + 0.423577i 0.886433 0.462856i \(-0.153175\pi\)
−0.462856 + 0.886433i \(0.653175\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.90657i 0.210014i
\(792\) 0 0
\(793\) 66.1368i 2.34859i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.57631 + 4.57631i 0.162101 + 0.162101i 0.783497 0.621396i \(-0.213434\pi\)
−0.621396 + 0.783497i \(0.713434\pi\)
\(798\) 0 0
\(799\) 28.7938i 1.01865i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.6262 + 18.6262i −0.657303 + 0.657303i
\(804\) 0 0
\(805\) 14.6603 + 14.6603i 0.516707 + 0.516707i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25.1471 −0.884123 −0.442062 0.896985i \(-0.645753\pi\)
−0.442062 + 0.896985i \(0.645753\pi\)
\(810\) 0 0
\(811\) −24.5249 + 24.5249i −0.861187 + 0.861187i −0.991476 0.130289i \(-0.958409\pi\)
0.130289 + 0.991476i \(0.458409\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 25.5630 0.895434
\(816\) 0 0
\(817\) −14.9168 −0.521873
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.4111 24.4111i 0.851955 0.851955i −0.138419 0.990374i \(-0.544202\pi\)
0.990374 + 0.138419i \(0.0442021\pi\)
\(822\) 0 0
\(823\) −15.7338 −0.548445 −0.274223 0.961666i \(-0.588421\pi\)
−0.274223 + 0.961666i \(0.588421\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.0353 + 25.0353i 0.870564 + 0.870564i 0.992534 0.121970i \(-0.0389212\pi\)
−0.121970 + 0.992534i \(0.538921\pi\)
\(828\) 0 0
\(829\) −21.0067 + 21.0067i −0.729592 + 0.729592i −0.970538 0.240947i \(-0.922542\pi\)
0.240947 + 0.970538i \(0.422542\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.76253i 0.165012i
\(834\) 0 0
\(835\) −10.0745 10.0745i −0.348642 0.348642i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.34682i 0.253640i 0.991926 + 0.126820i \(0.0404771\pi\)
−0.991926 + 0.126820i \(0.959523\pi\)
\(840\) 0 0
\(841\) 15.3461i 0.529175i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −74.9504 74.9504i −2.57837 2.57837i
\(846\) 0 0
\(847\) 21.6153i 0.742710i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 39.6700 39.6700i 1.35987 1.35987i
\(852\) 0 0
\(853\) 27.5322 + 27.5322i 0.942685 + 0.942685i 0.998444 0.0557594i \(-0.0177580\pi\)
−0.0557594 + 0.998444i \(0.517758\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.8983 0.508915 0.254457 0.967084i \(-0.418103\pi\)
0.254457 + 0.967084i \(0.418103\pi\)
\(858\) 0 0
\(859\) −13.6121 + 13.6121i −0.464439 + 0.464439i −0.900107 0.435668i \(-0.856512\pi\)
0.435668 + 0.900107i \(0.356512\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43.8205 1.49167 0.745834 0.666132i \(-0.232051\pi\)
0.745834 + 0.666132i \(0.232051\pi\)
\(864\) 0 0
\(865\) 57.9365 1.96990
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 30.0217 30.0217i 1.01842 1.01842i
\(870\) 0 0
\(871\) −38.0818 −1.29035
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.13652 2.13652i −0.0722275 0.0722275i
\(876\) 0 0
\(877\) 15.3765 15.3765i 0.519229 0.519229i −0.398109 0.917338i \(-0.630333\pi\)
0.917338 + 0.398109i \(0.130333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19.9612i 0.672509i −0.941771 0.336254i \(-0.890840\pi\)
0.941771 0.336254i \(-0.109160\pi\)
\(882\) 0 0
\(883\) 16.8680 + 16.8680i 0.567654 + 0.567654i 0.931471 0.363816i \(-0.118526\pi\)
−0.363816 + 0.931471i \(0.618526\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.0819i 0.842167i 0.907022 + 0.421084i \(0.138350\pi\)
−0.907022 + 0.421084i \(0.861650\pi\)
\(888\) 0 0
\(889\) 3.07038i 0.102977i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −13.4075 13.4075i −0.448664 0.448664i
\(894\) 0 0
\(895\) 41.1797i 1.37649i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.86099 + 1.86099i −0.0620674 + 0.0620674i
\(900\) 0 0
\(901\) 21.5855 + 21.5855i 0.719116 + 0.719116i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.9621 −0.563839
