Properties

Label 4032.2.p.h.1567.2
Level $4032$
Weight $2$
Character 4032.1567
Analytic conductor $32.196$
Analytic rank $0$
Dimension $8$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4032,2,Mod(1567,4032)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4032, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4032.1567");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.p (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.1956820950\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.629407744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{6} + 2x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 448)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1567.2
Root \(0.767178 - 1.18804i\) of defining polynomial
Character \(\chi\) \(=\) 4032.1567
Dual form 4032.2.p.h.1567.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.91044 q^{5} +2.64575i q^{7} +O(q^{10})\) \(q-3.91044 q^{5} +2.64575i q^{7} -5.59388 q^{13} -8.66259i q^{19} -6.00000i q^{23} +10.2915 q^{25} -10.3460i q^{35} -7.00000 q^{49} +5.29570i q^{59} +0.543544 q^{61} +21.8745 q^{65} +15.8745i q^{71} +5.29150i q^{79} +18.1669i q^{83} -14.8000i q^{91} +33.8745i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 40 q^{25} - 56 q^{49} + 48 q^{65}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.91044 −1.74880 −0.874400 0.485206i \(-0.838745\pi\)
−0.874400 + 0.485206i \(0.838745\pi\)
\(6\) 0 0
\(7\) 2.64575i 1.00000i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −5.59388 −1.55146 −0.775732 0.631063i \(-0.782619\pi\)
−0.775732 + 0.631063i \(0.782619\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) − 8.66259i − 1.98734i −0.112360 0.993668i \(-0.535841\pi\)
0.112360 0.993668i \(-0.464159\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 10.2915 2.05830
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 10.3460i − 1.74880i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.29570i 0.689442i 0.938705 + 0.344721i \(0.112026\pi\)
−0.938705 + 0.344721i \(0.887974\pi\)
\(60\) 0 0
\(61\) 0.543544 0.0695936 0.0347968 0.999394i \(-0.488922\pi\)
0.0347968 + 0.999394i \(0.488922\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 21.8745 2.71320
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.8745i 1.88396i 0.335673 + 0.941979i \(0.391036\pi\)
−0.335673 + 0.941979i \(0.608964\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.29150i 0.595341i 0.954669 + 0.297670i \(0.0962096\pi\)
−0.954669 + 0.297670i \(0.903790\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 18.1669i 1.99408i 0.0769020 + 0.997039i \(0.475497\pi\)
−0.0769020 + 0.997039i \(0.524503\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 14.8000i − 1.55146i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 33.8745i 3.47545i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.96077 0.891630 0.445815 0.895125i \(-0.352914\pi\)
0.445815 + 0.895125i \(0.352914\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.8745 1.49335 0.746674 0.665190i \(-0.231650\pi\)
0.746674 + 0.665190i \(0.231650\pi\)
\(114\) 0 0
\(115\) 23.4626i 2.18790i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −20.6921 −1.85076
\(126\) 0 0
\(127\) − 2.00000i − 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 13.1166i − 1.14600i −0.819555 0.573000i \(-0.805779\pi\)
0.819555 0.573000i \(-0.194221\pi\)
\(132\) 0 0
\(133\) 22.9191 1.98734
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 13.7129i 1.16312i 0.813505 + 0.581558i \(0.197557\pi\)
−0.813505 + 0.581558i \(0.802443\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) − 10.0000i − 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.8687 −1.42608 −0.713040 0.701123i \(-0.752682\pi\)
−0.713040 + 0.701123i \(0.752682\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.8745 1.25109
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 18.2915 1.40704
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.6025 1.87049 0.935247 0.353995i \(-0.115177\pi\)
0.935247 + 0.353995i \(0.115177\pi\)
\(174\) 0 0
\(175\) 27.2288i 2.05830i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 10.6442 0.791178 0.395589 0.918428i \(-0.370540\pi\)
