Properties

Label 403.2.v.a.36.16
Level $403$
Weight $2$
Character 403.36
Analytic conductor $3.218$
Analytic rank $0$
Dimension $70$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.v (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(70\)
Relative dimension: \(35\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.16
Character \(\chi\) \(=\) 403.36
Dual form 403.2.v.a.56.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.605874 + 0.349801i) q^{2} -2.90142 q^{3} +(-0.755278 + 1.30818i) q^{4} +(1.79550 - 1.03663i) q^{5} +(1.75789 - 1.01492i) q^{6} +(-0.132266 + 0.0763637i) q^{7} -2.45599i q^{8} +5.41822 q^{9} +O(q^{10})\) \(q+(-0.605874 + 0.349801i) q^{2} -2.90142 q^{3} +(-0.755278 + 1.30818i) q^{4} +(1.79550 - 1.03663i) q^{5} +(1.75789 - 1.01492i) q^{6} +(-0.132266 + 0.0763637i) q^{7} -2.45599i q^{8} +5.41822 q^{9} +(-0.725232 + 1.25614i) q^{10} +(-1.09254 - 0.630779i) q^{11} +(2.19138 - 3.79558i) q^{12} +(2.96878 - 2.04606i) q^{13} +(0.0534243 - 0.0925336i) q^{14} +(-5.20950 + 3.00771i) q^{15} +(-0.651446 - 1.12834i) q^{16} +(1.94798 + 3.37400i) q^{17} +(-3.28276 + 1.89530i) q^{18} +(-6.86598 + 3.96407i) q^{19} +3.13179i q^{20} +(0.383759 - 0.221563i) q^{21} +0.882589 q^{22} +(4.11312 + 7.12413i) q^{23} +7.12587i q^{24} +(-0.350778 + 0.607566i) q^{25} +(-1.08299 + 2.27814i) q^{26} -7.01627 q^{27} -0.230703i q^{28} +(-0.981201 - 1.69949i) q^{29} +(2.10420 - 3.64458i) q^{30} +(5.51441 + 0.768913i) q^{31} +(5.04330 + 2.91175i) q^{32} +(3.16992 + 1.83015i) q^{33} +(-2.36046 - 1.36281i) q^{34} +(-0.158323 + 0.274223i) q^{35} +(-4.09226 + 7.08801i) q^{36} +9.54584i q^{37} +(2.77328 - 4.80346i) q^{38} +(-8.61366 + 5.93647i) q^{39} +(-2.54597 - 4.40975i) q^{40} +(-1.93660 - 1.11810i) q^{41} +(-0.155006 + 0.268479i) q^{42} +(-4.63321 - 8.02496i) q^{43} +(1.65034 - 0.952826i) q^{44} +(9.72844 - 5.61672i) q^{45} +(-4.98406 - 2.87755i) q^{46} +4.61814i q^{47} +(1.89012 + 3.27378i) q^{48} +(-3.48834 + 6.04198i) q^{49} -0.490811i q^{50} +(-5.65190 - 9.78939i) q^{51} +(0.434362 + 5.42904i) q^{52} +(3.09718 + 5.36448i) q^{53} +(4.25098 - 2.45430i) q^{54} -2.61555 q^{55} +(0.187549 + 0.324844i) q^{56} +(19.9211 - 11.5014i) q^{57} +(1.18897 + 0.686451i) q^{58} +(-2.21747 + 1.28026i) q^{59} -9.08663i q^{60} +(3.54854 - 6.14625i) q^{61} +(-3.61001 + 1.46309i) q^{62} +(-0.716646 + 0.413756i) q^{63} -1.46835 q^{64} +(3.20943 - 6.75124i) q^{65} -2.56076 q^{66} +(8.78421 + 5.07156i) q^{67} -5.88507 q^{68} +(-11.9339 - 20.6701i) q^{69} -0.221526i q^{70} +14.3722i q^{71} -13.3071i q^{72} +(3.69348 - 2.13243i) q^{73} +(-3.33915 - 5.78357i) q^{74} +(1.01775 - 1.76280i) q^{75} -11.9759i q^{76} +0.192674 q^{77} +(3.14221 - 6.60982i) q^{78} +(6.25030 - 10.8258i) q^{79} +(-2.33935 - 1.35062i) q^{80} +4.10247 q^{81} +1.56445 q^{82} +(3.84880 - 2.22211i) q^{83} +0.669367i q^{84} +(6.99521 + 4.03869i) q^{85} +(5.61428 + 3.24141i) q^{86} +(2.84687 + 4.93093i) q^{87} +(-1.54919 + 2.68327i) q^{88} +(0.542650 - 0.313299i) q^{89} +(-3.92947 + 6.80604i) q^{90} +(-0.236423 + 0.497331i) q^{91} -12.4262 q^{92} +(-15.9996 - 2.23094i) q^{93} +(-1.61543 - 2.79801i) q^{94} +(-8.21859 + 14.2350i) q^{95} +(-14.6327 - 8.44820i) q^{96} +(3.09021 + 1.78413i) q^{97} -4.88090i q^{98} +(-5.91963 - 3.41770i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} + O(q^{10}) \) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} - q^{10} - 6q^{11} + 13q^{12} - 14q^{13} - 14q^{14} - 15q^{15} - 28q^{16} + 6q^{17} + 12q^{19} + 9q^{21} - 8q^{22} + 10q^{23} + 19q^{25} + 34q^{27} - 18q^{29} - 31q^{30} + 2q^{31} + 36q^{32} - 12q^{33} - 9q^{34} - 12q^{35} + 8q^{36} - 21q^{38} - 30q^{39} + 5q^{40} + 18q^{41} - 49q^{42} + 19q^{43} - 42q^{44} - 63q^{45} - 6q^{46} - 27q^{48} + 9q^{49} - 7q^{51} - 43q^{52} - 22q^{53} + 18q^{54} + 30q^{55} + 25q^{56} - 15q^{57} - 12q^{58} + 33q^{59} - 13q^{61} - 17q^{62} - 6q^{63} - 38q^{64} + 9q^{65} - 52q^{66} + 30q^{67} + 88q^{68} - 16q^{69} + 9q^{73} - 19q^{74} + 25q^{75} + 34q^{77} + 14q^{78} + 6q^{79} + 6q^{80} + 22q^{81} - 78q^{82} + 54q^{83} - 33q^{85} + 24q^{86} - 14q^{87} + 16q^{88} - 6q^{89} - 11q^{90} - 70q^{91} - 6q^{92} + 7q^{93} - 43q^{94} + 25q^{95} - 36q^{96} - 75q^{97} - 93q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.605874 + 0.349801i −0.428417 + 0.247347i −0.698672 0.715442i \(-0.746225\pi\)
0.270255 + 0.962789i \(0.412892\pi\)
\(3\) −2.90142 −1.67513 −0.837567 0.546335i \(-0.816023\pi\)
−0.837567 + 0.546335i \(0.816023\pi\)
\(4\) −0.755278 + 1.30818i −0.377639 + 0.654090i
\(5\) 1.79550 1.03663i 0.802974 0.463597i −0.0415363 0.999137i \(-0.513225\pi\)
0.844510 + 0.535540i \(0.179892\pi\)
\(6\) 1.75789 1.01492i 0.717657 0.414339i
\(7\) −0.132266 + 0.0763637i −0.0499918 + 0.0288628i −0.524788 0.851233i \(-0.675855\pi\)
0.474796 + 0.880096i \(0.342522\pi\)
\(8\) 2.45599i 0.868325i
\(9\) 5.41822 1.80607
\(10\) −0.725232 + 1.25614i −0.229339 + 0.397226i
\(11\) −1.09254 0.630779i −0.329413 0.190187i 0.326167 0.945312i \(-0.394243\pi\)
−0.655581 + 0.755125i \(0.727576\pi\)
\(12\) 2.19138 3.79558i 0.632596 1.09569i
\(13\) 2.96878 2.04606i 0.823391 0.567475i
\(14\) 0.0534243 0.0925336i 0.0142782 0.0247306i
\(15\) −5.20950 + 3.00771i −1.34509 + 0.776587i
\(16\) −0.651446 1.12834i −0.162861 0.282084i
\(17\) 1.94798 + 3.37400i 0.472455 + 0.818316i 0.999503 0.0315197i \(-0.0100347\pi\)
−0.527048 + 0.849835i \(0.676701\pi\)
\(18\) −3.28276 + 1.89530i −0.773754 + 0.446727i
\(19\) −6.86598 + 3.96407i −1.57516 + 0.909421i −0.579643 + 0.814871i \(0.696808\pi\)
−0.995520 + 0.0945498i \(0.969859\pi\)
\(20\) 3.13179i 0.700289i
\(21\) 0.383759 0.221563i 0.0837430 0.0483490i
\(22\) 0.882589 0.188169
\(23\) 4.11312 + 7.12413i 0.857644 + 1.48548i 0.874170 + 0.485620i \(0.161406\pi\)
