Properties

Label 403.2.v.a.36.6
Level 403
Weight 2
Character 403.36
Analytic conductor 3.218
Analytic rank 0
Dimension 70
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.v (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(70\)
Relative dimension: \(35\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.6
Character \(\chi\) \(=\) 403.36
Dual form 403.2.v.a.56.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.88902 + 1.09062i) q^{2} -0.144762 q^{3} +(1.37892 - 2.38836i) q^{4} +(-1.56313 + 0.902471i) q^{5} +(0.273457 - 0.157881i) q^{6} +(2.20942 - 1.27561i) q^{7} +1.65304i q^{8} -2.97904 q^{9} +O(q^{10})\) \(q+(-1.88902 + 1.09062i) q^{2} -0.144762 q^{3} +(1.37892 - 2.38836i) q^{4} +(-1.56313 + 0.902471i) q^{5} +(0.273457 - 0.157881i) q^{6} +(2.20942 - 1.27561i) q^{7} +1.65304i q^{8} -2.97904 q^{9} +(1.96851 - 3.40956i) q^{10} +(1.68417 + 0.972354i) q^{11} +(-0.199615 + 0.345743i) q^{12} +(3.38576 + 1.23960i) q^{13} +(-2.78242 + 4.81929i) q^{14} +(0.226281 - 0.130643i) q^{15} +(0.954997 + 1.65410i) q^{16} +(-1.86710 - 3.23392i) q^{17} +(5.62746 - 3.24902i) q^{18} +(2.14106 - 1.23614i) q^{19} +4.97774i q^{20} +(-0.319840 + 0.184660i) q^{21} -4.24189 q^{22} +(2.71631 + 4.70478i) q^{23} -0.239297i q^{24} +(-0.871093 + 1.50878i) q^{25} +(-7.74770 + 1.35096i) q^{26} +0.865537 q^{27} -7.03586i q^{28} +(4.87686 + 8.44698i) q^{29} +(-0.284965 + 0.493574i) q^{30} +(3.89883 - 3.97481i) q^{31} +(-6.47116 - 3.73612i) q^{32} +(-0.243803 - 0.140760i) q^{33} +(7.05398 + 4.07262i) q^{34} +(-2.30240 + 3.98788i) q^{35} +(-4.10787 + 7.11503i) q^{36} +6.17379i q^{37} +(-2.69633 + 4.67019i) q^{38} +(-0.490129 - 0.179447i) q^{39} +(-1.49182 - 2.58391i) q^{40} +(-9.38852 - 5.42047i) q^{41} +(0.402788 - 0.697650i) q^{42} +(3.54099 + 6.13318i) q^{43} +(4.64467 - 2.68160i) q^{44} +(4.65662 - 2.68850i) q^{45} +(-10.2623 - 5.92494i) q^{46} +9.10729i q^{47} +(-0.138247 - 0.239451i) q^{48} +(-0.245639 + 0.425459i) q^{49} -3.80014i q^{50} +(0.270285 + 0.468148i) q^{51} +(7.62932 - 6.37710i) q^{52} +(3.99233 + 6.91492i) q^{53} +(-1.63501 + 0.943975i) q^{54} -3.51009 q^{55} +(2.10863 + 3.65226i) q^{56} +(-0.309944 + 0.178946i) q^{57} +(-18.4249 - 10.6376i) q^{58} +(3.89999 - 2.25166i) q^{59} -0.720587i q^{60} +(-0.124616 + 0.215841i) q^{61} +(-3.02994 + 11.7606i) q^{62} +(-6.58196 + 3.80010i) q^{63} +12.4788 q^{64} +(-6.41107 + 1.11789i) q^{65} +0.614064 q^{66} +(-4.55298 - 2.62866i) q^{67} -10.2984 q^{68} +(-0.393217 - 0.681072i) q^{69} -10.0442i q^{70} +6.28972i q^{71} -4.92448i q^{72} +(0.291183 - 0.168115i) q^{73} +(-6.73328 - 11.6624i) q^{74} +(0.126101 - 0.218413i) q^{75} -6.81817i q^{76} +4.96138 q^{77} +(1.12157 - 0.195568i) q^{78} +(5.01397 - 8.68445i) q^{79} +(-2.98556 - 1.72371i) q^{80} +8.81184 q^{81} +23.6468 q^{82} +(13.8506 - 7.99664i) q^{83} +1.01852i q^{84} +(5.83703 + 3.37001i) q^{85} +(-13.3780 - 7.72378i) q^{86} +(-0.705983 - 1.22280i) q^{87} +(-1.60734 + 2.78399i) q^{88} +(14.2527 - 8.22881i) q^{89} +(-5.86428 + 10.1572i) q^{90} +(9.06182 - 1.58010i) q^{91} +14.9823 q^{92} +(-0.564402 + 0.575400i) q^{93} +(-9.93263 - 17.2038i) q^{94} +(-2.23117 + 3.86449i) q^{95} +(0.936776 + 0.540848i) q^{96} +(3.15104 + 1.81925i) q^{97} -1.07160i q^{98} +(-5.01721 - 2.89669i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} + O(q^{10}) \) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} - q^{10} - 6q^{11} + 13q^{12} - 14q^{13} - 14q^{14} - 15q^{15} - 28q^{16} + 6q^{17} + 12q^{19} + 9q^{21} - 8q^{22} + 10q^{23} + 19q^{25} + 34q^{27} - 18q^{29} - 31q^{30} + 2q^{31} + 36q^{32} - 12q^{33} - 9q^{34} - 12q^{35} + 8q^{36} - 21q^{38} - 30q^{39} + 5q^{40} + 18q^{41} - 49q^{42} + 19q^{43} - 42q^{44} - 63q^{45} - 6q^{46} - 27q^{48} + 9q^{49} - 7q^{51} - 43q^{52} - 22q^{53} + 18q^{54} + 30q^{55} + 25q^{56} - 15q^{57} - 12q^{58} + 33q^{59} - 13q^{61} - 17q^{62} - 6q^{63} - 38q^{64} + 9q^{65} - 52q^{66} + 30q^{67} + 88q^{68} - 16q^{69} + 9q^{73} - 19q^{74} + 25q^{75} + 34q^{77} + 14q^{78} + 6q^{79} + 6q^{80} + 22q^{81} - 78q^{82} + 54q^{83} - 33q^{85} + 24q^{86} - 14q^{87} + 16q^{88} - 6q^{89} - 11q^{90} - 70q^{91} - 6q^{92} + 7q^{93} - 43q^{94} + 25q^{95} - 36q^{96} - 75q^{97} - 93q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88902 + 1.09062i −1.33574 + 0.771187i −0.986172 0.165725i \(-0.947004\pi\)
−0.349564 + 0.936913i \(0.613670\pi\)
\(3\) −0.144762 −0.0835782 −0.0417891 0.999126i \(-0.513306\pi\)
−0.0417891 + 0.999126i \(0.513306\pi\)
\(4\) 1.37892 2.38836i 0.689460 1.19418i
\(5\) −1.56313 + 0.902471i −0.699051 + 0.403597i −0.806994 0.590560i \(-0.798907\pi\)
0.107943 + 0.994157i \(0.465574\pi\)
\(6\) 0.273457 0.157881i 0.111638 0.0644545i
\(7\) 2.20942 1.27561i 0.835083 0.482135i −0.0205071 0.999790i \(-0.506528\pi\)
0.855590 + 0.517654i \(0.173195\pi\)
\(8\) 1.65304i 0.584438i
\(9\) −2.97904 −0.993015
\(10\) 1.96851 3.40956i 0.622498 1.07820i
\(11\) 1.68417 + 0.972354i 0.507796 + 0.293176i 0.731927 0.681383i \(-0.238621\pi\)
−0.224131 + 0.974559i \(0.571955\pi\)
\(12\) −0.199615 + 0.345743i −0.0576239 + 0.0998075i
\(13\) 3.38576 + 1.23960i 0.939041 + 0.343804i
\(14\) −2.78242 + 4.81929i −0.743633 + 1.28801i
\(15\) 0.226281 0.130643i 0.0584254 0.0337319i
\(16\) 0.954997 + 1.65410i 0.238749 + 0.413526i
\(17\) −1.86710 3.23392i −0.452839 0.784341i 0.545722 0.837966i \(-0.316256\pi\)
−0.998561 + 0.0536258i \(0.982922\pi\)
\(18\) 5.62746 3.24902i 1.32641 0.765800i
\(19\) 2.14106 1.23614i 0.491193 0.283591i −0.233876 0.972266i \(-0.575141\pi\)
0.725069 + 0.688676i \(0.241808\pi\)
\(20\) 4.97774i 1.11306i
\(21\) −0.319840 + 0.184660i −0.0697947 + 0.0402960i
\(22\) −4.24189 −0.904374
\(23\) 2.71631 + 4.70478i 0.566389 + 0.981015i 0.996919 + 0.0784383i \(0.0249933\pi\)
−0.430530 + 0.902576i \(0.641673\pi\)
