Properties

Label 4032.2.b.r
Level 4032
Weight 2
Character orbit 4032.b
Analytic conductor 32.196
Analytic rank 0
Dimension 16
CM No
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4032.b (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(32.195682095\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.29960650073923649536.7
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{30} \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{2} q^{5} + \beta_{8} q^{7} +O(q^{10})\) \( q -\beta_{2} q^{5} + \beta_{8} q^{7} + ( -\beta_{7} - \beta_{11} ) q^{11} -\beta_{15} q^{13} + ( -\beta_{2} + \beta_{6} ) q^{17} -\beta_{4} q^{19} + \beta_{11} q^{23} + ( -2 + \beta_{12} ) q^{25} + \beta_{14} q^{29} + ( \beta_{4} + \beta_{5} + \beta_{8} ) q^{31} + ( -\beta_{3} - \beta_{11} ) q^{35} + ( -1 + \beta_{12} ) q^{37} + ( -\beta_{2} + \beta_{6} ) q^{41} + ( -\beta_{1} - \beta_{5} + \beta_{8} ) q^{43} + ( \beta_{3} + \beta_{13} ) q^{47} + ( -2 - \beta_{10} + \beta_{12} ) q^{49} + ( -\beta_{9} + \beta_{14} ) q^{53} + ( -3 \beta_{4} - 2 \beta_{5} - 2 \beta_{8} ) q^{55} + ( \beta_{3} - \beta_{13} ) q^{59} + ( -2 \beta_{10} + \beta_{15} ) q^{61} + ( -\beta_{9} - 2 \beta_{14} ) q^{65} + ( \beta_{1} + \beta_{5} - \beta_{8} ) q^{67} + ( 2 \beta_{7} + 3 \beta_{11} ) q^{71} -2 \beta_{15} q^{73} + ( -\beta_{2} + \beta_{9} + \beta_{14} ) q^{77} + ( \beta_{5} - \beta_{8} ) q^{79} + ( -\beta_{3} - \beta_{13} ) q^{83} + ( -5 + 3 \beta_{12} ) q^{85} + ( \beta_{2} + \beta_{6} ) q^{89} + ( \beta_{1} + 3 \beta_{4} + \beta_{5} + \beta_{8} ) q^{91} + ( 4 \beta_{7} + 2 \beta_{11} ) q^{95} -2 \beta_{10} q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + O(q^{10}) \) \( 16q - 32q^{25} - 16q^{37} - 32q^{49} - 80q^{85} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{16} - 7 x^{12} + 40 x^{8} - 112 x^{4} + 256\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{10} + 3 \nu^{6} - 12 \nu^{2} \)\()/4\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{12} - 11 \nu^{8} + 84 \nu^{4} - 192 \)\()/64\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{14} - 3 \nu^{10} - 4 \nu^{6} + 96 \nu^{2} \)\()/32\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{15} - 2 \nu^{13} + 11 \nu^{11} - 10 \nu^{9} - 20 \nu^{7} + 56 \nu^{5} - 384 \nu \)\()/128\)
\(\beta_{5}\)\(=\)\((\)\( -3 \nu^{15} + 4 \nu^{14} - 2 \nu^{13} + 9 \nu^{11} - 28 \nu^{10} + 22 \nu^{9} - 52 \nu^{7} + 160 \nu^{6} - 40 \nu^{5} + 32 \nu^{3} - 192 \nu^{2} + 256 \nu \)\()/256\)
