Properties

Label 4030.2.a.c
Level 4030
Weight 2
Character orbit 4030.a
Self dual Yes
Analytic conductor 32.180
Analytic rank 1
Dimension 6
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4030 = 2 \cdot 5 \cdot 13 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4030.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.1797120146\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3081125.1
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(- q^{2}\) \( -\beta_{3} q^{3} \) \(+ q^{4}\) \(- q^{5}\) \( + \beta_{3} q^{6} \) \( + ( 1 + \beta_{4} - \beta_{5} ) q^{7} \) \(- q^{8}\) \( + \beta_{1} q^{9} \) \(+O(q^{10})\) \( q\) \(- q^{2}\) \( -\beta_{3} q^{3} \) \(+ q^{4}\) \(- q^{5}\) \( + \beta_{3} q^{6} \) \( + ( 1 + \beta_{4} - \beta_{5} ) q^{7} \) \(- q^{8}\) \( + \beta_{1} q^{9} \) \(+ q^{10}\) \( + ( -1 + \beta_{1} + \beta_{5} ) q^{11} \) \( -\beta_{3} q^{12} \) \(+ q^{13}\) \( + ( -1 - \beta_{4} + \beta_{5} ) q^{14} \) \( + \beta_{3} q^{15} \) \(+ q^{16}\) \( + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{17} \) \( -\beta_{1} q^{18} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} ) q^{19} \) \(- q^{20}\) \( + ( -\beta_{1} - \beta_{2} ) q^{21} \) \( + ( 1 - \beta_{1} - \beta_{5} ) q^{22} \) \( + ( -2 - \beta_{1} + 2 \beta_{2} ) q^{23} \) \( + \beta_{3} q^{24} \) \(+ q^{25}\) \(- q^{26}\) \( + ( -1 - \beta_{1} + 2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{27} \) \( + ( 1 + \beta_{4} - \beta_{5} ) q^{28} \) \( + ( -3 - 3 \beta_{1} + \beta_{2} - \beta_{5} ) q^{29} \) \( -\beta_{3} q^{30} \) \(+ q^{31}\) \(- q^{32}\) \( + ( -1 - \beta_{1} + \beta_{2} - \beta_{4} ) q^{33} \) \( + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{34} \) \( + ( -1 - \beta_{4} + \beta_{5} ) q^{35} \) \( + \beta_{1} q^{36} \) \( + ( 1 + 2 \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} ) q^{37} \) \( + ( \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} ) q^{38} \) \( -\beta_{3} q^{39} \) \(+ q^{40}\) \( + ( -2 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{5} ) q^{41} \) \( + ( \beta_{1} + \beta_{2} ) q^{42} \) \( + ( -1 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + \beta_{5} ) q^{43} \) \( + ( -1 + \beta_{1} + \beta_{5} ) q^{44} \) \( -\beta_{1} q^{45} \) \( + ( 2 + \beta_{1} - 2 \beta_{2} ) q^{46} \) \( + ( -\beta_{1} - 3 \beta_{2} + \beta_{3} - \beta_{4} + \beta_{5} ) q^{47} \) \( -\beta_{3} q^{48} \) \( + ( -1 - \beta_{1} + \beta_{2} + 2 \beta_{4} - \beta_{5} ) q^{49} \) \(- q^{50}\) \( + ( -2 \beta_{2} + \beta_{3} + \beta_{4} - 3 \beta_{5} ) q^{51} \) \(+ q^{52}\) \( + ( -1 + 2 \beta_{1} - \beta_{3} - 2 \beta_{4} + 3 \beta_{5} ) q^{53} \) \( + ( 1 + \beta_{1} - 2 \beta_{3} + \beta_{4} - \beta_{5} ) q^{54} \) \( + ( 1 - \beta_{1} - \beta_{5} ) q^{55} \) \( + ( -1 - \beta_{4} + \beta_{5} ) q^{56} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} - \beta_{3} + 2 \beta_{5} ) q^{57} \) \( + ( 3 + 3 \beta_{1} - \beta_{2} + \beta_{5} ) q^{58} \) \( + ( -2 - \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{59} \) \( + \beta_{3} q^{60} \) \( + ( 2 \beta_{1} - \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{61} \) \(- q^{62}\) \( + ( 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{4} ) q^{63} \) \(+ q^{64}\) \(- q^{65}\) \( + ( 1 + \beta_{1} - \beta_{2} + \beta_{4} ) q^{66} \) \( + ( 2 + 3 \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} ) q^{67} \) \( + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{68} \) \( + ( -3 - \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} + 3 \beta_{5} ) q^{69} \) \( + ( 1 + \beta_{4} - \beta_{5} ) q^{70} \) \( + ( -3 + 2 \beta_{5} ) q^{71} \) \( -\beta_{1} q^{72} \) \( + ( 2 + \beta_{1} - 2 \beta_{3} - 3 \beta_{4} - \beta_{5} ) q^{73} \) \( + ( -1 - 2 \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{5} ) q^{74} \) \( -\beta_{3} q^{75} \) \( + ( -\beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} ) q^{76} \) \( + ( -3 + \beta_{3} - 2 \beta_{4} ) q^{77} \) \( + \beta_{3} q^{78} \) \( + ( 1 + \beta_{1} - 4 \beta_{2} + \beta_{5} ) q^{79} \) \(- q^{80}\) \( + ( -5 - 3 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} ) q^{81} \) \( + ( 2 + 2 \beta_{1} + \beta_{2} - 2 \beta_{3} + 2 \beta_{5} ) q^{82} \) \( + ( \beta_{1} + \beta_{2} + 3 \beta_{3} - \beta_{4} - \beta_{5} ) q^{83} \) \( + ( -\beta_{1} - \beta_{2} ) q^{84} \) \( + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{85} \) \( + ( 1 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - \beta_{5} ) q^{86} \) \( + ( 1 + 2 \beta_{1} + 5 \beta_{3} + 2 \beta_{4} ) q^{87} \) \( + ( 1 - \beta_{1} - \beta_{5} ) q^{88} \) \( + ( -2 + 2 \beta_{1} + 2 \beta_{3} - \beta_{4} + 3 \beta_{5} ) q^{89} \) \( + \beta_{1} q^{90} \) \( + ( 1 + \beta_{4} - \beta_{5} ) q^{91} \) \( + ( -2 - \beta_{1} + 2 \beta_{2} ) q^{92} \) \( -\beta_{3} q^{93} \) \( + ( \beta_{1} + 3 \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{94} \) \( + ( \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} ) q^{95} \) \( + \beta_{3} q^{96} \) \( + ( -2 \beta_{1} + \beta_{2} - \beta_{3} + 2 \beta_{5} ) q^{97} \) \( + ( 1 + \beta_{1} - \beta_{2} - 2 \beta_{4} + \beta_{5} ) q^{98} \) \( + ( 2 - 2 \beta_{1} + \beta_{2} - \beta_{5} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(6q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut +\mathstrut 6q^{4} \) \(\mathstrut -\mathstrut 6q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(6q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut q^{3} \) \(\mathstrut +\mathstrut 6q^{4} \) \(\mathstrut -\mathstrut 6q^{5} \) \(\mathstrut +\mathstrut q^{6} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut 6q^{10} \) \(\mathstrut -\mathstrut 6q^{11} \) \(\mathstrut -\mathstrut q^{12} \) \(\mathstrut +\mathstrut 6q^{13} \) \(\mathstrut -\mathstrut 4q^{14} \) \(\mathstrut +\mathstrut q^{15} \) \(\mathstrut +\mathstrut 6q^{16} \) \(\mathstrut -\mathstrut 4q^{17} \) \(\mathstrut +\mathstrut q^{18} \) \(\mathstrut +\mathstrut 3q^{19} \) \(\mathstrut -\mathstrut 6q^{20} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut +\mathstrut 6q^{22} \) \(\mathstrut -\mathstrut 7q^{23} \) \(\mathstrut +\mathstrut q^{24} \) \(\mathstrut +\mathstrut 6q^{25} \) \(\mathstrut -\mathstrut 6q^{26} \) \(\mathstrut -\mathstrut q^{27} \) \(\mathstrut +\mathstrut 4q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut q^{30} \) \(\mathstrut +\mathstrut 6q^{31} \) \(\mathstrut -\mathstrut 6q^{32} \) \(\mathstrut -\mathstrut 2q^{33} \) \(\mathstrut +\mathstrut 4q^{34} \) \(\mathstrut -\mathstrut 4q^{35} \) \(\mathstrut -\mathstrut q^{36} \) \(\mathstrut +\mathstrut 14q^{37} \) \(\mathstrut -\mathstrut 3q^{38} \) \(\mathstrut -\mathstrut q^{39} \) \(\mathstrut +\mathstrut 6q^{40} \) \(\mathstrut -\mathstrut 12q^{41} \) \(\mathstrut +\mathstrut q^{42} \) \(\mathstrut +\mathstrut 3q^{43} \) \(\mathstrut -\mathstrut 6q^{44} \) \(\mathstrut +\mathstrut q^{45} \) \(\mathstrut +\mathstrut 7q^{46} \) \(\mathstrut -\mathstrut 2q^{47} \) \(\mathstrut -\mathstrut q^{48} \) \(\mathstrut -\mathstrut 6q^{49} \) \(\mathstrut -\mathstrut 6q^{50} \) \(\mathstrut -\mathstrut 7q^{51} \) \(\mathstrut +\mathstrut 6q^{52} \) \(\mathstrut -\mathstrut 4q^{53} \) \(\mathstrut +\mathstrut q^{54} \) \(\mathstrut +\mathstrut 6q^{55} \) \(\mathstrut -\mathstrut 4q^{56} \) \(\mathstrut +\mathstrut 13q^{57} \) \(\mathstrut +\mathstrut 14q^{58} \) \(\mathstrut -\mathstrut 17q^{59} \) \(\mathstrut +\mathstrut q^{60} \) \(\mathstrut -\mathstrut 5q^{61} \) \(\mathstrut -\mathstrut 6q^{62} \) \(\mathstrut -\mathstrut q^{63} \) \(\mathstrut +\mathstrut 6q^{64} \) \(\mathstrut -\mathstrut 6q^{65} \) \(\mathstrut +\mathstrut 2q^{66} \) \(\mathstrut +\mathstrut 8q^{67} \) \(\mathstrut -\mathstrut 4q^{68} \) \(\mathstrut -\mathstrut 8q^{69} \) \(\mathstrut +\mathstrut 4q^{70} \) \(\mathstrut -\mathstrut 16q^{71} \) \(\mathstrut +\mathstrut q^{72} \) \(\mathstrut +\mathstrut 11q^{73} \) \(\mathstrut -\mathstrut 14q^{74} \) \(\mathstrut -\mathstrut q^{75} \) \(\mathstrut +\mathstrut 3q^{76} \) \(\mathstrut -\mathstrut 15q^{77} \) \(\mathstrut +\mathstrut q^{78} \) \(\mathstrut -\mathstrut 2q^{79} \) \(\mathstrut -\mathstrut 6q^{80} \) \(\mathstrut -\mathstrut 26q^{81} \) \(\mathstrut +\mathstrut 12q^{82} \) \(\mathstrut +\mathstrut 4q^{83} \) \(\mathstrut -\mathstrut q^{84} \) \(\mathstrut +\mathstrut 4q^{85} \) \(\mathstrut -\mathstrut 3q^{86} \) \(\mathstrut +\mathstrut 7q^{87} \) \(\mathstrut +\mathstrut 6q^{88} \) \(\mathstrut -\mathstrut 8q^{89} \) \(\mathstrut -\mathstrut q^{90} \) \(\mathstrut +\mathstrut 4q^{91} \) \(\mathstrut -\mathstrut 7q^{92} \) \(\mathstrut -\mathstrut q^{93} \) \(\mathstrut +\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 3q^{95} \) \(\mathstrut +\mathstrut q^{96} \) \(\mathstrut +\mathstrut 5q^{97} \) \(\mathstrut +\mathstrut 