Properties

Label 4032.2.b.k.3583.1
Level $4032$
Weight $2$
Character 4032.3583
Analytic conductor $32.196$
Analytic rank $0$
Dimension $4$
CM discriminant -84
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4032,2,Mod(3583,4032)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4032, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4032.3583");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.1956820950\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 8x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 3583.1
Root \(-1.16372i\) of defining polynomial
Character \(\chi\) \(=\) 4032.3583
Dual form 4032.2.b.k.3583.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.74166i q^{5} -2.64575 q^{7} +O(q^{10})\) \(q-3.74166i q^{5} -2.64575 q^{7} +1.41421i q^{11} +3.74166i q^{17} +5.29150 q^{19} +7.07107i q^{23} -9.00000 q^{25} +10.5830 q^{31} +9.89949i q^{35} -8.00000 q^{37} +3.74166i q^{41} +7.00000 q^{49} +5.29150 q^{55} +15.5563i q^{71} -3.74166i q^{77} +14.0000 q^{85} -18.7083i q^{89} -19.7990i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 36 q^{25} - 32 q^{37} + 28 q^{49} + 56 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 3.74166i − 1.67332i −0.547723 0.836660i \(-0.684505\pi\)
0.547723 0.836660i \(-0.315495\pi\)
\(6\) 0 0
\(7\) −2.64575 −1.00000
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.74166i 0.907485i 0.891133 + 0.453743i \(0.149911\pi\)
−0.891133 + 0.453743i \(0.850089\pi\)
\(18\) 0 0
\(19\) 5.29150 1.21395 0.606977 0.794719i \(-0.292382\pi\)
0.606977 + 0.794719i \(0.292382\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.07107i 1.47442i 0.675664 + 0.737210i \(0.263857\pi\)
−0.675664 + 0.737210i \(0.736143\pi\)
\(24\) 0 0
\(25\) −9.00000 −1.80000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.5830 1.90076 0.950382 0.311086i \(-0.100693\pi\)
0.950382 + 0.311086i \(0.100693\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.89949i 1.67332i
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.74166i 0.584349i 0.956365 + 0.292174i \(0.0943788\pi\)
−0.956365 + 0.292174i \(0.905621\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 5.29150 0.713506
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.5563i 1.84620i 0.384561 + 0.923099i \(0.374353\pi\)
−0.384561 + 0.923099i \(0.625647\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 3.74166i − 0.426401i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 14.0000 1.51851
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 18.7083i − 1.98307i −0.129823 0.991537i \(-0.541441\pi\)
0.129823 0.991537i \(-0.458559\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 19.7990i − 2.03133i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.7083i 1.86154i 0.365600 + 0.930772i \(0.380864\pi\)
−0.365600 + 0.930772i \(0.619136\pi\)
\(102\) 0 0
\(103\) 10.5830 1.04277 0.521387 0.853320i \(-0.325415\pi\)
0.521387 + 0.853320i \(0.325415\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 7.07107i − 0.683586i −0.939775 0.341793i \(-0.888966\pi\)
0.939775 0.341793i \(-0.111034\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 26.4575 2.46718
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 9.89949i − 0.907485i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 14.9666i 1.33866i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −14.0000 −1.21395
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 21.1660 1.79528 0.897639 0.440732i \(-0.145281\pi\)
0.897639 + 0.440732i \(0.145281\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 39.5980i − 3.18059i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 18.7083i − 1.47442i
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 26.1916i − 1.99131i −0.0931156 0.995655i \(-0.529683\pi\)
0.0931156 0.995655i \(-0.470317\pi\)
\(174\) 0 0
\(175\) 23.8118 1.80000
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.3848i 1.37414i 0.726590 + 0.687071i \(0.241104\pi\)
−0.726590 + 0.687071i \(0.758896\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 29.9333i 2.20074i
\(186\) 0 0
\(187\) −5.29150 −0.386953
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 26.8701i − 1.94425i −0.234465 0.972125i \(-0.575334\pi\)