\(\beta_{6}\)\(=\)\((\)\( 3 \nu^{12} - \nu^{8} + 28 \nu^{4} + 64 \)\()/32\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{15} - 6 \nu^{13} - 3 \nu^{11} + 34 \nu^{9} - 4 \nu^{7} - 152 \nu^{5} - 32 \nu^{3} + 256 \nu \)\()/128\)
\(\beta_{8}\)\(=\)\((\)\( -3 \nu^{15} - 4 \nu^{14} - 2 \nu^{13} + 9 \nu^{11} + 28 \nu^{10} + 22 \nu^{9} - 52 \nu^{7} - 160 \nu^{6} - 40 \nu^{5} + 32 \nu^{3} + 192 \nu^{2} + 256 \nu \)\()/256\)
\(\beta_{9}\)\(=\)\((\)\( \nu^{15} + 6 \nu^{13} - 3 \nu^{11} - 34 \nu^{9} - 4 \nu^{7} + 152 \nu^{5} - 32 \nu^{3} - 256 \nu \)\()/64\)
\(\beta_{10}\)\(=\)\((\)\( \nu^{15} + \nu^{11} + 16 \nu^{9} + 16 \nu^{7} - 48 \nu^{5} - 16 \nu^{3} + 320 \nu \)\()/64\)
\(\beta_{11}\)\(=\)\((\)\( -3 \nu^{15} + 6 \nu^{13} + 33 \nu^{11} - 2 \nu^{9} - 124 \nu^{7} + 56 \nu^{5} + 448 \nu^{3} - 128 \nu \)\()/256\)
\(\beta_{12}\)\(=\)\((\)\( -\nu^{12} + 7 \nu^{8} - 24 \nu^{4} + 56 \)\()/8\)
\(\beta_{13}\)\(=\)\((\)\( -\nu^{14} + 5 \nu^{10} - 18 \nu^{6} + 40 \nu^{2} \)\()/8\)
\(\beta_{14}\)\(=\)\((\)\( -\nu^{15} + 15 \nu^{11} - 16 \nu^{9} - 64 \nu^{7} + 48 \nu^{5} + 208 \nu^{3} - 64 \nu \)\()/64\)
\(\beta_{15}\)\(=\)\((\)\( \nu^{15} - \nu^{13} - 5 \nu^{11} + 3 \nu^{9} + 18 \nu^{7} + 4 \nu^{5} - 8 \nu^{3} - 32 \nu \)\()/32\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{14} - 2 \beta_{11} + \beta_{10} + \beta_{8} - \beta_{7} + \beta_{5} - \beta_{4}\)\()/8\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{13} - 2 \beta_{8} + 2 \beta_{5} + 2 \beta_{3}\)\()/8\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{15} + \beta_{14} + 2 \beta_{11} - \beta_{10} - 2 \beta_{9} - \beta_{8} - 3 \beta_{7} - \beta_{5} - 3 \beta_{4}\)\()/8\)
\(\nu^{4}\)\(=\)\((\)\(2 \beta_{12} + \beta_{6} + 10 \beta_{2} + 14\)\()/8\)
\(\nu^{5}\)\(=\)\((\)\(6 \beta_{15} + \beta_{14} - 2 \beta_{11} + 3 \beta_{10} + 2 \beta_{9} + 9 \beta_{8} - 5 \beta_{7} + 9 \beta_{5} + 3 \beta_{4}\)\()/8\)
\(\nu^{6}\)\(=\)\((\)\(3 \beta_{13} - 14 \beta_{8} + 14 \beta_{5} - 2 \beta_{3} - 4 \beta_{1}\)\()/8\)
\(\nu^{7}\)\(=\)\((\)\(2 \beta_{15} - \beta_{14} - 2 \beta_{11} + 5 \beta_{10} - 10 \beta_{9} - 7 \beta_{8} - 21 \beta_{7} - 7 \beta_{5} + 3 \beta_{4}\)\()/8\)
\(\nu^{8}\)\(=\)\((\)\(14 \beta_{12} + 15 \beta_{6} + 22 \beta_{2} - 62\)\()/8\)
\(\nu^{9}\)\(=\)\((\)\(18 \beta_{15} - 17 \beta_{14} + 34 \beta_{11} + 5 \beta_{10} + 6 \beta_{9} + 23 \beta_{8} + 5 \beta_{7} + 23 \beta_{5} + 13 \beta_{4}\)\()/8\)
