Properties

Label 403.2.v.a.36.13
Level 403
Weight 2
Character 403.36
Analytic conductor 3.218
Analytic rank 0
Dimension 70
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.v (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(70\)
Relative dimension: \(35\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.13
Character \(\chi\) \(=\) 403.36
Dual form 403.2.v.a.56.13

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.918845 + 0.530496i) q^{2} -1.70695 q^{3} +(-0.437149 + 0.757164i) q^{4} +(-0.822265 + 0.474735i) q^{5} +(1.56843 - 0.905531i) q^{6} +(3.56148 - 2.05622i) q^{7} -3.04960i q^{8} -0.0863111 q^{9} +O(q^{10})\) \(q+(-0.918845 + 0.530496i) q^{2} -1.70695 q^{3} +(-0.437149 + 0.757164i) q^{4} +(-0.822265 + 0.474735i) q^{5} +(1.56843 - 0.905531i) q^{6} +(3.56148 - 2.05622i) q^{7} -3.04960i q^{8} -0.0863111 q^{9} +(0.503689 - 0.872416i) q^{10} +(1.60150 + 0.924628i) q^{11} +(0.746192 - 1.29244i) q^{12} +(-2.49752 - 2.60046i) q^{13} +(-2.18163 + 3.77870i) q^{14} +(1.40357 - 0.810350i) q^{15} +(0.743505 + 1.28779i) q^{16} +(2.85629 + 4.94724i) q^{17} +(0.0793065 - 0.0457877i) q^{18} +(3.03229 - 1.75069i) q^{19} -0.830119i q^{20} +(-6.07928 + 3.50988i) q^{21} -1.96204 q^{22} +(1.09762 + 1.90114i) q^{23} +5.20553i q^{24} +(-2.04925 + 3.54941i) q^{25} +(3.67437 + 1.06450i) q^{26} +5.26819 q^{27} +3.59550i q^{28} +(3.93714 + 6.81933i) q^{29} +(-0.859774 + 1.48917i) q^{30} +(-4.26446 + 3.57972i) q^{31} +(3.91574 + 2.26075i) q^{32} +(-2.73369 - 1.57830i) q^{33} +(-5.24898 - 3.03050i) q^{34} +(-1.95232 + 3.38152i) q^{35} +(0.0377308 - 0.0653516i) q^{36} -11.8622i q^{37} +(-1.85747 + 3.21724i) q^{38} +(4.26315 + 4.43886i) q^{39} +(1.44775 + 2.50758i) q^{40} +(7.53785 + 4.35198i) q^{41} +(3.72395 - 6.45007i) q^{42} +(3.47334 + 6.01601i) q^{43} +(-1.40019 + 0.808400i) q^{44} +(0.0709705 - 0.0409749i) q^{45} +(-2.01709 - 1.16457i) q^{46} -1.27967i q^{47} +(-1.26913 - 2.19819i) q^{48} +(4.95610 - 8.58422i) q^{49} -4.34848i q^{50} +(-4.87555 - 8.44470i) q^{51} +(3.06076 - 0.754245i) q^{52} +(0.126686 + 0.219427i) q^{53} +(-4.84065 + 2.79475i) q^{54} -1.75581 q^{55} +(-6.27067 - 10.8611i) q^{56} +(-5.17598 + 2.98835i) q^{57} +(-7.23525 - 4.17728i) q^{58} +(-0.123588 + 0.0713537i) q^{59} +1.41697i q^{60} +(0.245558 - 0.425319i) q^{61} +(2.01935 - 5.55149i) q^{62} +(-0.307395 + 0.177475i) q^{63} -7.77130 q^{64} +(3.28815 + 0.952606i) q^{65} +3.34912 q^{66} +(7.14058 + 4.12262i) q^{67} -4.99449 q^{68} +(-1.87359 - 3.24515i) q^{69} -4.14279i q^{70} -2.26702i q^{71} +0.263215i q^{72} +(9.77902 - 5.64592i) q^{73} +(6.29284 + 10.8995i) q^{74} +(3.49798 - 6.05868i) q^{75} +3.06126i q^{76} +7.60496 q^{77} +(-6.27197 - 1.81705i) q^{78} +(-5.82822 + 10.0948i) q^{79} +(-1.22272 - 0.705935i) q^{80} -8.73362 q^{81} -9.23483 q^{82} +(-9.73145 + 5.61845i) q^{83} -6.13735i q^{84} +(-4.69725 - 2.71196i) q^{85} +(-6.38293 - 3.68519i) q^{86} +(-6.72052 - 11.6403i) q^{87} +(2.81975 - 4.88395i) q^{88} +(11.0086 - 6.35579i) q^{89} +(-0.0434740 + 0.0752991i) q^{90} +(-14.2420 - 4.12603i) q^{91} -1.91930 q^{92} +(7.27923 - 6.11042i) q^{93} +(0.678858 + 1.17582i) q^{94} +(-1.66223 + 2.87907i) q^{95} +(-6.68398 - 3.85900i) q^{96} +(12.9248 + 7.46213i) q^{97} +10.5168i q^{98} +(-0.138227 - 0.0798057i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} + O(q^{10}) \) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} - q^{10} - 6q^{11} + 13q^{12} - 14q^{13} - 14q^{14} - 15q^{15} - 28q^{16} + 6q^{17} + 12q^{19} + 9q^{21} - 8q^{22} + 10q^{23} + 19q^{25} + 34q^{27} - 18q^{29} - 31q^{30} + 2q^{31} + 36q^{32} - 12q^{33} - 9q^{34} - 12q^{35} + 8q^{36} - 21q^{38} - 30q^{39} + 5q^{40} + 18q^{41} - 49q^{42} + 19q^{43} - 42q^{44} - 63q^{45} - 6q^{46} - 27q^{48} + 9q^{49} - 7q^{51} - 43q^{52} - 22q^{53} + 18q^{54} + 30q^{55} + 25q^{56} - 15q^{57} - 12q^{58} + 33q^{59} - 13q^{61} - 17q^{62} - 6q^{63} - 38q^{64} + 9q^{65} - 52q^{66} + 30q^{67} + 88q^{68} - 16q^{69} + 9q^{73} - 19q^{74} + 25q^{75} + 34q^{77} + 14q^{78} + 6q^{79} + 6q^{80} + 22q^{81} - 78q^{82} + 54q^{83} - 33q^{85} + 24q^{86} - 14q^{87} + 16q^{88} - 6q^{89} - 11q^{90} - 70q^{91} - 6q^{92} + 7q^{93} - 43q^{94} + 25q^{95} - 36q^{96} - 75q^{97} - 93q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.918845 + 0.530496i −0.649722 + 0.375117i −0.788350 0.615227i \(-0.789064\pi\)
0.138628 + 0.990345i \(0.455731\pi\)
\(3\) −1.70695 −0.985510 −0.492755 0.870168i \(-0.664010\pi\)
−0.492755 + 0.870168i \(0.664010\pi\)
\(4\) −0.437149 + 0.757164i −0.218574 + 0.378582i
\(5\) −0.822265 + 0.474735i −0.367728 + 0.212308i −0.672465 0.740129i \(-0.734765\pi\)
0.304737 + 0.952436i \(0.401431\pi\)
\(6\) 1.56843 0.905531i 0.640307 0.369682i
\(7\) 3.56148 2.05622i 1.34611 0.777179i 0.358417 0.933562i \(-0.383317\pi\)
0.987697 + 0.156383i \(0.0499833\pi\)
\(8\) 3.04960i 1.07820i
\(9\) −0.0863111 −0.0287704
\(10\) 0.503689 0.872416i 0.159281 0.275882i
\(11\) 1.60150 + 0.924628i 0.482871 + 0.278786i 0.721612 0.692297i \(-0.243401\pi\)
−0.238741 + 0.971083i \(0.576735\pi\)
\(12\) 0.746192 1.29244i 0.215407 0.373096i
\(13\) −2.49752 2.60046i −0.692688 0.721238i
\(14\) −2.18163 + 3.77870i −0.583066 + 1.00990i
\(15\) 1.40357 0.810350i 0.362399 0.209231i
\(16\) 0.743505 + 1.28779i 0.185876 + 0.321947i
\(17\) 2.85629 + 4.94724i 0.692752 + 1.19988i 0.970933 + 0.239352i \(0.0769351\pi\)
−0.278181 + 0.960529i \(0.589732\pi\)
\(18\) 0.0793065 0.0457877i 0.0186927 0.0107923i
\(19\) 3.03229 1.75069i 0.695655 0.401637i −0.110072 0.993924i \(-0.535108\pi\)
0.805727 + 0.592287i \(0.201775\pi\)
\(20\) 0.830119i 0.185620i
\(21\) −6.07928 + 3.50988i −1.32661 + 0.765918i
\(22\) −1.96204 −0.418309
\(23\) 1.09762 + 1.90114i 0.228870 + 0.396415i 0.957474 0.288521i \(-0.0931636\pi\)