0.395589 + 0.918428i \(0.370540\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.8745i 1.14864i 0.818631 + 0.574320i \(0.194733\pi\)
−0.818631 + 0.574320i \(0.805267\pi\)
\(192\) 0 0
\(193\) 26.4575 1.90445 0.952227 0.305392i \(-0.0987875\pi\)
0.952227 + 0.305392i \(0.0987875\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.3964i 1.02189i 0.859612 + 0.510947i \(0.170705\pi\)
−0.859612 + 0.510947i \(0.829295\pi\)
\(228\) 0 0
\(229\) 29.0565 1.92011 0.960053 0.279817i \(-0.0902736\pi\)
0.960053 + 0.279817i \(0.0902736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 30.0000i − 1.94054i −0.242028 0.970269i \(-0.577812\pi\)
0.242028 0.970269i \(-0.422188\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 27.3730 1.74880
\(246\) 0 0
\(247\) 48.4575i 3.08328i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 23.2172i − 1.46546i −0.680520 0.732730i \(-0.738246\pi\)
0.680520 0.732730i \(-0.261754\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.8745i 0.978864i 0.872041 + 0.489432i \(0.162796\pi\)
−0.872041 + 0.489432i \(0.837204\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −32.4234 −1.97689 −0.988444 0.151585i \(-0.951562\pi\)
−0.988444 + 0.151585i \(0.951562\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 9.74968i 0.579558i 0.957094 + 0.289779i \(0.0935819\pi\)
−0.957094 + 0.289779i \(0.906418\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.5018 0.847206 0.423603 0.905848i \(-0.360765\pi\)
0.423603 + 0.905848i \(0.360765\pi\)
\(294\) 0 0
\(295\) − 20.7085i − 1.20570i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 33.5633i 1.94101i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.12549 −0.121705
\(306\) 0 0
\(307\) 32.1252i 1.83348i 0.399482 + 0.916741i \(0.369190\pi\)
−0.399482 + 0.916741i \(0.630810\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −57.5694 −3.19338
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.4575 1.44123 0.720616 0.693334i \(-0.243859\pi\)
0.720616 + 0.693334i \(0.243859\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 18.5203i − 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −24.0062 −1.28502 −0.642510 0.766277i \(-0.722107\pi\)
−0.642510 + 0.766277i \(0.722107\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) − 62.0762i − 3.29466i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 6.00000i − 0.316668i −0.987386 0.158334i \(-0.949388\pi\)
0.987386 0.158334i \(-0.0506123\pi\)
\(360\) 0 0
\(361\) −56.0405 −2.94950
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 20.6921i − 1.04113i
\(396\) 0 0
\(397\) 12.8184 0.643337 0.321668 0.946852i \(-0.395756\pi\)
0.321668 + 0.946852i \(0.395756\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.8745 0.792735 0.396368 0.918092i \(-0.370271\pi\)
0.396368 + 0.918092i \(0.370271\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.0111 −0.689442
\(414\) 0 0
\(415\) − 71.0405i − 3.48724i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 38.8590i − 1.89839i −0.314695 0.949193i \(-0.601902\pi\)
0.314695 0.949193i \(-0.398098\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.43808i 0.0695936i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000i 0.867029i 0.901146 + 0.433515i \(0.142727\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −51.9756 −2.48633
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 57.8745i 2.71320i
\(456\) 0 0
\(457\) 5.29150 0.247526 0.123763 0.992312i \(-0.460504\pi\)
0.123763 + 0.992312i \(0.460504\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.19024 0.288308 0.144154 0.989555i \(-0.453954\pi\)
0.144154 + 0.989555i \(0.453954\pi\)
\(462\) 0 0
\(463\) 26.4575i 1.22958i 0.788689 + 0.614792i \(0.210760\pi\)
−0.788689 + 0.614792i \(0.789240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 41.6295i − 1.92638i −0.268814 0.963192i \(-0.586632\pi\)
0.268814 0.963192i \(-0.413368\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 89.1511i − 4.09053i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −42.0000 −1.88396
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −35.0405 −1.55928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 37.4737 1.66099 0.830497 0.557024i \(-0.188057\pi\)