\(24\) 0.239297i 0.0488463i
\(25\) −0.871093 + 1.50878i −0.174219 + 0.301756i
\(26\) −7.74770 + 1.35096i −1.51945 + 0.264945i
\(27\) 0.865537 0.166573
\(28\) 7.03586i 1.32965i
\(29\) 4.87686 + 8.44698i 0.905611 + 1.56856i 0.820095 + 0.572227i \(0.193921\pi\)
0.0855159 + 0.996337i \(0.472746\pi\)
\(30\) −0.284965 + 0.493574i −0.0520273 + 0.0901139i
\(31\) 3.89883 3.97481i 0.700251 0.713897i
\(32\) −6.47116 3.73612i −1.14395 0.660460i
\(33\) −0.243803 0.140760i −0.0424407 0.0245031i
\(34\) 7.05398 + 4.07262i 1.20975 + 0.698448i
\(35\) −2.30240 + 3.98788i −0.389177 + 0.674074i
\(36\) −4.10787 + 7.11503i −0.684644 + 1.18584i
\(37\) 6.17379i 1.01496i 0.861662 + 0.507482i \(0.169424\pi\)
−0.861662 + 0.507482i \(0.830576\pi\)
\(38\) −2.69633 + 4.67019i −0.437403 + 0.757604i
\(39\) −0.490129 0.179447i −0.0784834 0.0287346i
\(40\) −1.49182 2.58391i −0.235877 0.408552i
\(41\) −9.38852 5.42047i −1.46624 0.846535i −0.466953 0.884282i \(-0.654648\pi\)
−0.999287 + 0.0377474i \(0.987982\pi\)
\(42\) 0.402788 0.697650i 0.0621516 0.107650i
\(43\) 3.54099 + 6.13318i 0.539996 + 0.935301i 0.998903 + 0.0468170i \(0.0149078\pi\)
−0.458907 + 0.888484i \(0.651759\pi\)
\(44\) 4.64467 2.68160i 0.700210 0.404266i
\(45\) 4.65662 2.68850i 0.694168 0.400778i
\(46\) −10.2623 5.92494i −1.51309 0.873584i
\(47\) 9.10729i 1.32843i 0.747539 + 0.664217i \(0.231235\pi\)
−0.747539 + 0.664217i \(0.768765\pi\)
\(48\) −0.138247 0.239451i −0.0199542 0.0345618i
\(49\) −0.245639 + 0.425459i −0.0350913 + 0.0607798i
\(50\) 3.80014i 0.537421i
\(51\) 0.270285 + 0.468148i 0.0378475 + 0.0655538i
\(52\) 7.62932 6.37710i 1.05800 0.884345i
\(53\) 3.99233 + 6.91492i 0.548389 + 0.949838i 0.998385 + 0.0568072i \(0.0180920\pi\)
−0.449996 + 0.893031i \(0.648575\pi\)
\(54\) −1.63501 + 0.943975i −0.222497 + 0.128459i
\(55\) −3.51009 −0.473300
\(56\) 2.10863 + 3.65226i 0.281778 + 0.488054i
\(57\) −0.309944 + 0.178946i −0.0410531 + 0.0237020i
\(58\) −18.4249 10.6376i −2.41931 1.39679i
\(59\) 3.89999 2.25166i 0.507736 0.293141i −0.224167 0.974551i \(-0.571966\pi\)
0.731902 + 0.681409i \(0.238633\pi\)
\(60\) 0.720587i 0.0930273i
\(61\) −0.124616 + 0.215841i −0.0159554 + 0.0276356i −0.873893 0.486119i \(-0.838412\pi\)
0.857937 + 0.513754i \(0.171746\pi\)
\(62\) −3.02994 + 11.7606i −0.384802 + 1.49360i
\(63\) −6.58196 + 3.80010i −0.829249 + 0.478767i
\(64\) 12.4788 1.55985
\(65\) −6.41107 + 1.11789i −0.795196 + 0.138658i
\(66\) 0.614064 0.0755860
\(67\) −4.55298 2.62866i −0.556235 0.321142i 0.195398 0.980724i \(-0.437400\pi\)
−0.751633 + 0.659582i \(0.770733\pi\)
\(68\) −10.2984 −1.24886
\(69\) −0.393217 0.681072i −0.0473378 0.0819915i
\(70\) 10.0442i 1.20051i
\(71\) 6.28972i 0.746453i 0.927740 + 0.373226i \(0.121749\pi\)
−0.927740 + 0.373226i \(0.878251\pi\)
\(72\) 4.92448i 0.580355i
\(73\) 0.291183 0.168115i 0.0340804 0.0196763i −0.482863 0.875696i \(-0.660403\pi\)
0.516943 + 0.856020i \(0.327070\pi\)
\(74\) −6.73328 11.6624i −0.782728 1.35572i
\(75\) 0.126101 0.218413i 0.0145609 0.0252202i
\(76\) 6.81817i 0.782098i
\(77\) 4.96138 0.565402
\(78\) 1.12157 0.195568i 0.126993 0.0221437i
\(79\) 5.01397 8.68445i 0.564115 0.977077i −0.433016 0.901386i \(-0.642551\pi\)
0.997131 0.0756903i \(-0.0241160\pi\)
\(80\) −2.98556 1.72371i −0.333796 0.192717i
\(81\) 8.81184 0.979093
\(82\) 23.6468 2.61135
\(83\) 13.8506 7.99664i 1.52030 0.877745i 0.520586 0.853809i \(-0.325714\pi\)
0.999713 0.0239361i \(-0.00761981\pi\)
\(84\) 1.01852i 0.111130i
\(85\) 5.83703 + 3.37001i 0.633115 + 0.365529i
\(86\) −13.3780 7.72378i −1.44259 0.832877i
\(87\) −0.705983 1.22280i −0.0756894 0.131098i
\(88\) −1.60734 + 2.78399i −0.171343 + 0.296775i
\(89\) 14.2527 8.22881i 1.51078 0.872252i 0.510863 0.859662i \(-0.329326\pi\)
0.999921 0.0125896i \(-0.00400751\pi\)
\(90\) −5.86428 + 10.1572i −0.618150 + 1.07067i
\(91\) 9.06182 1.58010i 0.949937 0.165640i
\(92\) 14.9823 1.56201
\(93\) −0.564402 + 0.575400i −0.0585258 + 0.0596662i
\(94\) −9.93263 17.2038i −1.02447 1.77444i
\(95\) −2.23117 + 3.86449i −0.228913 + 0.396488i
\(96\) 0.936776 + 0.540848i 0.0956093 + 0.0552001i
\(97\) 3.15104 + 1.81925i 0.319940 + 0.184717i 0.651366 0.758764i \(-0.274196\pi\)
−0.331426 + 0.943481i \(0.607530\pi\)
\(98\) 1.07160i 0.108248i
\(99\) −5.01721 2.89669i −0.504248 0.291128i
\(100\) 2.40234 + 4.16097i 0.240234 + 0.416097i
\(101\) −8.22357 14.2436i −0.818276 1.41730i −0.906951 0.421235i \(-0.861597\pi\)
0.0886752 0.996061i \(-0.471737\pi\)
\(102\) −1.02115 0.589559i −0.101109 0.0583750i
\(103\) 7.14555 + 12.3764i 0.704072 + 1.21949i 0.967026 + 0.254679i \(0.0819700\pi\)
−0.262954 + 0.964808i \(0.584697\pi\)
\(104\) −2.04911 + 5.59680i −0.200932 + 0.548811i
\(105\) 0.333300 0.577292i 0.0325267 0.0563379i
\(106\) −15.0832 8.70827i −1.46501 0.845822i
\(107\) 1.96582 0.190043 0.0950217 0.995475i \(-0.469708\pi\)
0.0950217 + 0.995475i \(0.469708\pi\)
\(108\) 1.19351 2.06721i 0.114845 0.198918i
\(109\) 6.94579i 0.665286i −0.943053 0.332643i \(-0.892060\pi\)
0.943053 0.332643i \(-0.107940\pi\)
\(110\) 6.63061 3.82818i 0.632204 0.365003i
\(111\) 0.893728i 0.0848289i
\(112\) 4.21998 + 2.43641i 0.398751 + 0.230219i
\(113\) 5.64094 0.530655 0.265327 0.964158i \(-0.414520\pi\)
0.265327 + 0.964158i \(0.414520\pi\)
\(114\) 0.390326 0.676064i 0.0365574 0.0633192i
\(115\) −8.49185 4.90277i −0.791869 0.457186i
\(116\) 26.8992 2.49753
\(117\) −10.0863 3.69283i −0.932482 0.341403i
\(118\) −4.91143 + 8.50685i −0.452134 + 0.783119i
\(119\) −8.25044 4.76339i −0.756316 0.436659i
\(120\) 0.215958 + 0.374051i 0.0197142 + 0.0341460i
\(121\) −3.60905 6.25106i −0.328096 0.568279i
\(122\) 0.543636i 0.0492185i
\(123\) 1.35910 + 0.784676i 0.122546 + 0.0707519i
\(124\) −4.11709 14.7928i −0.369726 1.32843i
\(125\) 12.1693i 1.08845i
\(126\) 8.28895 14.3569i 0.738439 1.27901i
