Properties

Label 4032.2.ge
Level 4032
Weight 2
Character orbit ge
Rep. character \(\chi_{4032}(89,\cdot)\)
Character field \(\Q(\zeta_{24})\)
Dimension 0
Newform subspaces 0
Sturm bound 1536
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.ge (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 672 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 0 \)
Sturm bound: \(1536\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4032, [\chi])\).

Total New Old
Modular forms 6272 0 6272
Cusp forms 6016 0 6016
Eisenstein series 256 0 256

Decomposition of \(S_{2}^{\mathrm{old}}(4032, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4032, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(672, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2016, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database