−0.728603 + 0.684936i \(0.759830\pi\)
\(24\) 5.20553i 1.06257i
\(25\) −2.04925 + 3.54941i −0.409851 + 0.709882i
\(26\) 3.67437 + 1.06450i 0.720603 + 0.208765i
\(27\) 5.26819 1.01386
\(28\) 3.59550i 0.679486i
\(29\) 3.93714 + 6.81933i 0.731109 + 1.26632i 0.956409 + 0.292029i \(0.0943303\pi\)
−0.225300 + 0.974289i \(0.572336\pi\)
\(30\) −0.859774 + 1.48917i −0.156973 + 0.271884i
\(31\) −4.26446 + 3.57972i −0.765919 + 0.642937i
\(32\) 3.91574 + 2.26075i 0.692211 + 0.399648i
\(33\) −2.73369 1.57830i −0.475874 0.274746i
\(34\) −5.24898 3.03050i −0.900192 0.519726i
\(35\) −1.95232 + 3.38152i −0.330002 + 0.571581i
\(36\) 0.0377308 0.0653516i 0.00628846 0.0108919i
\(37\) 11.8622i 1.95013i −0.221916 0.975066i \(-0.571231\pi\)
0.221916 0.975066i \(-0.428769\pi\)
\(38\) −1.85747 + 3.21724i −0.301322 + 0.521905i
\(39\) 4.26315 + 4.43886i 0.682650 + 0.710787i
\(40\) 1.44775 + 2.50758i 0.228910 + 0.396484i
\(41\) 7.53785 + 4.35198i 1.17722 + 0.679665i 0.955369 0.295416i \(-0.0954583\pi\)
0.221846 + 0.975082i \(0.428792\pi\)
\(42\) 3.72395 6.45007i 0.574618 0.995267i
\(43\) 3.47334 + 6.01601i 0.529680 + 0.917432i 0.999401 + 0.0346173i \(0.0110212\pi\)
−0.469721 + 0.882815i \(0.655645\pi\)
\(44\) −1.40019 + 0.808400i −0.211087 + 0.121871i
\(45\) 0.0709705 0.0409749i 0.0105797 0.00610817i
\(46\) −2.01709 1.16457i −0.297404 0.171706i
\(47\) 1.27967i 0.186659i −0.995635 0.0933294i \(-0.970249\pi\)
0.995635 0.0933294i \(-0.0297510\pi\)
\(48\) −1.26913 2.19819i −0.183183 0.317282i
\(49\) 4.95610 8.58422i 0.708015 1.22632i
\(50\) 4.34848i 0.614968i
\(51\) −4.87555 8.44470i −0.682714 1.18249i
\(52\) 3.06076 0.754245i 0.424451 0.104595i
\(53\) 0.126686 + 0.219427i 0.0174017 + 0.0301406i 0.874595 0.484854i \(-0.161127\pi\)
−0.857193 + 0.514995i \(0.827794\pi\)
\(54\) −4.84065 + 2.79475i −0.658729 + 0.380317i
\(55\) −1.75581 −0.236754
\(56\) −6.27067 10.8611i −0.837953 1.45138i
\(57\) −5.17598 + 2.98835i −0.685575 + 0.395817i
\(58\) −7.23525 4.17728i −0.950035 0.548503i
\(59\) −0.123588 + 0.0713537i −0.0160898 + 0.00928946i −0.508023 0.861343i \(-0.669624\pi\)
0.491934 + 0.870633i \(0.336290\pi\)
\(60\) 1.41697i 0.182931i
\(61\) 0.245558 0.425319i 0.0314405 0.0544566i −0.849877 0.526981i \(-0.823324\pi\)
0.881318 + 0.472525i \(0.156657\pi\)
\(62\) 2.01935 5.55149i 0.256458 0.705040i
\(63\) −0.307395 + 0.177475i −0.0387282 + 0.0223597i
\(64\) −7.77130 −0.971412
\(65\) 3.28815 + 0.952606i 0.407845 + 0.118156i
\(66\) 3.34912 0.412248
\(67\) 7.14058 + 4.12262i 0.872361 + 0.503658i 0.868132 0.496333i \(-0.165321\pi\)
0.00422877 + 0.999991i \(0.498654\pi\)
\(68\) −4.99449 −0.605671
\(69\) −1.87359 3.24515i −0.225554 0.390670i
\(70\) 4.14279i 0.495158i
\(71\) 2.26702i 0.269046i −0.990911 0.134523i \(-0.957050\pi\)
0.990911 0.134523i \(-0.0429501\pi\)
\(72\) 0.263215i 0.0310201i
\(73\) 9.77902 5.64592i 1.14455 0.660805i 0.196995 0.980404i \(-0.436882\pi\)
0.947553 + 0.319599i \(0.103548\pi\)
\(74\) 6.29284 + 10.8995i 0.731528 + 1.26704i
\(75\) 3.49798 6.05868i 0.403912 0.699596i
\(76\) 3.06126i 0.351150i
\(77\) 7.60496 0.866666
\(78\) −6.27197 1.81705i −0.710161 0.205740i
\(79\) −5.82822 + 10.0948i −0.655726 + 1.13575i 0.325985 + 0.945375i \(0.394304\pi\)
−0.981711 + 0.190377i \(0.939029\pi\)
\(80\) −1.22272 0.705935i −0.136704 0.0789259i
\(81\) −8.73362 −0.970402
\(82\) −9.23483 −1.01982
\(83\) −9.73145 + 5.61845i −1.06817 + 0.616705i −0.927680 0.373377i \(-0.878200\pi\)
−0.140486 + 0.990083i \(0.544866\pi\)
\(84\) 6.13735i 0.669640i
\(85\) −4.69725 2.71196i −0.509488 0.294153i
\(86\) −6.38293 3.68519i −0.688289 0.397384i
\(87\) −6.72052 11.6403i −0.720515 1.24797i
\(88\) 2.81975 4.88395i 0.300586 0.520631i
\(89\) 11.0086 6.35579i 1.16690 0.673712i 0.213955 0.976843i \(-0.431365\pi\)
0.952949 + 0.303131i \(0.0980320\pi\)
\(90\) −0.0434740 + 0.0752991i −0.00458256 + 0.00793723i
\(91\) −14.2420 4.12603i −1.49297 0.432526i
\(92\) −1.91930 −0.200100
\(93\) 7.27923 6.11042i 0.754821 0.633621i
\(94\) 0.678858 + 1.17582i 0.0700189 + 0.121276i
\(95\) −1.66223 + 2.87907i −0.170541 + 0.295386i
\(96\) −6.68398 3.85900i −0.682181 0.393857i
\(97\) 12.9248 + 7.46213i 1.31231 + 0.757665i 0.982479 0.186374i \(-0.0596737\pi\)
0.329835 + 0.944039i \(0.393007\pi\)
\(98\) 10.5168i 1.06235i
\(99\) −0.138227 0.0798057i −0.0138924 0.00802077i
\(100\) −1.79166 3.10324i −0.179166 0.310324i
\(101\) −3.24495 5.62041i −0.322884 0.559252i 0.658198 0.752845i \(-0.271319\pi\)
−0.981082 + 0.193593i \(0.937986\pi\)
\(102\) 8.95975 + 5.17292i 0.887148 + 0.512195i
\(103\) −0.883508 1.53028i −0.0870547 0.150783i 0.819210 0.573493i \(-0.194412\pi\)
−0.906265 + 0.422710i \(0.861079\pi\)
\(104\) −7.93037 + 7.61645i −0.777637 + 0.746854i
\(105\) 3.33252 5.77209i 0.325221 0.563299i
\(106\) −0.232810 0.134413i −0.0226125 0.0130553i
\(107\) 8.24648 0.797217 0.398608 0.917121i \(-0.369493\pi\)
0.398608 + 0.917121i \(0.369493\pi\)
\(108\) −2.30298 + 3.98888i −0.221605 + 0.383830i
\(109\) 13.4575i 1.28900i −0.764605 0.644499i \(-0.777066\pi\)
0.764605 0.644499i \(-0.222934\pi\)
\(110\) 1.61332 0.931451i 0.153824 0.0888104i
\(111\) 20.2482i 1.92187i
\(112\) 5.29596 + 3.05762i 0.500421 + 0.288918i
\(113\) 8.04358 0.756677 0.378338 0.925667i \(-0.376496\pi\)
0.378338 + 0.925667i \(0.376496\pi\)
\(114\) 3.17062 5.49167i 0.296956 0.514342i
\(115\) −1.80507 1.04216i −0.168324 0.0971818i
\(116\) −6.88447 −0.639207
\(117\) 0.215564 + 0.224448i 0.0199289 + 0.0207503i
\(118\) 0.0757056 0.131126i 0.00696927 0.0120711i
\(119\) 20.3452 + 11.7463i 1.86504 + 1.07678i
\(120\) −2.47125 4.28033i −0.225593 0.390738i
\(121\) −3.79013 6.56469i −0.344557 0.596790i
\(122\) 0.521070i 0.0471755i
\(123\) −12.8668 7.42863i −1.16016 0.669817i
\(124\) −0.846234 4.79376i −0.0759940 0.430493i
\(125\) 8.63876i 0.772674i