\(\nu^{10}\)\(=\)\((\)\(-3 \beta_{13} - 18 \beta_{8} + 18 \beta_{5} - 30 \beta_{3} - 44 \beta_{1}\)\()/8\)
\(\nu^{11}\)\(=\)\((\)\(-18 \beta_{15} + \beta_{14} + 2 \beta_{11} + 43 \beta_{10} - 6 \beta_{9} - 25 \beta_{8} - 11 \beta_{7} - 25 \beta_{5} + 61 \beta_{4}\)\()/8\)
\(\nu^{12}\)\(=\)\((\)\(-14 \beta_{12} + 81 \beta_{6} - 86 \beta_{2} - 322\)\()/8\)
\(\nu^{13}\)\(=\)\((\)\(-50 \beta_{15} - 79 \beta_{14} + 158 \beta_{11} - 5 \beta_{10} + 26 \beta_{9} - 55 \beta_{8} + 27 \beta_{7} - 55 \beta_{5} - 45 \beta_{4}\)\()/8\)
\(\nu^{14}\)\(=\)\((\)\(-93 \beta_{13} + 82 \beta_{8} - 82 \beta_{5} - 34 \beta_{3} - 148 \beta_{1}\)\()/8\)
\(\nu^{15}\)\(=\)\((\)\(18 \beta_{15} + 31 \beta_{14} + 62 \beta_{11} + 117 \beta_{10} + 134 \beta_{9} - 135 \beta_{8} + 299 \beta_{7} - 135 \beta_{5} + 99 \beta_{4}\)\()/8\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3583.1
1.32968 + 0.481610i
−0.481610 + 1.32968i
−1.32968 0.481610i
0.481610 1.32968i
−1.38588 0.281691i
−0.281691 + 1.38588i
1.38588 + 0.281691i
0.281691 1.38588i
−0.281691 1.38588i
−1.38588 + 0.281691i
0.281691 + 1.38588i
1.38588 0.281691i
−0.481610 1.32968i
1.32968 0.481610i
0.481610 + 1.32968i
−1.32968 + 0.481610i
0 0 0 3.33513i 0 −0.662153 2.56155i 0 0 0
3583.2 0 0 0 3.33513i 0 −0.662153 + 2.56155i 0 0 0
3583.3 0 0 0 3.33513i 0 0.662153 2.56155i 0 0 0
3583.4 0 0 0 3.33513i 0 0.662153 + 2.56155i 0 0 0
3583.5 0 0 0 1.69614i 0 −2.13578 1.56155i 0 0 0
3583.6 0 0 0 1.69614i 0 −2.13578 + 1.56155i 0 0 0
3583.7 0 0 0 1.69614i 0 2.13578 1.56155i 0 0 0
3583.8 0 0 0 1.69614i 0 2.13578 + 1.56155i 0 0 0
3583.9 0 0 0 1.69614i 0 −2.13578 1.56155i 0 0 0
3583.10 0 0 0 1.69614i 0 −2.13578 + 1.56155i 0 0 0
3583.11 0 0 0 1.69614i 0 2.13578 1.56155i 0 0 0
3583.12 0 0 0 1.69614i 0 2.13578 + 1.56155i 0 0 0
3583.13 0 0 0 3.33513i 0 −0.662153 2.56155i 0 0 0
3583.14 0 0 0 3.33513i 0 −0.662153 + 2.56155i 0 0 0
3583.15 0 0 0 3.33513i 0 0.662153 2.56155i 0 0 0
3583.16 0 0 0 3.33513i 0 0.662153 + 2.56155i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3583.16
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 yes
4.b Odd 1 yes
7.b Odd 1 yes
12.b Even 1 yes
21.c Even 1 yes
28.d Even 1 yes
84.h Odd 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4032, [\chi])\):

\( T_{5}^{4} + 14 T_{5}^{2} + 32 \)
\( T_{11}^{4} + 26 T_{11}^{2} + 16 \)
\( T_{19}^{4} - 28 T_{19}^{2} + 128 \)