Properties

Label 403.2.v.a.36.11
Level 403
Weight 2
Character 403.36
Analytic conductor 3.218
Analytic rank 0
Dimension 70
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.v (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(70\)
Relative dimension: \(35\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.11
Character \(\chi\) \(=\) 403.36
Dual form 403.2.v.a.56.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.01226 + 0.584427i) q^{2} -1.01318 q^{3} +(-0.316890 + 0.548870i) q^{4} +(-2.14676 + 1.23943i) q^{5} +(1.02560 - 0.592128i) q^{6} +(-3.71079 + 2.14243i) q^{7} -3.07850i q^{8} -1.97347 q^{9} +O(q^{10})\) \(q+(-1.01226 + 0.584427i) q^{2} -1.01318 q^{3} +(-0.316890 + 0.548870i) q^{4} +(-2.14676 + 1.23943i) q^{5} +(1.02560 - 0.592128i) q^{6} +(-3.71079 + 2.14243i) q^{7} -3.07850i q^{8} -1.97347 q^{9} +(1.44872 - 2.50925i) q^{10} +(3.04472 + 1.75787i) q^{11} +(0.321066 - 0.556102i) q^{12} +(3.38197 - 1.24991i) q^{13} +(2.50419 - 4.33738i) q^{14} +(2.17505 - 1.25577i) q^{15} +(1.16538 + 2.01850i) q^{16} +(-1.70938 - 2.96072i) q^{17} +(1.99766 - 1.15335i) q^{18} +(1.13065 - 0.652784i) q^{19} -1.57106i q^{20} +(3.75969 - 2.17066i) q^{21} -4.10939 q^{22} +(1.09562 + 1.89767i) q^{23} +3.11907i q^{24} +(0.572396 - 0.991420i) q^{25} +(-2.69294 + 3.24175i) q^{26} +5.03901 q^{27} -2.71566i q^{28} +(-2.72073 - 4.71244i) q^{29} +(-1.46781 + 2.54232i) q^{30} +(-4.54063 + 3.22221i) q^{31} +(2.97279 + 1.71634i) q^{32} +(-3.08484 - 1.78103i) q^{33} +(3.46066 + 1.99801i) q^{34} +(5.31080 - 9.19857i) q^{35} +(0.625374 - 1.08318i) q^{36} -0.773685i q^{37} +(-0.763009 + 1.32157i) q^{38} +(-3.42653 + 1.26638i) q^{39} +(3.81561 + 6.60882i) q^{40} +(5.86934 + 3.38867i) q^{41} +(-2.53718 + 4.39453i) q^{42} +(-5.44144 - 9.42485i) q^{43} +(-1.92968 + 1.11410i) q^{44} +(4.23658 - 2.44599i) q^{45} +(-2.21810 - 1.28062i) q^{46} -6.24759i q^{47} +(-1.18074 - 2.04510i) q^{48} +(5.67999 - 9.83804i) q^{49} +1.33810i q^{50} +(1.73190 + 2.99974i) q^{51} +(-0.385673 + 2.25234i) q^{52} +(-4.77562 - 8.27161i) q^{53} +(-5.10077 + 2.94493i) q^{54} -8.71506 q^{55} +(6.59547 + 11.4237i) q^{56} +(-1.14555 + 0.661385i) q^{57} +(5.50815 + 3.18013i) q^{58} +(8.91085 - 5.14468i) q^{59} +1.59176i q^{60} +(-7.29296 + 12.6318i) q^{61} +(2.71314 - 5.91538i) q^{62} +(7.32315 - 4.22802i) q^{63} -8.67384 q^{64} +(-5.71110 + 6.87500i) q^{65} +4.16354 q^{66} +(4.68263 + 2.70352i) q^{67} +2.16674 q^{68} +(-1.11006 - 1.92268i) q^{69} +12.4151i q^{70} +0.805389i q^{71} +6.07534i q^{72} +(-13.1489 + 7.59150i) q^{73} +(0.452163 + 0.783168i) q^{74} +(-0.579939 + 1.00448i) q^{75} +0.827442i q^{76} -15.0644 q^{77} +(2.72843 - 3.28446i) q^{78} +(1.10947 - 