\(126\) 0.188299 0.326144i 0.0167750 0.0290552i
\(127\) 12.9795 1.15174 0.575871 0.817540i \(-0.304663\pi\)
0.575871 + 0.817540i \(0.304663\pi\)
\(128\) −0.690857 + 0.398866i −0.0610637 + 0.0352551i
\(129\) −5.92883 10.2690i −0.522005 0.904138i
\(130\) −3.52666 + 0.869052i −0.309308 + 0.0762209i
\(131\) 2.62273 4.54271i 0.229149 0.396898i −0.728407 0.685145i \(-0.759739\pi\)
0.957556 + 0.288247i \(0.0930723\pi\)
\(132\) 2.39006 1.37990i 0.208028 0.120105i
\(133\) 7.19964 12.4701i 0.624288 1.08130i
\(134\) −8.74812 −0.755723
\(135\) −4.33185 + 2.50099i −0.372826 + 0.215251i
\(136\) 15.0871 8.71055i 1.29371 0.746924i
\(137\) 13.5615i 1.15864i 0.815101 + 0.579319i \(0.196681\pi\)
−0.815101 + 0.579319i \(0.803319\pi\)
\(138\) 3.44308 + 1.98786i 0.293094 + 0.169218i
\(139\) 9.73863 16.8678i 0.826020 1.43071i −0.0751181 0.997175i \(-0.523933\pi\)
0.901138 0.433533i \(-0.142733\pi\)
\(140\) −1.70691 2.95645i −0.144260 0.249866i
\(141\) 2.18433i 0.183954i
\(142\) 1.20264 + 2.08304i 0.100924 + 0.174805i
\(143\) −1.59533 6.47392i −0.133408 0.541377i
\(144\) −0.0641727 0.111150i −0.00534772 0.00926253i
\(145\) −6.47475 3.73820i −0.537699 0.310440i
\(146\) −5.99027 + 10.3755i −0.495759 + 0.858679i
\(147\) −8.45983 + 14.6529i −0.697755 + 1.20855i
\(148\) 8.98162 + 5.18554i 0.738285 + 0.426249i
\(149\) −20.0605 + 11.5819i −1.64342 + 0.948827i −0.663811 + 0.747901i \(0.731062\pi\)
−0.979606 + 0.200926i \(0.935605\pi\)
\(150\) 7.42265i 0.606057i
\(151\) 17.7733i 1.44637i 0.690656 + 0.723184i \(0.257322\pi\)
−0.690656 + 0.723184i \(0.742678\pi\)
\(152\) −5.33893 9.24729i −0.433044 0.750054i
\(153\) −0.246529 0.427001i −0.0199307 0.0345210i
\(154\) −6.98779 + 4.03440i −0.563092 + 0.325101i
\(155\) 1.80709 4.96796i 0.145149 0.399036i
\(156\) −5.22458 + 1.28746i −0.418301 + 0.103079i
\(157\) −7.25745 −0.579207 −0.289604 0.957147i \(-0.593523\pi\)
−0.289604 + 0.957147i \(0.593523\pi\)
\(158\) 12.3674i 0.983897i
\(159\) −0.216247 0.374551i −0.0171495 0.0297038i
\(160\) −4.29303 −0.339394
\(161\) 7.81832 + 4.51391i 0.616170 + 0.355746i
\(162\) 8.02484 4.63315i 0.630491 0.364014i
\(163\) 3.77637 + 2.18029i 0.295788 + 0.170774i 0.640549 0.767917i \(-0.278707\pi\)
−0.344761 + 0.938691i \(0.612040\pi\)
\(164\) −6.59033 + 3.80493i −0.514618 + 0.297115i
\(165\) 2.99709 0.233323
\(166\) 5.96113 10.3250i 0.462673 0.801374i
\(167\) 17.3598i 1.34334i 0.740851 + 0.671670i \(0.234423\pi\)
−0.740851 + 0.671670i \(0.765577\pi\)
\(168\) 10.7037 + 18.5394i 0.825811 + 1.43035i
\(169\) −0.524782 + 12.9894i −0.0403678 + 0.999185i
\(170\) 5.75473 0.441368
\(171\) −0.261720 + 0.151104i −0.0200143 + 0.0115552i
\(172\) −6.07347 −0.463098
\(173\) 3.82702 0.290963 0.145481 0.989361i \(-0.453527\pi\)
0.145481 + 0.989361i \(0.453527\pi\)
\(174\) 12.3502 + 7.13041i 0.936269 + 0.540555i
\(175\) 16.8549i 1.27411i
\(176\) 2.74986i 0.207279i
\(177\) 0.210959 0.121797i 0.0158567 0.00915485i
\(178\) −6.74344 + 11.6800i −0.505442 + 0.875451i
\(179\) 7.38774 0.552186 0.276093 0.961131i \(-0.410960\pi\)
0.276093 + 0.961131i \(0.410960\pi\)
\(180\) 0.0716484i 0.00534036i
\(181\) 0.581435 + 1.00708i 0.0432177 + 0.0748553i 0.886825 0.462105i \(-0.152906\pi\)
−0.843607 + 0.536960i \(0.819572\pi\)
\(182\) 15.2750 3.76413i 1.13226 0.279016i
\(183\) −0.419156 + 0.726000i −0.0309849 + 0.0536675i
\(184\) 5.79772 3.34731i 0.427413 0.246767i
\(185\) 5.63139 + 9.75386i 0.414028 + 0.717118i
\(186\) −3.44694 + 9.47613i −0.252742 + 0.694823i
\(187\) 10.5640i 0.772518i
\(188\) 0.968918 + 0.559405i 0.0706656 + 0.0407988i
\(189\) 18.7626 10.8326i 1.36478 0.787953i
\(190\) 3.52723i 0.255892i
\(191\) −22.8292 −1.65187 −0.825933 0.563768i \(-0.809351\pi\)
−0.825933 + 0.563768i \(0.809351\pi\)
\(192\) 13.2652 0.957336
\(193\) 26.6341i 1.91716i −0.284816 0.958582i \(-0.591932\pi\)
0.284816 0.958582i \(-0.408068\pi\)
\(194\) −15.8345 −1.13685
\(195\) −5.61272 1.62605i −0.401935 0.116444i
\(196\) 4.33311 + 7.50516i 0.309508 + 0.536083i
\(197\) −9.60209 5.54377i −0.684121 0.394977i 0.117285 0.993098i \(-0.462581\pi\)
−0.801406 + 0.598121i \(0.795914\pi\)
\(198\) 0.169346 0.0120349
\(199\) −14.4036 −1.02105 −0.510524 0.859864i \(-0.670548\pi\)
−0.510524 + 0.859864i \(0.670548\pi\)
\(200\) 10.8243 + 6.24941i 0.765394 + 0.441900i
\(201\) −12.1886 7.03711i −0.859720 0.496360i
\(202\) 5.96321 + 3.44286i 0.419570 + 0.242239i
\(203\) 28.0441 + 16.1913i 1.96831 + 1.13641i
\(204\) 8.52536 0.596895
\(205\) −8.26415 −0.577193
\(206\) 1.62362 + 0.937395i 0.113123 + 0.0653114i
\(207\) −0.0947370 0.164089i −0.00658467 0.0114050i
\(208\) 1.49192 5.14973i 0.103446 0.357070i
\(209\) 6.47497 0.447883
\(210\) 7.07155i 0.487983i
\(211\) −14.2431 −0.980536 −0.490268 0.871572i \(-0.663101\pi\)
−0.490268 + 0.871572i \(0.663101\pi\)
\(212\) −0.221523 −0.0152142
\(213\) 3.86969i 0.265147i
\(214\) −7.57724 + 4.37472i −0.517969 + 0.299050i
\(215\) −5.71201 3.29783i −0.389556 0.224910i
\(216\) 16.0659i 1.09315i
\(217\) −7.82708 + 21.5178i −0.531337 + 1.46072i
\(218\) 7.13916 + 12.3654i 0.483525 + 0.837490i
\(219\) −16.6923 + 9.63732i −1.12796 + 0.651230i
\(220\) 0.767551 1.32944i 0.0517483 0.0896307i
\(221\) 5.73145 19.7835i 0.385539 1.33078i
\(222\) −10.7416 18.6050i −0.720928 1.24868i
\(223\) 13.4377i 0.899855i 0.893065 + 0.449927i \(0.148550\pi\)
−0.893065 + 0.449927i \(0.851450\pi\)
\(224\) 18.5944 1.24239
\(225\) 0.176873 0.306354i 0.0117916 0.0204236i
\(226\) −7.39081 + 4.26709i −0.491629 + 0.283842i
\(227\) 11.4624i 0.760784i −0.924825 0.380392i \(-0.875789\pi\)
0.924825 0.380392i \(-0.124211\pi\)
\(228\) 5.22542i 0.346062i
\(229\) 5.05617 + 2.91918i 0.334121 + 0.192905i 0.657669 0.753307i \(-0.271542\pi\)
−0.323548 + 0.946212i \(0.604876\pi\)
\(230\) 2.21144 0.145818
\(231\) −12.9813 −0.854108