0.234465 0.972125i \(-0.424666\pi\)
\(192\) 0 0
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −5.29150 −0.375105 −0.187552 0.982255i \(-0.560055\pi\)
−0.187552 + 0.982255i \(0.560055\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 14.0000 0.977802
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.48331i 0.517632i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −28.0000 −1.90076
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.4575 1.77173 0.885863 0.463947i \(-0.153567\pi\)
0.885863 + 0.463947i \(0.153567\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0416i 1.55512i 0.628806 + 0.777562i \(0.283544\pi\)
−0.628806 + 0.777562i \(0.716456\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 26.1916i − 1.67332i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −10.0000 −0.628695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.74166i 0.233398i 0.993167 + 0.116699i \(0.0372313\pi\)
−0.993167 + 0.116699i \(0.962769\pi\)
\(258\) 0 0
\(259\) 21.1660 1.31519
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 1.41421i − 0.0872041i −0.999049 0.0436021i \(-0.986117\pi\)
0.999049 0.0436021i \(-0.0138834\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.7083i 1.14066i 0.821414 + 0.570332i \(0.193186\pi\)
−0.821414 + 0.570332i \(0.806814\pi\)
\(270\) 0 0
\(271\) 10.5830 0.642872 0.321436 0.946931i \(-0.395835\pi\)
0.321436 + 0.946931i \(0.395835\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 12.7279i − 0.767523i
\(276\) 0 0
\(277\) −32.0000 −1.92269 −0.961347 0.275340i \(-0.911209\pi\)
−0.961347 + 0.275340i \(0.911209\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −26.4575 −1.57274 −0.786368 0.617758i \(-0.788041\pi\)
−0.786368 + 0.617758i \(0.788041\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 9.89949i − 0.584349i
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 26.1916i − 1.53013i −0.643953 0.765065i \(-0.722707\pi\)
0.643953 0.765065i \(-0.277293\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.29150 0.302002 0.151001 0.988534i \(-0.451750\pi\)
0.151001 + 0.988534i \(0.451750\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.7990i 1.10165i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.9666i 0.810488i
\(342\) 0 0
\(343\) −18.5203 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.3848i 0.986947i 0.869761 + 0.493473i \(0.164273\pi\)
−0.869761 + 0.493473i \(0.835727\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.1916i 1.39404i 0.717053 + 0.697019i \(0.245491\pi\)
−0.717053 + 0.697019i \(0.754509\pi\)
\(354\) 0 0
\(355\) 58.2065 3.08928
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 32.5269i 1.71670i 0.513061 + 0.858352i \(0.328512\pi\)
−0.513061 + 0.858352i \(0.671488\pi\)
\(360\) 0 0
\(361\) 9.00000 0.473684
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.4575 1.38107 0.690535 0.723299i \(-0.257375\pi\)
0.690535 + 0.723299i \(0.257375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −14.0000 −0.713506
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −26.4575 −1.33801
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 11.3137i − 0.560800i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 40.0000 1.94948 0.974740 0.223341i \(-0.0716964\pi\)
0.974740 + 0.223341i \(0.0716964\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 33.6749i − 1.63347i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 41.0122i 1.97549i 0.156083 + 0.987744i \(0.450113\pi\)
−0.156083 + 0.987744i \(0.549887\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 37.4166i 1.78988i
\(438\) 0 0
\(439\) −5.29150 −0.252550 −0.126275 0.991995i \(-0.540302\pi\)
−0.126275 + 0.991995i \(0.540302\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 26.8701i 1.27663i 0.769773 + 0.638317i \(0.220369\pi\)
−0.769773 + 0.638317i \(0.779631\pi\)
\(444\) 0 0
\(445\) −70.0000 −3.31832
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) −5.29150 −0.249167
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 41.1582i 1.91693i 0.285210 + 0.958465i \(0.407937\pi\)
−0.285210 + 0.958465i \(0.592063\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −47.6235 −2.18512