−0.0165260 + 0.999863i \(0.505261\pi\)
\(24\) 7.12587i 1.45456i
\(25\) −0.350778 + 0.607566i −0.0701556 + 0.121513i
\(26\) −1.08299 + 2.27814i −0.212392 + 0.446779i
\(27\) −7.01627 −1.35028
\(28\) 0.230703i 0.0435989i
\(29\) −0.981201 1.69949i −0.182204 0.315587i 0.760426 0.649424i \(-0.224990\pi\)
−0.942631 + 0.333837i \(0.891657\pi\)
\(30\) 2.10420 3.64458i 0.384173 0.665407i
\(31\) 5.51441 + 0.768913i 0.990418 + 0.138101i
\(32\) 5.04330 + 2.91175i 0.891537 + 0.514729i
\(33\) 3.16992 + 1.83015i 0.551811 + 0.318589i
\(34\) −2.36046 1.36281i −0.404816 0.233720i
\(35\) −0.158323 + 0.274223i −0.0267614 + 0.0463521i
\(36\) −4.09226 + 7.08801i −0.682044 + 1.18133i
\(37\) 9.54584i 1.56933i 0.619922 + 0.784663i \(0.287164\pi\)
−0.619922 + 0.784663i \(0.712836\pi\)
\(38\) 2.77328 4.80346i 0.449885 0.779223i
\(39\) −8.61366 + 5.93647i −1.37929 + 0.950596i
\(40\) −2.54597 4.40975i −0.402553 0.697242i
\(41\) −1.93660 1.11810i −0.302446 0.174618i 0.341095 0.940029i \(-0.389202\pi\)
−0.643541 + 0.765411i \(0.722536\pi\)
\(42\) −0.155006 + 0.268479i −0.0239180 + 0.0414271i
\(43\) −4.63321 8.02496i −0.706558 1.22380i −0.966126 0.258070i \(-0.916913\pi\)
0.259568 0.965725i \(-0.416420\pi\)
\(44\) 1.65034 0.952826i 0.248799 0.143644i
\(45\) 9.72844 5.61672i 1.45023 0.837291i
\(46\) −4.98406 2.87755i −0.734859 0.424271i
\(47\) 4.61814i 0.673625i 0.941572 + 0.336812i \(0.109349\pi\)
−0.941572 + 0.336812i \(0.890651\pi\)
\(48\) 1.89012 + 3.27378i 0.272815 + 0.472529i
\(49\) −3.48834 + 6.04198i −0.498334 + 0.863140i
\(50\) 0.490811i 0.0694111i
\(51\) −5.65190 9.78939i −0.791425 1.37079i
\(52\) 0.434362 + 5.42904i 0.0602351 + 0.752872i
\(53\) 3.09718 + 5.36448i 0.425431 + 0.736867i 0.996461 0.0840618i \(-0.0267893\pi\)
−0.571030 + 0.820929i \(0.693456\pi\)
\(54\) 4.25098 2.45430i 0.578484 0.333988i
\(55\) −2.61555 −0.352680
\(56\) 0.187549 + 0.324844i 0.0250623 + 0.0434091i
\(57\) 19.9211 11.5014i 2.63861 1.52340i
\(58\) 1.18897 + 0.686451i 0.156119 + 0.0901354i
\(59\) −2.21747 + 1.28026i −0.288690 + 0.166675i −0.637351 0.770574i \(-0.719970\pi\)
0.348661 + 0.937249i \(0.386637\pi\)
\(60\) 9.08663i 1.17308i
\(61\) 3.54854 6.14625i 0.454344 0.786946i −0.544306 0.838886i \(-0.683207\pi\)
0.998650 + 0.0519400i \(0.0165405\pi\)
\(62\) −3.61001 + 1.46309i −0.458471 + 0.185812i
\(63\) −0.716646 + 0.413756i −0.0902889 + 0.0521283i
\(64\) −1.46835 −0.183544
\(65\) 3.20943 6.75124i 0.398081 0.837389i
\(66\) −2.56076 −0.315208
\(67\) 8.78421 + 5.07156i 1.07316 + 0.619590i 0.929044 0.369970i \(-0.120632\pi\)
0.144118 + 0.989561i \(0.453966\pi\)
\(68\) −5.88507 −0.713669
\(69\) −11.9339 20.6701i −1.43667 2.48838i
\(70\) 0.221526i 0.0264774i
\(71\) 14.3722i 1.70567i 0.522184 + 0.852833i \(0.325117\pi\)
−0.522184 + 0.852833i \(0.674883\pi\)
\(72\) 13.3071i 1.56826i
\(73\) 3.69348 2.13243i 0.432290 0.249583i −0.268032 0.963410i \(-0.586373\pi\)
0.700322 + 0.713827i \(0.253040\pi\)
\(74\) −3.33915 5.78357i −0.388168 0.672327i
\(75\) 1.01775 1.76280i 0.117520 0.203551i
\(76\) 11.9759i 1.37373i
\(77\) 0.192674 0.0219573
\(78\) 3.14221 6.60982i 0.355785 0.748415i
\(79\) 6.25030 10.8258i 0.703213 1.21800i −0.264119 0.964490i \(-0.585081\pi\)
0.967332 0.253511i \(-0.0815855\pi\)
\(80\) −2.33935 1.35062i −0.261547 0.151004i
\(81\) 4.10247 0.455830
\(82\) 1.56445 0.172764
\(83\) 3.84880 2.22211i 0.422461 0.243908i −0.273669 0.961824i \(-0.588237\pi\)
0.696130 + 0.717916i \(0.254904\pi\)
\(84\) 0.669367i 0.0730339i
\(85\) 6.99521 + 4.03869i 0.758737 + 0.438057i
\(86\) 5.61428 + 3.24141i 0.605404 + 0.349530i
\(87\) 2.84687 + 4.93093i 0.305217 + 0.528651i
\(88\) −1.54919 + 2.68327i −0.165144 + 0.286038i
\(89\) 0.542650 0.313299i 0.0575208 0.0332096i −0.470964 0.882153i \(-0.656094\pi\)
0.528485 + 0.848943i \(0.322760\pi\)
\(90\) −3.92947 + 6.80604i −0.414202 + 0.717420i
\(91\) −0.236423 + 0.497331i −0.0247839 + 0.0521344i
\(92\) −12.4262 −1.29552
\(93\) −15.9996 2.23094i −1.65908 0.231337i
\(94\) −1.61543 2.79801i −0.166619 0.288592i
\(95\) −8.21859 + 14.2350i −0.843209 + 1.46048i
\(96\) −14.6327 8.44820i −1.49344 0.862240i
\(97\) 3.09021 + 1.78413i 0.313763 + 0.181151i 0.648609 0.761122i \(-0.275351\pi\)
−0.334846 + 0.942273i \(0.608684\pi\)
\(98\) 4.88090i 0.493045i
\(99\) −5.91963 3.41770i −0.594945 0.343492i
\(100\) −0.529870 0.917762i −0.0529870 0.0917762i
\(101\) 2.66570 + 4.61713i 0.265247 + 0.459422i 0.967628 0.252379i \(-0.0812130\pi\)
−0.702381 + 0.711801i \(0.747880\pi\)
\(102\) 6.84868 + 3.95409i 0.678120 + 0.391513i
\(103\) 2.81059 + 4.86808i 0.276935 + 0.479666i 0.970622 0.240611i \(-0.0773479\pi\)
−0.693686 + 0.720277i \(0.744015\pi\)
\(104\) −5.02511 7.29130i −0.492753 0.714971i
\(105\) 0.459360 0.795635i 0.0448289 0.0776460i
\(106\) −3.75300 2.16680i −0.364524 0.210458i
\(107\) 8.30339 0.802719 0.401359 0.915921i \(-0.368538\pi\)
0.401359 + 0.915921i \(0.368538\pi\)
\(108\) 5.29924 9.17855i 0.509919 0.883206i
\(109\) 6.46965i 0.619680i 0.950789 + 0.309840i \(0.100275\pi\)
−0.950789 + 0.309840i \(0.899725\pi\)
\(110\) 1.58469 0.914922i 0.151094 0.0872344i
\(111\) 27.6965i 2.62883i
\(112\) 0.172328 + 0.0994937i 0.0162835 + 0.00940127i
\(113\) −5.17088 −0.486435 −0.243218 0.969972i \(-0.578203\pi\)
−0.243218 + 0.969972i \(0.578203\pi\)
\(114\) −8.04643 + 13.9368i −0.753617 + 1.30530i
\(115\) 14.7702 + 8.52760i 1.37733 + 0.795203i
\(116\) 2.96432 0.275230
\(117\) 16.0855 11.0860i 1.48710 1.02490i
\(118\) 0.895672 1.55135i 0.0824533 0.142813i
\(119\) −0.515303 0.297510i −0.0472377 0.0272727i
\(120\) 7.38692 + 12.7945i 0.674330 + 1.16797i
\(121\) −4.70424 8.14798i −0.427658 0.740725i
\(122\) 4.96513i 0.449522i
\(123\) 5.61889 + 3.24407i 0.506638 + 0.292508i
\(124\) −5.17079 + 6.63310i −0.464351 + 0.595670i