0.830497 + 0.557024i \(0.188057\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 38.2626i 1.67311i 0.547885 + 0.836554i \(0.315433\pi\)
−0.547885 + 0.836554i \(0.684567\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −14.0000 −0.595341
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 46.6799i 1.96732i 0.180032 + 0.983661i \(0.442380\pi\)
−0.180032 + 0.983661i \(0.557620\pi\)
\(564\) 0 0
\(565\) −62.0762 −2.61157
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −47.6235 −1.99648 −0.998241 0.0592869i \(-0.981117\pi\)
−0.998241 + 0.0592869i \(0.981117\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 61.7490i − 2.57511i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −48.0651 −1.99408
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 36.5792i 1.50978i 0.655849 + 0.754892i \(0.272311\pi\)
−0.655849 + 0.754892i \(0.727689\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 47.6235i − 1.94584i −0.231133 0.972922i \(-0.574243\pi\)
0.231133 0.972922i \(-0.425757\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 43.0148 1.74880
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −47.6235 −1.91725 −0.958625 0.284670i \(-0.908116\pi\)
−0.958625 + 0.284670i \(0.908116\pi\)
\(618\) 0 0
\(619\) 42.2259i 1.69720i 0.529034 + 0.848601i \(0.322554\pi\)
−0.529034 + 0.848601i \(0.677446\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 29.4575 1.17830
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 37.0405i − 1.47456i −0.675587 0.737280i \(-0.736110\pi\)
0.675587 0.737280i \(-0.263890\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.82087i 0.310362i
\(636\) 0 0
\(637\) 39.1572 1.55146
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.8745 0.627005 0.313503 0.949587i \(-0.398498\pi\)
0.313503 + 0.949587i \(0.398498\pi\)
\(642\) 0 0
\(643\) 48.3633i 1.90726i 0.300978 + 0.953631i \(0.402687\pi\)
−0.300978 + 0.953631i \(0.597313\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 51.2915i 2.00412i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 41.3313 1.60760 0.803801 0.594898i \(-0.202807\pi\)
0.803801 + 0.594898i \(0.202807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −89.6235 −3.47545
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.0000 1.00223 0.501113 0.865382i \(-0.332924\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.45150 −0.363251 −0.181625 0.983368i \(-0.558136\pi\)
−0.181625 + 0.983368i \(0.558136\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 70.3878 2.68938
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 4.69934i − 0.178771i −0.995997 0.0893857i \(-0.971510\pi\)
0.995997 0.0893857i \(-0.0284904\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 53.6235i − 2.03406i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23.7080i 0.891630i
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 33.0197 1.21961 0.609806 0.792551i \(-0.291247\pi\)
0.609806 + 0.792551i \(0.291247\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 54.0000i − 1.98107i −0.137268 0.990534i \(-0.543832\pi\)
0.137268 0.990534i \(-0.456168\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 50.0000i − 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 39.1044i 1.42315i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 29.6235i − 1.06964i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 53.1155 1.91043 0.955215 0.295912i \(-0.0956236\pi\)
0.955215 + 0.295912i \(0.0956236\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 69.8745 2.49393
\(786\) 0 0
\(787\) − 33.2123i − 1.18389i −0.805978 0.591945i \(-0.798360\pi\)
0.805978 0.591945i \(-0.201640\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 42.0000i 1.49335i
\(792\) 0 0
\(793\) −3.04052 −0.107972
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 55.8860 1.97958 0.989792 0.142521i \(-0.0455210\pi\)
0.989792 + 0.142521i \(0.0455210\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −62.0762 −2.18790
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −47.6235 −1.67435 −0.837177 0.546932i \(-0.815796\pi\)
−0.837177 + 0.546932i \(0.815796\pi\)
\(810\) 0 0
\(811\) 29.9510i 1.05172i 0.850570 + 0.525861i \(0.176257\pi\)