\(232\) 20.7963 12.0067i 1.36534 0.788280i
\(233\) −4.41953 −0.289533 −0.144766 0.989466i \(-0.546243\pi\)
−0.144766 + 0.989466i \(0.546243\pi\)
\(234\) −0.317139 0.0918779i −0.0207320 0.00600624i
\(235\) 0.607503 + 1.05223i 0.0396291 + 0.0686396i
\(236\) 0.124769i 0.00812175i
\(237\) 9.94851 17.2313i 0.646225 1.11929i
\(238\) −24.9255 −1.61568
\(239\) −12.4259 + 7.17409i −0.803763 + 0.464053i −0.844785 0.535105i \(-0.820272\pi\)
0.0410220 + 0.999158i \(0.486939\pi\)
\(240\) 2.08712 + 1.20500i 0.134723 + 0.0777823i
\(241\) 3.59305 2.07445i 0.231449 0.133627i −0.379791 0.925072i \(-0.624004\pi\)
0.611240 + 0.791445i \(0.290671\pi\)
\(242\) 6.96508 + 4.02129i 0.447732 + 0.258498i
\(243\) −0.896690 −0.0575227
\(244\) 0.214691 + 0.371856i 0.0137442 + 0.0238056i
\(245\) 9.41133i 0.601268i
\(246\) 15.7634 1.00504
\(247\) −12.1258 3.51296i −0.771548 0.223524i
\(248\) 10.9167 + 13.0049i 0.693213 + 0.825812i
\(249\) 16.6111 9.59044i 1.05269 0.607769i
\(250\) 4.58282 + 7.93768i 0.289843 + 0.502023i
\(251\) −7.09717 12.2927i −0.447969 0.775906i 0.550284 0.834977i \(-0.314519\pi\)
−0.998254 + 0.0590715i \(0.981186\pi\)
\(252\) 0.310331i 0.0195490i
\(253\) 4.05957i 0.255223i
\(254\) −11.9261 + 6.88556i −0.748312 + 0.432038i
\(255\) 8.01799 + 4.62919i 0.502106 + 0.289891i
\(256\) 8.19449 14.1933i 0.512156 0.887080i
\(257\) −5.87046 + 10.1679i −0.366189 + 0.634259i −0.988966 0.148141i \(-0.952671\pi\)
0.622777 + 0.782400i \(0.286004\pi\)
\(258\) 10.8954 + 6.29044i 0.678316 + 0.391626i
\(259\) −24.3913 42.2470i −1.51560 2.62510i
\(260\) −2.15869 + 2.07324i −0.133876 + 0.128577i
\(261\) −0.339819 0.588584i −0.0210343 0.0364324i
\(262\) 5.56540i 0.343831i
\(263\) 8.37724 + 14.5098i 0.516563 + 0.894713i 0.999815 + 0.0192317i \(0.00612201\pi\)
−0.483252 + 0.875481i \(0.660545\pi\)
\(264\) −4.81318 + 8.33668i −0.296231 + 0.513087i
\(265\) −0.208339 0.120285i −0.0127982 0.00738902i
\(266\) 15.2775i 0.936724i
\(267\) −18.7911 + 10.8490i −1.15000 + 0.663950i
\(268\) −6.24299 + 3.60439i −0.381351 + 0.220173i
\(269\) 20.5641 1.25382 0.626908 0.779093i \(-0.284320\pi\)
0.626908 + 0.779093i \(0.284320\pi\)
\(270\) 2.65353 4.59605i 0.161489 0.279707i
\(271\) 4.26654 2.46329i 0.259174 0.149634i −0.364784 0.931092i \(-0.618857\pi\)
0.623958 + 0.781458i \(0.285524\pi\)
\(272\) −4.24733 + 7.35659i −0.257532 + 0.446059i
\(273\) 24.3104 + 7.04294i 1.47133 + 0.426258i
\(274\) −7.19432 12.4609i −0.434625 0.752792i
\(275\) −6.56377 + 3.78960i −0.395810 + 0.228521i
\(276\) 3.27615 0.197201
\(277\) −1.79340 + 3.10626i −0.107755 + 0.186637i −0.914860 0.403770i \(-0.867700\pi\)
0.807105 + 0.590407i \(0.201033\pi\)
\(278\) 20.6652i 1.23942i
\(279\) 0.368070 0.308970i 0.0220358 0.0184975i
\(280\) 10.3123 + 5.95381i 0.616277 + 0.355808i
\(281\) 22.8124i 1.36087i −0.732807 0.680436i \(-0.761790\pi\)
0.732807 0.680436i \(-0.238210\pi\)
\(282\) −1.15878 2.00706i −0.0690043 0.119519i
\(283\) −6.47609 11.2169i −0.384964 0.666777i 0.606800 0.794854i \(-0.292453\pi\)
−0.991764 + 0.128077i \(0.959119\pi\)
\(284\) 1.71650 + 0.991024i 0.101856 + 0.0588065i
\(285\) 2.83735 4.91444i 0.168070 0.291106i
\(286\) 4.90025 + 5.10222i 0.289758 + 0.301701i
\(287\) 35.7946 2.11289
\(288\) −0.337972 0.195128i −0.0199152 0.0114980i
\(289\) −7.81677 + 13.5390i −0.459810 + 0.796414i
\(290\) 7.93239 0.465806
\(291\) −22.0620 12.7375i −1.29330 0.746686i
\(292\) 9.87243i 0.577740i
\(293\) −4.89387 + 2.82548i −0.285903 + 0.165066i −0.636093 0.771613i \(-0.719450\pi\)
0.350190 + 0.936679i \(0.386117\pi\)
\(294\) 17.9516i 1.04696i
\(295\) 0.0677481 0.117343i 0.00394445 0.00683199i
\(296\) −36.1750 −2.10263
\(297\) 8.43702 + 4.87112i 0.489566 + 0.282651i
\(298\) 12.2883 21.2840i 0.711843 1.23295i
\(299\) 2.20250 7.60245i 0.127374 0.439661i
\(300\) 3.05828 + 5.29709i 0.176570 + 0.305828i
\(301\) 24.7405 + 14.2839i 1.42602 + 0.823312i
\(302\) −9.42864 16.3309i −0.542557 0.939737i
\(303\) 5.53897 + 9.59378i 0.318206 + 0.551148i
\(304\) 4.50905 + 2.60330i 0.258612 + 0.149309i
\(305\) 0.466300i 0.0267003i
\(306\) 0.453045 + 0.261565i 0.0258988 + 0.0149527i
\(307\) −9.12092 5.26596i −0.520558 0.300544i 0.216605 0.976259i \(-0.430502\pi\)
−0.737163 + 0.675715i \(0.763835\pi\)
\(308\) −3.32450 + 5.75820i −0.189431 + 0.328104i
\(309\) 1.50811 + 2.61212i 0.0857932 + 0.148598i
\(310\) 0.975043 + 5.52345i 0.0553787 + 0.313711i
\(311\) 1.92443 0.109125 0.0545623 0.998510i \(-0.482624\pi\)
0.0545623 + 0.998510i \(0.482624\pi\)
\(312\) 13.5368 13.0009i 0.766369 0.736032i
\(313\) −3.17292 + 5.49567i −0.179344 + 0.310633i −0.941656 0.336576i \(-0.890731\pi\)
0.762312 + 0.647210i \(0.224064\pi\)
\(314\) 6.66847 3.85004i 0.376324 0.217271i
\(315\) 0.168507 0.291862i 0.00949429 0.0164446i
\(316\) −5.09560 8.82584i −0.286650 0.496492i
\(317\) −23.4058 13.5134i −1.31460 0.758985i −0.331747 0.943368i \(-0.607638\pi\)
−0.982854 + 0.184383i \(0.940971\pi\)
\(318\) 0.397396 + 0.229436i 0.0222848 + 0.0128662i
\(319\) 14.5616i 0.815292i
\(320\) 6.39006 3.68930i 0.357215 0.206238i
\(321\) −14.0763 −0.785665
\(322\) −9.57844 −0.533786
\(323\) 17.3222 + 10.0010i 0.963833 + 0.556469i
\(324\) 3.81789 6.61278i 0.212105 0.367377i
\(325\) 14.3482 3.53573i 0.795893 0.196127i
\(326\) −4.62654 −0.256240
\(327\) 22.9714i 1.27032i
\(328\) 13.2718 22.9875i 0.732814 1.26927i
\(329\) −2.63128 4.55751i −0.145067 0.251264i
\(330\) −2.75386 + 1.58994i −0.151595 + 0.0875235i
\(331\) 10.6273i 0.584128i −0.956399 0.292064i \(-0.905658\pi\)
0.956399 0.292064i \(-0.0943420\pi\)
\(332\) 9.82440i 0.539184i
\(333\) 1.02384i 0.0561060i
\(334\) −9.20928 15.9509i −0.503910 0.872797i
\(335\) −7.82860 −0.427722
\(336\) −9.03995 5.21922i −0.493170 0.284732i
\(337\) −7.34660 −0.400195 −0.200097 0.979776i \(-0.564126\pi\)