\(125\) 11.8209i 1.05729i
\(126\) 0.289465 0.501368i 0.0257876 0.0446654i
\(127\) 4.25978 0.377995 0.188997 0.981978i \(-0.439476\pi\)
0.188997 + 0.981978i \(0.439476\pi\)
\(128\) −9.19696 + 5.30986i −0.812904 + 0.469330i
\(129\) 13.4429 + 23.2838i 1.18358 + 2.05002i
\(130\) 0.417082 + 5.21307i 0.0365805 + 0.457216i
\(131\) −5.07010 + 8.78167i −0.442976 + 0.767258i −0.997909 0.0646378i \(-0.979411\pi\)
0.554932 + 0.831895i \(0.312744\pi\)
\(132\) −4.78834 + 2.76455i −0.416771 + 0.240623i
\(133\) 0.605423 1.04862i 0.0524968 0.0909272i
\(134\) −7.09616 −0.613015
\(135\) −12.5977 + 7.27331i −1.08424 + 0.625987i
\(136\) 8.28653 4.78423i 0.710564 0.410244i
\(137\) 8.52706i 0.728516i 0.931298 + 0.364258i \(0.118677\pi\)
−0.931298 + 0.364258i \(0.881323\pi\)
\(138\) 14.4608 + 8.34897i 1.23099 + 0.710711i
\(139\) 3.90876 6.77016i 0.331536 0.574238i −0.651277 0.758840i \(-0.725766\pi\)
0.982813 + 0.184602i \(0.0590997\pi\)
\(140\) −0.239155 0.414229i −0.0202123 0.0350087i
\(141\) 13.3991i 1.12841i
\(142\) −5.02741 8.70773i −0.421891 0.730737i
\(143\) −4.53412 + 0.362762i −0.379162 + 0.0303357i
\(144\) −3.52968 6.11358i −0.294140 0.509465i
\(145\) −3.52350 2.03429i −0.292611 0.168939i
\(146\) −1.49186 + 2.58397i −0.123467 + 0.213851i
\(147\) 10.1211 17.5303i 0.834776 1.44587i
\(148\) −12.4877 7.20976i −1.02648 0.592639i
\(149\) −14.6997 + 8.48690i −1.20425 + 0.695274i −0.961497 0.274814i \(-0.911384\pi\)
−0.242753 + 0.970088i \(0.578050\pi\)
\(150\) 1.42405i 0.116273i
\(151\) 2.75994i 0.224601i 0.993674 + 0.112300i \(0.0358219\pi\)
−0.993674 + 0.112300i \(0.964178\pi\)
\(152\) 9.73574 + 16.8628i 0.789673 + 1.36775i
\(153\) 10.5546 + 18.2811i 0.853288 + 1.47794i
\(154\) −0.116736 + 0.0673978i −0.00940689 + 0.00543107i
\(155\) 10.6982 4.33585i 0.859303 0.348264i
\(156\) −1.26026 15.7519i −0.100902 1.26116i
\(157\) −3.54858 −0.283208 −0.141604 0.989923i \(-0.545226\pi\)
−0.141604 + 0.989923i \(0.545226\pi\)
\(158\) 8.74545i 0.695751i
\(159\) −8.98622 15.5646i −0.712653 1.23435i
\(160\) 12.0737 0.954508
\(161\) −1.08805 0.628186i −0.0857504 0.0495080i
\(162\) −2.48558 + 1.43505i −0.195285 + 0.112748i
\(163\) −19.3830 11.1908i −1.51820 0.876532i −0.999771 0.0214098i \(-0.993185\pi\)
−0.518427 0.855122i \(-0.673482\pi\)
\(164\) 2.92535 1.68895i 0.228431 0.131885i
\(165\) 7.58879 0.590787
\(166\) −1.55459 + 2.69263i −0.120660 + 0.208989i
\(167\) 1.79040i 0.138545i −0.997598 0.0692727i \(-0.977932\pi\)
0.997598 0.0692727i \(-0.0220679\pi\)
\(168\) −0.544158 0.942509i −0.0419827 0.0727161i
\(169\) 4.62728 12.1486i 0.355945 0.934507i
\(170\) −5.65095 −0.433408
\(171\) −37.2014 + 21.4782i −2.84486 + 1.64248i
\(172\) 13.9975 1.06730
\(173\) 25.1195 1.90980 0.954900 0.296929i \(-0.0959624\pi\)
0.954900 + 0.296929i \(0.0959624\pi\)
\(174\) −3.44969 1.99168i −0.261520 0.150989i
\(175\) 0.107147i 0.00809955i
\(176\) 1.64367i 0.123896i
\(177\) 6.43381 3.71456i 0.483595 0.279204i
\(178\) −0.219185 + 0.379639i −0.0164286 + 0.0284552i
\(179\) 13.9968 1.04617 0.523086 0.852280i \(-0.324781\pi\)
0.523086 + 0.852280i \(0.324781\pi\)
\(180\) 16.9687i 1.26477i
\(181\) −11.1164 19.2542i −0.826278 1.43116i −0.900939 0.433947i \(-0.857121\pi\)
0.0746603 0.997209i \(-0.476213\pi\)
\(182\) −0.0307244 0.384021i −0.00227744 0.0284655i
\(183\) −10.2958 + 17.8328i −0.761087 + 1.31824i
\(184\) 17.4968 10.1018i 1.28988 0.744714i
\(185\) 9.89555 + 17.1396i 0.727535 + 1.26013i
\(186\) 10.4741 4.24502i 0.768001 0.311260i
\(187\) 4.91498i 0.359419i
\(188\) −6.04135 3.48798i −0.440611 0.254387i
\(189\) 0.928013 0.535789i 0.0675030 0.0389729i
\(190\) 11.4995i 0.834261i
\(191\) −20.5001 −1.48333 −0.741667 0.670768i \(-0.765964\pi\)
−0.741667 + 0.670768i \(0.765964\pi\)
\(192\) 4.26030 0.307461
\(193\) 1.15648i 0.0832455i 0.999133 + 0.0416227i \(0.0132528\pi\)
−0.999133 + 0.0416227i \(0.986747\pi\)
\(194\) −2.49637 −0.179229
\(195\) −9.31191 + 19.5882i −0.666840 + 1.40274i
\(196\) −5.26933 9.12674i −0.376381 0.651910i
\(197\) −2.71350 1.56664i −0.193329 0.111618i 0.400211 0.916423i \(-0.368937\pi\)
−0.593540 + 0.804805i \(0.702270\pi\)
\(198\) 4.78206 0.339846
\(199\) 22.6708 1.60709 0.803545 0.595244i \(-0.202945\pi\)
0.803545 + 0.595244i \(0.202945\pi\)
\(200\) 1.49218 + 0.861509i 0.105513 + 0.0609179i
\(201\) −25.4866 14.7147i −1.79769 1.03790i
\(202\) −3.23016 1.86493i −0.227273 0.131216i
\(203\) 0.259559 + 0.149856i 0.0182175 + 0.0105179i
\(204\) 17.0750 1.19549
\(205\) −4.63623 −0.323809
\(206\) −3.40572 1.96629i −0.237288 0.136998i
\(207\) 22.2858 + 38.6001i 1.54897 + 2.68289i
\(208\) −4.24264 2.01688i −0.294174 0.139846i
\(209\) 10.0018 0.691839
\(210\) 0.642739i 0.0443532i
\(211\) −12.9702 −0.892906 −0.446453 0.894807i \(-0.647313\pi\)
−0.446453 + 0.894807i \(0.647313\pi\)
\(212\) −9.35693 −0.642637
\(213\) 41.6997i 2.85722i
\(214\) −5.03081 + 2.90454i −0.343899 + 0.198550i
\(215\) −16.6379 9.60590i −1.13470 0.655117i
\(216\) 17.2319i 1.17248i
\(217\) −0.788086 + 0.319400i −0.0534988 + 0.0216823i
\(218\) −2.26309 3.91979i −0.153276 0.265482i
\(219\) −10.7163 + 6.18708i −0.724143 + 0.418084i
\(220\) 1.97546 3.42161i 0.133186 0.230685i
\(221\) 12.6865 + 6.03097i 0.853388 + 0.405687i
\(222\) 9.68826 + 16.7806i 0.650234 + 1.12624i
\(223\) 1.54044i 0.103156i 0.998669 + 0.0515778i \(0.0164250\pi\)
−0.998669 + 0.0515778i \(0.983575\pi\)
\(224\) −0.889408 −0.0594261
\(225\) −1.90059 + 3.29193i −0.126706 + 0.219462i
\(226\) 3.13290 1.80878i 0.208397 0.120318i
\(227\) 7.45077i 0.494525i −0.968949 0.247262i \(-0.920469\pi\)
0.968949 0.247262i \(-0.0795309\pi\)
\(228\) 34.7471i 2.30118i
\(229\) 6.82561 + 3.94077i 0.451049 + 0.260413i 0.708273 0.705938i \(-0.249474\pi\)
−0.257224 + 0.966352i \(0.582808\pi\)
\(230\) −11.9319 −0.786764