\(127\) −10.2799 −0.912194 −0.456097 0.889930i \(-0.650753\pi\)
−0.456097 + 0.889930i \(0.650753\pi\)
\(128\) −10.6304 + 6.13747i −0.939604 + 0.542481i
\(129\) −0.512600 0.887850i −0.0451320 0.0781708i
\(130\) 10.8914 9.10379i 0.955241 0.798455i
\(131\) −5.96807 + 10.3370i −0.521433 + 0.903148i 0.478256 + 0.878220i \(0.341269\pi\)
−0.999689 + 0.0249279i \(0.992064\pi\)
\(132\) −0.672370 + 0.388193i −0.0585223 + 0.0337879i
\(133\) 3.15367 5.46232i 0.273458 0.473643i
\(134\) 11.4675 0.990644
\(135\) −1.35294 + 0.781122i −0.116443 + 0.0672283i
\(136\) 5.34580 3.08640i 0.458398 0.264656i
\(137\) 18.5763i 1.58708i 0.608519 + 0.793540i \(0.291764\pi\)
−0.608519 + 0.793540i \(0.708236\pi\)
\(138\) 1.48559 + 0.857704i 0.126462 + 0.0730126i
\(139\) −6.22829 + 10.7877i −0.528276 + 0.915002i 0.471180 + 0.882037i \(0.343828\pi\)
−0.999457 + 0.0329645i \(0.989505\pi\)
\(140\) 6.34966 + 10.9979i 0.536644 + 0.929495i
\(141\) 1.31839i 0.111028i
\(142\) −6.85972 11.8814i −0.575655 0.997064i
\(143\) 4.49686 + 5.37986i 0.376046 + 0.449887i
\(144\) −2.84498 4.92765i −0.237082 0.410637i
\(145\) −15.2463 8.80245i −1.26614 0.731004i
\(146\) −0.366700 + 0.635142i −0.0303483 + 0.0525648i
\(147\) 0.0355591 0.0615902i 0.00293287 0.00507987i
\(148\) 14.7452 + 8.51316i 1.21205 + 0.699778i
\(149\) 14.9976 8.65889i 1.22865 0.709364i 0.261906 0.965093i \(-0.415649\pi\)
0.966748 + 0.255729i \(0.0823156\pi\)
\(150\) 0.550115i 0.0449167i
\(151\) 12.3975i 1.00889i −0.863443 0.504447i \(-0.831696\pi\)
0.863443 0.504447i \(-0.168304\pi\)
\(152\) 2.04339 + 3.53926i 0.165741 + 0.287072i
\(153\) 5.56219 + 9.63399i 0.449676 + 0.778862i
\(154\) −9.37213 + 5.41100i −0.755227 + 0.436031i
\(155\) −2.50722 + 9.73170i −0.201384 + 0.781669i
\(156\) −1.10443 + 0.923161i −0.0884254 + 0.0739120i
\(157\) −0.100633 −0.00803136 −0.00401568 0.999992i \(-0.501278\pi\)
−0.00401568 + 0.999992i \(0.501278\pi\)
\(158\) 21.8734i 1.74016i
\(159\) −0.577937 1.00102i −0.0458334 0.0793858i
\(160\) 13.4870 1.06624
\(161\) 12.0029 + 6.92989i 0.945963 + 0.546152i
\(162\) −16.6457 + 9.61040i −1.30781 + 0.755064i
\(163\) −16.8539 9.73060i −1.32010 0.762159i −0.336354 0.941736i \(-0.609194\pi\)
−0.983744 + 0.179576i \(0.942527\pi\)
\(164\) −25.8921 + 14.9488i −2.02183 + 1.16730i
\(165\) 0.508126 0.0395576
\(166\) −17.4427 + 30.2116i −1.35381 + 2.34487i
\(167\) 2.43477i 0.188408i 0.995553 + 0.0942041i \(0.0300306\pi\)
−0.995553 + 0.0942041i \(0.969969\pi\)
\(168\) −0.305249 0.528708i −0.0235505 0.0407907i
\(169\) 9.92677 + 8.39401i 0.763597 + 0.645693i
\(170\) −14.7017 −1.12757
\(171\) −6.37832 + 3.68252i −0.487762 + 0.281610i
\(172\) 19.5310 1.48922
\(173\) −5.99131 −0.455511 −0.227755 0.973718i \(-0.573139\pi\)
−0.227755 + 0.973718i \(0.573139\pi\)
\(174\) 2.66723 + 1.53992i 0.202202 + 0.116741i
\(175\) 4.44470i 0.335988i
\(176\) 3.71438i 0.279982i
\(177\) −0.564570 + 0.325954i −0.0424357 + 0.0245002i
\(178\) −17.9491 + 31.0887i −1.34534 + 2.33020i
\(179\) −15.1841 −1.13491 −0.567457 0.823403i \(-0.692073\pi\)
−0.567457 + 0.823403i \(0.692073\pi\)
\(180\) 14.8289i 1.10528i
\(181\) 5.22717 + 9.05372i 0.388532 + 0.672957i 0.992252 0.124239i \(-0.0396489\pi\)
−0.603720 + 0.797196i \(0.706316\pi\)
\(182\) −15.3946 + 12.8679i −1.14113 + 0.953831i
\(183\) 0.0180396 0.0312455i 0.00133353 0.00230973i
\(184\) −7.77719 + 4.49016i −0.573342 + 0.331019i
\(185\) −5.57166 9.65040i −0.409637 0.709512i
\(186\) 0.438619 1.70249i 0.0321611 0.124833i
\(187\) 7.26195i 0.531046i
\(188\) 21.7515 + 12.5582i 1.58639 + 0.915903i
\(189\) 1.91234 1.10409i 0.139102 0.0803105i
\(190\) 9.73345i 0.706138i
\(191\) −11.0446 −0.799157 −0.399579 0.916699i \(-0.630844\pi\)
−0.399579 + 0.916699i \(0.630844\pi\)
\(192\) −1.80646 −0.130370
\(193\) 14.2144i 1.02317i 0.859232 + 0.511587i \(0.170942\pi\)
−0.859232 + 0.511587i \(0.829058\pi\)
\(194\) −7.93648 −0.569806
\(195\) 0.928078 0.161828i 0.0664611 0.0115888i
\(196\) 0.677433 + 1.17335i 0.0483881 + 0.0838106i
\(197\) 1.90237 + 1.09833i 0.135538 + 0.0782531i 0.566236 0.824243i \(-0.308399\pi\)
−0.430698 + 0.902496i \(0.641732\pi\)
\(198\) 12.6368 0.898057
\(199\) −3.96506 −0.281076 −0.140538 0.990075i \(-0.544883\pi\)
−0.140538 + 0.990075i \(0.544883\pi\)
\(200\) −2.49407 1.43995i −0.176357 0.101820i
\(201\) 0.659097 + 0.380530i 0.0464891 + 0.0268405i
\(202\) 31.0689 + 17.9377i 2.18600 + 1.26209i
\(203\) 21.5501 + 12.4420i 1.51252 + 0.873254i
\(204\) 1.49081 0.104377
\(205\) 19.5672 1.36664
\(206\) −26.9961 15.5862i −1.88091 1.08594i
\(207\) −8.09200 14.0157i −0.562433 0.974162i
\(208\) 1.18296 + 6.78422i 0.0820235 + 0.470401i
\(209\) 4.80788 0.332568
\(210\) 1.45402i 0.100337i
\(211\) −14.0336 −0.966116 −0.483058 0.875588i \(-0.660474\pi\)
−0.483058 + 0.875588i \(0.660474\pi\)
\(212\) 22.0204 1.51237
\(213\) 0.910511i 0.0623872i
\(214\) −3.71347 + 2.14398i −0.253848 + 0.146559i
\(215\) −11.0700 6.39129i −0.754970 0.435882i
\(216\) 1.43077i 0.0973513i
\(217\) 3.54386 13.7554i 0.240573 0.933778i
\(218\) 7.57524 + 13.1207i 0.513060 + 0.888646i
\(219\) −0.0421522 + 0.0243366i −0.00284838 + 0.00164451i
\(220\) −4.84013 + 8.38335i −0.326321 + 0.565205i
\(221\) −2.31279 13.2637i −0.155575 0.892216i
\(222\) 0.974721 + 1.68827i 0.0654190 + 0.113309i
\(223\) 1.71753i 0.115015i 0.998345 + 0.0575073i \(0.0183152\pi\)
−0.998345 + 0.0575073i \(0.981685\pi\)
\(224\) −19.0634 −1.27372
\(225\) 2.59503 4.49472i 0.173002 0.299648i
\(226\) −10.6558 + 6.15214i −0.708814 + 0.409234i
\(227\) 23.1116i 1.53397i −0.641666 0.766984i \(-0.721756\pi\)
0.641666 0.766984i \(-0.278244\pi\)
\(228\) 0.987010i 0.0653664i
\(229\) −1.63191 0.942182i −0.107839 0.0622612i 0.445110 0.895476i \(-0.353165\pi\)
−0.552950 + 0.833215i \(0.686498\pi\)
\(230\) 21.3883 1.41030