6q^{98} \) \(\mathstrut +\mathstrut 15q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6}\mathstrut -\mathstrut \) \(x^{5}\mathstrut -\mathstrut \) \(8\) \(x^{4}\mathstrut +\mathstrut \) \(6\) \(x^{3}\mathstrut +\mathstrut \) \(16\) \(x^{2}\mathstrut -\mathstrut \) \(10\) \(x\mathstrut -\mathstrut \) \(5\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{5} - 2 \nu^{4} - 3 \nu^{3} + 6 \nu^{2} - 5 \nu + 1 \)\()/3\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{5} - \nu^{4} + 9 \nu^{3} + 6 \nu^{2} - 19 \nu - 1 \)\()/3\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{5} - 2 \nu^{4} - 6 \nu^{3} + 9 \nu^{2} + 7 \nu - 5 \)\()/3\)
\(\beta_{4}\)\(=\)\((\)\( 2 \nu^{5} + 2 \nu^{4} - 18 \nu^{3} - 12 \nu^{2} + 29 \nu + 5 \)\()/3\)
\(\beta_{5}\)\(=\)\((\)\( 2 \nu^{5} + 2 \nu^{4} - 18 \nu^{3} - 15 \nu^{2} + 32 \nu + 14 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\)\(\beta_{4}\mathstrut -\mathstrut \) \(2\) \(\beta_{2}\mathstrut +\mathstrut \) \(1\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(-\)\(3\) \(\beta_{5}\mathstrut +\mathstrut \) \(2\) \(\beta_{4}\mathstrut -\mathstrut \) \(2\) \(\beta_{2}\mathstrut +\mathstrut \) \(10\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(-\)\(3\) \(\beta_{5}\mathstrut -\mathstrut \) \(2\) \(\beta_{4}\mathstrut -\mathstrut \) \(3\) \(\beta_{3}\mathstrut -\mathstrut \) \(10\) \(\beta_{2}\mathstrut +\mathstrut \) \(3\) \(\beta_{1}\mathstrut +\mathstrut \) \(8\)\()/3\)
\(\nu^{4}\)\(=\)\(-\)\(6\) \(\beta_{5}\mathstrut +\mathstrut \) \(4\) \(\beta_{4}\mathstrut -\mathstrut \) \(2\) \(\beta_{3}\mathstrut -\mathstrut \) \(5\) \(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(16\)
\(\nu^{5}\)\(=\)\((\)\(-\)\(27\) \(\beta_{5}\mathstrut +\mathstrut \) \(\beta_{4}\mathstrut -\mathstrut \) \(21\) \(\beta_{3}\mathstrut -\mathstrut \) \(58\) \(\beta_{2}\mathstrut +\mathstrut \) \(24\) \(\beta_{1}\mathstrut +\mathstrut \) \(62\)\()/3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.71605
1.13283
1.44295
−2.04356
2.52877
−0.344929
−1.00000 −2.52877 1.00000 −1.00000 2.52877 2.66088 −1.00000 3.39466 1.00000
1.2 −1.00000 −1.44295 1.00000 −1.00000 1.44295 −1.84953 −1.00000 −0.917908 1.00000
1.3 −1.00000 −1.13283 1.00000 −1.00000 1.13283 −1.36085 −1.00000 −1.71670 1.00000
1.4 −1.00000 0.344929 1.00000 −1.00000 −0.344929 4.21970 −1.00000 −2.88102 1.00000
1.5 −1.00000 1.71605 1.00000 −1.00000 −1.71605 1.86590 −1.00000 −0.0551701 1.00000
1.6 −1.00000 2.04356 1.00000 −1.00000 −2.04356 −1.53610 −1.00000 1.17614 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(13\) \(-1\)
\(31\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{6} \) \(\mathstrut +\mathstrut T_{3}^{5} \) \(\mathstrut -\mathstrut 8 T_{3}^{4} \) \(\mathstrut -\mathstrut 6 T_{3}^{3} \) \(\mathstrut +\mathstrut 16 T_{3}^{2} \) \(\mathstrut +\mathstrut 10 T_{3} \) \(\mathstrut -\mathstrut 5 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4030))\).