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 43.8406i 1.97850i 0.146236 + 0.989250i \(0.453284\pi\)
−0.146236 + 0.989250i \(0.546716\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 41.1582i − 1.84620i
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 70.0000 3.11496
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 26.1916i − 1.16092i −0.814288 0.580461i \(-0.802872\pi\)
0.814288 0.580461i \(-0.197128\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 39.5980i − 1.74490i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 18.7083i − 0.819625i −0.912170 0.409812i \(-0.865594\pi\)
0.912170 0.409812i \(-0.134406\pi\)
\(522\) 0 0
\(523\) −42.3320 −1.85105 −0.925525 0.378686i \(-0.876376\pi\)
−0.925525 + 0.378686i \(0.876376\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 39.5980i 1.72492i
\(528\) 0 0
\(529\) −27.0000 −1.17391
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −26.4575 −1.14386
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.89949i 0.426401i
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 37.4166i − 1.60275i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 63.6396i − 2.65396i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 56.0000 2.30744
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 48.6415i 1.99747i 0.0502942 + 0.998734i \(0.483984\pi\)
−0.0502942 + 0.998734i \(0.516016\pi\)
\(594\) 0 0
\(595\) −37.0405 −1.51851
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 18.3848i − 0.751182i −0.926786 0.375591i \(-0.877440\pi\)
0.926786 0.375591i \(-0.122560\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 33.6749i − 1.36908i
\(606\) 0 0
\(607\) 26.4575 1.07388 0.536939 0.843621i \(-0.319581\pi\)
0.536939 + 0.843621i \(0.319581\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 46.0000 1.85792 0.928961 0.370177i \(-0.120703\pi\)
0.928961 + 0.370177i \(0.120703\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 21.1660 0.850734 0.425367 0.905021i \(-0.360145\pi\)
0.425367 + 0.905021i \(0.360145\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 49.4975i 1.98307i
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 29.9333i − 1.19352i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 37.0405 1.46074 0.730368 0.683054i \(-0.239349\pi\)
0.730368 + 0.683054i \(0.239349\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 24.0416i − 0.936529i −0.883588 0.468264i \(-0.844879\pi\)
0.883588 0.468264i \(-0.155121\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 52.3832i 2.03133i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 44.0000 1.69608 0.848038 0.529936i \(-0.177784\pi\)
0.848038 + 0.529936i \(0.177784\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 41.1582i 1.58184i 0.611920 + 0.790920i \(0.290397\pi\)
−0.611920 + 0.790920i \(0.709603\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 41.0122i − 1.56929i −0.619947 0.784644i \(-0.712846\pi\)
0.619947 0.784644i \(-0.287154\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −42.3320 −1.61039 −0.805193 0.593013i \(-0.797938\pi\)
−0.805193 + 0.593013i \(0.797938\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 79.1960i − 3.00407i
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −42.3320 −1.59658
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 49.4975i − 1.86154i
\(708\) 0 0
\(709\) −50.0000 −1.87779 −0.938895 0.344204i \(-0.888149\pi\)
−0.938895 + 0.344204i \(0.888149\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 74.8331i 2.80252i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −52.9150 −1.96251 −0.981255 0.192715i \(-0.938271\pi\)
−0.981255 + 0.192715i \(0.938271\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 43.8406i − 1.60836i −0.594388 0.804178i \(-0.702606\pi\)
0.594388 0.804178i \(-0.297394\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18.7083i 0.683586i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 41.1582i − 1.49198i −0.665955 0.745992i \(-0.731976\pi\)
0.665955 0.745992i \(-0.268024\pi\)
\(762\) 0 0
\(763\) −26.4575 −0.957826
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 48.6415i − 1.74951i −0.484561 0.874757i \(-0.661021\pi\)
0.484561 0.874757i \(-0.338979\pi\)
\(774\) 0 0
\(775\) −95.2470 −3.42137