\(231\) −0.718218 −0.0472553
\(232\) −13.9632 + 8.06165i −0.916728 + 0.529273i
\(233\) 17.6256 1.15469 0.577345 0.816500i \(-0.304089\pi\)
0.577345 + 0.816500i \(0.304089\pi\)
\(234\) 23.0807 4.02457i 1.50883 0.263095i
\(235\) −8.21906 14.2358i −0.536153 0.928643i
\(236\) 12.4194i 0.808437i
\(237\) −0.725831 + 1.25718i −0.0471478 + 0.0816623i
\(238\) 20.7803 1.34699
\(239\) −14.8170 + 8.55461i −0.958433 + 0.553352i −0.895690 0.444678i \(-0.853318\pi\)
−0.0627426 + 0.998030i \(0.519985\pi\)
\(240\) 0.432195 + 0.249528i 0.0278981 + 0.0161070i
\(241\) 4.72999 2.73086i 0.304685 0.175910i −0.339861 0.940476i \(-0.610380\pi\)
0.644546 + 0.764566i \(0.277047\pi\)
\(242\) 13.6351 + 7.87224i 0.876499 + 0.506047i
\(243\) −3.87223 −0.248404
\(244\) 0.343671 + 0.595255i 0.0220013 + 0.0381073i
\(245\) 0.886727i 0.0566509i
\(246\) −3.42315 −0.218252
\(247\) 8.78145 1.53122i 0.558750 0.0974290i
\(248\) 6.57051 + 6.44492i 0.417228 + 0.409253i
\(249\) −2.00504 + 1.15761i −0.127064 + 0.0733604i
\(250\) 13.2721 + 22.9879i 0.839400 + 1.45388i
\(251\) −6.12667 10.6117i −0.386712 0.669805i 0.605293 0.796003i \(-0.293056\pi\)
−0.992005 + 0.126198i \(0.959723\pi\)
\(252\) 20.9601i 1.32036i
\(253\) 10.5649i 0.664206i
\(254\) 19.4189 11.2115i 1.21845 0.703473i
\(255\) −0.844979 0.487849i −0.0529147 0.0305503i
\(256\) 0.908500 1.57357i 0.0567812 0.0983480i
\(257\) 0.182380 0.315892i 0.0113766 0.0197048i −0.860281 0.509820i \(-0.829712\pi\)
0.871658 + 0.490115i \(0.163045\pi\)
\(258\) 1.93662 + 1.11811i 0.120569 + 0.0696104i
\(259\) 7.87534 + 13.6405i 0.489350 + 0.847579i
\(260\) −6.17043 + 16.8534i −0.382674 + 1.04521i
\(261\) −14.5284 25.1639i −0.899285 1.55761i
\(262\) 26.0357i 1.60849i
\(263\) −3.59707 6.23031i −0.221805 0.384177i 0.733551 0.679634i \(-0.237861\pi\)
−0.955356 + 0.295457i \(0.904528\pi\)
\(264\) 0.232681 0.403016i 0.0143205 0.0248039i
\(265\) −12.4810 7.20593i −0.766704 0.442657i
\(266\) 13.7579i 0.843550i
\(267\) −2.06325 + 1.19122i −0.126269 + 0.0729013i
\(268\) −12.5564 + 7.24944i −0.767004 + 0.442830i
\(269\) 12.1785 0.742538 0.371269 0.928525i \(-0.378923\pi\)
0.371269 + 0.928525i \(0.378923\pi\)
\(270\) 1.70382 2.95110i 0.103691 0.179598i
\(271\) 2.92260 1.68736i 0.177535 0.102500i −0.408599 0.912714i \(-0.633982\pi\)
0.586134 + 0.810214i \(0.300649\pi\)
\(272\) 3.56616 6.17677i 0.216230 0.374522i
\(273\) −1.31181 + 0.228739i −0.0793941 + 0.0138439i
\(274\) −20.2597 35.0909i −1.22394 2.11992i
\(275\) −2.93413 + 1.69402i −0.176935 + 0.102153i
\(276\) −2.16886 −0.130550
\(277\) 5.77142 9.99640i 0.346771 0.600625i −0.638903 0.769288i \(-0.720611\pi\)
0.985674 + 0.168662i \(0.0539447\pi\)
\(278\) 27.1709i 1.62960i
\(279\) −11.6148 + 11.8411i −0.695360 + 0.708910i
\(280\) −6.59211 3.80596i −0.393954 0.227450i
\(281\) 2.34103i 0.139654i −0.997559 0.0698271i \(-0.977755\pi\)
0.997559 0.0698271i \(-0.0222447\pi\)
\(282\) 1.43786 + 2.49045i 0.0856236 + 0.148304i
\(283\) 4.39693 + 7.61570i 0.261370 + 0.452707i 0.966606 0.256266i \(-0.0824923\pi\)
−0.705236 + 0.708973i \(0.749159\pi\)
\(284\) 15.0221 + 8.67303i 0.891399 + 0.514650i
\(285\) 0.322987 0.559431i 0.0191321 0.0331378i
\(286\) −14.3620 5.25827i −0.849245 0.310928i
\(287\) −27.6576 −1.63258
\(288\) 19.2779 + 11.1301i 1.13596 + 0.655846i
\(289\) 1.52785 2.64631i 0.0898732 0.155665i
\(290\) 38.4007 2.25496
\(291\) −0.456150 0.263358i −0.0267400 0.0154383i
\(292\) 0.927267i 0.0542642i
\(293\) −10.1336 + 5.85065i −0.592013 + 0.341799i −0.765893 0.642968i \(-0.777703\pi\)
0.173880 + 0.984767i \(0.444369\pi\)
\(294\) 0.155126i 0.00904716i
\(295\) −4.06412 + 7.03926i −0.236622 + 0.409841i
\(296\) −10.2055 −0.593183
\(297\) 1.45771 + 0.841609i 0.0845849 + 0.0488351i
\(298\) −18.8872 + 32.7136i −1.09411 + 1.89505i
\(299\) 3.36470 + 19.2964i 0.194586 + 1.11594i
\(300\) −0.347767 0.602349i −0.0200783 0.0347767i
\(301\) 15.6471 + 9.03385i 0.901883 + 0.520703i
\(302\) 13.5210 + 23.4191i 0.778046 + 1.34762i
\(303\) 1.19046 + 2.06194i 0.0683901 + 0.118455i
\(304\) 4.08942 + 2.36103i 0.234544 + 0.135414i
\(305\) 0.449848i 0.0257582i
\(306\) −21.0141 12.1325i −1.20130 0.693569i
\(307\) 1.70910 + 0.986747i 0.0975432 + 0.0563166i 0.547978 0.836493i \(-0.315398\pi\)
−0.450435 + 0.892809i \(0.648731\pi\)
\(308\) 6.84135 11.8496i 0.389822 0.675192i
\(309\) −1.03440 1.79164i −0.0588451 0.101923i
\(310\) −5.87746 21.1178i −0.333817 1.19941i
\(311\) −16.7773 −0.951355 −0.475677 0.879620i \(-0.657797\pi\)
−0.475677 + 0.879620i \(0.657797\pi\)
\(312\) 0.296633 0.810202i 0.0167936 0.0458687i
\(313\) 3.42282 5.92850i 0.193469 0.335099i −0.752928 0.658103i \(-0.771359\pi\)
0.946398 + 0.323004i \(0.104693\pi\)
\(314\) 0.190097 0.109752i 0.0107278 0.00619369i
\(315\) 6.85895 11.8801i 0.386458 0.669365i
\(316\) −13.8277 23.9503i −0.777870 1.34731i
\(317\) −20.1304 11.6223i −1.13063 0.652772i −0.186540 0.982447i \(-0.559727\pi\)
−0.944094 + 0.329675i \(0.893061\pi\)
\(318\) 2.18346 + 1.26062i 0.122443 + 0.0706923i
\(319\) 18.9682i 1.06201i
\(320\) −19.5060 + 11.2618i −1.09042 + 0.629553i
\(321\) −0.284576 −0.0158835
\(322\) −30.2316 −1.68474
\(323\) −7.99517 4.61601i −0.444863 0.256842i
\(324\) 12.1508 21.0458i 0.675046 1.16921i
\(325\) −4.81960 + 4.02855i −0.267343 + 0.223464i
\(326\) 42.4497 2.35107
\(327\) 1.00548i 0.0556034i
\(328\) 8.96024 15.5196i 0.494747 0.856926i
\(329\) 11.6174 + 20.1218i 0.640485 + 1.10935i
\(330\) −0.959858 + 0.554174i −0.0528385 + 0.0305063i
\(331\) 0.241070i 0.0132504i −0.999978 0.00662520i \(-0.997891\pi\)
0.999978 0.00662520i \(-0.00210888\pi\)
\(332\) 44.1069i 2.42068i
\(333\) 18.3920i 1.00787i
\(334\) −2.65542 4.59932i −0.145298 0.251664i
\(335\) 9.48917 0.518449
\(336\) −0.610892 0.352699i −0.0333269 0.0192413i
\(337\) −18.5926 −1.01280 −0.506402 0.862298i \(-0.669025\pi\)
