Defining parameters
| Level: | \( N \) | \(=\) | \( 4030 = 2 \cdot 5 \cdot 13 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4030.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(1344\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4030))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 680 | 121 | 559 |
| Cusp forms | 665 | 121 | 544 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(13\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(30\) | \(7\) | \(23\) | \(30\) | \(7\) | \(23\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(52\) | \(9\) | \(43\) | \(51\) | \(9\) | \(42\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(52\) | \(10\) | \(42\) | \(51\) | \(10\) | \(41\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(36\) | \(6\) | \(30\) | \(35\) | \(6\) | \(29\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(50\) | \(8\) | \(42\) | \(49\) | \(8\) | \(41\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(35\) | \(7\) | \(28\) | \(34\) | \(7\) | \(27\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(38\) | \(6\) | \(32\) | \(37\) | \(6\) | \(31\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(47\) | \(9\) | \(38\) | \(46\) | \(9\) | \(37\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(38\) | \(8\) | \(30\) | \(37\) | \(8\) | \(29\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(48\) | \(7\) | \(41\) | \(47\) | \(7\) | \(40\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(44\) | \(6\) | \(38\) | \(43\) | \(6\) | \(37\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(40\) | \(9\) | \(31\) | \(39\) | \(9\) | \(30\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(52\) | \(6\) | \(46\) | \(51\) | \(6\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(35\) | \(8\) | \(27\) | \(34\) | \(8\) | \(26\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(36\) | \(9\) | \(27\) | \(35\) | \(9\) | \(26\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(47\) | \(6\) | \(41\) | \(46\) | \(6\) | \(40\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(330\) | \(51\) | \(279\) | \(323\) | \(51\) | \(272\) | \(7\) | \(0\) | \(7\) | ||||||
| Minus space | \(-\) | \(350\) | \(70\) | \(280\) | \(342\) | \(70\) | \(272\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4030))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4030))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4030)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(403))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(806))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2015))\)\(^{\oplus 2}\)