# Properties

 Label 4032.2.b.l Level 4032 Weight 2 Character orbit 4032.b Analytic conductor 32.196 Analytic rank 0 Dimension 4 CM discriminant -84 Inner twists 8

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4032 = 2^{6} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4032.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$32.1956820950$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-6}, \sqrt{7})$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 1008) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{1} q^{5} -\beta_{3} q^{7} +O(q^{10})$$ $$q -\beta_{1} q^{5} -\beta_{3} q^{7} -\beta_{2} q^{11} -3 \beta_{1} q^{17} + 2 \beta_{3} q^{19} -\beta_{2} q^{23} - q^{25} -4 \beta_{3} q^{31} + \beta_{2} q^{35} + 8 q^{37} + 5 \beta_{1} q^{41} + 7 q^{49} -6 \beta_{3} q^{55} + \beta_{2} q^{71} + 7 \beta_{1} q^{77} -18 q^{85} -\beta_{1} q^{89} -2 \beta_{2} q^{95} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q - 4q^{25} + 32q^{37} + 28q^{49} - 72q^{85} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 24 x^{2} + 81$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{3} + 15 \nu$$$$)/9$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} + 33 \nu$$$$)/9$$ $$\beta_{3}$$ $$=$$ $$($$$$\nu^{2} + 12$$$$)/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{2} - \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$3 \beta_{3} - 12$$ $$\nu^{3}$$ $$=$$ $$($$$$-15 \beta_{2} + 33 \beta_{1}$$$$)/2$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$577$$ $$1793$$ $$3781$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3583.1
 2.01563i − 4.46512i − 2.01563i 4.46512i
0 0 0 2.44949i 0 −2.64575 0 0 0
3583.2 0 0 0 2.44949i 0 2.64575 0 0 0
3583.3 0 0 0 2.44949i 0 −2.64575 0 0 0
3583.4 0 0 0 2.44949i 0 2.64575 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
84.h odd 2 1 CM by $$\Q(\sqrt{-21})$$
3.b odd 2 1 inner
4.b odd 2 1 inner
7.b odd 2 1 inner
12.b even 2 1 inner
21.c even 2 1 inner
28.d even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.2.b.l 4
3.b odd 2 1 inner 4032.2.b.l 4
4.b odd 2 1 inner 4032.2.b.l 4
7.b odd 2 1 inner 4032.2.b.l 4
8.b even 2 1 1008.2.b.i 4
8.d odd 2 1 1008.2.b.i 4
12.b even 2 1 inner 4032.2.b.l 4
21.c even 2 1 inner 4032.2.b.l 4
24.f even 2 1 1008.2.b.i 4
24.h odd 2 1 1008.2.b.i 4
28.d even 2 1 inner 4032.2.b.l 4
56.e even 2 1 1008.2.b.i 4
56.h odd 2 1 1008.2.b.i 4
84.h odd 2 1 CM 4032.2.b.l 4
168.e odd 2 1 1008.2.b.i 4
168.i even 2 1 1008.2.b.i 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1008.2.b.i 4 8.b even 2 1
1008.2.b.i 4 8.d odd 2 1
1008.2.b.i 4 24.f even 2 1
1008.2.b.i 4 24.h odd 2 1
1008.2.b.i 4 56.e even 2 1
1008.2.b.i 4 56.h odd 2 1
1008.2.b.i 4 168.e odd 2 1
1008.2.b.i 4 168.i even 2 1
4032.2.b.l 4 1.a even 1 1 trivial
4032.2.b.l 4 3.b odd 2 1 inner
4032.2.b.l 4 4.b odd 2 1 inner
4032.2.b.l 4 7.b odd 2 1 inner
4032.2.b.l 4 12.b even 2 1 inner
4032.2.b.l 4 21.c even 2 1 inner
4032.2.b.l 4 28.d even 2 1 inner
4032.2.b.l 4 84.h odd 2 1 CM

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4032, [\chi])$$:

 $$T_{5}^{2} + 6$$ $$T_{11}^{2} + 42$$ $$T_{19}^{2} - 28$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$( 1 - 4 T^{2} + 25 T^{4} )^{2}$$
$7$ $$( 1 - 7 T^{2} )^{2}$$
$11$ $$( 1 + 20 T^{2} + 121 T^{4} )^{2}$$
$13$ $$( 1 - 13 T^{2} )^{4}$$
$17$ $$( 1 + 20 T^{2} + 289 T^{4} )^{2}$$
$19$ $$( 1 + 10 T^{2} + 361 T^{4} )^{2}$$
$23$ $$( 1 - 4 T^{2} + 529 T^{4} )^{2}$$
$29$ $$( 1 + 29 T^{2} )^{4}$$
$31$ $$( 1 - 50 T^{2} + 961 T^{4} )^{2}$$
$37$ $$( 1 - 8 T + 37 T^{2} )^{4}$$
$41$ $$( 1 + 68 T^{2} + 1681 T^{4} )^{2}$$
$43$ $$( 1 - 43 T^{2} )^{4}$$
$47$ $$( 1 + 47 T^{2} )^{4}$$
$53$ $$( 1 + 53 T^{2} )^{4}$$
$59$ $$( 1 + 59 T^{2} )^{4}$$
$61$ $$( 1 - 61 T^{2} )^{4}$$
$67$ $$( 1 - 67 T^{2} )^{4}$$
$71$ $$( 1 - 100 T^{2} + 5041 T^{4} )^{2}$$
$73$ $$( 1 - 73 T^{2} )^{4}$$
$79$ $$( 1 - 79 T^{2} )^{4}$$
$83$ $$( 1 + 83 T^{2} )^{4}$$
$89$ $$( 1 - 172 T^{2} + 7921 T^{4} )^{2}$$
$97$ $$( 1 - 97 T^{2} )^{4}$$