Properties

Label 4030.2.a.f
Level 4030
Weight 2
Character orbit 4030.a
Self dual Yes
Analytic conductor 32.180
Analytic rank 1
Dimension 6
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4030 = 2 \cdot 5 \cdot 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4030.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.1797120146\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.4418197.1
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{2}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{3} \) \(+ q^{4}\) \(- q^{5}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{6} \) \( + ( -\beta_{2} - \beta_{5} ) q^{7} \) \(+ q^{8}\) \( + ( \beta_{2} + \beta_{4} ) q^{9} \) \(+O(q^{10})\) \( q\) \(+ q^{2}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{3} \) \(+ q^{4}\) \(- q^{5}\) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{6} \) \( + ( -\beta_{2} - \beta_{5} ) q^{7} \) \(+ q^{8}\) \( + ( \beta_{2} + \beta_{4} ) q^{9} \) \(- q^{10}\) \( + ( -1 - \beta_{1} + \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{11} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{12} \) \(+ q^{13}\) \( + ( -\beta_{2} - \beta_{5} ) q^{14} \) \( + ( 1 - \beta_{1} - \beta_{3} ) q^{15} \) \(+ q^{16}\) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} ) q^{17} \) \( + ( \beta_{2} + \beta_{4} ) q^{18} \) \( + ( -2 \beta_{3} + \beta_{4} ) q^{19} \) \(- q^{20}\) \( + ( -2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{21} \) \( + ( -1 - \beta_{1} + \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{22} \) \( + ( -2 - 2 \beta_{1} + \beta_{2} - \beta_{4} + 2 \beta_{5} ) q^{23} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{24} \) \(+ q^{25}\) \(+ q^{26}\) \( + ( 2 - 2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{27} \) \( + ( -\beta_{2} - \beta_{5} ) q^{28} \) \( + ( -1 - 3 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} ) q^{29} \) \( + ( 1 - \beta_{1} - \beta_{3} ) q^{30} \) \(- q^{31}\) \(+ q^{32}\) \( + ( -3 \beta_{1} - \beta_{3} + \beta_{4} ) q^{33} \) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} ) q^{34} \) \( + ( \beta_{2} + \beta_{5} ) q^{35} \) \( + ( \beta_{2} + \beta_{4} ) q^{36} \) \( + ( -1 + 3 \beta_{2} + \beta_{3} + \beta_{4} ) q^{37} \) \( + ( -2 \beta_{3} + \beta_{4} ) q^{38} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{39} \) \(- q^{40}\) \( + ( 2 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + \beta_{4} ) q^{41} \) \( + ( -2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{42} \) \( + ( 1 + 3 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} - \beta_{5} ) q^{43} \) \( + ( -1 - \beta_{1} + \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{44} \) \( + ( -\beta_{2} - \beta_{4} ) q^{45} \) \( + ( -2 - 2 \beta_{1} + \beta_{2} - \beta_{4} + 2 \beta_{5} ) q^{46} \) \( + ( -2 - 3 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{47} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{48} \) \( + ( -3 + 3 \beta_{1} - \beta_{2} + 3 \beta_{3} + \beta_{4} - \beta_{5} ) q^{49} \) \(+ q^{50}\) \( + ( -\beta_{1} - \beta_{2} - 3 \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{51} \) \(+ q^{52}\) \( + ( -2 - 2 \beta_{1} - 3 \beta_{3} + \beta_{4} - 3 \beta_{5} ) q^{53} \) \( + ( 2 - 2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{54} \) \( + ( 1 + \beta_{1} - \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{55} \) \( + ( -\beta_{2} - \beta_{5} ) q^{56} \) \( + ( -3 - \beta_{1} - \beta_{4} ) q^{57} \) \( + ( -1 - 3 \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} ) q^{58} \) \( + ( -2 - 3 \beta_{1} + 5 \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{59} \) \( + ( 1 - \beta_{1} - \beta_{3} ) q^{60} \) \( + ( -2 - \beta_{1} + 2 \beta_{2} - \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{61} \) \(- q^{62}\) \( + ( -3 - 3 \beta_{1} + \beta_{2} - 3 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} ) q^{63} \) \(+ q^{64}\) \(- q^{65}\) \( + ( -3 \beta_{1} - \beta_{3} + \beta_{4} ) q^{66} \) \( + ( -2 + 5 \beta_{1} + 3 \beta_{5} ) q^{67} \) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} ) q^{68} \) \( + ( 1 - \beta_{1} - 3 \beta_{3} - \beta_{4} - \beta_{5} ) q^{69} \) \( + ( \beta_{2} + \beta_{5} ) q^{70} \) \( + ( -3 - 2 \beta_{2} + 4 \beta_{3} - 4 \beta_{5} ) q^{71} \) \( + ( \beta_{2} + \beta_{4} ) q^{72} \) \( + ( 3 - 2 \beta_{2} + 2 \beta_{3} + 5 \beta_{4} - 5 \beta_{5} ) q^{73} \) \( + ( -1 + 3 \beta_{2} + \beta_{3} + \beta_{4} ) q^{74} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{75} \) \( + ( -2 \beta_{3} + \beta_{4} ) q^{76} \) \( + ( \beta_{1} + 4 \beta_{2} - 3 \beta_{3} + 2 \beta_{5} ) q^{77} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{78} \) \( + ( -5 + 3 \beta_{1} + \beta_{2} + 4 \beta_{3} + \beta_{5} ) q^{79} \) \(- q^{80}\) \( + ( -3 - \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{81} \) \( + ( 2 \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + \beta_{4} ) q^{82} \) \( + ( -2 + 5 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - \beta_{5} ) q^{83} \) \( + ( -2 \beta_{1} - \beta_{2} - \beta_{3} ) q^{84} \) \( + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} ) q^{85} \) \( + ( 1 + 3 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} - \beta_{5} ) q^{86} \) \( + ( -4 - 3 \beta_{1} - 2 \beta_{2} - 5 \beta_{3} - 4 \beta_{4} - 2 \beta_{5} ) q^{87} \) \( + ( -1 - \beta_{1} + \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{88} \) \( + ( -1 + 2 \beta_{1} + \beta_{2} + 6 \beta_{3} - \beta_{5} ) q^{89} \) \( + ( -\beta_{2} - \beta_{4} ) q^{90} \) \( + ( -\beta_{2} - \beta_{5} ) q^{91} \) \( + ( -2 - 2 \beta_{1} + \beta_{2} - \beta_{4} + 2 \beta_{5} ) q^{92} \) \( + ( 1 - \beta_{1} - \beta_{3} ) q^{93} \) \( + ( -2 - 3 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{94} \) \( + ( 2 \beta_{3} - \beta_{4} ) q^{95} \) \( + ( -1 + \beta_{1} + \beta_{3} ) q^{96} \) \( + ( -1 + 3 \beta_{1} - 2 \beta_{3} - \beta_{4} + 4 \beta_{5} ) q^{97} \) \( + ( -3 + 3 \beta_{1} - \beta_{2} + 3 \beta_{3} + \beta_{4} - \beta_{5} ) q^{98} \) \( + ( -2 + 3 \beta_{1} - 6 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} - 3 \beta_{5} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(6q \) \(\mathstrut +\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut +\mathstrut 6q^{4} \) \(\mathstrut -\mathstrut 6q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 6q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(6q \) \(\mathstrut +\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut +\mathstrut 6q^{4} \) \(\mathstrut -\mathstrut 6q^{5} \) \(\mathstrut -\mathstrut 3q^{6} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 6q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut -\mathstrut 6q^{10} \) \(\mathstrut -\mathstrut 4q^{11} \) \(\mathstrut -\mathstrut 3q^{12} \) \(\mathstrut +\mathstrut 6q^{13} \) \(\mathstrut -\mathstrut 2q^{14} \) \(\mathstrut +\mathstrut 3q^{15} \) \(\mathstrut +\mathstrut 6q^{16} \) \(\mathstrut -\mathstrut 8q^{17} \) \(\mathstrut -\mathstrut q^{18} \) \(\mathstrut -\mathstrut 9q^{19} \) \(\mathstrut -\mathstrut 6q^{20} \) \(\mathstrut -\mathstrut 5q^{21} \) \(\mathstrut -\mathstrut 4q^{22} \) \(\mathstrut -\mathstrut 7q^{23} \) \(\mathstrut -\mathstrut 3q^{24} \) \(\mathstrut +\mathstrut 6q^{25} \) \(\mathstrut +\mathstrut 6q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 2q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut +\mathstrut 3q^{30} \) \(\mathstrut -\mathstrut 6q^{31} \) \(\mathstrut +\mathstrut 6q^{32} \) \(\mathstrut -\mathstrut 6q^{33} \) \(\mathstrut -\mathstrut 8q^{34} \) \(\mathstrut +\mathstrut 2q^{35} \) \(\mathstrut -\mathstrut q^{36} \) \(\mathstrut -\mathstrut 9q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut 6q^{40} \) \(\mathstrut +\mathstrut 2q^{41} \) \(\mathstrut -\mathstrut 5q^{42} \) \(\mathstrut -\mathstrut 7q^{43} \) \(\mathstrut -\mathstrut 4q^{44} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut -\mathstrut 7q^{46} \) \(\mathstrut -\mathstrut 8q^{47} \) \(\mathstrut -\mathstrut 3q^{48} \) \(\mathstrut -\mathstrut 14q^{49} \) \(\mathstrut +\mathstrut 6q^{50} \) \(\mathstrut -\mathstrut 5q^{51} \) \(\mathstrut +\mathstrut 6q^{52} \) \(\mathstrut -\mathstrut 24q^{53} \) \(\mathstrut +\mathstrut 9q^{54} \) \(\mathstrut +\mathstrut 4q^{55} \) \(\mathstrut -\mathstrut 2q^{56} \) \(\mathstrut -\mathstrut 15q^{57} \) \(\mathstrut -\mathstrut 14q^{58} \) \(\mathstrut -\mathstrut 5q^{59} \) \(\mathstrut +\mathstrut 3q^{60} \) \(\mathstrut -\mathstrut 5q^{61} \) \(\mathstrut -\mathstrut 6q^{62} \) \(\mathstrut -\mathstrut 19q^{63} \) \(\mathstrut +\mathstrut 6q^{64} \) \(\mathstrut -\mathstrut 6q^{65} \) \(\mathstrut -\mathstrut 6q^{66} \) \(\mathstrut -\mathstrut 12q^{67} \) \(\mathstrut -\mathstrut 8q^{68} \) \(\mathstrut +\mathstrut 2q^{70} \) \(\mathstrut -\mathstrut 10q^{71} \) \(\mathstrut -\mathstrut q^{72} \) \(\mathstrut +\mathstrut 5q^{73} \) \(\mathstrut -\mathstrut 3q^{75} \) \(\mathstrut -\mathstrut 9q^{76} \) \(\mathstrut -\mathstrut q^{77} \) \(\mathstrut -\mathstrut 3q^{78} \) \(\mathstrut -\mathstrut 16q^{79} \) \(\mathstrut -\mathstrut 6q^{80} \) \(\mathstrut -\mathstrut 10q^{81} \) \(\mathstrut +\mathstrut 2q^{82} \) \(\mathstrut -\mathstrut 22q^{83} \) \(\mathstrut -\mathstrut 5q^{84} \) \(\mathstrut +\mathstrut 8q^{85} \) \(\mathstrut -\mathstrut 7q^{86} \) \(\mathstrut -\mathstrut 31q^{87} \) \(\mathstrut -\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 14q^{89} \) \(\mathstrut +\mathstrut q^{90} \) \(\mathstrut -\mathstrut 2q^{91} \) \(\mathstrut -\mathstrut 7q^{92} \) \(\mathstrut +\mathstrut 3q^{93} \) \(\mathstrut -\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 9q^{95} \) \(\mathstrut -\mathstrut 3q^{96} \) \(\mathstrut -\mathstrut 9q^{97} \) \(\mathstrut -\mathstrut 14q^{98} \) \(\mathstrut -\mathstrut 21q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6}\mathstrut -\mathstrut \) \(7\) \(x^{4}\mathstrut -\mathstrut \) \(x^{3}\mathstrut +\mathstrut \) \(12\) \(x^{2}\mathstrut +\mathstrut \) \(3\) \(x\mathstrut -\mathstrut \) \(1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 2 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 4 \nu \)
\(\beta_{4}\)\(=\)\( \nu^{4} - \nu^{3} - 4 \nu^{2} + 3 \nu + 1 \)
\(\beta_{5}\)\(=\)\( \nu^{5} - 6 \nu^{3} - \nu^{2} + 8 \nu + 2 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\mathstrut +\mathstrut \) \(2\)
\(\nu^{3}\)\(=\)\(\beta_{3}\mathstrut +\mathstrut \) \(4\) \(\beta_{1}\)
\(\nu^{4}\)\(=\)\(\beta_{4}\mathstrut +\mathstrut \) \(\beta_{3}\mathstrut +\mathstrut \) \(4\) \(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(7\)
\(\nu^{5}\)\(=\)\(\beta_{5}\mathstrut +\mathstrut \) \(6\) \(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(16\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.95223
0.191750
1.67370
−1.59064
−0.467757
2.14519
1.00000 −2.58368 1.00000 −1.00000 −2.58368 −0.667536 1.00000 3.67538 −1.00000
1.2 1.00000 −1.56820 1.00000 −1.00000 −1.56820 −1.49195 1.00000 −0.540753 −1.00000
1.3 1.00000 −1.33263 1.00000 −1.00000 −1.33263 1.60759 1.00000 −1.22409 −1.00000
1.4 1.00000 −0.252625 1.00000 −1.00000 −0.252625 −1.23948 1.00000 −2.93618 −1.00000
1.5 1.00000 0.300926 1.00000 −1.00000 0.300926 3.15038 1.00000 −2.90944 −1.00000
1.6 1.00000 2.43620 1.00000 −1.00000 2.43620 −3.35900 1.00000 2.93509 −1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(13\) \(-1\)
\(31\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{6} \) \(\mathstrut +\mathstrut 3 T_{3}^{5} \) \(\mathstrut -\mathstrut 4 T_{3}^{4} \) \(\mathstrut -\mathstrut 18 T_{3}^{3} \) \(\mathstrut -\mathstrut 12 T_{3}^{2} \) \(\mathstrut +\mathstrut 2 T_{3} \) \(\mathstrut +\mathstrut 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4030))\).