1.92166i) q^{79} +(-5.00360 - 2.88883i) q^{80} +0.815011 q^{81} -7.92172 q^{82} +(5.12515 - 2.95901i) q^{83} +2.75144i q^{84} +(7.33925 + 4.23732i) q^{85} +(11.0163 + 6.36025i) q^{86} +(2.75658 + 4.77453i) q^{87} +(5.41161 - 9.37319i) q^{88} +(-1.16803 + 0.674360i) q^{89} +(-2.85901 + 4.95194i) q^{90} +(-9.87194 + 11.8838i) q^{91} -1.38877 q^{92} +(4.60046 - 3.26467i) q^{93} +(3.65126 + 6.32417i) q^{94} +(-1.61817 + 2.80274i) q^{95} +(-3.01197 - 1.73896i) q^{96} +(-14.5197 - 8.38298i) q^{97} +13.2782i q^{98} +(-6.00867 - 3.46911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} + O(q^{10}) \) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} - q^{10} - 6q^{11} + 13q^{12} - 14q^{13} - 14q^{14} - 15q^{15} - 28q^{16} + 6q^{17} + 12q^{19} + 9q^{21} - 8q^{22} + 10q^{23} + 19q^{25} + 34q^{27} - 18q^{29} - 31q^{30} + 2q^{31} + 36q^{32} - 12q^{33} - 9q^{34} - 12q^{35} + 8q^{36} - 21q^{38} - 30q^{39} + 5q^{40} + 18q^{41} - 49q^{42} + 19q^{43} - 42q^{44} - 63q^{45} - 6q^{46} - 27q^{48} + 9q^{49} - 7q^{51} - 43q^{52} - 22q^{53} + 18q^{54} + 30q^{55} + 25q^{56} - 15q^{57} - 12q^{58} + 33q^{59} - 13q^{61} - 17q^{62} - 6q^{63} - 38q^{64} + 9q^{65} - 52q^{66} + 30q^{67} + 88q^{68} - 16q^{69} + 9q^{73} - 19q^{74} + 25q^{75} + 34q^{77} + 14q^{78} + 6q^{79} + 6q^{80} + 22q^{81} - 78q^{82} + 54q^{83} - 33q^{85} + 24q^{86} - 14q^{87} + 16q^{88} - 6q^{89} - 11q^{90} - 70q^{91} - 6q^{92} + 7q^{93} - 43q^{94} + 25q^{95} - 36q^{96} - 75q^{97} - 93q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01226 + 0.584427i −0.715774 + 0.413252i −0.813195 0.581991i \(-0.802274\pi\)
0.0974212 + 0.995243i \(0.468941\pi\)
\(3\) −1.01318 −0.584958 −0.292479 0.956272i \(-0.594480\pi\)
−0.292479 + 0.956272i \(0.594480\pi\)
\(4\) −0.316890 + 0.548870i −0.158445 + 0.274435i
\(5\) −2.14676 + 1.23943i −0.960062 + 0.554292i −0.896192 0.443666i \(-0.853678\pi\)
−0.0638698 + 0.997958i \(0.520344\pi\)
\(6\) 1.02560 0.592128i 0.418698 0.241735i
\(7\) −3.71079 + 2.14243i −1.40255 + 0.809762i −0.994654 0.103267i \(-0.967070\pi\)
−0.407895 + 0.913029i \(0.633737\pi\)
\(8\) 3.07850i 1.08842i
\(9\) −1.97347 −0.657824
\(10\) 1.44872 2.50925i 0.458125 0.793496i
\(11\) 3.04472 + 1.75787i 0.918018 + 0.530018i 0.883002 0.469369i \(-0.155519\pi\)
0.0350158 + 0.999387i \(0.488852\pi\)
\(12\) 0.321066 0.556102i 0.0926837 0.160533i
\(13\) 3.38197 1.24991i 0.937990 0.346663i
\(14\) 2.50419 4.33738i 0.669272 1.15921i
\(15\) 2.17505 1.25577i 0.561596 0.324238i
\(16\) 1.16538 + 2.01850i 0.291345 + 0.504625i
\(17\) −1.70938 2.96072i −0.414584 0.718081i 0.580800 0.814046i \(-0.302740\pi\)
−0.995385 + 0.0959648i \(0.969406\pi\)
\(18\) 1.99766 1.15335i 0.470853 0.271847i