\(231\) −0.559029 −0.0367814
\(232\) −4.17394 + 2.40982i −0.274032 + 0.158213i
\(233\) 3.36740 0.220606 0.110303 0.993898i \(-0.464818\pi\)
0.110303 + 0.993898i \(0.464818\pi\)
\(234\) −5.86788 + 12.3434i −0.383595 + 0.806916i
\(235\) 4.78732 + 8.29188i 0.312290 + 0.540903i
\(236\) 3.86780i 0.251773i
\(237\) −18.1347 + 31.4103i −1.17798 + 2.04032i
\(238\) 0.416278 0.0269833
\(239\) −2.25561 + 1.30228i −0.145903 + 0.0842372i −0.571174 0.820829i \(-0.693512\pi\)
0.425271 + 0.905066i \(0.360179\pi\)
\(240\) 6.78742 + 3.91872i 0.438126 + 0.252952i
\(241\) −8.38220 + 4.83947i −0.539945 + 0.311737i −0.745057 0.667001i \(-0.767578\pi\)
0.205112 + 0.978739i \(0.434244\pi\)
\(242\) 5.70035 + 3.29110i 0.366432 + 0.211560i
\(243\) 9.14585 0.586707
\(244\) 5.36027 + 9.28425i 0.343156 + 0.594363i
\(245\) 14.4645i 0.924104i
\(246\) −4.53912 −0.289404
\(247\) −12.2728 + 25.8166i −0.780901 + 1.64267i
\(248\) 1.88845 13.5434i 0.119916 0.860005i
\(249\) −11.1670 + 6.44726i −0.707679 + 0.408579i
\(250\) −4.13495 7.16195i −0.261517 0.452961i
\(251\) 1.80991 + 3.13486i 0.114241 + 0.197871i 0.917476 0.397791i \(-0.130223\pi\)
−0.803235 + 0.595662i \(0.796890\pi\)
\(252\) 1.25000i 0.0787428i
\(253\) 10.3779i 0.652451i
\(254\) −2.58089 + 1.49008i −0.161939 + 0.0934958i
\(255\) −20.2960 11.7179i −1.27099 0.733804i
\(256\) 5.18315 8.97747i 0.323947 0.561092i
\(257\) 7.56820 13.1085i 0.472091 0.817686i −0.527399 0.849618i \(-0.676833\pi\)
0.999490 + 0.0319316i \(0.0101659\pi\)
\(258\) −16.2894 9.40468i −1.01413 0.585510i
\(259\) −0.728956 1.26259i −0.0452951 0.0784535i
\(260\) 6.40783 + 9.29758i 0.397397 + 0.576612i
\(261\) −5.31636 9.20821i −0.329075 0.569974i
\(262\) 7.09411i 0.438275i
\(263\) −10.8288 18.7560i −0.667730 1.15654i −0.978537 0.206070i \(-0.933933\pi\)
0.310807 0.950473i \(-0.399401\pi\)
\(264\) 4.49484 7.78530i 0.276638 0.479152i
\(265\) 11.1220 + 6.42129i 0.683219 + 0.394457i
\(266\) 0.847111i 0.0519397i
\(267\) −1.57445 + 0.909011i −0.0963550 + 0.0556306i
\(268\) −13.2690 + 7.66088i −0.810535 + 0.467963i
\(269\) −13.5964 −0.828989 −0.414494 0.910052i \(-0.636042\pi\)
−0.414494 + 0.910052i \(0.636042\pi\)
\(270\) 5.08843 8.81341i 0.309672 0.536367i
\(271\) 13.1694 7.60334i 0.799982 0.461870i −0.0434830 0.999054i \(-0.513845\pi\)
0.843465 + 0.537184i \(0.180512\pi\)
\(272\) 2.53801 4.39596i 0.153889 0.266544i
\(273\) 0.685962 1.44296i 0.0415163 0.0873322i
\(274\) −2.98278 5.16632i −0.180196 0.312109i
\(275\) 0.766479 0.442527i 0.0462204 0.0266854i
\(276\) 36.0536 2.17017
\(277\) −11.2621 + 19.5066i −0.676675 + 1.17204i 0.299301 + 0.954159i \(0.403246\pi\)
−0.975976 + 0.217877i \(0.930087\pi\)
\(278\) 5.46915i 0.328018i
\(279\) 29.8783 + 4.16614i 1.78877 + 0.249420i
\(280\) 0.673490 + 0.388839i 0.0402487 + 0.0232376i
\(281\) 7.85815i 0.468778i −0.972143 0.234389i \(-0.924691\pi\)
0.972143 0.234389i \(-0.0753090\pi\)
\(282\) 4.68704 + 8.11819i 0.279109 + 0.483431i
\(283\) −12.1994 21.1299i −0.725176 1.25604i −0.958901 0.283739i \(-0.908425\pi\)
0.233725 0.972303i \(-0.424908\pi\)
\(284\) −18.8014 10.8550i −1.11566 0.644126i
\(285\) 23.8456 41.3017i 1.41249 2.44650i
\(286\) 2.62021 1.80583i 0.154936 0.106781i
\(287\) 0.341529 0.0201598
\(288\) 27.3257 + 15.7765i 1.61018 + 0.929639i
\(289\) 0.910744 1.57745i 0.0535732 0.0927914i
\(290\) 2.84639 0.167146
\(291\) −8.96598 5.17651i −0.525595 0.303453i
\(292\) 6.44232i 0.377008i
\(293\) 12.3478 7.12902i 0.721367 0.416482i −0.0938885 0.995583i \(-0.529930\pi\)
0.815256 + 0.579101i \(0.196596\pi\)
\(294\) 14.1615i 0.825917i
\(295\) −2.65432 + 4.59742i −0.154540 + 0.267672i
\(296\) 23.4445 1.36269
\(297\) 7.66556 + 4.42571i 0.444801 + 0.256806i
\(298\) 5.93746 10.2840i 0.343948 0.595735i
\(299\) 26.7873 + 12.7343i 1.54915 + 0.736442i
\(300\) 1.53737 + 2.66281i 0.0887603 + 0.153737i
\(301\) 1.22563 + 0.707619i 0.0706443 + 0.0407865i
\(302\) −0.965431 1.67218i −0.0555543 0.0962229i
\(303\) −7.73432 13.3962i −0.444325 0.769594i
\(304\) 8.94562 + 5.16476i 0.513066 + 0.296219i
\(305\) 14.7141i 0.842530i
\(306\) −12.7895 7.38402i −0.731127 0.422116i
\(307\) −10.4656 6.04230i −0.597301 0.344852i 0.170678 0.985327i \(-0.445404\pi\)
−0.767979 + 0.640475i \(0.778738\pi\)
\(308\) −0.145523 + 0.252053i −0.00829193 + 0.0143620i
\(309\) −8.15469 14.1243i −0.463904 0.803505i
\(310\) −4.96509 + 6.36923i −0.281998 + 0.361748i
\(311\) 5.21615 0.295780 0.147890 0.989004i \(-0.452752\pi\)
0.147890 + 0.989004i \(0.452752\pi\)
\(312\) 14.5799 + 21.1551i 0.825427 + 1.19767i
\(313\) −6.77779 + 11.7395i −0.383103 + 0.663554i −0.991504 0.130076i \(-0.958478\pi\)
0.608401 + 0.793630i \(0.291811\pi\)
\(314\) 2.14999 1.24130i 0.121331 0.0700505i
\(315\) −0.857827 + 1.48580i −0.0483331 + 0.0837153i
\(316\) 9.44142 + 16.3530i 0.531122 + 0.919930i
\(317\) 7.83602 + 4.52413i 0.440115 + 0.254100i 0.703646 0.710550i \(-0.251554\pi\)
−0.263531 + 0.964651i \(0.584887\pi\)
\(318\) 10.8890 + 6.28678i 0.610626 + 0.352545i
\(319\) 2.47568i 0.138612i
\(320\) −2.63643 + 1.52214i −0.147381 + 0.0850904i
\(321\) −24.0916 −1.34466
\(322\) 0.878961 0.0489826
\(323\) −26.7496 15.4439i −1.48839 0.859320i
\(324\) −3.09850 + 5.36676i −0.172139 + 0.298154i
\(325\) 0.201733 + 2.52144i 0.0111901 + 0.139864i
\(326\) 15.6582 0.867230
\(327\) 18.7711i 1.03805i
\(328\) −2.74604 + 4.75628i −0.151625 + 0.262622i
\(329\) −0.352658 0.610822i −0.0194427 0.0336757i
\(330\) −4.59785 + 2.65457i −0.253103 + 0.146129i
\(331\) 6.49663i 0.357087i −0.983932 0.178543i \(-0.942861\pi\)
0.983932 0.178543i \(-0.0571385\pi\)
\(332\) 6.71324i 0.368437i
\(333\) 51.7215i 2.83432i
\(334\) 0.626285 + 1.08476i 0.0342688 + 0.0593553i
\(335\) 21.0294 1.14896
\(336\) −0.499996 0.288673i −0.0272770 0.0157484i
