Properties

 Label 4032.2.a.y Level 4032 Weight 2 Character orbit 4032.a Self dual yes Analytic conductor 32.196 Analytic rank 1 Dimension 1 CM no Inner twists 1

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$4032 = 2^{6} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4032.a (trivial)

Newform invariants

 Self dual: yes Analytic conductor: $$32.1956820950$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 2016) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{7} + O(q^{10})$$ $$q + q^{7} + 4q^{11} - 2q^{13} - 4q^{17} - 4q^{23} - 5q^{25} - 4q^{29} - 8q^{31} + 2q^{37} + 4q^{41} - 8q^{43} - 8q^{47} + q^{49} + 4q^{53} + 8q^{59} + 2q^{61} - 8q^{67} - 12q^{71} + 6q^{73} + 4q^{77} - 8q^{79} + 16q^{83} + 12q^{89} - 2q^{91} - 2q^{97} + O(q^{100})$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 0 0 1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.2.a.y 1
3.b odd 2 1 4032.2.a.v 1
4.b odd 2 1 4032.2.a.o 1
8.b even 2 1 2016.2.a.h yes 1
8.d odd 2 1 2016.2.a.f yes 1
12.b even 2 1 4032.2.a.s 1
24.f even 2 1 2016.2.a.c 1
24.h odd 2 1 2016.2.a.j yes 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2016.2.a.c 1 24.f even 2 1
2016.2.a.f yes 1 8.d odd 2 1
2016.2.a.h yes 1 8.b even 2 1
2016.2.a.j yes 1 24.h odd 2 1
4032.2.a.o 1 4.b odd 2 1
4032.2.a.s 1 12.b even 2 1
4032.2.a.v 1 3.b odd 2 1
4032.2.a.y 1 1.a even 1 1 trivial

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$7$$ $$-1$$

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4032))$$:

 $$T_{5}$$ $$T_{11} - 4$$ $$T_{13} + 2$$ $$T_{17} + 4$$ $$T_{19}$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ $$1 + 5 T^{2}$$
$7$ $$1 - T$$
$11$ $$1 - 4 T + 11 T^{2}$$
$13$ $$1 + 2 T + 13 T^{2}$$
$17$ $$1 + 4 T + 17 T^{2}$$
$19$ $$1 + 19 T^{2}$$
$23$ $$1 + 4 T + 23 T^{2}$$
$29$ $$1 + 4 T + 29 T^{2}$$
$31$ $$1 + 8 T + 31 T^{2}$$
$37$ $$1 - 2 T + 37 T^{2}$$
$41$ $$1 - 4 T + 41 T^{2}$$
$43$ $$1 + 8 T + 43 T^{2}$$
$47$ $$1 + 8 T + 47 T^{2}$$
$53$ $$1 - 4 T + 53 T^{2}$$
$59$ $$1 - 8 T + 59 T^{2}$$
$61$ $$1 - 2 T + 61 T^{2}$$
$67$ $$1 + 8 T + 67 T^{2}$$
$71$ $$1 + 12 T + 71 T^{2}$$
$73$ $$1 - 6 T + 73 T^{2}$$
$79$ $$1 + 8 T + 79 T^{2}$$
$83$ $$1 - 16 T + 83 T^{2}$$
$89$ $$1 - 12 T + 89 T^{2}$$
$97$ $$1 + 2 T + 97 T^{2}$$