\(906\) 0 0
\(907\) 6.00255 6.00255i 0.199311 0.199311i −0.600393 0.799705i \(-0.704989\pi\)
0.799705 + 0.600393i \(0.204989\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.6496 0.485363 0.242682 0.970106i \(-0.421973\pi\)
0.242682 + 0.970106i \(0.421973\pi\)
\(912\) 0 0
\(913\) 19.7663 0.654168
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.95401 + 6.95401i −0.229642 + 0.229642i
\(918\) 0 0
\(919\) −4.17227 −0.137631 −0.0688153 0.997629i \(-0.521922\pi\)
−0.0688153 + 0.997629i \(0.521922\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −72.4949 72.4949i −2.38620 2.38620i
\(924\) 0 0
\(925\) 22.9075 22.9075i 0.753195 0.753195i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 38.1876i 1.25290i −0.779463 0.626448i \(-0.784508\pi\)
0.779463 0.626448i \(-0.215492\pi\)
\(930\) 0 0
\(931\) 2.21762 + 2.21762i 0.0726794 + 0.0726794i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 81.5618i 2.66736i
\(936\) 0 0
\(937\) 45.0796i 1.47269i −0.676609 0.736343i \(-0.736551\pi\)
0.676609 0.736343i \(-0.263449\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.09966 3.09966i −0.101046 0.101046i 0.654777 0.755822i \(-0.272763\pi\)
−0.755822 + 0.654777i \(0.772763\pi\)
\(942\) 0 0
\(943\) 24.8483i 0.809173i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16.6180 16.6180i 0.540012 0.540012i −0.383520 0.923532i \(-0.625288\pi\)
0.923532 + 0.383520i \(0.125288\pi\)
\(948\) 0 0
\(949\) 22.6776 + 22.6776i 0.736146 + 0.736146i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −57.9097 −1.87588 −0.937939 0.346801i \(-0.887268\pi\)
−0.937939 + 0.346801i \(0.887268\pi\)
\(954\) 0 0
\(955\) −33.8848 + 33.8848i −1.09649 + 1.09649i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.5548 −0.373124
\(960\) 0 0
\(961\) 30.4927 0.983636
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.52801 + 7.52801i −0.242335 + 0.242335i
\(966\) 0 0
\(967\) −37.9630 −1.22081 −0.610404 0.792090i \(-0.708993\pi\)
−0.610404 + 0.792090i \(0.708993\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.00112 1.00112i −0.0321273 0.0321273i 0.690861 0.722988i \(-0.257232\pi\)
−0.722988 + 0.690861i \(0.757232\pi\)
\(972\) 0 0
\(973\) 6.19355 6.19355i 0.198556 0.198556i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.6595i 0.788928i −0.918911 0.394464i \(-0.870930\pi\)
0.918911 0.394464i \(-0.129070\pi\)
\(978\) 0 0
\(979\) −17.1097 17.1097i −0.546829 0.546829i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.2723i 0.646586i −0.946299 0.323293i \(-0.895210\pi\)
0.946299 0.323293i \(-0.104790\pi\)
\(984\) 0 0
\(985\) 44.1258i 1.40596i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 23.2530 + 23.2530i 0.739401 + 0.739401i
\(990\) 0 0
\(991\) 50.4804i 1.60356i −0.597618 0.801781i \(-0.703886\pi\)
0.597618 0.801781i \(-0.296114\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −42.5066 + 42.5066i −1.34755 + 1.34755i
\(996\) 0 0
\(997\) 28.1175 + 28.1175i 0.890492 + 0.890492i 0.994569 0.104077i \(-0.0331890\pi\)
−0.104077 + 0.994569i \(0.533189\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.2.v.e.3599.17 40
3.2 odd 2 inner 4032.2.v.e.3599.4 40
4.3 odd 2 1008.2.v.e.827.4 yes 40
12.11 even 2 1008.2.v.e.827.17 yes 40
16.3 odd 4 inner 4032.2.v.e.1583.4 40
16.13 even 4 1008.2.v.e.323.17 yes 40
48.29 odd 4 1008.2.v.e.323.4 40
48.35 even 4 inner 4032.2.v.e.1583.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.v.e.323.4 40 48.29 odd 4
1008.2.v.e.323.17 yes 40 16.13 even 4
1008.2.v.e.827.4 yes 40 4.3 odd 2
1008.2.v.e.827.17 yes 40 12.11 even 2
4032.2.v.e.1583.4 40 16.3 odd 4 inner
4032.2.v.e.1583.17 40 48.35 even 4 inner
4032.2.v.e.3599.4 40 3.2 odd 2 inner
4032.2.v.e.3599.17 40 1.1 even 1 trivial