# Properties

 Label 4032.2.a.w Level $4032$ Weight $2$ Character orbit 4032.a Self dual yes Analytic conductor $32.196$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4032 = 2^{6} \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4032.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$32.1956820950$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 14) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{7} + O(q^{10})$$ $$q + q^{7} + 4q^{13} - 6q^{17} - 2q^{19} - 5q^{25} - 6q^{29} - 4q^{31} - 2q^{37} - 6q^{41} - 8q^{43} + 12q^{47} + q^{49} + 6q^{53} - 6q^{59} - 8q^{61} + 4q^{67} + 2q^{73} + 8q^{79} - 6q^{83} + 6q^{89} + 4q^{91} - 10q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 0 0 1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.2.a.w 1
3.b odd 2 1 448.2.a.g 1
4.b odd 2 1 4032.2.a.r 1
8.b even 2 1 126.2.a.b 1
8.d odd 2 1 1008.2.a.h 1
12.b even 2 1 448.2.a.a 1
21.c even 2 1 3136.2.a.e 1
24.f even 2 1 112.2.a.c 1
24.h odd 2 1 14.2.a.a 1
40.f even 2 1 3150.2.a.i 1
40.i odd 4 2 3150.2.g.j 2
48.i odd 4 2 1792.2.b.c 2
48.k even 4 2 1792.2.b.g 2
56.e even 2 1 7056.2.a.bd 1
56.h odd 2 1 882.2.a.i 1
56.j odd 6 2 882.2.g.d 2
56.p even 6 2 882.2.g.c 2
72.j odd 6 2 1134.2.f.l 2
72.n even 6 2 1134.2.f.f 2
84.h odd 2 1 3136.2.a.z 1
120.i odd 2 1 350.2.a.f 1
120.m even 2 1 2800.2.a.g 1
120.q odd 4 2 2800.2.g.h 2
120.w even 4 2 350.2.c.d 2
168.e odd 2 1 784.2.a.b 1
168.i even 2 1 98.2.a.a 1
168.s odd 6 2 98.2.c.b 2
168.v even 6 2 784.2.i.c 2
168.ba even 6 2 98.2.c.a 2
168.be odd 6 2 784.2.i.i 2
264.m even 2 1 1694.2.a.e 1
312.b odd 2 1 2366.2.a.j 1
312.y even 4 2 2366.2.d.b 2
408.b odd 2 1 4046.2.a.f 1
456.p even 2 1 5054.2.a.c 1
552.b even 2 1 7406.2.a.a 1
840.u even 2 1 2450.2.a.t 1
840.bp odd 4 2 2450.2.c.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.2.a.a 1 24.h odd 2 1
98.2.a.a 1 168.i even 2 1
98.2.c.a 2 168.ba even 6 2
98.2.c.b 2 168.s odd 6 2
112.2.a.c 1 24.f even 2 1
126.2.a.b 1 8.b even 2 1
350.2.a.f 1 120.i odd 2 1
350.2.c.d 2 120.w even 4 2
448.2.a.a 1 12.b even 2 1
448.2.a.g 1 3.b odd 2 1
784.2.a.b 1 168.e odd 2 1
784.2.i.c 2 168.v even 6 2
784.2.i.i 2 168.be odd 6 2
882.2.a.i 1 56.h odd 2 1
882.2.g.c 2 56.p even 6 2
882.2.g.d 2 56.j odd 6 2
1008.2.a.h 1 8.d odd 2 1
1134.2.f.f 2 72.n even 6 2
1134.2.f.l 2 72.j odd 6 2
1694.2.a.e 1 264.m even 2 1
1792.2.b.c 2 48.i odd 4 2
1792.2.b.g 2 48.k even 4 2
2366.2.a.j 1 312.b odd 2 1
2366.2.d.b 2 312.y even 4 2
2450.2.a.t 1 840.u even 2 1
2450.2.c.c 2 840.bp odd 4 2
2800.2.a.g 1 120.m even 2 1
2800.2.g.h 2 120.q odd 4 2
3136.2.a.e 1 21.c even 2 1
3136.2.a.z 1 84.h odd 2 1
3150.2.a.i 1 40.f even 2 1
3150.2.g.j 2 40.i odd 4 2
4032.2.a.r 1 4.b odd 2 1
4032.2.a.w 1 1.a even 1 1 trivial
4046.2.a.f 1 408.b odd 2 1
5054.2.a.c 1 456.p even 2 1
7056.2.a.bd 1 56.e even 2 1
7406.2.a.a 1 552.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4032))$$:

 $$T_{5}$$ $$T_{11}$$ $$T_{13} - 4$$ $$T_{17} + 6$$ $$T_{19} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T$$
$7$ $$-1 + T$$
$11$ $$T$$
$13$ $$-4 + T$$
$17$ $$6 + T$$
$19$ $$2 + T$$
$23$ $$T$$
$29$ $$6 + T$$
$31$ $$4 + T$$
$37$ $$2 + T$$
$41$ $$6 + T$$
$43$ $$8 + T$$
$47$ $$-12 + T$$
$53$ $$-6 + T$$
$59$ $$6 + T$$
$61$ $$8 + T$$
$67$ $$-4 + T$$
$71$ $$T$$
$73$ $$-2 + T$$
$79$ $$-8 + T$$
$83$ $$6 + T$$
$89$ $$-6 + T$$
$97$ $$10 + T$$