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 19.7990i 0.709372i
\(780\) 0 0
\(781\) −22.0000 −0.787222
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 21.1660 0.754487 0.377243 0.926114i \(-0.376872\pi\)
0.377243 + 0.926114i \(0.376872\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.74166i − 0.132536i −0.997802 0.0662682i \(-0.978891\pi\)
0.997802 0.0662682i \(-0.0211093\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −70.0000 −2.46718
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −42.3320 −1.48648 −0.743239 0.669026i \(-0.766712\pi\)
−0.743239 + 0.669026i \(0.766712\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.3553i 1.22943i 0.788751 + 0.614713i \(0.210728\pi\)
−0.788751 + 0.614713i \(0.789272\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.1916i 0.907485i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 48.6415i − 1.67332i
\(846\) 0 0
\(847\) −23.8118 −0.818182
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 56.5685i − 1.93914i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 41.1582i − 1.40594i −0.711220 0.702969i \(-0.751857\pi\)
0.711220 0.702969i \(-0.248143\pi\)
\(858\) 0 0
\(859\) −58.2065 −1.98598 −0.992991 0.118194i \(-0.962290\pi\)
−0.992991 + 0.118194i \(0.962290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.07107i 0.240702i 0.992731 + 0.120351i \(0.0384020\pi\)
−0.992731 + 0.120351i \(0.961598\pi\)
\(864\) 0 0
\(865\) −98.0000 −3.33210
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 39.5980i − 1.33866i
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 18.7083i − 0.630298i −0.949042 0.315149i \(-0.897945\pi\)
0.949042 0.315149i \(-0.102055\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 68.7895 2.29938
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.5563i 0.515405i 0.966224 + 0.257702i \(0.0829654\pi\)
−0.966224 + 0.257702i \(0.917035\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 72.0000 2.36735
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 48.6415i 1.59588i 0.602739 + 0.797939i \(0.294076\pi\)
−0.602739 + 0.797939i \(0.705924\pi\)
\(930\) 0 0
\(931\) 37.0405 1.21395
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.7990i 0.647496i
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 3.74166i − 0.121975i −0.998139 0.0609873i \(-0.980575\pi\)
0.998139 0.0609873i \(-0.0194249\pi\)
\(942\) 0 0
\(943\) −26.4575 −0.861575
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 52.3259i 1.70036i 0.526489 + 0.850182i \(0.323508\pi\)
−0.526489 + 0.850182i \(0.676492\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −100.539 −3.25335
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 81.0000 2.61290
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.9666i 0.481793i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −56.0000 −1.79528
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 26.4575 0.845586
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 19.7990i 0.627670i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4032.2.b.k.3583.1 4
3.2 odd 2 inner 4032.2.b.k.3583.3 4
4.3 odd 2 inner 4032.2.b.k.3583.2 4
7.6 odd 2 inner 4032.2.b.k.3583.4 4
8.3 odd 2 252.2.b.b.55.2 yes 4
8.5 even 2 252.2.b.b.55.4 yes 4
12.11 even 2 inner 4032.2.b.k.3583.4 4
21.20 even 2 inner 4032.2.b.k.3583.2 4
24.5 odd 2 252.2.b.b.55.1 4
24.11 even 2 252.2.b.b.55.3 yes 4
28.27 even 2 inner 4032.2.b.k.3583.3 4
56.13 odd 2 252.2.b.b.55.3 yes 4
56.27 even 2 252.2.b.b.55.1 4
84.83 odd 2 CM 4032.2.b.k.3583.1 4
168.83 odd 2 252.2.b.b.55.4 yes 4
168.125 even 2 252.2.b.b.55.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.b.b.55.1 4 24.5 odd 2
252.2.b.b.55.1 4 56.27 even 2
252.2.b.b.55.2 yes 4 8.3 odd 2
252.2.b.b.55.2 yes 4 168.125 even 2
252.2.b.b.55.3 yes 4 24.11 even 2
252.2.b.b.55.3 yes 4 56.13 odd 2
252.2.b.b.55.4 yes 4 8.5 even 2
252.2.b.b.55.4 yes 4 168.83 odd 2
4032.2.b.k.3583.1 4 1.1 even 1 trivial
4032.2.b.k.3583.1 4 84.83 odd 2 CM
4032.2.b.k.3583.2 4 4.3 odd 2 inner
4032.2.b.k.3583.2 4 21.20 even 2 inner
4032.2.b.k.3583.3 4 3.2 odd 2 inner
4032.2.b.k.3583.3 4 28.27 even 2 inner
4032.2.b.k.3583.4 4 7.6 odd 2 inner
4032.2.b.k.3583.4 4 12.11 even 2 inner