Properties

Label 4030.2.a
Level $4030$
Weight $2$
Character orbit 4030.a
Rep. character $\chi_{4030}(1,\cdot)$
Character field $\Q$
Dimension $121$
Newform subspaces $18$
Sturm bound $1344$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4030 = 2 \cdot 5 \cdot 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4030.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(1344\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4030))\).

Total New Old
Modular forms 680 121 559
Cusp forms 665 121 544
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(13\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(30\)\(7\)\(23\)\(30\)\(7\)\(23\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(52\)\(9\)\(43\)\(51\)\(9\)\(42\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(52\)\(10\)\(42\)\(51\)\(10\)\(41\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(36\)\(6\)\(30\)\(35\)\(6\)\(29\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(50\)\(8\)\(42\)\(49\)\(8\)\(41\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(35\)\(7\)\(28\)\(34\)\(7\)\(27\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(38\)\(6\)\(32\)\(37\)\(6\)\(31\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(47\)\(9\)\(38\)\(46\)\(9\)\(37\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(38\)\(8\)\(30\)\(37\)\(8\)\(29\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(48\)\(7\)\(41\)\(47\)\(7\)\(40\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(44\)\(6\)\(38\)\(43\)\(6\)\(37\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(40\)\(9\)\(31\)\(39\)\(9\)\(30\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(52\)\(6\)\(46\)\(51\)\(6\)\(45\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(35\)\(8\)\(27\)\(34\)\(8\)\(26\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(36\)\(9\)\(27\)\(35\)\(9\)\(26\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(47\)\(6\)\(41\)\(46\)\(6\)\(40\)\(1\)\(0\)\(1\)
Plus space\(+\)\(330\)\(51\)\(279\)\(323\)\(51\)\(272\)\(7\)\(0\)\(7\)
Minus space\(-\)\(350\)\(70\)\(280\)\(342\)\(70\)\(272\)\(8\)\(0\)\(8\)

Trace form

\( 121 q - 3 q^{2} - 4 q^{3} + 121 q^{4} - 3 q^{5} - 12 q^{6} + 8 q^{7} - 3 q^{8} + 117 q^{9} + q^{10} + 4 q^{11} - 4 q^{12} + q^{13} + 4 q^{15} + 121 q^{16} - 6 q^{17} - 7 q^{18} - 20 q^{19} - 3 q^{20}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4030))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 13 31
4030.2.a.a 4030.a 1.a $1$ $32.180$ \(\Q\) None 4030.2.a.a \(-1\) \(0\) \(1\) \(0\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}-q^{8}-3q^{9}-q^{10}+\cdots\)
4030.2.a.b 4030.a 1.a $2$ $32.180$ \(\Q(\sqrt{5}) \) None 4030.2.a.b \(-2\) \(2\) \(-2\) \(-1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2\beta q^{3}+q^{4}-q^{5}-2\beta q^{6}+\cdots\)
4030.2.a.c 4030.a 1.a $6$ $32.180$ 6.6.3081125.1 None 4030.2.a.c \(-6\) \(-1\) \(-6\) \(4\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{3}q^{3}+q^{4}-q^{5}+\beta _{3}q^{6}+\cdots\)
4030.2.a.d 4030.a 1.a $6$ $32.180$ 6.6.3728437.1 None 4030.2.a.d \(-6\) \(-1\) \(6\) \(-2\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{3}q^{3}+q^{4}+q^{5}-\beta _{3}q^{6}+\cdots\)
4030.2.a.e 4030.a 1.a $6$ $32.180$ 6.6.6550837.1 None 4030.2.a.e \(6\) \(-7\) \(6\) \(-8\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta _{1})q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
4030.2.a.f 4030.a 1.a $6$ $32.180$ 6.6.4418197.1 None 4030.2.a.f \(6\) \(-3\) \(-6\) \(-2\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{1}+\beta _{3})q^{3}+q^{4}-q^{5}+\cdots\)
4030.2.a.g 4030.a 1.a $6$ $32.180$ 6.6.10369693.1 None 4030.2.a.g \(6\) \(-3\) \(6\) \(-10\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{1})q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
4030.2.a.h 4030.a 1.a $7$ $32.180$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4030.2.a.h \(-7\) \(-1\) \(7\) \(-4\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+q^{5}+\beta _{1}q^{6}+\cdots\)
4030.2.a.i 4030.a 1.a $7$ $32.180$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4030.2.a.i \(-7\) \(3\) \(-7\) \(2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}-\beta _{1}q^{6}+\cdots\)
4030.2.a.j 4030.a 1.a $7$ $32.180$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4030.2.a.j \(7\) \(-3\) \(-7\) \(4\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{3}q^{3}+q^{4}-q^{5}-\beta _{3}q^{6}+\cdots\)
4030.2.a.k 4030.a 1.a $8$ $32.180$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 4030.2.a.k \(-8\) \(-1\) \(-8\) \(-8\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\)
4030.2.a.l 4030.a 1.a $8$ $32.180$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 4030.2.a.l \(-8\) \(1\) \(8\) \(11\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{6}q^{3}+q^{4}+q^{5}+\beta _{6}q^{6}+\cdots\)
4030.2.a.m 4030.a 1.a $8$ $32.180$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 4030.2.a.m \(-8\) \(5\) \(8\) \(5\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1})q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
4030.2.a.n 4030.a 1.a $8$ $32.180$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 4030.2.a.n \(8\) \(-1\) \(-8\) \(1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}-q^{5}-\beta _{1}q^{6}+\cdots\)
4030.2.a.o 4030.a 1.a $8$ $32.180$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 4030.2.a.o \(8\) \(3\) \(8\) \(7\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+q^{5}+\beta _{1}q^{6}+\cdots\)
4030.2.a.p 4030.a 1.a $9$ $32.180$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 4030.2.a.p \(-9\) \(-3\) \(-9\) \(-3\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\)
4030.2.a.q 4030.a 1.a $9$ $32.180$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 4030.2.a.q \(9\) \(3\) \(-9\) \(3\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\)
4030.2.a.r 4030.a 1.a $9$ $32.180$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 4030.2.a.r \(9\) \(3\) \(9\) \(9\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{2}q^{3}+q^{4}+q^{5}-\beta _{2}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4030))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4030)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(310))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(403))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(806))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2015))\)\(^{\oplus 2}\)