−0.850570 + 0.525861i \(0.823743\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 26.4575i 0.922251i 0.887335 + 0.461125i \(0.152554\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 57.5694 1.99947 0.999735 0.0230361i \(-0.00733328\pi\)
0.999735 + 0.0230361i \(0.00733328\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −71.5277 −2.46063
\(846\) 0 0
\(847\) − 29.1033i − 1.00000i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −7.76806 −0.265973 −0.132987 0.991118i \(-0.542457\pi\)
−0.132987 + 0.991118i \(0.542457\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 22.0245i 0.751467i 0.926728 + 0.375734i \(0.122609\pi\)
−0.926728 + 0.375734i \(0.877391\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.8745i 0.540375i 0.962808 + 0.270187i \(0.0870856\pi\)
−0.962808 + 0.270187i \(0.912914\pi\)
\(864\) 0 0
\(865\) −96.2065 −3.27112
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 54.7461i − 1.85076i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 5.29150 0.177471
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −41.6235 −1.38361
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 30.0000i − 0.993944i −0.867766 0.496972i \(-0.834445\pi\)
0.867766 0.496972i \(-0.165555\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 34.7032 1.14600
\(918\) 0 0
\(919\) − 58.2065i − 1.92006i −0.279904 0.960028i \(-0.590303\pi\)
0.279904 0.960028i \(-0.409697\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 88.8001i − 2.92289i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 60.6382i 1.98734i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.0614 0.621385 0.310693 0.950510i \(-0.399439\pi\)
0.310693 + 0.950510i \(0.399439\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) − 62.0762i − 2.00874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 47.6235i − 1.53784i
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −103.460 −3.33051
\(966\) 0 0
\(967\) − 58.0000i − 1.86515i −0.360971 0.932577i \(-0.617555\pi\)
0.360971 0.932577i \(-0.382445\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 62.3216i 2.00000i 0.00218468 + 0.999998i \(0.499305\pi\)
−0.00218468 + 0.999998i \(0.500695\pi\)
\(972\) 0 0
\(973\) −36.2810 −1.16312
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 37.0405i − 1.17663i −0.808632 0.588315i \(-0.799791\pi\)
0.808632 0.588315i \(-0.200209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 47.4688 1.50335 0.751675 0.659533i \(-0.229246\pi\)
0.751675 + 0.659533i \(0.229246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.2.p.h.1567.2 8
3.2 odd 2 448.2.e.a.223.6 yes 8
4.3 odd 2 inner 4032.2.p.h.1567.1 8
7.6 odd 2 inner 4032.2.p.h.1567.8 8
8.3 odd 2 inner 4032.2.p.h.1567.7 8
8.5 even 2 inner 4032.2.p.h.1567.8 8
12.11 even 2 448.2.e.a.223.4 yes 8
21.20 even 2 448.2.e.a.223.3 8
24.5 odd 2 448.2.e.a.223.3 8
24.11 even 2 448.2.e.a.223.5 yes 8
28.27 even 2 inner 4032.2.p.h.1567.7 8
48.5 odd 4 1792.2.f.k.1791.6 8
48.11 even 4 1792.2.f.k.1791.4 8
48.29 odd 4 1792.2.f.k.1791.3 8
48.35 even 4 1792.2.f.k.1791.5 8
56.13 odd 2 CM 4032.2.p.h.1567.2 8
56.27 even 2 inner 4032.2.p.h.1567.1 8
84.83 odd 2 448.2.e.a.223.5 yes 8
168.83 odd 2 448.2.e.a.223.4 yes 8
168.125 even 2 448.2.e.a.223.6 yes 8
336.83 odd 4 1792.2.f.k.1791.4 8
336.125 even 4 1792.2.f.k.1791.6 8
336.251 odd 4 1792.2.f.k.1791.5 8
336.293 even 4 1792.2.f.k.1791.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.2.e.a.223.3 8 21.20 even 2
448.2.e.a.223.3 8 24.5 odd 2
448.2.e.a.223.4 yes 8 12.11 even 2
448.2.e.a.223.4 yes 8 168.83 odd 2
448.2.e.a.223.5 yes 8 24.11 even 2
448.2.e.a.223.5 yes 8 84.83 odd 2
448.2.e.a.223.6 yes 8 3.2 odd 2
448.2.e.a.223.6 yes 8 168.125 even 2
1792.2.f.k.1791.3 8 48.29 odd 4
1792.2.f.k.1791.3 8 336.293 even 4
1792.2.f.k.1791.4 8 48.11 even 4
1792.2.f.k.1791.4 8 336.83 odd 4
1792.2.f.k.1791.5 8 48.35 even 4
1792.2.f.k.1791.5 8 336.251 odd 4
1792.2.f.k.1791.6 8 48.5 odd 4
1792.2.f.k.1791.6 8 336.125 even 4
4032.2.p.h.1567.1 8 4.3 odd 2 inner
4032.2.p.h.1567.1 8 56.27 even 2 inner
4032.2.p.h.1567.2 8 1.1 even 1 trivial
4032.2.p.h.1567.2 8 56.13 odd 2 CM
4032.2.p.h.1567.7 8 8.3 odd 2 inner
4032.2.p.h.1567.7 8 28.27 even 2 inner
4032.2.p.h.1567.8 8 7.6 odd 2 inner
4032.2.p.h.1567.8 8 8.5 even 2 inner