−0.200097 + 0.979776i \(0.564126\pi\)
\(338\) −6.40863 12.2136i −0.348583 0.664335i
\(339\) −13.7300 −0.745712
\(340\) 4.10679 2.37106i 0.222722 0.128589i
\(341\) −10.1395 + 1.78990i −0.549082 + 0.0969284i
\(342\) 0.160320 0.277683i 0.00866913 0.0150154i
\(343\) 11.9763i 0.646658i
\(344\) 18.3464 10.5923i 0.989174 0.571100i
\(345\) 3.08117 + 1.77892i 0.165885 + 0.0957736i
\(346\) −3.51644 + 2.03022i −0.189045 + 0.109145i
\(347\) 13.0130 + 22.5391i 0.698572 + 1.20996i 0.968962 + 0.247212i \(0.0795143\pi\)
−0.270389 + 0.962751i \(0.587152\pi\)
\(348\) 11.7515 0.629945
\(349\) −4.96147 + 2.86451i −0.265582 + 0.153334i −0.626878 0.779117i \(-0.715668\pi\)
0.361296 + 0.932451i \(0.382334\pi\)
\(350\) −8.94144 15.4870i −0.477940 0.827817i
\(351\) −13.1574 13.6997i −0.702291 0.731237i
\(352\) 4.18071 + 7.24120i 0.222833 + 0.385957i
\(353\) 15.6439i 0.832642i −0.909218 0.416321i \(-0.863319\pi\)
0.909218 0.416321i \(-0.136681\pi\)
\(354\) −0.129226 + 0.223826i −0.00686828 + 0.0118962i
\(355\) 1.07623 + 1.86409i 0.0571205 + 0.0989356i
\(356\) 11.1137i 0.589025i
\(357\) −34.7284 20.0504i −1.83802 1.06118i
\(358\) −6.78819 + 3.91916i −0.358767 + 0.207134i
\(359\) −13.5116 + 7.80095i −0.713117 + 0.411718i −0.812214 0.583359i \(-0.801738\pi\)
0.0990969 + 0.995078i \(0.468405\pi\)
\(360\) −0.124957 0.216432i −0.00658582 0.0114070i
\(361\) −3.37014 + 5.83725i −0.177376 + 0.307224i
\(362\) −1.06850 0.616898i −0.0561590 0.0324234i
\(363\) 6.46957 + 11.2056i 0.339564 + 0.588142i
\(364\) 9.34995 8.97984i 0.490071 0.470671i
\(365\) −5.36063 + 9.28488i −0.280588 + 0.485993i
\(366\) 0.889442i 0.0464919i
\(367\) 7.24459 12.5480i 0.378165 0.655000i −0.612631 0.790369i \(-0.709889\pi\)
0.990795 + 0.135369i \(0.0432220\pi\)
\(368\) −1.63217 + 2.82701i −0.0850830 + 0.147368i
\(369\) −0.650600 0.375624i −0.0338689 0.0195542i
\(370\) −10.3488 5.97486i −0.538006 0.310618i
\(371\) 0.902380 + 0.520990i 0.0468493 + 0.0270484i
\(372\) 1.44448 + 8.18273i 0.0748929 + 0.424255i
\(373\) 6.05102 10.4807i 0.313310 0.542668i −0.665767 0.746160i \(-0.731896\pi\)
0.979077 + 0.203491i \(0.0652289\pi\)
\(374\) −5.60417 9.70670i −0.289785 0.501922i
\(375\) 14.7459i 0.761478i
\(376\) −3.90248 −0.201255
\(377\) 7.90030 27.2698i 0.406886 1.40447i
\(378\) −11.4933 + 19.9069i −0.591149 + 1.02390i
\(379\) 5.01540i 0.257624i −0.991669 0.128812i \(-0.958884\pi\)
0.991669 0.128812i \(-0.0411164\pi\)
\(380\) −1.45328 2.51716i −0.0745519 0.129128i
\(381\) −22.1554 −1.13505
\(382\) 20.9765 12.1108i 1.07325 0.619643i
\(383\) 29.7574i 1.52053i −0.649611 0.760267i \(-0.725068\pi\)
0.649611 0.760267i \(-0.274932\pi\)
\(384\) 1.17926 0.680846i 0.0601789 0.0347443i
\(385\) −6.25329 + 3.61034i −0.318697 + 0.184000i
\(386\) 14.1293 + 24.4726i 0.719161 + 1.24562i
\(387\) −0.299788 0.519248i −0.0152391 0.0263949i
\(388\) −11.3001 + 6.52412i −0.573676 + 0.331212i
\(389\) −0.300981 + 0.521314i −0.0152603 + 0.0264317i −0.873555 0.486726i \(-0.838191\pi\)
0.858294 + 0.513158i \(0.171524\pi\)
\(390\) 6.01984 1.48343i 0.304826 0.0751165i
\(391\) −6.27025 + 10.8604i −0.317100 + 0.549234i
\(392\) −26.1785 15.1142i −1.32221 0.763380i
\(393\) −4.47688 + 7.75419i −0.225829 + 0.391147i
\(394\) 11.7638 0.592651
\(395\) 11.0674i 0.556863i
\(396\) 0.120852 0.0697739i 0.00607304 0.00350627i
\(397\) 26.6285 15.3740i 1.33645 0.771599i 0.350169 0.936686i \(-0.386124\pi\)
0.986279 + 0.165088i \(0.0527907\pi\)
\(398\) 13.2347 7.64107i 0.663397 0.383012i
\(399\) −12.2894 + 21.2859i −0.615242 + 1.06563i
\(400\) −6.09452 −0.304726
\(401\) −11.3158 + 6.53320i −0.565086 + 0.326253i −0.755184 0.655512i \(-0.772453\pi\)
0.190098 + 0.981765i \(0.439119\pi\)
\(402\) 14.9326 0.744772
\(403\) 19.9595 + 2.14912i 0.994253 + 0.107055i
\(404\) 5.67410 0.282297
\(405\) 7.18134 4.14615i 0.356844 0.206024i
\(406\) −34.3576 −1.70514
\(407\) 10.9681 18.9973i 0.543669 0.941663i
\(408\) −25.7530 + 14.8685i −1.27496 + 0.736100i
\(409\) 7.50328 4.33202i 0.371013 0.214205i −0.302888 0.953026i \(-0.597951\pi\)
0.673901 + 0.738822i \(0.264617\pi\)
\(410\) 7.59347 4.38409i 0.375015 0.216515i
\(411\) 23.1489i 1.14185i
\(412\) 1.54490 0.0761117
\(413\) −0.293438 + 0.508250i −0.0144391 + 0.0250093i
\(414\) 0.174097 + 0.100515i 0.00855641 + 0.00494005i
\(415\) 5.33455 9.23971i 0.261863 0.453560i
\(416\) −3.90064 15.8290i −0.191245 0.776080i
\(417\) −16.6234 + 28.7925i −0.814050 + 1.40998i
\(418\) −5.94949 + 3.43494i −0.290999 + 0.168008i
\(419\) −11.9509 20.6995i −0.583837 1.01124i −0.995019 0.0996826i \(-0.968217\pi\)
0.411182 0.911553i \(-0.365116\pi\)
\(420\) 2.91361 + 5.04653i 0.142170 + 0.246245i
\(421\) −32.9056 + 18.9980i −1.60372 + 0.925908i −0.612986 + 0.790094i \(0.710032\pi\)
−0.990734 + 0.135814i \(0.956635\pi\)
\(422\) 13.0872 7.55591i 0.637076 0.367816i
\(423\) 0.110450i 0.00537024i
\(424\) 0.669165 0.386342i 0.0324975 0.0187624i
\(425\) −23.4130 −1.13570
\(426\) −2.05286 3.55565i −0.0994612 0.172272i
\(427\) 2.01969i 0.0977396i
\(428\) −3.60494 + 6.24393i −0.174251 + 0.301812i
\(429\) 2.72315 + 11.0507i 0.131475 + 0.533532i
\(430\) 6.99794 0.337471
\(431\) 3.11493i 0.150041i 0.997182 + 0.0750204i \(0.0239022\pi\)
−0.997182 + 0.0750204i \(0.976098\pi\)
\(432\) 3.91692 + 6.78431i 0.188453 + 0.326410i
\(433\) 4.98802 8.63951i 0.239709 0.415188i −0.720922 0.693017i \(-0.756281\pi\)
0.960631 + 0.277828i \(0.0896146\pi\)
\(434\) −4.22321 23.9238i −0.202721 1.14838i
\(435\) 11.0521 + 6.38093i 0.529907 + 0.305942i
\(436\) 10.1896 + 5.88294i 0.487991 + 0.281742i
\(437\) 6.65662 + 3.84320i 0.318429 + 0.183845i
\(438\) 10.2251 17.7104i 0.488575 0.846237i
\(439\) −10.9881 + 19.0319i −0.524431 + 0.908342i 0.475164 + 0.879897i \(0.342389\pi\)
−0.999595 + 0.0284444i \(0.990945\pi\)