−0.506402 + 0.862298i \(0.669025\pi\)
\(338\) −27.9065 5.03004i −1.51791 0.273598i
\(339\) −0.816592 −0.0443512
\(340\) 16.0976 9.29396i 0.873016 0.504036i
\(341\) 10.4312 2.90319i 0.564882 0.157217i
\(342\) 8.03250 13.9127i 0.434348 0.752312i
\(343\) 19.1119i 1.03195i
\(344\) −10.1384 + 5.85340i −0.546625 + 0.315594i
\(345\) 1.22930 + 0.709734i 0.0661830 + 0.0382108i
\(346\) 11.3177 6.53426i 0.608442 0.351284i
\(347\) 7.99765 + 13.8523i 0.429336 + 0.743632i 0.996814 0.0797562i \(-0.0254142\pi\)
−0.567478 + 0.823389i \(0.692081\pi\)
\(348\) −3.89398 −0.208739
\(349\) 8.96805 5.17771i 0.480049 0.277156i −0.240388 0.970677i \(-0.577275\pi\)
0.720437 + 0.693521i \(0.243941\pi\)
\(350\) −4.84750 8.39611i −0.259110 0.448791i
\(351\) 2.93050 + 1.07292i 0.156419 + 0.0572684i
\(352\) −7.26568 12.5845i −0.387262 0.670757i
\(353\) 11.7034i 0.622911i −0.950261 0.311456i \(-0.899184\pi\)
0.950261 0.311456i \(-0.100816\pi\)
\(354\) 0.710987 1.23147i 0.0377886 0.0654517i
\(355\) −5.67629 9.83162i −0.301266 0.521808i
\(356\) 45.3875i 2.40553i
\(357\) 1.19435 + 0.689557i 0.0632116 + 0.0364952i
\(358\) 28.6830 16.5602i 1.51595 0.875232i
\(359\) 27.6725 15.9767i 1.46050 0.843220i 0.461466 0.887158i \(-0.347324\pi\)
0.999034 + 0.0439378i \(0.0139904\pi\)
\(360\) 4.44420 + 7.69757i 0.234230 + 0.405698i
\(361\) −6.44390 + 11.1612i −0.339153 + 0.587430i
\(362\) −19.7484 11.4017i −1.03795 0.599262i
\(363\) 0.522453 + 0.904915i 0.0274217 + 0.0474957i
\(364\) 8.72168 23.8217i 0.457140 1.24860i
\(365\) −0.303437 + 0.525568i −0.0158826 + 0.0275095i
\(366\) 0.0786977i 0.00411359i
\(367\) −1.50123 + 2.60021i −0.0783637 + 0.135730i −0.902544 0.430597i \(-0.858303\pi\)
0.824180 + 0.566327i \(0.191636\pi\)
\(368\) −5.18813 + 8.98610i −0.270450 + 0.468433i
\(369\) 27.9688 + 16.1478i 1.45600 + 0.840621i
\(370\) 21.0499 + 12.1532i 1.09433 + 0.631813i
\(371\) 17.6415 + 10.1853i 0.915900 + 0.528795i
\(372\) 0.595998 + 2.14143i 0.0309010 + 0.111028i
\(373\) 9.52291 16.4942i 0.493078 0.854036i −0.506891 0.862010i \(-0.669205\pi\)
0.999968 + 0.00797484i \(0.00253850\pi\)
\(374\) 7.92005 + 13.7179i 0.409536 + 0.709338i
\(375\) 1.76164i 0.0909708i
\(376\) −15.0547 −0.776387
\(377\) 6.04100 + 34.6448i 0.311127 + 1.78430i
\(378\) −2.40829 + 4.17128i −0.123869 + 0.214547i
\(379\) 15.6708i 0.804954i 0.915430 + 0.402477i \(0.131851\pi\)
−0.915430 + 0.402477i \(0.868149\pi\)
\(380\) 6.15320 + 10.6577i 0.315652 + 0.546726i
\(381\) 1.48814 0.0762396
\(382\) 20.8634 12.0455i 1.06746 0.616300i
\(383\) 32.3139i 1.65116i 0.564282 + 0.825582i \(0.309153\pi\)
−0.564282 + 0.825582i \(0.690847\pi\)
\(384\) 1.53888 0.888471i 0.0785305 0.0453396i
\(385\) −7.75526 + 4.47750i −0.395245 + 0.228195i
\(386\) −15.5025 26.8512i −0.789058 1.36669i
\(387\) −10.5488 18.2710i −0.536224 0.928768i
\(388\) 8.69006 5.01721i 0.441171 0.254710i
\(389\) 18.5330 32.1000i 0.939658 1.62754i 0.173550 0.984825i \(-0.444476\pi\)
0.766109 0.642711i \(-0.222190\pi\)
\(390\) −1.57666 + 1.31788i −0.0798373 + 0.0667335i
\(391\) 10.1433 17.5686i 0.512966 0.888484i
\(392\) −0.703300 0.406051i −0.0355220 0.0205087i
\(393\) 0.863948 1.49640i 0.0435804 0.0754835i
\(394\) −4.79148 −0.241391
\(395\) 18.0998i 0.910702i
\(396\) −13.8367 + 7.98860i −0.695319 + 0.401442i
\(397\) 14.3527 8.28653i 0.720341 0.415889i −0.0945374 0.995521i \(-0.530137\pi\)
0.814878 + 0.579632i \(0.196804\pi\)
\(398\) 7.49006 4.32439i 0.375443 0.216762i
\(399\) −0.456531 + 0.790735i −0.0228551 + 0.0395863i
\(400\) −3.32757 −0.166378
\(401\) 8.84906 5.10901i 0.441901 0.255132i −0.262503 0.964931i \(-0.584548\pi\)
0.704404 + 0.709800i \(0.251214\pi\)
\(402\) −1.66006 −0.0827963
\(403\) 18.1277 8.62474i 0.903005 0.429629i
\(404\) −45.3586 −2.25668
\(405\) −13.7740 + 7.95242i −0.684436 + 0.395159i
\(406\) −54.2780 −2.69377
\(407\) −6.00311 + 10.3977i −0.297563 + 0.515394i
\(408\) −0.773867 + 0.446792i −0.0383121 + 0.0221195i
\(409\) −31.1229 + 17.9688i −1.53893 + 0.888502i −0.540029 + 0.841647i \(0.681587\pi\)
−0.998902 + 0.0468552i \(0.985080\pi\)
\(410\) −36.9628 + 21.3405i −1.82546 + 1.05393i
\(411\) 2.68914i 0.132645i
\(412\) 39.4126 1.94172
\(413\) 5.74448 9.94974i 0.282668 0.489595i
\(414\) 30.5718 + 17.6506i 1.50252 + 0.867482i
\(415\) −14.4335 + 24.9995i −0.708511 + 1.22718i
\(416\) −17.2785 20.6713i −0.847147 1.01349i
\(417\) 0.901618 1.56165i 0.0441524 0.0764742i
\(418\) −9.08215 + 5.24358i −0.444223 + 0.256472i
\(419\) −7.12989 12.3493i −0.348318 0.603304i 0.637633 0.770340i \(-0.279914\pi\)
−0.985951 + 0.167036i \(0.946580\pi\)
\(420\) −0.919187 1.59208i −0.0448518 0.0776855i
\(421\) −13.5428 + 7.81892i −0.660034 + 0.381071i −0.792290 0.610145i \(-0.791111\pi\)
0.132256 + 0.991216i \(0.457778\pi\)
\(422\) 26.5098 15.3054i 1.29048 0.745056i
\(423\) 27.1310i 1.31916i
\(424\) −11.4306 + 6.59948i −0.555121 + 0.320499i
\(425\) 6.50569 0.315572
\(426\) 0.993025 + 1.71997i 0.0481122 + 0.0833328i
\(427\) 0.635844i 0.0307707i
\(428\) 2.71072 4.69510i 0.131027 0.226946i
\(429\) −0.650973 0.778798i −0.0314293 0.0376007i
\(430\) 27.8820 1.34459
\(431\) 31.7843i 1.53099i −0.643440 0.765497i \(-0.722493\pi\)
0.643440 0.765497i \(-0.277507\pi\)
\(432\) 0.826585 + 1.43169i 0.0397691 + 0.0688821i
\(433\) −17.0916 + 29.6035i −0.821368 + 1.42265i 0.0832953 + 0.996525i \(0.473456\pi\)
−0.904664 + 0.426127i \(0.859878\pi\)
\(434\) 8.30758 + 29.8492i 0.398776 + 1.43281i
\(435\) 2.20708 + 1.27426i 0.105821 + 0.0610960i
\(436\) −16.5890 9.57769i −0.794471 0.458688i
\(437\) 11.6316 + 6.71548i 0.556413 + 0.321245i
\(438\) 0.0530841 0.0919443i 0.00253646 0.00439327i
\(439\) 8.62972 14.9471i 0.411874 0.713387i −0.583221 0.812314i \(-0.698208\pi\)
0.995095 + 0.0989269i \(0.0315410\pi\)
\(440\) 5.80231i 0.276614i
