Properties

Label 4032.2.b.l
Level 4032
Weight 2
Character orbit 4032.b
Analytic conductor 32.196
Analytic rank 0
Dimension 4
CM disc. -84
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4032.b (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(32.195682095\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-6}, \sqrt{7})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{5} -\beta_{3} q^{7} +O(q^{10})\) \( q -\beta_{1} q^{5} -\beta_{3} q^{7} -\beta_{2} q^{11} -3 \beta_{1} q^{17} + 2 \beta_{3} q^{19} -\beta_{2} q^{23} - q^{25} -4 \beta_{3} q^{31} + \beta_{2} q^{35} + 8 q^{37} + 5 \beta_{1} q^{41} + 7 q^{49} -6 \beta_{3} q^{55} + \beta_{2} q^{71} + 7 \beta_{1} q^{77} -18 q^{85} -\beta_{1} q^{89} -2 \beta_{2} q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q - 4q^{25} + 32q^{37} + 28q^{49} - 72q^{85} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 24 x^{2} + 81\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{3} + 15 \nu \)\()/9\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 33 \nu \)\()/9\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{2} + 12 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(3 \beta_{3} - 12\)
\(\nu^{3}\)\(=\)\((\)\(-15 \beta_{2} + 33 \beta_{1}\)\()/2\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3583.1
2.01563i
4.46512i
2.01563i
4.46512i
0 0 0 2.44949i 0 −2.64575 0 0 0
3583.2 0 0 0 2.44949i 0 2.64575 0 0 0
3583.3 0 0 0 2.44949i 0 −2.64575 0 0 0
3583.4 0 0 0 2.44949i 0 2.64575 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
84.h Odd 1 CM by \(\Q(\sqrt{-21}) \) yes
3.b Odd 1 yes
4.b Odd 1 yes
7.b Odd 1 yes
12.b Even 1 yes
21.c Even 1 yes
28.d Even 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4032, [\chi])\):

\( T_{5}^{2} + 6 \)
\( T_{11}^{2} + 42 \)
\( T_{19}^{2} - 28 \)