\(440\) 5.35453i 0.255267i
\(441\) −0.427766 + 0.740913i −0.0203698 + 0.0352816i
\(442\) 5.22874 + 21.2185i 0.248706 + 1.00926i
\(443\) −17.7918 30.8163i −0.845315 1.46413i −0.885347 0.464930i \(-0.846079\pi\)
0.0400324 0.999198i \(-0.487254\pi\)
\(444\) −15.3312 8.85147i −0.727587 0.420072i
\(445\) −6.03463 + 10.4523i −0.286069 + 0.495486i
\(446\) −7.12864 12.3472i −0.337551 0.584655i
\(447\) 34.2423 19.7698i 1.61960 0.935079i
\(448\) −27.6773 + 15.9795i −1.30763 + 0.754961i
\(449\) 12.0524 + 6.95843i 0.568786 + 0.328389i 0.756664 0.653804i \(-0.226828\pi\)
−0.187878 + 0.982192i \(0.560161\pi\)
\(450\) 0.375322i 0.0176929i
\(451\) 8.04793 + 13.9394i 0.378962 + 0.656382i
\(452\) −3.51624 + 6.09031i −0.165390 + 0.286464i
\(453\) 30.3381i 1.42541i
\(454\) 6.08073 + 10.5321i 0.285383 + 0.494298i
\(455\) 13.6695 3.36848i 0.640834 0.157917i
\(456\) 9.11330 + 15.7847i 0.426769 + 0.739186i
\(457\) 3.13870 1.81213i 0.146822 0.0847679i −0.424789 0.905292i \(-0.639652\pi\)
0.571612 + 0.820524i \(0.306318\pi\)
\(458\) −6.19445 −0.289448
\(459\) 15.0475 + 26.0630i 0.702356 + 1.21652i
\(460\) 1.57817 0.911157i 0.0735825 0.0424829i
\(461\) 12.1006 + 6.98629i 0.563582 + 0.325384i 0.754582 0.656206i \(-0.227840\pi\)
−0.191000 + 0.981590i \(0.561173\pi\)
\(462\) 11.9278 6.88653i 0.554933 0.320391i
\(463\) 16.4478i 0.764394i −0.924081 0.382197i \(-0.875168\pi\)
0.924081 0.382197i \(-0.124832\pi\)
\(464\) −5.85457 + 10.1404i −0.271792 + 0.470757i
\(465\) −3.08463 + 8.48008i −0.143046 + 0.393254i
\(466\) 4.06086 2.34454i 0.188116 0.108609i
\(467\) −24.1195 −1.11612 −0.558058 0.829802i \(-0.688453\pi\)
−0.558058 + 0.829802i \(0.688453\pi\)
\(468\) −0.264178 + 0.0650997i −0.0122116 + 0.00300923i
\(469\) 33.9081 1.56573
\(470\) −1.11640 0.644555i −0.0514958 0.0297311i
\(471\) 12.3881 0.570814
\(472\) 0.217600 + 0.376895i 0.0100159 + 0.0173480i
\(473\) 12.8462i 0.590669i
\(474\) 21.1106i 0.969640i
\(475\) 14.3505i 0.658445i
\(476\) −17.7878 + 10.2698i −0.815302 + 0.470715i
\(477\) −0.0109344 0.0189390i −0.000500652 0.000867155i
\(478\) 7.61164 13.1838i 0.348148 0.603011i
\(479\) 1.19571i 0.0546335i −0.999627 0.0273168i \(-0.991304\pi\)
0.999627 0.0273168i \(-0.00869628\pi\)
\(480\) 7.32800 0.334476
\(481\) −30.8471 + 29.6261i −1.40651 + 1.35083i
\(482\) −2.20097 + 3.81220i −0.100252 + 0.173641i
\(483\) −13.3455 7.70503i −0.607242 0.350591i
\(484\) 6.62739 0.301245
\(485\) −14.1701 −0.643432
\(486\) 0.823919 0.475690i 0.0373737 0.0215777i
\(487\) 6.91430i 0.313317i 0.987653 + 0.156658i \(0.0500721\pi\)
−0.987653 + 0.156658i \(0.949928\pi\)
\(488\) −1.29706 0.748855i −0.0587150 0.0338991i
\(489\) −6.44609 3.72165i −0.291502 0.168299i
\(490\) −4.99267 8.64756i −0.225546 0.390657i
\(491\) −9.07188 + 15.7130i −0.409408 + 0.709116i −0.994824 0.101618i \(-0.967598\pi\)
0.585415 + 0.810734i \(0.300932\pi\)
\(492\) 11.2494 6.49483i 0.507161 0.292810i
\(493\) −22.4912 + 38.9560i −1.01295 + 1.75449i
\(494\) 13.0054 3.20483i 0.585139 0.144192i
\(495\) 0.151546 0.00681149
\(496\) −7.78056 2.83018i −0.349358 0.127079i
\(497\) −4.66149 8.07394i −0.209097 0.362166i
\(498\) −10.1754 + 17.6243i −0.455969 + 0.789762i
\(499\) 34.4421 + 19.8851i 1.54184 + 0.890181i 0.998723 + 0.0505241i \(0.0160892\pi\)
0.543117 + 0.839657i \(0.317244\pi\)
\(500\) 6.54095 + 3.77642i 0.292520 + 0.168887i
\(501\) 29.6323i 1.32387i
\(502\) 13.0424 + 7.53004i 0.582111 + 0.336082i
\(503\) 10.3154 + 17.8668i 0.459941 + 0.796641i 0.998957 0.0456544i \(-0.0145373\pi\)
−0.539017 + 0.842295i \(0.681204\pi\)
\(504\) 0.541228 + 0.937434i 0.0241082 + 0.0417566i
\(505\) 5.33641 + 3.08098i 0.237467 + 0.137102i
\(506\) −2.15358 3.73012i −0.0957385 0.165824i
\(507\) 0.895778 22.1723i 0.0397829 0.984707i
\(508\) −5.67396 + 9.82759i −0.251741 + 0.436029i
\(509\) 5.31569 + 3.06902i 0.235614 + 0.136032i 0.613159 0.789959i \(-0.289898\pi\)
−0.377545 + 0.925991i \(0.623232\pi\)
\(510\) −9.82305 −0.434972
\(511\) 23.2185 40.2157i 1.02713 1.77904i
\(512\) 15.7931i 0.697963i
\(513\) 15.9747 9.22299i 0.705300 0.407205i
\(514\) 12.4570i 0.549456i
\(515\) 1.45296 + 0.838864i 0.0640249 + 0.0369648i
\(516\) 10.3671 0.456387
\(517\) 1.18322 2.04939i 0.0520378 0.0901322i
\(518\) 44.8237 + 25.8790i 1.96944 + 1.13706i
\(519\) −6.53254 −0.286747
\(520\) 2.90507 10.0276i 0.127396 0.439738i
\(521\) 4.08904 7.08243i 0.179144 0.310287i −0.762443 0.647055i \(-0.776000\pi\)
0.941588 + 0.336768i \(0.109334\pi\)
\(522\) 0.624482 + 0.360545i 0.0273329 + 0.0157806i
\(523\) 16.7663 + 29.0401i 0.733140 + 1.26984i 0.955534 + 0.294880i \(0.0952796\pi\)
−0.222394 + 0.974957i \(0.571387\pi\)
\(524\) 2.29305 + 3.97168i 0.100172 + 0.173504i
\(525\) 28.7705i 1.25565i
\(526\) −15.3948 8.88818i −0.671244 0.387543i
\(527\) −29.8902 10.8726i −1.30204 0.473616i
\(528\) 4.69388i 0.204275i
\(529\) 9.09045 15.7451i 0.395237 0.684571i
\(530\) 0.255242 0.0110870
\(531\) 0.0106670 0.00615861i 0.000462910 0.000267261i
\(532\) 6.29462 + 10.9026i 0.272906 + 0.472688i
\(533\) −7.50879 30.4711i −0.325242 1.31985i
\(534\) 11.5107 19.9372i 0.498118 0.862766i
\(535\) −6.78079 + 3.91489i −0.293159 + 0.169255i
\(536\) 12.5723 21.7759i 0.543043 0.940578i
\(537\) −12.6105 −0.544184
\(538\) −18.8952 + 10.9092i −0.814632 + 0.470328i
\(539\) 15.8744 9.16510i 0.683760 0.394769i
\(540\) 4.37322i 0.188193i
\(541\) 5.53697 + 3.19677i 0.238053 + 0.137440i 0.614281 0.789087i \(-0.289446\pi\)
−0.376229 + 0.926527i \(0.622779\pi\)
\(542\) −2.61353 + 4.52676i −0.112261 + 0.194441i
\(543\) −0.992482 1.71903i −0.0425915 0.0737706i
\(544\) 25.8294i 1.10743i
\(545\) 6.38876 + 11.0656i 0.273664 + 0.474000i
\(546\) −26.0738 + 6.42520i −1.11585 + 0.274973i
\(547\) −4.48240 7.76374i −0.191653 0.331953i 0.754145 0.656708i \(-0.228052\pi\)