\(441\) 0.731769 1.26746i 0.0348461 0.0603553i
\(442\) 18.8347 + 22.5330i 0.895873 + 1.07179i
\(443\) −12.0506 20.8723i −0.572543 0.991674i −0.996304 0.0858995i \(-0.972624\pi\)
0.423761 0.905774i \(-0.360710\pi\)
\(444\) −2.13455 1.23238i −0.101301 0.0584862i
\(445\) −14.8525 + 25.7253i −0.704077 + 1.21950i
\(446\) −1.87318 3.24445i −0.0886978 0.153629i
\(447\) −2.17108 + 1.25348i −0.102689 + 0.0592874i
\(448\) 27.5710 15.9181i 1.30261 0.752061i
\(449\) −26.9848 15.5797i −1.27349 0.735250i −0.297847 0.954614i \(-0.596268\pi\)
−0.975643 + 0.219364i \(0.929602\pi\)
\(450\) 11.3208i 0.533667i
\(451\) −10.5412 18.2579i −0.496367 0.859733i
\(452\) 7.77840 13.4726i 0.365865 0.633697i
\(453\) 1.79468i 0.0843215i
\(454\) 25.2060 + 43.6581i 1.18298 + 2.04898i
\(455\) −12.7388 + 10.6479i −0.597203 + 0.499183i
\(456\) −0.295805 0.512349i −0.0138523 0.0239930i
\(457\) −25.8142 + 14.9038i −1.20754 + 0.697172i −0.962221 0.272271i \(-0.912225\pi\)
−0.245317 + 0.969443i \(0.578892\pi\)
\(458\) 4.11027 0.192060
\(459\) −1.61605 2.79908i −0.0754306 0.130650i
\(460\) −23.4192 + 13.5211i −1.09192 + 0.630423i
\(461\) 8.22549 + 4.74899i 0.383099 + 0.221182i 0.679166 0.733985i \(-0.262342\pi\)
−0.296067 + 0.955167i \(0.595675\pi\)
\(462\) 1.35673 0.783306i 0.0631206 0.0364427i
\(463\) 6.74496i 0.313465i −0.987641 0.156732i \(-0.949904\pi\)
0.987641 0.156732i \(-0.0500960\pi\)
\(464\) −9.31478 + 16.1337i −0.432428 + 0.748987i
\(465\) 0.362949 1.40878i 0.0168314 0.0653305i
\(466\) −33.2950 + 19.2229i −1.54236 + 0.890483i
\(467\) 7.67226 0.355030 0.177515 0.984118i \(-0.443194\pi\)
0.177515 + 0.984118i \(0.443194\pi\)
\(468\) −22.7281 + 18.9977i −1.05061 + 0.878168i
\(469\) −13.4126 −0.619336
\(470\) 31.0519 + 17.9278i 1.43232 + 0.826948i
\(471\) 0.0145678 0.000671247
\(472\) 3.72208 + 6.44684i 0.171323 + 0.296740i
\(473\) 13.7724i 0.633256i
\(474\) 3.16643i 0.145439i
\(475\) 4.30718i 0.197627i
\(476\) −22.7534 + 13.1367i −1.04290 + 0.602119i
\(477\) −11.8933 20.5999i −0.544558 0.943203i
\(478\) 18.6597 32.3196i 0.853476 1.47826i
\(479\) 14.7863i 0.675601i 0.941218 + 0.337801i \(0.109683\pi\)
−0.941218 + 0.337801i \(0.890317\pi\)
\(480\) −1.95240 −0.0891144
\(481\) −7.65305 + 20.9030i −0.348949 + 0.953094i
\(482\) −5.95668 + 10.3173i −0.271319 + 0.469939i
\(483\) −1.73757 1.00318i −0.0790620 0.0456464i
\(484\) −19.9064 −0.904836
\(485\) −6.56729 −0.298205
\(486\) 7.31470 4.22314i 0.331802 0.191566i
\(487\) 7.34133i 0.332667i −0.986070 0.166334i \(-0.946807\pi\)
0.986070 0.166334i \(-0.0531929\pi\)
\(488\) −0.356793 0.205995i −0.0161513 0.00932495i
\(489\) 2.43980 + 1.40862i 0.110331 + 0.0636999i
\(490\) 0.967086 + 1.67504i 0.0436885 + 0.0756707i
\(491\) 20.7481 35.9368i 0.936350 1.62180i 0.164140 0.986437i \(-0.447515\pi\)
0.772210 0.635368i \(-0.219152\pi\)
\(492\) 3.74818 2.16401i 0.168981 0.0975612i
\(493\) 18.2112 31.5428i 0.820192 1.42061i
\(494\) −14.9183 + 12.4698i −0.671207 + 0.561041i
\(495\) 10.4567 0.469994
\(496\) 10.2981 + 2.65314i 0.462399 + 0.119130i
\(497\) 8.02323 + 13.8966i 0.359891 + 0.623350i
\(498\) 2.52503 4.37348i 0.113149 0.195980i
\(499\) −2.57595 1.48723i −0.115315 0.0665774i 0.441233 0.897393i \(-0.354541\pi\)
−0.556548 + 0.830815i \(0.687875\pi\)
\(500\) −29.0646 16.7804i −1.29981 0.750444i
\(501\) 0.352462i 0.0157468i
\(502\) 23.1468 + 13.3638i 1.03309 + 0.596455i
\(503\) 8.30859 + 14.3909i 0.370462 + 0.641659i 0.989637 0.143595i \(-0.0458661\pi\)
−0.619175 + 0.785253i \(0.712533\pi\)
\(504\) −6.28171 10.8802i −0.279810 0.484645i
\(505\) 25.7089 + 14.8431i 1.14403 + 0.660508i
\(506\) −11.5223 19.9572i −0.512228 0.887204i
\(507\) −1.43702 1.21513i −0.0638201 0.0539659i
\(508\) −14.1752 + 24.5521i −0.628922 + 1.08932i
\(509\) −6.12075 3.53381i −0.271297 0.156634i 0.358180 0.933653i \(-0.383397\pi\)
−0.629477 + 0.777019i \(0.716731\pi\)
\(510\) 2.12824 0.0942400
\(511\) 0.428897 0.742872i 0.0189733 0.0328627i
\(512\) 20.5865i 0.909805i
\(513\) 1.85317 1.06993i 0.0818194 0.0472384i
\(514\) 0.795634i 0.0350939i
\(515\) −22.3388 12.8973i −0.984364 0.568323i
\(516\) −2.82734 −0.124467
\(517\) −8.85552 + 15.3382i −0.389465 + 0.674573i
\(518\) −29.7533 17.1781i −1.30729 0.754761i
\(519\) 0.867312 0.0380708
\(520\) −1.84792 10.5978i −0.0810368 0.464742i
\(521\) 1.02615 1.77734i 0.0449563 0.0778666i −0.842672 0.538428i \(-0.819018\pi\)
0.887628 + 0.460561i \(0.152352\pi\)
\(522\) 54.8887 + 31.6900i 2.40241 + 1.38703i
\(523\) 3.02324 + 5.23640i 0.132197 + 0.228972i 0.924523 0.381126i \(-0.124464\pi\)
−0.792326 + 0.610098i \(0.791130\pi\)
\(524\) 16.4590 + 28.5078i 0.719014 + 1.24537i
\(525\) 0.643423i 0.0280813i
\(526\) 13.5898 + 7.84610i 0.592545 + 0.342106i
\(527\) −20.1337 5.18713i −0.877039 0.225955i
\(528\) 0.537701i 0.0234004i
\(529\) −3.25664 + 5.64067i −0.141593 + 0.245246i
\(530\) 31.4358 1.36548
\(531\) −11.6182 + 6.70780i −0.504189 + 0.291094i
\(532\) −8.69733 15.0642i −0.377077 0.653116i
\(533\) −25.0681 29.9905i −1.08582 1.29903i
\(534\) 2.59834 4.50045i 0.112441 0.194754i
\(535\) −3.07283 + 1.77410i −0.132850 + 0.0767010i
\(536\) 4.34528 7.52625i 0.187688 0.325085i
\(537\) 2.19808 0.0948542
\(538\) −23.0054 + 13.2822i −0.991834 + 0.572636i
\(539\) −0.827394 + 0.477696i −0.0356384 + 0.0205758i
\(540\) 4.30842i 0.185405i
\(541\) −6.82338 3.93948i −0.293360 0.169371i 0.346096 0.938199i \(-0.387507\pi\)
−0.639456 + 0.768828i \(0.720840\pi\)
\(542\) −3.68056 + 6.37492i −0.158094 + 0.273826i
\(543\) −0.756694 1.31063i −0.0324728 0.0562446i
\(544\) 27.9029i 1.19633i
\(545\) 6.26837 + 10.8571i 0.268508 + 0.465069i
\(546\) 2.22855 1.86278i 0.0953733 0.0797195i
\(547\) 19.2082 + 33.2695i 0.821281 + 1.42250i 0.904729 + 0.425989i \(0.140074\pi\)
−0.0834473 + 0.996512i \(0.526593\pi\)
\(548\) 44.3669 + 25.6152i 1.89526 + 1.09423i