\(337\) 0.0183368 0.000998869 0.000499435 1.00000i \(-0.499841\pi\)
0.000499435 1.00000i \(0.499841\pi\)
\(338\) 1.44605 + 8.97914i 0.0786546 + 0.488401i
\(339\) 15.0029 0.814844
\(340\) −10.5667 + 6.10066i −0.573058 + 0.330855i
\(341\) −5.53971 4.31844i −0.299992 0.233857i
\(342\) 15.0262 26.0262i 0.812525 1.40734i
\(343\) 2.13462i 0.115259i
\(344\) −19.7093 + 11.3791i −1.06265 + 0.613522i
\(345\) −42.8546 24.7421i −2.30721 1.33207i
\(346\) −15.2192 + 8.78683i −0.818191 + 0.472383i
\(347\) −10.9984 19.0497i −0.590423 1.02264i −0.994175 0.107774i \(-0.965628\pi\)
0.403753 0.914868i \(-0.367706\pi\)
\(348\) −8.60072 −0.461047
\(349\) 4.81699 2.78109i 0.257847 0.148868i −0.365505 0.930809i \(-0.619104\pi\)
0.623352 + 0.781941i \(0.285770\pi\)
\(350\) 0.0374801 + 0.0649175i 0.00200340 + 0.00346999i
\(351\) −20.8298 + 14.3557i −1.11181 + 0.766251i
\(352\) −3.67334 6.36240i −0.195789 0.339117i
\(353\) 9.69360i 0.515938i −0.966153 0.257969i \(-0.916947\pi\)
0.966153 0.257969i \(-0.0830533\pi\)
\(354\) −2.59872 + 4.50111i −0.138120 + 0.239231i
\(355\) 14.8987 + 25.8053i 0.790741 + 1.36960i
\(356\) 0.946511i 0.0501650i
\(357\) 1.49511 + 0.863201i 0.0791295 + 0.0456855i
\(358\) −8.48031 + 4.89611i −0.448198 + 0.258767i
\(359\) −10.2196 + 5.90028i −0.539369 + 0.311405i −0.744823 0.667262i \(-0.767466\pi\)
0.205454 + 0.978667i \(0.434133\pi\)
\(360\) −13.7946 23.8930i −0.727040 1.25927i
\(361\) 21.9277 37.9800i 1.15409 1.99895i
\(362\) 13.4703 + 7.77709i 0.707984 + 0.408755i
\(363\) 13.6490 + 23.6407i 0.716384 + 1.24081i
\(364\) −0.472033 0.684907i −0.0247413 0.0358989i
\(365\) 4.42111 7.65759i 0.231411 0.400816i
\(366\) 14.4059i 0.753010i
\(367\) −9.03939 + 15.6567i −0.471852 + 0.817272i −0.999481 0.0322028i \(-0.989748\pi\)
0.527629 + 0.849475i \(0.323081\pi\)
\(368\) 5.35894 9.28196i 0.279354 0.483856i
\(369\) −10.4929 6.05810i −0.546241 0.315372i
\(370\) −11.9909 6.92295i −0.623377 0.359907i
\(371\) −0.819303 0.473025i −0.0425361 0.0245582i
\(372\) 15.0026 19.2454i 0.777850 0.997828i
\(373\) 11.5528 20.0100i 0.598180 1.03608i −0.394910 0.918720i \(-0.629224\pi\)
0.993090 0.117358i \(-0.0374426\pi\)
\(374\) 1.71927 + 2.97786i 0.0889011 + 0.153981i
\(375\) 34.2972i 1.77110i
\(376\) 11.3421 0.584925
\(377\) −6.39023 3.03781i −0.329113 0.156455i
\(378\) −0.374839 + 0.649241i −0.0192797 + 0.0333933i
\(379\) 23.9278i 1.22909i −0.788882 0.614544i \(-0.789340\pi\)
0.788882 0.614544i \(-0.210660\pi\)
\(380\) −12.4146 21.5028i −0.636857 1.10307i
\(381\) −12.3594 −0.633191
\(382\) 12.4205 7.17096i 0.635486 0.366898i
\(383\) 19.5590i 0.999417i 0.866194 + 0.499708i \(0.166559\pi\)
−0.866194 + 0.499708i \(0.833441\pi\)
\(384\) 26.6842 15.4061i 1.36172 0.786191i
\(385\) 0.345948 0.199733i 0.0176311 0.0101793i
\(386\) −0.404539 0.700683i −0.0205905 0.0356638i
\(387\) −25.1038 43.4810i −1.27610 2.21026i
\(388\) −4.66793 + 2.69503i −0.236978 + 0.136820i
\(389\) 1.16794 2.02293i 0.0592168 0.102566i −0.834897 0.550406i \(-0.814473\pi\)
0.894114 + 0.447839i \(0.147806\pi\)
\(390\) −1.21013 15.1253i −0.0612773 0.765898i
\(391\) −16.0245 + 27.7553i −0.810396 + 1.40365i
\(392\) 14.8391 + 8.56734i 0.749486 + 0.432716i
\(393\) 14.7105 25.4793i 0.742045 1.28526i
\(394\) 2.19205 0.110434
\(395\) 25.9171i 1.30403i
\(396\) 8.94193 5.16262i 0.449349 0.259432i
\(397\) 4.45541 2.57233i 0.223611 0.129102i −0.384010 0.923329i \(-0.625457\pi\)
0.607621 + 0.794227i \(0.292124\pi\)
\(398\) −13.7356 + 7.93027i −0.688505 + 0.397509i
\(399\) −1.75658 + 3.04249i −0.0879392 + 0.152315i
\(400\) 0.914052 0.0457026
\(401\) −18.6210 + 10.7508i −0.929887 + 0.536871i −0.886776 0.462200i \(-0.847060\pi\)
−0.0431113 + 0.999070i \(0.513727\pi\)
\(402\) 20.5889 1.02688
\(403\) 17.9443 9.00009i 0.893870 0.448326i
\(404\) −8.05339 −0.400671
\(405\) 7.36599 4.25276i 0.366019 0.211321i
\(406\) −0.209680 −0.0104062
\(407\) 6.02131 10.4292i 0.298465 0.516957i
\(408\) −24.0427 + 13.8810i −1.19029 + 0.687214i
\(409\) −7.90907 + 4.56630i −0.391078 + 0.225789i −0.682627 0.730767i \(-0.739163\pi\)
0.291549 + 0.956556i \(0.405829\pi\)
\(410\) 2.80897 1.62176i 0.138725 0.0800931i
\(411\) 24.7406i 1.22036i
\(412\) −8.49110 −0.418326
\(413\) 0.195531 0.338669i 0.00962143 0.0166648i
\(414\) −27.0047 15.5912i −1.32721 0.766265i
\(415\) 4.60703 7.97961i 0.226150 0.391703i
\(416\) 20.9300 1.67455i 1.02618 0.0821016i
\(417\) −11.3409 + 19.6431i −0.555368 + 0.961925i
\(418\) −6.05983 + 3.49865i −0.296396 + 0.171124i
\(419\) 3.37306 + 5.84231i 0.164785 + 0.285416i 0.936579 0.350457i \(-0.113974\pi\)
−0.771794 + 0.635873i \(0.780640\pi\)
\(420\) 0.693889 + 1.20185i 0.0338583 + 0.0586443i
\(421\) −28.9279 + 16.7015i −1.40986 + 0.813983i −0.995374 0.0960723i \(-0.969372\pi\)
−0.414486 + 0.910056i \(0.636039\pi\)
\(422\) 7.85831 4.53700i 0.382536 0.220858i
\(423\) 25.0221i 1.21662i
\(424\) 13.1751 7.60666i 0.639841 0.369412i
\(425\) −2.73324 −0.132581
\(426\) 14.5866 + 25.2648i 0.706724 + 1.22408i
\(427\) 1.08392i 0.0524545i
\(428\) −6.27137 + 10.8623i −0.303138 + 0.525050i
\(429\) 13.1554 1.05252i 0.635147 0.0508163i
\(430\) 13.4406 0.648164
\(431\) 37.1656i 1.79020i 0.445863 + 0.895101i \(0.352897\pi\)
−0.445863 + 0.895101i \(0.647103\pi\)
\(432\) 4.57072 + 7.91672i 0.219909 + 0.380893i
\(433\) 12.8946 22.3341i 0.619674 1.07331i −0.369871 0.929083i \(-0.620598\pi\)
0.989545 0.144223i \(-0.0460684\pi\)
\(434\) 0.365754 0.469190i 0.0175568 0.0225218i
\(435\) 10.2231 + 5.90233i 0.490162 + 0.282995i
\(436\) −8.46346 4.88638i −0.405326 0.234015i
\(437\) −56.4811 32.6094i −2.70186 1.55992i
\(438\) 4.32850 7.49718i 0.206824 0.358229i
\(439\) −3.20290 + 5.54759i −0.152866 + 0.264772i −0.932280 0.361738i \(-0.882184\pi\)
0.779414 + 0.626509i \(0.215517\pi\)
\(440\) 6.42377i 0.306241i