−0.945798 + 0.324755i \(0.894718\pi\)
\(548\) −10.2683 5.92840i −0.438639 0.253249i
\(549\) −0.0211944 + 0.0367098i −0.000904555 + 0.00156673i
\(550\) 4.02073 6.96411i 0.171444 0.296950i
\(551\) 23.8771 + 13.7855i 1.01720 + 0.587281i
\(552\) −9.89643 + 5.71371i −0.421220 + 0.243192i
\(553\) 47.9365i 2.03847i
\(554\) 3.80557i 0.161683i
\(555\) −9.61252 16.6494i −0.408029 0.706727i
\(556\) 8.51446 + 14.7475i 0.361093 + 0.625432i
\(557\) −4.56039 + 2.63294i −0.193230 + 0.111561i −0.593494 0.804839i \(-0.702252\pi\)
0.400264 + 0.916400i \(0.368918\pi\)
\(558\) −0.174292 + 0.479155i −0.00737838 + 0.0202842i
\(559\) 6.96964 24.0574i 0.294784 1.01752i
\(560\) −5.80624 −0.245358
\(561\) 18.0323i 0.761324i
\(562\) 12.1019 + 20.9610i 0.510486 + 0.884188i
\(563\) 13.4479 0.566762 0.283381 0.959007i \(-0.408544\pi\)
0.283381 + 0.959007i \(0.408544\pi\)
\(564\) −1.65390 0.954878i −0.0696417 0.0402076i
\(565\) −6.61395 + 3.81857i −0.278251 + 0.160648i
\(566\) 11.9011 + 6.87108i 0.500239 + 0.288813i
\(567\) −31.1046 + 17.9583i −1.30627 + 0.754176i
\(568\) −6.91351 −0.290084
\(569\) −15.9085 + 27.5543i −0.666917 + 1.15513i 0.311844 + 0.950133i \(0.399053\pi\)
−0.978762 + 0.205002i \(0.934280\pi\)
\(570\) 6.02081i 0.252184i
\(571\) 14.7308 + 25.5146i 0.616467 + 1.06775i 0.990125 + 0.140185i \(0.0447698\pi\)
−0.373659 + 0.927566i \(0.621897\pi\)
\(572\) 5.59921 + 1.62214i 0.234115 + 0.0678252i
\(573\) 38.9684 1.62793
\(574\) −32.8897 + 18.9889i −1.37279 + 0.792580i
\(575\) −8.99723 −0.375210
\(576\) 0.670749 0.0279479
\(577\) 17.9776 + 10.3794i 0.748417 + 0.432099i 0.825122 0.564955i \(-0.191107\pi\)
−0.0767049 + 0.997054i \(0.524440\pi\)
\(578\) 16.5870i 0.689930i
\(579\) 45.4632i 1.88938i
\(580\) 5.66086 3.26830i 0.235054 0.135709i
\(581\) −23.1056 + 40.0200i −0.958581 + 1.66031i
\(582\) 27.0288 1.12038
\(583\) 0.468550i 0.0194054i
\(584\) −17.2178 29.8222i −0.712479 1.23405i
\(585\) −0.283804 0.0822205i −0.0117338 0.00339940i
\(586\) 2.99781 5.19235i 0.123838 0.214494i
\(587\) 4.31573 2.49169i 0.178129 0.102843i −0.408284 0.912855i \(-0.633873\pi\)
0.586413 + 0.810012i \(0.300539\pi\)
\(588\) −7.39641 12.8110i −0.305023 0.528315i
\(589\) −6.66408 + 18.3205i −0.274589 + 0.754884i
\(590\) 0.143760i 0.00591852i
\(591\) 16.3903 + 9.46296i 0.674208 + 0.389254i
\(592\) 15.2760 8.81959i 0.627839 0.362483i
\(593\) 19.4473i 0.798605i −0.916819 0.399302i \(-0.869252\pi\)
0.916819 0.399302i \(-0.130748\pi\)
\(594\) −10.3364 −0.424109
\(595\) −22.3056 −0.914439
\(596\) 20.2521i 0.829557i
\(597\) 24.5863 1.00625
\(598\) 2.00931 + 8.15389i 0.0821669 + 0.333438i
\(599\) 12.3392 + 21.3721i 0.504167 + 0.873242i 0.999988 + 0.00481795i \(0.00153361\pi\)
−0.495822 + 0.868424i \(0.665133\pi\)
\(600\) −18.4766 10.6675i −0.754303 0.435497i
\(601\) 6.58524 0.268617 0.134309 0.990940i \(-0.457119\pi\)
0.134309 + 0.990940i \(0.457119\pi\)
\(602\) −30.3103 −1.23535
\(603\) −0.616311 0.355827i −0.0250981 0.0144904i
\(604\) −13.4573 7.76956i −0.547569 0.316139i
\(605\) 6.23297 + 3.59861i 0.253406 + 0.146304i
\(606\) −10.1789 5.87680i −0.413490 0.238729i
\(607\) 22.0824 0.896296 0.448148 0.893959i \(-0.352084\pi\)
0.448148 + 0.893959i \(0.352084\pi\)
\(608\) 15.8316 0.642054
\(609\) −47.8700 27.6378i −1.93979 1.11994i
\(610\) −0.247370 0.428458i −0.0100157 0.0173477i
\(611\) −3.32772 + 3.19600i −0.134625 + 0.129296i
\(612\) 0.431080 0.0174254
\(613\) 10.5002i 0.424100i −0.977259 0.212050i \(-0.931986\pi\)
0.977259 0.212050i \(-0.0680139\pi\)
\(614\) 11.1743 0.450957
\(615\) 14.1065 0.568829
\(616\) 23.1921i 0.934438i
\(617\) −4.83310 + 2.79039i −0.194573 + 0.112337i −0.594122 0.804375i \(-0.702500\pi\)
0.399548 + 0.916712i \(0.369167\pi\)
\(618\) −2.77144 1.60009i −0.111483 0.0643650i
\(619\) 15.1383i 0.608461i 0.952598 + 0.304230i \(0.0983993\pi\)
−0.952598 + 0.304230i \(0.901601\pi\)
\(620\) 2.97159 + 3.54001i 0.119342 + 0.142170i
\(621\) 5.78248 + 10.0156i 0.232043 + 0.401910i
\(622\) −1.76826 + 1.02090i −0.0709007 + 0.0409345i
\(623\) 26.1378 45.2721i 1.04719 1.81379i
\(624\) −2.54664 + 8.79035i −0.101947 + 0.351896i
\(625\) −6.14515 10.6437i −0.245806 0.425749i
\(626\) 6.73289i 0.269100i
\(627\) −11.0525 −0.441393
\(628\) 3.17258 5.49508i 0.126600 0.219277i
\(629\) 58.6851 33.8818i 2.33993 1.35096i
\(630\) 0.357569i 0.0142459i
\(631\) 15.4837i 0.616397i 0.951322 + 0.308199i \(0.0997262\pi\)
−0.951322 + 0.308199i \(0.900274\pi\)
\(632\) 30.7851 + 17.7738i 1.22457 + 0.707003i
\(633\) 24.3123 0.966328
\(634\) 28.6751 1.13883
\(635\) −10.6726 + 6.16181i −0.423528 + 0.244524i
\(636\) 0.378129 0.0149938
\(637\) −34.7009 + 8.55112i −1.37490 + 0.338808i
\(638\) −7.72485 13.3798i −0.305830 0.529713i
\(639\) 0.195669i 0.00774054i
\(640\) 0.378711 0.655947i 0.0149699 0.0259286i
\(641\) 47.3843 1.87157 0.935784 0.352573i \(-0.114693\pi\)
0.935784 + 0.352573i \(0.114693\pi\)
\(642\) 12.9340 7.46744i 0.510464 0.294716i
\(643\) 4.83419 + 2.79102i 0.190642 + 0.110067i 0.592283 0.805730i \(-0.298227\pi\)
−0.401641 + 0.915797i \(0.631560\pi\)
\(644\) −6.83554 + 3.94650i −0.269358 + 0.155514i
\(645\) 9.75014 + 5.62925i 0.383911 + 0.221651i
\(646\) −21.2219 −0.834964
\(647\) −19.8081 34.3086i −0.778737 1.34881i −0.932670 0.360731i \(-0.882527\pi\)
0.153933 0.988081i \(-0.450806\pi\)
\(648\) 26.6341i 1.04629i
\(649\) −0.263902 −0.0103591
\(650\) −11.3081 + 10.8604i −0.443538 + 0.425981i
\(651\) 13.3605 36.7299i 0.523638 1.43956i
\(652\) −3.30167 + 1.90622i −0.129304 + 0.0746534i
\(653\) −13.0670 22.6327i −0.511352 0.885687i −0.999913 0.0131576i \(-0.995812\pi\)
0.488562 0.872529i \(-0.337522\pi\)
\(654\) −12.1862 21.1071i −0.476519 0.825354i
\(655\) 4.98041i 0.194601i
\(656\) 12.9429i 0.505334i
\(657\) −0.844038 + 0.487306i −0.0329291 + 0.0190116i