\(549\) 0.371236 0.642999i 0.0158440 0.0274425i
\(550\) 3.69508 6.40007i 0.157559 0.272900i
\(551\) 20.8833 + 12.0570i 0.889660 + 0.513646i
\(552\) 1.12584 0.650004i 0.0479189 0.0276660i
\(553\) 25.5835i 1.08792i
\(554\) 25.1778i 1.06970i
\(555\) 0.806564 + 1.39701i 0.0342367 + 0.0592997i
\(556\) 17.1766 + 29.7508i 0.728451 + 1.26171i
\(557\) −3.40611 + 1.96652i −0.144321 + 0.0833240i −0.570422 0.821352i \(-0.693220\pi\)
0.426101 + 0.904676i \(0.359887\pi\)
\(558\) 9.02632 35.0355i 0.382114 1.48317i
\(559\) 4.38625 + 25.1549i 0.185518 + 1.06394i
\(560\) −8.79515 −0.371663
\(561\) 1.05125i 0.0443839i
\(562\) 2.55318 + 4.42224i 0.107700 + 0.186541i
\(563\) −28.7728 −1.21263 −0.606314 0.795226i \(-0.707352\pi\)
−0.606314 + 0.795226i \(0.707352\pi\)
\(564\) −3.14878 1.81795i −0.132588 0.0765496i
\(565\) −8.81749 + 5.09078i −0.370954 + 0.214171i
\(566\) −16.6117 9.59079i −0.698243 0.403131i
\(567\) 19.4691 11.2405i 0.817623 0.472055i
\(568\) −10.3972 −0.436255
\(569\) 6.96294 12.0602i 0.291902 0.505589i −0.682358 0.731018i \(-0.739045\pi\)
0.974259 + 0.225430i \(0.0723786\pi\)
\(570\) 1.40903i 0.0590178i
\(571\) 12.7133 + 22.0200i 0.532033 + 0.921509i 0.999301 + 0.0373925i \(0.0119052\pi\)
−0.467267 + 0.884116i \(0.654761\pi\)
\(572\) 19.0499 3.32171i 0.796514 0.138888i
\(573\) 1.59883 0.0667922
\(574\) 52.2456 30.1640i 2.18069 1.25902i
\(575\) −9.46463 −0.394702
\(576\) −37.1750 −1.54896
\(577\) −32.7655 18.9172i −1.36405 0.787533i −0.373887 0.927474i \(-0.621975\pi\)
−0.990160 + 0.139941i \(0.955309\pi\)
\(578\) 6.66522i 0.277237i
\(579\) 2.05770i 0.0855150i
\(580\) −42.0469 + 24.2758i −1.74590 + 1.00800i
\(581\) 20.4012 35.3359i 0.846384 1.46598i
\(582\) 1.14890 0.0476234
\(583\) 15.5278i 0.643098i
\(584\) 0.277900 + 0.481337i 0.0114996 + 0.0199179i
\(585\) 19.0989 3.33026i 0.789641 0.137689i
\(586\) 12.7617 22.1039i 0.527182 0.913106i
\(587\) −1.56719 + 0.904815i −0.0646847 + 0.0373457i −0.531994 0.846748i \(-0.678557\pi\)
0.467309 + 0.884094i \(0.345224\pi\)
\(588\) −0.0980664 0.169856i −0.00404419 0.00700474i
\(589\) 3.43421 13.3298i 0.141504 0.549246i
\(590\) 17.7297i 0.729920i
\(591\) −0.275390 0.158997i −0.0113281 0.00654025i
\(592\) −10.2121 + 5.89595i −0.419714 + 0.242322i
\(593\) 1.51685i 0.0622897i 0.999515 + 0.0311449i \(0.00991532\pi\)
−0.999515 + 0.0311449i \(0.990085\pi\)
\(594\) −3.67151 −0.150644
\(595\) 17.1953 0.704938
\(596\) 47.7597i 1.95631i
\(597\) 0.573989 0.0234918
\(598\) −27.4011 32.7816i −1.12051 1.34054i
\(599\) 13.3807 + 23.1761i 0.546721 + 0.946949i 0.998496 + 0.0548170i \(0.0174575\pi\)
−0.451775 + 0.892132i \(0.649209\pi\)
\(600\) 0.361046 + 0.208450i 0.0147396 + 0.00850993i
\(601\) 15.3585 0.626488 0.313244 0.949673i \(-0.398584\pi\)
0.313244 + 0.949673i \(0.398584\pi\)
\(602\) −39.4101 −1.60624
\(603\) 13.5635 + 7.83090i 0.552349 + 0.318899i
\(604\) −29.6097 17.0952i −1.20480 0.695592i
\(605\) 11.2828 + 6.51413i 0.458711 + 0.264837i
\(606\) −4.49759 2.59669i −0.182702 0.105483i
\(607\) 36.4938 1.48124 0.740618 0.671926i \(-0.234533\pi\)
0.740618 + 0.671926i \(0.234533\pi\)
\(608\) −18.4735 −0.749201
\(609\) −3.11963 1.80112i −0.126414 0.0729850i
\(610\) 0.490615 + 0.849771i 0.0198644 + 0.0344062i
\(611\) −11.2894 + 30.8351i −0.456722 + 1.24746i
\(612\) 30.6792 1.24014
\(613\) 17.1255i 0.691694i −0.938291 0.345847i \(-0.887592\pi\)
0.938291 0.345847i \(-0.112408\pi\)
\(614\) −4.30468 −0.173723
\(615\) −2.83259 −0.114221
\(616\) 8.20136i 0.330442i
\(617\) −0.636961 + 0.367750i −0.0256431 + 0.0148050i −0.512767 0.858528i \(-0.671379\pi\)
0.487124 + 0.873333i \(0.338046\pi\)
\(618\) 3.90800 + 2.25629i 0.157203 + 0.0907612i
\(619\) 0.196601i 0.00790205i −0.999992 0.00395103i \(-0.998742\pi\)
0.999992 0.00395103i \(-0.00125765\pi\)
\(620\) 19.7856 + 19.4074i 0.794607 + 0.779419i
\(621\) 2.35106 + 4.07216i 0.0943449 + 0.163410i
\(622\) 31.6926 18.2977i 1.27076 0.733673i
\(623\) 20.9935 36.3618i 0.841086 1.45680i
\(624\) −0.171247 0.982095i −0.00685538 0.0393153i
\(625\) 6.62693 + 11.4782i 0.265077 + 0.459127i
\(626\) 14.9320i 0.596804i
\(627\) −0.695997 −0.0277954
\(628\) −0.138764 + 0.240347i −0.00553731 + 0.00959090i
\(629\) 19.9655 11.5271i 0.796078 0.459616i
\(630\) 29.9222i 1.19213i
\(631\) 8.85644i 0.352569i 0.984339 + 0.176285i \(0.0564079\pi\)
−0.984339 + 0.176285i \(0.943592\pi\)
\(632\) 14.3557 + 8.28829i 0.571040 + 0.329690i
\(633\) 2.03153 0.0807462
\(634\) 50.7021 2.01364
\(635\) 16.0688 9.27731i 0.637670 0.368159i
\(636\) −3.18772 −0.126401
\(637\) −1.35907 + 1.13601i −0.0538485 + 0.0450103i
\(638\) −20.6871 35.8312i −0.819011 1.41857i
\(639\) 18.7374i 0.741239i
\(640\) 11.0778 19.1873i 0.437887 0.758443i
\(641\) −4.64282 −0.183380 −0.0916902 0.995788i \(-0.529227\pi\)
−0.0916902 + 0.995788i \(0.529227\pi\)
\(642\) 0.537569 0.310366i 0.0212162 0.0122492i
\(643\) −26.7849 15.4643i −1.05629 0.609852i −0.131889 0.991264i \(-0.542104\pi\)
−0.924405 + 0.381413i \(0.875438\pi\)
\(644\) 33.1022 19.1115i 1.30441 0.753100i
\(645\) 1.60252 + 0.925214i 0.0630991 + 0.0364303i
\(646\) 20.1373 0.792293
\(647\) −11.9370 20.6755i −0.469293 0.812839i 0.530091 0.847941i \(-0.322158\pi\)
−0.999384 + 0.0351016i \(0.988825\pi\)
\(648\) 14.5663i 0.572219i
\(649\) 8.75765 0.343768
\(650\) 4.71067 12.8664i 0.184768 0.504661i
\(651\) −0.513015 + 1.99126i −0.0201067 + 0.0780436i
\(652\) −46.4803 + 26.8354i −1.82031 + 1.05096i
\(653\) 1.73299 + 3.00162i 0.0678171 + 0.117463i 0.897940 0.440118i \(-0.145063\pi\)
−0.830123 + 0.557580i \(0.811730\pi\)
\(654\) −1.09661 1.89938i −0.0428807 0.0742715i
\(655\) 21.5440i 0.841795i
\(656\) 20.7061i 0.808438i
\(657\) −0.867447 + 0.500821i −0.0338423 + 0.0195389i
\(658\) −43.8907 25.3403i −1.71104 0.987868i