\(441\) −18.9006 + 32.7368i −0.900028 + 1.55889i
\(442\) −9.79608 + 0.783756i −0.465952 + 0.0372795i
\(443\) −14.4902 25.0978i −0.688451 1.19243i −0.972339 0.233575i \(-0.924958\pi\)
0.283887 0.958858i \(-0.408376\pi\)
\(444\) 36.2320 + 20.9185i 1.71949 + 0.992749i
\(445\) 0.649553 1.12506i 0.0307918 0.0533329i
\(446\) −0.538849 0.933313i −0.0255152 0.0441937i
\(447\) 42.6501 24.6240i 2.01728 1.16468i
\(448\) 0.194213 0.112129i 0.00917569 0.00529759i
\(449\) 26.4633 + 15.2786i 1.24888 + 0.721042i 0.970886 0.239541i \(-0.0769969\pi\)
0.277995 + 0.960583i \(0.410330\pi\)
\(450\) 2.65932i 0.125362i
\(451\) 1.41054 + 2.44313i 0.0664199 + 0.115043i
\(452\) 3.90545 6.76444i 0.183697 0.318172i
\(453\) 8.00774i 0.376236i
\(454\) 2.60629 + 4.51422i 0.122319 + 0.211863i
\(455\) 0.0910516 + 1.13804i 0.00426856 + 0.0533523i
\(456\) −28.2474 48.9260i −1.32281 2.29117i
\(457\) −17.1257 + 9.88751i −0.801105 + 0.462518i −0.843857 0.536567i \(-0.819721\pi\)
0.0427522 + 0.999086i \(0.486387\pi\)
\(458\) −5.51395 −0.257650
\(459\) −13.6676 23.6729i −0.637947 1.10496i
\(460\) −22.3113 + 12.8814i −1.04027 + 0.600599i
\(461\) 24.4136 + 14.0952i 1.13706 + 0.656480i 0.945700 0.325041i \(-0.105378\pi\)
0.191356 + 0.981521i \(0.438712\pi\)
\(462\) 0.338701 0.195549i 0.0157578 0.00909777i
\(463\) 42.5850i 1.97909i 0.144214 + 0.989547i \(0.453935\pi\)
−0.144214 + 0.989547i \(0.546065\pi\)
\(464\) −1.27840 + 2.21425i −0.0593482 + 0.102794i
\(465\) −31.0400 + 12.5801i −1.43945 + 0.583388i
\(466\) −2.04022 + 1.17792i −0.0945113 + 0.0545661i
\(467\) 39.1853 1.81328 0.906640 0.421905i \(-0.138639\pi\)
0.906640 + 0.421905i \(0.138639\pi\)
\(468\) 2.35347 + 29.4157i 0.108789 + 1.35974i
\(469\) −1.54913 −0.0715324
\(470\) −5.80102 3.34922i −0.267581 0.154488i
\(471\) 10.2959 0.474411
\(472\) 3.14431 + 5.44610i 0.144728 + 0.250677i
\(473\) 11.6901i 0.537513i
\(474\) 25.3742i 1.16548i
\(475\) 5.56204i 0.255204i
\(476\) 0.778394 0.449406i 0.0356776 0.0205985i
\(477\) 16.7812 + 29.0659i 0.768359 + 1.33084i
\(478\) 0.911076 1.57803i 0.0416716 0.0721774i
\(479\) 24.7418i 1.13048i −0.824925 0.565242i \(-0.808783\pi\)
0.824925 0.565242i \(-0.191217\pi\)
\(480\) −35.0308 −1.59893
\(481\) 19.5314 + 28.3395i 0.890553 + 1.29217i
\(482\) 3.38570 5.86421i 0.154215 0.267108i
\(483\) 3.15689 + 1.82263i 0.143643 + 0.0829325i
\(484\) 14.2120 0.646001
\(485\) 7.39797 0.335925
\(486\) −5.54123 + 3.19923i −0.251355 + 0.145120i
\(487\) 21.0203i 0.952520i −0.879305 0.476260i \(-0.841992\pi\)
0.879305 0.476260i \(-0.158008\pi\)
\(488\) −15.0952 8.71519i −0.683325 0.394518i
\(489\) 56.2383 + 32.4692i 2.54318 + 1.46831i
\(490\) −5.05971 8.76367i −0.228574 0.395902i
\(491\) 3.29660 5.70988i 0.148774 0.257683i −0.782001 0.623277i \(-0.785801\pi\)
0.930774 + 0.365594i \(0.119134\pi\)
\(492\) −8.48765 + 4.90035i −0.382653 + 0.220925i
\(493\) 3.82272 6.62115i 0.172167 0.298201i
\(494\) −1.59492 19.9347i −0.0717587 0.896904i
\(495\) −14.1716 −0.636967
\(496\) −2.72475 6.72302i −0.122345 0.301873i
\(497\) −1.09751 1.90095i −0.0492303 0.0852693i
\(498\) 4.51052 7.81245i 0.202121 0.350084i
\(499\) −15.0296 8.67735i −0.672817 0.388451i 0.124326 0.992241i \(-0.460323\pi\)
−0.797143 + 0.603790i \(0.793657\pi\)
\(500\) −15.4638 8.92803i −0.691563 0.399274i
\(501\) 5.19470i 0.232082i
\(502\) −2.19316 1.26622i −0.0978855 0.0565142i
\(503\) 19.0637 + 33.0193i 0.850009 + 1.47226i 0.881199 + 0.472745i \(0.156737\pi\)
−0.0311909 + 0.999513i \(0.509930\pi\)
\(504\) 1.01618 + 1.76008i 0.0452643 + 0.0784001i
\(505\) 9.57256 + 5.52672i 0.425973 + 0.245936i
\(506\) 3.63019 + 6.28767i 0.161382 + 0.279521i
\(507\) −13.4257 + 35.2481i −0.596255 + 1.56542i
\(508\) −3.21732 + 5.57256i −0.142745 + 0.247242i
\(509\) 20.3848 + 11.7692i 0.903542 + 0.521660i 0.878348 0.478022i \(-0.158646\pi\)
0.0251945 + 0.999683i \(0.491979\pi\)
\(510\) 16.3958 0.726017
\(511\) −0.325681 + 0.564097i −0.0144073 + 0.0249542i
\(512\) 13.9872i 0.618151i
\(513\) 48.1736 27.8130i 2.12691 1.22797i
\(514\) 10.5895i 0.467081i
\(515\) 10.0928 + 5.82710i 0.444744 + 0.256773i
\(516\) −40.6125 −1.78786
\(517\) 2.91302 5.04550i 0.128115 0.221901i
\(518\) 0.883311 + 0.509980i 0.0388104 + 0.0224072i
\(519\) −72.8821 −3.19917
\(520\) −16.5810 7.88235i −0.727126 0.345664i
\(521\) −5.14610 + 8.91331i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239054\pi\)
\(522\) 6.44209 + 3.71934i 0.281963 + 0.162791i
\(523\) 11.5714 + 20.0422i 0.505981 + 0.876385i 0.999976 + 0.00692052i \(0.00220289\pi\)
−0.493995 + 0.869465i \(0.664464\pi\)
\(524\) −7.65867 13.2652i −0.334570 0.579493i
\(525\) 0.310878i 0.0135678i
\(526\) 13.1217 + 7.57584i 0.572135 + 0.330322i
\(527\) 8.14766 + 20.1035i 0.354918 + 0.875721i
\(528\) 4.76898i 0.207543i
\(529\) −22.3355 + 38.6862i −0.971107 + 1.68201i
\(530\) −8.98471 −0.390271
\(531\) −12.0148 + 6.93672i −0.521396 + 0.301028i
\(532\) 0.914525 + 1.58400i 0.0396497 + 0.0686753i
\(533\) −8.03704 + 0.643020i −0.348123 + 0.0278523i
\(534\) 0.635947 1.10149i 0.0275201 0.0476662i
\(535\) 14.9088 8.60758i 0.644562 0.372138i
\(536\) 12.4557 21.5740i 0.538006 0.931853i
\(537\) −40.6106 −1.75248
\(538\) 8.23772 4.75605i 0.355153 0.205048i
\(539\) 7.62230 4.40074i 0.328316 0.189553i
\(540\) 21.9735i 0.945588i
\(541\) −7.33863 4.23696i −0.315512 0.182161i 0.333878 0.942616i \(-0.391643\pi\)
−0.649390 + 0.760455i \(0.724976\pi\)
\(542\) −5.31931 + 9.21332i −0.228484 + 0.395746i
\(543\) 32.2534 + 55.8646i 1.38413 + 2.39738i
\(544\) 22.6881i 0.972745i
\(545\) 6.70666 + 11.6163i 0.287282 + 0.497586i
\(546\) 0.0891443 + 1.11420i 0.00381502 + 0.0476836i
\(547\) 16.6293 + 28.8028i 0.711017 + 1.23152i 0.964476 + 0.264171i \(0.0850984\pi\)
−0.253459 + 0.967346i \(0.581568\pi\)
\(548\) −11.1549 6.44030i −0.476515 0.275116i
