Properties

Label 4032.2.b.b
Level 4032
Weight 2
Character orbit 4032.b
Analytic conductor 32.196
Analytic rank 0
Dimension 2
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4032.b (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(32.195682095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( -2 \beta q^{5} \) \( + ( -2 + \beta ) q^{7} \) \(+O(q^{10})\) \( q\) \( -2 \beta q^{5} \) \( + ( -2 + \beta ) q^{7} \) \( + 2 \beta q^{11} \) \( -2 \beta q^{13} \) \( -2 q^{19} \) \( + 2 \beta q^{23} \) \( -7 q^{25} \) \( + 6 q^{29} \) \( -8 q^{31} \) \( + ( 6 + 4 \beta ) q^{35} \) \( + 2 q^{37} \) \( + 4 \beta q^{41} \) \( + 6 \beta q^{43} \) \( + ( 1 - 4 \beta ) q^{49} \) \( + 6 q^{53} \) \( + 12 q^{55} \) \( + 6 q^{59} \) \( -2 \beta q^{61} \) \( -12 q^{65} \) \( -2 \beta q^{67} \) \( -2 \beta q^{71} \) \( + 4 \beta q^{73} \) \( + ( -6 - 4 \beta ) q^{77} \) \( + 2 \beta q^{79} \) \( -6 q^{83} \) \( + 4 \beta q^{89} \) \( + ( 6 + 4 \beta ) q^{91} \) \( + 4 \beta q^{95} \) \( + 8 \beta q^{97} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut -\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{19} \) \(\mathstrut -\mathstrut 14q^{25} \) \(\mathstrut +\mathstrut 12q^{29} \) \(\mathstrut -\mathstrut 16q^{31} \) \(\mathstrut +\mathstrut 12q^{35} \) \(\mathstrut +\mathstrut 4q^{37} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 12q^{53} \) \(\mathstrut +\mathstrut 24q^{55} \) \(\mathstrut +\mathstrut 12q^{59} \) \(\mathstrut -\mathstrut 24q^{65} \) \(\mathstrut -\mathstrut 12q^{77} \) \(\mathstrut -\mathstrut 12q^{83} \) \(\mathstrut +\mathstrut 12q^{91} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4032\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(1793\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3583.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 3.46410i 0 −2.00000 + 1.73205i 0 0 0
3583.2 0 0 0 3.46410i 0 −2.00000 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
28.d Even 1 yes

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4032, [\chi])\):

\(T_{5}^{2} \) \(\mathstrut +\mathstrut 12 \)
\(T_{11}^{2} \) \(\mathstrut +\mathstrut 12 \)
\(T_{19} \) \(\mathstrut +\mathstrut 2 \)