\(659\) −9.62296 + 16.6675i −0.374857 + 0.649272i −0.990306 0.138905i \(-0.955642\pi\)
0.615448 + 0.788177i \(0.288975\pi\)
\(660\) 0.700666 1.21359i 0.0272734 0.0472389i
\(661\) 25.8318 + 14.9140i 1.00474 + 0.580087i 0.909647 0.415382i \(-0.136352\pi\)
0.0950926 + 0.995468i \(0.469685\pi\)
\(662\) 0.262916 + 0.455385i 0.0102185 + 0.0176990i
\(663\) 0.334804 + 1.92008i 0.0130027 + 0.0745699i
\(664\) 13.2188 + 22.8956i 0.512987 + 0.888520i
\(665\) 11.3844i 0.441468i
\(666\) 20.0587 + 34.7428i 0.777260 + 1.34625i
\(667\) −26.4941 + 45.8892i −1.02586 + 1.77684i
\(668\) 5.81511 + 3.35736i 0.224993 + 0.129900i
\(669\) 0.248633i 0.00961272i
\(670\) −17.9252 + 10.3491i −0.692510 + 0.399821i
\(671\) −0.419748 + 0.242341i −0.0162042 + 0.00935549i
\(672\) 2.75964 0.106456
\(673\) 20.5841 35.6526i 0.793457 1.37431i −0.130357 0.991467i \(-0.541612\pi\)
0.923814 0.382841i \(-0.125054\pi\)
\(674\) 35.1217 20.2775i 1.35284 0.781061i
\(675\) −0.753964 + 1.30590i −0.0290201 + 0.0502642i
\(676\) 33.7361 12.1340i 1.29754 0.466693i
\(677\) −12.0689 20.9040i −0.463846 0.803404i 0.535303 0.844660i \(-0.320197\pi\)
−0.999149 + 0.0412560i \(0.986864\pi\)
\(678\) 1.54255 0.890594i 0.0592415 0.0342031i
\(679\) 9.28263 0.356235
\(680\) −5.57076 + 9.64885i −0.213629 + 0.370016i
\(681\) 3.34567i 0.128206i
\(682\) −16.5384 + 16.8607i −0.633289 + 0.645630i
\(683\) 25.8064 + 14.8994i 0.987456 + 0.570108i 0.904513 0.426446i \(-0.140235\pi\)
0.0829429 + 0.996554i \(0.473568\pi\)
\(684\) 20.3116i 0.776635i
\(685\) −16.7646 29.0371i −0.640541 1.10945i
\(686\) −20.8439 36.1027i −0.795823 1.37841i
\(687\) 0.236238 + 0.136392i 0.00901304 + 0.00520368i
\(688\) −6.76328 + 11.7143i −0.257848 + 0.446605i
\(689\) 4.94532 + 28.3612i 0.188402 + 1.08048i
\(690\) −3.09621 −0.117871
\(691\) −10.8978 6.29187i −0.414573 0.239354i 0.278180 0.960529i \(-0.410269\pi\)
−0.692753 + 0.721175i \(0.743602\pi\)
\(692\) −8.26154 + 14.3094i −0.314057 + 0.543962i
\(693\) −14.7802 −0.561452
\(694\) −30.2154 17.4449i −1.14696 0.662198i
\(695\) 22.4834i 0.852843i
\(696\) 2.02134 1.16702i 0.0766185 0.0442357i
\(697\) 40.4823i 1.53338i
\(698\) −11.2939 + 19.5615i −0.427479 + 0.740415i
\(699\) −2.55151 −0.0965070
\(700\) 10.6155 + 6.12889i 0.401230 + 0.231650i
\(701\) −19.6713 + 34.0717i −0.742974 + 1.28687i 0.208162 + 0.978094i \(0.433252\pi\)
−0.951135 + 0.308774i \(0.900081\pi\)
\(702\) −6.70592 + 1.16931i −0.253099 + 0.0441326i
\(703\) 7.63168 + 13.2185i 0.287834 + 0.498544i
\(704\) 21.0165 + 12.1339i 0.792087 + 0.457312i
\(705\) 1.18981 + 2.06080i 0.0448107 + 0.0776144i
\(706\) 12.7640 + 22.1080i 0.480381 + 0.832045i
\(707\) −36.3387 20.9801i −1.36666 0.789040i
\(708\) 1.79786i 0.0675678i
\(709\) −12.6445 7.30028i −0.474872 0.274168i 0.243405 0.969925i \(-0.421736\pi\)
−0.718277 + 0.695757i \(0.755069\pi\)
\(710\) 21.4452 + 12.3814i 0.804824 + 0.464665i
\(711\) −14.9368 + 25.8713i −0.560175 + 0.970251i
\(712\) 13.6025 + 23.5603i 0.509777 + 0.882959i
\(713\) 29.2910 + 7.54636i 1.09696 + 0.282613i
\(714\) −3.00819 −0.112579
\(715\) −11.8843 4.35112i −0.444448 0.162722i
\(716\) −20.9377 + 36.2652i −0.782478 + 1.35529i
\(717\) 2.14494 1.23838i 0.0801042 0.0462482i
\(718\) −34.8492 + 60.3606i −1.30056 + 2.25264i
\(719\) −2.08162 3.60547i −0.0776313 0.134461i 0.824596 0.565722i \(-0.191402\pi\)
−0.902227 + 0.431260i \(0.858069\pi\)
\(720\) 8.89411 + 5.13502i 0.331464 + 0.191371i
\(721\) 31.5750 + 18.2299i 1.17592 + 0.678915i
\(722\) 28.1115i 1.04620i
\(723\) −0.684721 + 0.395324i −0.0254651 + 0.0147023i
\(724\) 28.8314 1.07151
\(725\) −16.9928 −0.631097
\(726\) −1.97384 1.13960i −0.0732562 0.0422945i
\(727\) −14.8458 + 25.7136i −0.550599 + 0.953666i 0.447632 + 0.894218i \(0.352267\pi\)
−0.998231 + 0.0594478i \(0.981066\pi\)
\(728\) 2.61197 + 14.9796i 0.0968062 + 0.555179i
\(729\) −25.8750 −0.958332
\(730\) 1.32374i 0.0489939i
\(731\) 13.2228 22.9026i 0.489063 0.847082i
\(732\) −0.0497504 0.0861701i −0.00183883 0.00318494i
\(733\) 43.2916 24.9944i 1.59901 0.923189i 0.607333 0.794448i \(-0.292240\pi\)
0.991678 0.128742i \(-0.0410938\pi\)
\(734\) 6.54912i 0.241732i
\(735\) 0.128364i 0.00473478i
\(736\) 40.5938i 1.49631i
\(737\) −5.11199 8.85422i −0.188302 0.326149i
\(738\) −70.4447 −2.59311
\(739\) −14.9823 8.65004i −0.551133 0.318197i 0.198446 0.980112i \(-0.436411\pi\)
−0.749579 + 0.661915i \(0.769744\pi\)
\(740\) −30.7315 −1.12971
\(741\) −1.27122 + 0.221662i −0.0466994 + 0.00814294i
\(742\) −44.4334 −1.63120
\(743\) 8.34061 4.81546i 0.305987 0.176662i −0.339142 0.940735i \(-0.610137\pi\)
0.645130 + 0.764073i \(0.276803\pi\)
\(744\) −0.951159 0.932979i −0.0348712 0.0342047i
\(745\) −15.6288 + 27.0699i −0.572595 + 0.991763i
\(746\) 41.5437i 1.52102i
\(747\) −41.2615 + 23.8223i −1.50968 + 0.871614i
\(748\) −17.3441 10.0136i −0.634165 0.366135i
\(749\) 4.34334 2.50763i 0.158702 0.0916266i
\(750\) −1.92129 3.32777i −0.0701556 0.121513i
\(751\) 27.2614 0.994782 0.497391 0.867527i \(-0.334291\pi\)
0.497391 + 0.867527i \(0.334291\pi\)
\(752\) −15.0644 + 8.69744i −0.549342 + 0.317163i
\(753\) 0.886908 + 1.53617i 0.0323207 + 0.0559812i
\(754\) −49.1960 58.8562i −1.79161 2.14342i
\(755\) 11.1884 + 19.3788i 0.407187 + 0.705268i
\(756\) 6.08980i 0.221484i
\(757\) 1.29014 2.23459i 0.0468910 0.0812177i −0.841627 0.540059i \(-0.818402\pi\)
0.888518 + 0.458841i \(0.151735\pi\)
\(758\) −17.0909 29.6024i −0.620770 1.07521i
\(759\) 1.52939i 0.0555132i
\(760\) −6.38816 3.68820i −0.231723 0.133785i
\(761\) 0.447280 0.258237i 0.0162139 0.00936108i −0.491871 0.870668i \(-0.663687\pi\)
0.508085 + 0.861307i \(0.330354\pi\)
\(762\) −2.81111 + 1.62300i −0.101836 + 0.0587950i
\(763\) −8.86012 15.3462i −0.320758 0.555569i
\(764\) −15.2296 + 26.3784i −0.550987 + 0.954338i
\(765\) −17.3888 10.0394i −0.628693 0.362976i