\(549\) 19.2268 33.3017i 0.820578 1.42128i
\(550\) −0.309593 + 0.536231i −0.0132011 + 0.0228649i
\(551\) 13.4738 + 7.77910i 0.574003 + 0.331401i
\(552\) −50.7656 + 29.3095i −2.16073 + 1.24750i
\(553\) 1.90918i 0.0811868i
\(554\) 15.7580i 0.669494i
\(555\) −28.7111 49.7291i −1.21872 2.11088i
\(556\) 5.90439 + 10.2267i 0.250402 + 0.433709i
\(557\) 16.7455 9.66799i 0.709528 0.409646i −0.101359 0.994850i \(-0.532319\pi\)
0.810886 + 0.585204i \(0.198986\pi\)
\(558\) −19.5598 + 7.92732i −0.828033 + 0.335590i
\(559\) −30.1745 14.3445i −1.27625 0.606707i
\(560\) 0.412554 0.0174336
\(561\) 14.2604i 0.602075i
\(562\) 2.74879 + 4.76105i 0.115951 + 0.200833i
\(563\) 32.2210 1.35795 0.678977 0.734159i \(-0.262423\pi\)
0.678977 + 0.734159i \(0.262423\pi\)
\(564\) 17.5285 + 10.1201i 0.738083 + 0.426132i
\(565\) −9.28433 + 5.36031i −0.390595 + 0.225510i
\(566\) 14.7825 + 8.53470i 0.621356 + 0.358740i
\(567\) −0.542616 + 0.313280i −0.0227877 + 0.0131565i
\(568\) 35.2980 1.48107
\(569\) 2.69614 4.66985i 0.113028 0.195770i −0.803962 0.594681i \(-0.797278\pi\)
0.916990 + 0.398911i \(0.130612\pi\)
\(570\) 33.3648i 1.39750i
\(571\) 2.56966 + 4.45079i 0.107537 + 0.186260i 0.914772 0.403971i \(-0.132370\pi\)
−0.807235 + 0.590230i \(0.799037\pi\)
\(572\) 2.94996 6.20543i 0.123344 0.259462i
\(573\) 59.4793 2.48478
\(574\) −0.206923 + 0.119467i −0.00863681 + 0.00498646i
\(575\) −5.77117 −0.240674
\(576\) −7.95585 −0.331494
\(577\) 10.5151 + 6.07088i 0.437748 + 0.252734i 0.702642 0.711543i \(-0.252004\pi\)
−0.264894 + 0.964278i \(0.585337\pi\)
\(578\) 1.27432i 0.0530046i
\(579\) 3.35544i 0.139447i
\(580\) 5.32244 3.07291i 0.221002 0.127596i
\(581\) −0.339377 + 0.587818i −0.0140797 + 0.0243868i
\(582\) 7.24301 0.300232
\(583\) 7.81454i 0.323645i
\(584\) −5.23725 9.07118i −0.216719 0.375368i
\(585\) 17.3894 36.5797i 0.718964 1.51239i
\(586\) −4.98748 + 8.63857i −0.206031 + 0.356856i
\(587\) 5.25017 3.03119i 0.216698 0.125111i −0.387722 0.921776i \(-0.626738\pi\)
0.604420 + 0.796666i \(0.293405\pi\)
\(588\) 15.2885 + 26.4805i 0.630488 + 1.09204i
\(589\) −40.9099 + 16.5802i −1.68566 + 0.683175i
\(590\) 3.71394i 0.152900i
\(591\) 7.87299 + 4.54547i 0.323851 + 0.186976i
\(592\) 10.7709 6.21860i 0.442682 0.255583i
\(593\) 0.335542i 0.0137791i 0.999976 + 0.00688953i \(0.00219302\pi\)
−0.999976 + 0.00688953i \(0.997807\pi\)
\(594\) −6.19248 −0.254081
\(595\) −1.23364 −0.0505742
\(596\) 25.6399i 1.05025i
\(597\) −65.7774 −2.69209
\(598\) −20.6842 + 1.65488i −0.845840 + 0.0676732i
\(599\) 14.7507 + 25.5489i 0.602695 + 1.04390i 0.992411 + 0.122964i \(0.0392399\pi\)
−0.389716 + 0.920935i \(0.627427\pi\)
\(600\) −4.32943 2.49960i −0.176748 0.102046i
\(601\) −38.9271 −1.58787 −0.793935 0.608003i \(-0.791971\pi\)
−0.793935 + 0.608003i \(0.791971\pi\)
\(602\) −0.990104 −0.0403536
\(603\) 47.5948 + 27.4789i 1.93821 + 1.11903i
\(604\) −3.61050 2.08452i −0.146909 0.0848180i
\(605\) −16.8929 9.75315i −0.686796 0.396522i
\(606\) 9.37204 + 5.41095i 0.380713 + 0.219805i
\(607\) −5.80784 −0.235733 −0.117867 0.993029i \(-0.537605\pi\)
−0.117867 + 0.993029i \(0.537605\pi\)
\(608\) −46.1695 −1.87242
\(609\) −0.753089 0.434796i −0.0305167 0.0176188i
\(610\) 5.14703 + 8.91492i 0.208397 + 0.360954i
\(611\) 9.44898 + 13.7102i 0.382265 + 0.554656i
\(612\) −31.8866 −1.28894
\(613\) 22.0822i 0.891893i −0.895060 0.445946i \(-0.852867\pi\)
0.895060 0.445946i \(-0.147133\pi\)
\(614\) 8.45441 0.341192
\(615\) 13.4517 0.542423
\(616\) 0.473207i 0.0190661i
\(617\) 20.5121 11.8427i 0.825785 0.476767i −0.0266224 0.999646i \(-0.508475\pi\)
0.852407 + 0.522878i \(0.175142\pi\)
\(618\) 9.88142 + 5.70504i 0.397489 + 0.229490i
\(619\) 30.6359i 1.23136i −0.787996 0.615681i \(-0.788881\pi\)
0.787996 0.615681i \(-0.211119\pi\)
\(620\) −2.40807 + 17.2700i −0.0967105 + 0.693579i
\(621\) −28.8587 49.9848i −1.15806 2.00582i
\(622\) −3.16033 + 1.82461i −0.126718 + 0.0731604i
\(623\) −0.0478494 + 0.0828775i −0.00191704 + 0.00332042i
\(624\) 12.3097 + 5.85182i 0.492781 + 0.234260i
\(625\) 10.5000 + 18.1866i 0.420001 + 0.727463i
\(626\) 9.48352i 0.379038i
\(627\) −29.0194 −1.15892
\(628\) 2.68016 4.64218i 0.106950 0.185243i
\(629\) −32.2077 + 18.5951i −1.28420 + 0.741436i
\(630\) 1.20028i 0.0478201i
\(631\) 4.87004i 0.193873i −0.995291 0.0969366i \(-0.969096\pi\)
0.995291 0.0969366i \(-0.0309044\pi\)
\(632\) −26.5882 15.3507i −1.05762 0.610618i
\(633\) 37.6320 1.49574
\(634\) −6.33019 −0.251404
\(635\) 7.64845 4.41584i 0.303520 0.175237i
\(636\) 27.1484 1.07650
\(637\) 2.00615 + 25.0746i 0.0794865 + 0.993493i
\(638\) −0.865997 1.49995i −0.0342851 0.0593836i
\(639\) 77.8717i 3.08056i
\(640\) −11.0088 + 19.0678i −0.435160 + 0.753719i
\(641\) −43.9216 −1.73480 −0.867400 0.497612i \(-0.834210\pi\)
−0.867400 + 0.497612i \(0.834210\pi\)
\(642\) 14.5965 8.42727i 0.576077 0.332598i
\(643\) 11.1439 + 6.43395i 0.439474 + 0.253730i 0.703374 0.710819i \(-0.251676\pi\)
−0.263901 + 0.964550i \(0.585009\pi\)
\(644\) 1.64356 0.948910i 0.0647654 0.0373923i
\(645\) 48.2735 + 27.8707i 1.90077 + 1.09741i
\(646\) 21.6092 0.850201
\(647\) −3.62825 6.28431i −0.142641 0.247062i 0.785849 0.618418i \(-0.212226\pi\)
−0.928490 + 0.371356i \(0.878893\pi\)
\(648\) 10.0756i 0.395808i
\(649\) 3.23024 0.126798
\(650\) −1.00423 1.45711i −0.0393891 0.0571525i
\(651\) 2.28657 0.926714i 0.0896176 0.0363208i
\(652\) 29.2792 16.9043i 1.14666 0.662025i
\(653\) 6.15198 + 10.6555i 0.240746 + 0.416984i 0.960927 0.276802i \(-0.0892747\pi\)
−0.720181 + 0.693786i \(0.755941\pi\)
\(654\) 6.56617 + 11.3729i 0.256758 + 0.444717i
\(655\) 21.0233i 0.821450i
\(656\) 2.91352i 0.113754i
\(657\) 20.0121 11.5540i 0.780747 0.450765i
\(658\) 0.427333 + 0.246721i 0.0166592 + 0.00961817i
