Properties

Label 4032.2.a.bt
Level 4032
Weight 2
Character orbit 4032.a
Self dual yes
Analytic conductor 32.196
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4032.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(32.1956820950\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 63)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta q^{5} + q^{7} +O(q^{10})\) \( q + 2 \beta q^{5} + q^{7} -2 \beta q^{11} -2 q^{13} + 2 \beta q^{17} + 4 q^{19} -2 \beta q^{23} + 7 q^{25} -4 q^{31} + 2 \beta q^{35} -2 q^{37} + 6 \beta q^{41} + 4 q^{43} + 4 \beta q^{47} + q^{49} + 4 \beta q^{53} -12 q^{55} + 4 \beta q^{59} + 10 q^{61} -4 \beta q^{65} + 4 q^{67} -6 \beta q^{71} + 14 q^{73} -2 \beta q^{77} + 8 q^{79} + 12 q^{85} -2 \beta q^{89} -2 q^{91} + 8 \beta q^{95} + 14 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{7} + O(q^{10}) \) \( 2q + 2q^{7} - 4q^{13} + 8q^{19} + 14q^{25} - 8q^{31} - 4q^{37} + 8q^{43} + 2q^{49} - 24q^{55} + 20q^{61} + 8q^{67} + 28q^{73} + 16q^{79} + 24q^{85} - 4q^{91} + 28q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 −3.46410 0 1.00000 0 0 0
1.2 0 0 0 3.46410 0 1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4032.2.a.bt 2
3.b odd 2 1 inner 4032.2.a.bt 2
4.b odd 2 1 4032.2.a.bq 2
8.b even 2 1 63.2.a.b 2
8.d odd 2 1 1008.2.a.n 2
12.b even 2 1 4032.2.a.bq 2
24.f even 2 1 1008.2.a.n 2
24.h odd 2 1 63.2.a.b 2
40.f even 2 1 1575.2.a.q 2
40.i odd 4 2 1575.2.d.i 4
56.e even 2 1 7056.2.a.cm 2
56.h odd 2 1 441.2.a.g 2
56.j odd 6 2 441.2.e.i 4
56.p even 6 2 441.2.e.j 4
72.j odd 6 2 567.2.f.j 4
72.n even 6 2 567.2.f.j 4
88.b odd 2 1 7623.2.a.bi 2
120.i odd 2 1 1575.2.a.q 2
120.w even 4 2 1575.2.d.i 4
168.e odd 2 1 7056.2.a.cm 2
168.i even 2 1 441.2.a.g 2
168.s odd 6 2 441.2.e.j 4
168.ba even 6 2 441.2.e.i 4
264.m even 2 1 7623.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.a.b 2 8.b even 2 1
63.2.a.b 2 24.h odd 2 1
441.2.a.g 2 56.h odd 2 1
441.2.a.g 2 168.i even 2 1
441.2.e.i 4 56.j odd 6 2
441.2.e.i 4 168.ba even 6 2
441.2.e.j 4 56.p even 6 2
441.2.e.j 4 168.s odd 6 2
567.2.f.j 4 72.j odd 6 2
567.2.f.j 4 72.n even 6 2
1008.2.a.n 2 8.d odd 2 1
1008.2.a.n 2 24.f even 2 1
1575.2.a.q 2 40.f even 2 1
1575.2.a.q 2 120.i odd 2 1
1575.2.d.i 4 40.i odd 4 2
1575.2.d.i 4 120.w even 4 2
4032.2.a.bq 2 4.b odd 2 1
4032.2.a.bq 2 12.b even 2 1
4032.2.a.bt 2 1.a even 1 1 trivial
4032.2.a.bt 2 3.b odd 2 1 inner
7056.2.a.cm 2 56.e even 2 1
7056.2.a.cm 2 168.e odd 2 1
7623.2.a.bi 2 88.b odd 2 1
7623.2.a.bi 2 264.m even 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4032))\):

\( T_{5}^{2} - 12 \)
\( T_{11}^{2} - 12 \)
\( T_{13} + 2 \)
\( T_{17}^{2} - 12 \)
\( T_{19} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 - 2 T^{2} + 25 T^{4} \)
$7$ \( ( 1 - T )^{2} \)
$11$ \( 1 + 10 T^{2} + 121 T^{4} \)
$13$ \( ( 1 + 2 T + 13 T^{2} )^{2} \)
$17$ \( 1 + 22 T^{2} + 289 T^{4} \)
$19$ \( ( 1 - 4 T + 19 T^{2} )^{2} \)
$23$ \( 1 + 34 T^{2} + 529 T^{4} \)
$29$ \( ( 1 + 29 T^{2} )^{2} \)
$31$ \( ( 1 + 4 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 + 2 T + 37 T^{2} )^{2} \)
$41$ \( 1 - 26 T^{2} + 1681 T^{4} \)
$43$ \( ( 1 - 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 46 T^{2} + 2209 T^{4} \)
$53$ \( 1 + 58 T^{2} + 2809 T^{4} \)
$59$ \( 1 + 70 T^{2} + 3481 T^{4} \)
$61$ \( ( 1 - 10 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 4 T + 67 T^{2} )^{2} \)
$71$ \( 1 + 34 T^{2} + 5041 T^{4} \)
$73$ \( ( 1 - 14 T + 73 T^{2} )^{2} \)
$79$ \( ( 1 - 8 T + 79 T^{2} )^{2} \)
$83$ \( ( 1 + 83 T^{2} )^{2} \)
$89$ \( 1 + 166 T^{2} + 7921 T^{4} \)
$97$ \( ( 1 - 14 T + 97 T^{2} )^{2} \)
show more
show less