\(658\) 4.83548 + 2.79177i 0.188507 + 0.108834i
\(659\) 4.95031 8.57419i 0.192837 0.334003i −0.753352 0.657617i \(-0.771565\pi\)
0.946189 + 0.323614i \(0.104898\pi\)
\(660\) −1.31017 + 2.26929i −0.0509984 + 0.0883319i
\(661\) −25.1497 14.5202i −0.978210 0.564770i −0.0764807 0.997071i \(-0.524368\pi\)
−0.901729 + 0.432301i \(0.857702\pi\)
\(662\) 5.63772 + 9.76482i 0.219116 + 0.379521i
\(663\) −9.78332 + 33.7695i −0.379953 + 1.31150i
\(664\) 17.1341 + 29.6771i 0.664931 + 1.15169i
\(665\) 13.6717i 0.530165i
\(666\) −0.543142 0.940749i −0.0210463 0.0364533i
\(667\) −8.64299 + 14.9701i −0.334658 + 0.579645i
\(668\) −13.1442 7.58880i −0.508564 0.293620i
\(669\) 22.9375i 0.886816i
\(670\) 7.19327 4.15304i 0.277900 0.160446i
\(671\) 0.786524 0.454100i 0.0303634 0.0175303i
\(672\) −31.7398 −1.22439
\(673\) 5.46850 9.47172i 0.210795 0.365108i −0.741168 0.671319i \(-0.765728\pi\)
0.951964 + 0.306211i \(0.0990613\pi\)
\(674\) 6.75039 3.89734i 0.260015 0.150120i
\(675\) −10.7959 + 18.6990i −0.415533 + 0.719724i
\(676\) −9.60570 6.07565i −0.369450 0.233679i
\(677\) −19.5908 33.9322i −0.752935 1.30412i −0.946395 0.323013i \(-0.895304\pi\)
0.193460 0.981108i \(-0.438029\pi\)
\(678\) 12.6158 7.28372i 0.484506 0.279729i
\(679\) 61.3752 2.35536
\(680\) −8.27040 + 14.3248i −0.317155 + 0.549329i
\(681\) 19.5657i 0.749760i
\(682\) 8.36706 7.02357i 0.320391 0.268947i
\(683\) 10.7836 + 6.22591i 0.412623 + 0.238228i 0.691916 0.721978i \(-0.256767\pi\)
−0.279293 + 0.960206i \(0.590100\pi\)
\(684\) 0.264220i 0.0101027i
\(685\) −6.43812 11.1512i −0.245988 0.426064i
\(686\) 6.35336 + 11.0043i 0.242573 + 0.420148i
\(687\) −8.63065 4.98291i −0.329280 0.190110i
\(688\) −5.16489 + 8.94586i −0.196910 + 0.341058i
\(689\) 0.254209 0.877465i 0.00968460 0.0334287i
\(690\) −3.77483 −0.143705
\(691\) 14.5699 + 8.41196i 0.554266 + 0.320006i 0.750841 0.660483i \(-0.229648\pi\)
−0.196575 + 0.980489i \(0.562982\pi\)
\(692\) −1.67298 + 2.89768i −0.0635970 + 0.110153i
\(693\) −0.656393 −0.0249343
\(694\) −23.9138 13.8066i −0.907755 0.524093i
\(695\) 18.4931i 0.701482i
\(696\) −35.4983 + 20.4949i −1.34556 + 0.776858i
\(697\) 49.7221i 1.88336i
\(698\) 3.03922 5.26408i 0.115036 0.199248i
\(699\) 7.54393 0.285338
\(700\) −12.7619 7.36809i −0.482355 0.278488i
\(701\) −24.5463 + 42.5155i −0.927102 + 1.60579i −0.138957 + 0.990298i \(0.544375\pi\)
−0.788145 + 0.615489i \(0.788958\pi\)
\(702\) 19.3573 + 5.60797i 0.730593 + 0.211659i
\(703\) −20.7671 35.9696i −0.783245 1.35662i
\(704\) −12.4458 7.18556i −0.469067 0.270816i
\(705\) −1.03698 1.79610i −0.0390549 0.0676450i
\(706\) 8.29903 + 14.3743i 0.312338 + 0.540986i
\(707\) −23.1136 13.3447i −0.869278 0.501878i
\(708\) 0.212974i 0.00800406i
\(709\) −26.7117 15.4220i −1.00318 0.579187i −0.0939927 0.995573i \(-0.529963\pi\)
−0.909188 + 0.416386i \(0.863296\pi\)
\(710\) −1.97778 1.14187i −0.0742248 0.0428537i
\(711\) 0.503040 0.871291i 0.0188655 0.0326760i
\(712\) −19.3826 33.5717i −0.726395 1.25815i
\(713\) −11.4863 4.17814i −0.430166 0.156472i
\(714\) 42.5467 1.59227
\(715\) 4.38518 + 4.56592i 0.163996 + 0.170756i
\(716\) −3.22954 + 5.59373i −0.120694 + 0.209047i
\(717\) 21.2104 12.2458i 0.792117 0.457329i
\(718\) 8.27674 14.3357i 0.308885 0.535005i
\(719\) 3.53898 + 6.12969i 0.131982 + 0.228599i 0.924440 0.381327i \(-0.124533\pi\)
−0.792459 + 0.609925i \(0.791199\pi\)
\(720\) 0.105534 + 0.0609300i 0.00393301 + 0.00227073i
\(721\) −6.29320 3.63338i −0.234371 0.135314i
\(722\) 7.15137i 0.266147i
\(723\) −6.13318 + 3.54099i −0.228095 + 0.131691i
\(724\) −1.01669 −0.0377852
\(725\) −32.2728 −1.19858
\(726\) −11.8891 6.86415i −0.441245 0.254753i
\(727\) 7.80151 13.5126i 0.289342 0.501155i −0.684311 0.729190i \(-0.739897\pi\)
0.973653 + 0.228035i \(0.0732302\pi\)
\(728\) −12.5828 + 43.4325i −0.466348 + 1.60971i
\(729\) 27.7315 1.02709
\(730\) 11.3752i 0.421014i
\(731\) −19.8417 + 34.3669i −0.733873 + 1.27111i
\(732\) −0.366467 0.634740i −0.0135450 0.0234607i
\(733\) 5.07243 2.92857i 0.187354 0.108169i −0.403389 0.915029i \(-0.632168\pi\)
0.590743 + 0.806859i \(0.298835\pi\)
\(734\) 15.3729i 0.567424i
\(735\) 16.0647i 0.592556i
\(736\) 9.92581i 0.365870i
\(737\) 7.62377 + 13.2048i 0.280825 + 0.486404i
\(738\) 0.797068 0.0293405
\(739\) −16.9786 9.80261i −0.624569 0.360595i 0.154077 0.988059i \(-0.450760\pi\)
−0.778646 + 0.627464i \(0.784093\pi\)
\(740\) −9.84702 −0.361984
\(741\) 20.6982 + 5.99645i 0.760368 + 0.220285i
\(742\) −1.10553 −0.0405853
\(743\) −37.2353 + 21.4978i −1.36603 + 0.788679i −0.990419 0.138097i \(-0.955901\pi\)
−0.375613 + 0.926776i \(0.622568\pi\)
\(744\) −18.6344 22.1988i −0.683169 0.813846i
\(745\) 10.9967 19.0468i 0.402887 0.697821i
\(746\) 12.8402i 0.470111i
\(747\) 0.839932 0.484935i 0.0307315 0.0177428i
\(748\) −7.99869 4.61805i −0.292461 0.168853i
\(749\) 29.3697 16.9566i 1.07314 0.619580i
\(750\) −7.82266 13.5492i −0.285643 0.494749i
\(751\) 12.8927 0.470461 0.235230 0.971940i \(-0.424416\pi\)
0.235230 + 0.971940i \(0.424416\pi\)
\(752\) 1.64794 0.951439i 0.0600942 0.0346954i
\(753\) 12.1145 + 20.9830i 0.441478 + 0.764663i
\(754\) 7.20736 + 29.2478i 0.262476 + 1.06514i
\(755\) −8.43758 14.6143i −0.307075 0.531870i
\(756\) 18.9418i 0.688906i
\(757\) −4.46985 + 7.74201i −0.162460 + 0.281388i −0.935750 0.352664i \(-0.885276\pi\)
0.773291 + 0.634052i \(0.218609\pi\)
\(758\) 2.66065 + 4.60838i 0.0966391 + 0.167384i
\(759\) 6.92950i 0.251525i
\(760\) 8.78002 + 5.06915i 0.318485 + 0.183877i
\(761\) 20.8172 12.0188i 0.754622 0.435681i −0.0727392 0.997351i \(-0.523174\pi\)
0.827362 + 0.561670i \(0.189841\pi\)
\(762\) 20.3574 11.7533i 0.737469 0.425778i
\(763\) −27.6717 47.9287i −1.00178 1.73514i
\(764\) 9.97977 17.2855i 0.361056 0.625367i
\(765\) 0.405425 + 0.234072i 0.0146582 + 0.00846289i