\(659\) 16.5388 28.6461i 0.644262 1.11589i −0.340210 0.940349i \(-0.610498\pi\)
0.984472 0.175544i \(-0.0561685\pi\)
\(660\) −5.73165 + 9.92751i −0.223104 + 0.386428i
\(661\) 0.547055 + 0.315842i 0.0212780 + 0.0122848i 0.510601 0.859818i \(-0.329423\pi\)
−0.489323 + 0.872102i \(0.662756\pi\)
\(662\) 2.27253 + 3.93614i 0.0883244 + 0.152982i
\(663\) −36.8089 17.4984i −1.42954 0.679581i
\(664\) −5.45749 9.45264i −0.211792 0.366834i
\(665\) 2.51041i 0.0973495i
\(666\) −18.0922 31.3367i −0.701060 1.21427i
\(667\) 8.07159 13.9804i 0.312533 0.541323i
\(668\) 2.34217 + 1.35225i 0.0906212 + 0.0523202i
\(669\) 4.46946i 0.172799i
\(670\) −12.7412 + 7.35612i −0.492235 + 0.284192i
\(671\) −7.75384 + 4.47668i −0.299334 + 0.172820i
\(672\) 2.58054 0.0995466
\(673\) −0.966958 + 1.67482i −0.0372735 + 0.0645596i −0.884060 0.467373i \(-0.845201\pi\)
0.846787 + 0.531932i \(0.178534\pi\)
\(674\) −0.0111098 + 0.00641424i −0.000427933 + 0.000247067i
\(675\) 2.46116 4.26285i 0.0947299 0.164077i
\(676\) 12.3977 + 15.2289i 0.476833 + 0.585726i
\(677\) 0.365369 + 0.632838i 0.0140423 + 0.0243219i 0.872961 0.487790i \(-0.162197\pi\)
−0.858919 + 0.512112i \(0.828863\pi\)
\(678\) −9.08985 + 5.24803i −0.349093 + 0.201549i
\(679\) −0.544972 −0.0209141
\(680\) 9.91899 17.1802i 0.380376 0.658831i
\(681\) 21.6178i 0.828395i
\(682\) 4.86696 + 0.678634i 0.186366 + 0.0259862i
\(683\) −41.3961 23.9000i −1.58398 0.914509i −0.994271 0.106892i \(-0.965910\pi\)
−0.589706 0.807618i \(-0.700756\pi\)
\(684\) 64.8881i 2.48106i
\(685\) 8.83944 + 15.3104i 0.337738 + 0.584979i
\(686\) 0.746694 + 1.29331i 0.0285089 + 0.0493789i
\(687\) −19.8040 11.4338i −0.755568 0.436227i
\(688\) −6.03657 + 10.4557i −0.230142 + 0.398618i
\(689\) 20.1709 + 9.58892i 0.768449 + 0.365309i
\(690\) 34.6193 1.31793
\(691\) −39.2373 22.6537i −1.49266 0.861786i −0.492692 0.870204i \(-0.663987\pi\)
−0.999965 + 0.00841779i \(0.997321\pi\)
\(692\) −18.9722 + 32.8608i −0.721215 + 1.24918i
\(693\) 1.04395 0.0396565
\(694\) 13.3272 + 7.69448i 0.505895 + 0.292079i
\(695\) 16.2078i 0.614797i
\(696\) 12.1103 6.99191i 0.459041 0.265028i
\(697\) 8.71213i 0.329995i
\(698\) −1.94566 + 3.36998i −0.0736442 + 0.127556i
\(699\) −9.77023 −0.369544
\(700\) 0.140167 + 0.0809257i 0.00529783 + 0.00305871i
\(701\) 2.55028 4.41721i 0.0963226 0.166836i −0.813837 0.581093i \(-0.802625\pi\)
0.910160 + 0.414257i \(0.135959\pi\)
\(702\) 7.59855 15.9840i 0.286789 0.603278i
\(703\) −37.8404 65.5415i −1.42718 2.47194i
\(704\) 1.60423 + 0.926204i 0.0604618 + 0.0349076i
\(705\) −13.8900 24.0582i −0.523128 0.906084i
\(706\) 3.39083 + 5.87310i 0.127616 + 0.221037i
\(707\) −0.705163 0.407126i −0.0265204 0.0153116i
\(708\) 11.2221i 0.421753i
\(709\) −13.7392 7.93235i −0.515988 0.297906i 0.219304 0.975657i \(-0.429621\pi\)
−0.735292 + 0.677751i \(0.762955\pi\)
\(710\) −18.0535 10.4232i −0.677535 0.391175i
\(711\) 33.8655 58.6568i 1.27006 2.19980i
\(712\) −0.769461 1.33274i −0.0288368 0.0499467i
\(713\) 17.2036 + 42.4480i 0.644280 + 1.58969i
\(714\) −1.20780 −0.0452006
\(715\) −7.76498 + 5.35156i −0.290394 + 0.200137i
\(716\) −10.5715 + 18.3104i −0.395075 + 0.684290i
\(717\) 6.54446 3.77845i 0.244407 0.141109i
\(718\) 4.12785 7.14965i 0.154050 0.266823i
\(719\) 21.2818 + 36.8611i 0.793676 + 1.37469i 0.923676 + 0.383174i \(0.125169\pi\)
−0.130000 + 0.991514i \(0.541498\pi\)
\(720\) −12.6751 7.31797i −0.472373 0.272725i
\(721\) −0.743490 0.429254i −0.0276890 0.0159863i
\(722\) 30.6814i 1.14184i
\(723\) 24.3203 14.0413i 0.904480 0.522202i
\(724\) 33.5840 1.24814
\(725\) 1.37674 0.0511307
\(726\) −16.5391 9.54885i −0.613823 0.354391i
\(727\) 11.9319 20.6666i 0.442529 0.766482i −0.555348 0.831618i \(-0.687415\pi\)
0.997876 + 0.0651362i \(0.0207482\pi\)
\(728\) 1.22144 + 0.580654i 0.0452697 + 0.0215205i
\(729\) −38.8433 −1.43864
\(730\) 6.18604i 0.228956i
\(731\) 18.0508 31.2649i 0.667634 1.15638i
\(732\) −15.5524 26.9375i −0.574832 0.995638i
\(733\) −32.7290 + 18.8961i −1.20887 + 0.697943i −0.962513 0.271236i \(-0.912568\pi\)
−0.246359 + 0.969179i \(0.579234\pi\)
\(734\) 12.6480i 0.466845i
\(735\) 41.9676i 1.54800i
\(736\) 47.9054i 1.76582i
\(737\) −6.39807 11.0818i −0.235676 0.408202i
\(738\) 8.47653 0.312025
\(739\) 21.2122 + 12.2469i 0.780302 + 0.450508i 0.836537 0.547910i \(-0.184576\pi\)
−0.0562352 + 0.998418i \(0.517910\pi\)
\(740\) −29.8956 −1.09898
\(741\) 35.6086 74.9049i 1.30811 2.75170i
\(742\) 0.661859 0.0242976
\(743\) 10.6626 6.15605i 0.391173 0.225844i −0.291495 0.956572i \(-0.594153\pi\)
0.682668 + 0.730729i \(0.260820\pi\)
\(744\) −5.47917 + 39.2950i −0.200876 + 1.44062i
\(745\) −17.5956 + 30.4765i −0.644654 + 1.11657i
\(746\) 16.1647i 0.591832i
\(747\) 20.8537 12.0399i 0.762996 0.440516i
\(748\) 6.42967 + 3.71217i 0.235092 + 0.135731i
\(749\) −1.09826 + 0.634078i −0.0401294 + 0.0231687i
\(750\) 11.9972 + 20.7798i 0.438077 + 0.758771i
\(751\) −18.1083 −0.660781 −0.330390 0.943844i \(-0.607180\pi\)
−0.330390 + 0.943844i \(0.607180\pi\)
\(752\) 5.21082 3.00847i 0.190019 0.109707i
\(753\) −5.25132 9.09555i −0.191369 0.331460i
\(754\) 4.93430 0.394779i 0.179697 0.0143770i
\(755\) 2.86105 + 4.95548i 0.104124 + 0.180348i
\(756\) 1.61868i 0.0588708i
\(757\) −6.57506 + 11.3883i −0.238975 + 0.413916i −0.960420 0.278555i \(-0.910145\pi\)
0.721446 + 0.692471i \(0.243478\pi\)
\(758\) 8.36998 + 14.4972i 0.304011 + 0.526563i
\(759\) 30.1105i 1.09294i
\(760\) 34.9611 + 20.1848i 1.26817 + 0.732180i
\(761\) −22.8469 + 13.1907i −0.828201 + 0.478162i −0.853236 0.521525i \(-0.825363\pi\)
0.0250355 + 0.999687i \(0.492030\pi\)
\(762\) 7.48824 4.32334i 0.271270 0.156618i
\(763\) −0.494046 0.855713i −0.0178857 0.0309789i
\(764\) 15.4833 26.8178i 0.560165 0.970234i
\(765\) 37.9016 + 21.8825i 1.37034 + 0.791164i