\(19\) 1.13065 0.652784i 0.259390 0.149759i −0.364666 0.931138i \(-0.618817\pi\)
0.624056 + 0.781379i \(0.285484\pi\)
\(20\) 1.57106i 0.351299i
\(21\) 3.75969 2.17066i 0.820432 0.473677i
\(22\) −4.10939 −0.876125
\(23\) 1.09562 + 1.89767i 0.228453 + 0.395692i 0.957350 0.288932i \(-0.0933000\pi\)
−0.728897 + 0.684623i \(0.759967\pi\)
\(24\) 3.11907i 0.636678i
\(25\) 0.572396 0.991420i 0.114479 0.198284i
\(26\) −2.69294 + 3.24175i −0.528129 + 0.635759i
\(27\) 5.03901 0.969757
\(28\) 2.71566i 0.513211i
\(29\) −2.72073 4.71244i −0.505226 0.875077i −0.999982 0.00604524i \(-0.998076\pi\)
0.494756 0.869032i \(-0.335258\pi\)
\(30\) −1.46781 + 2.54232i −0.267984 + 0.464162i
\(31\) −4.54063 + 3.22221i −0.815522 + 0.578726i
\(32\) 2.97279 + 1.71634i 0.525521 + 0.303410i
\(33\) −3.08484 1.78103i −0.537002 0.310038i
\(34\) 3.46066 + 1.99801i 0.593498 + 0.342656i
\(35\) 5.31080 9.19857i 0.897689 1.55484i
\(36\) 0.625374 1.08318i 0.104229 0.180530i
\(37\) 0.773685i 0.127193i −0.997976 0.0635965i \(-0.979743\pi\)
0.997976 0.0635965i \(-0.0202571\pi\)
\(38\) −0.763009 + 1.32157i −0.123776 + 0.214387i
\(39\) −3.42653 + 1.26638i −0.548685 + 0.202784i
\(40\) 3.81561 + 6.60882i 0.603300 + 1.04495i
\(41\) 5.86934 + 3.38867i 0.916637 + 0.529221i 0.882561 0.470198i \(-0.155818\pi\)
0.0340767 + 0.999419i \(0.489151\pi\)
\(42\) −2.53718 + 4.39453i −0.391496 + 0.678091i
\(43\) −5.44144 9.42485i −0.829811 1.43728i −0.898186 0.439616i \(-0.855115\pi\)
0.0683746 0.997660i \(-0.478219\pi\)
\(44\) −1.92968 + 1.11410i −0.290911 + 0.167957i
\(45\) 4.23658 2.44599i 0.631552 0.364627i
\(46\) −2.21810 1.28062i −0.327041 0.188817i
\(47\) 6.24759i 0.911304i −0.890158 0.455652i \(-0.849406\pi\)
0.890158 0.455652i \(-0.150594\pi\)
\(48\) −1.18074 2.04510i −0.170425 0.295184i
\(49\) 5.67999 9.83804i 0.811428 1.40543i
\(50\) 1.33810i 0.189235i
\(51\) 1.73190 + 2.99974i 0.242514 + 0.420047i
\(52\) −0.385673 + 2.25234i −0.0534832 + 0.312344i
\(53\) −4.77562 8.27161i −0.655981 1.13619i −0.981647 0.190708i \(-0.938922\pi\)
0.325666 0.945485i \(-0.394412\pi\)
\(54\) −5.10077 + 2.94493i −0.694127 + 0.400755i
\(55\) −8.71506 −1.17514
\(56\) 6.59547 + 11.4237i 0.881357 + 1.52656i
\(57\) −1.14555 + 0.661385i −0.151732 + 0.0876026i
\(58\) 5.50815 + 3.18013i 0.723256 + 0.417572i
\(59\) 8.91085 5.14468i 1.16009 0.669781i 0.208768 0.977965i \(-0.433055\pi\)
0.951327 + 0.308184i \(0.0997214\pi\)
\(60\) 1.59176i 0.205495i
\(61\) −7.29296 + 12.6318i −0.933768 + 1.61733i −0.156952 + 0.987606i \(0.550167\pi\)
−0.776816 + 0.629727i \(0.783167\pi\)
\(62\) 2.71314 5.91538i 0.344569 0.751254i
\(63\) 7.32315 4.22802i 0.922630 0.532681i
\(64\) −8.67384 −1.08423
\(65\) −5.71110 + 6.87500i −0.708375 + 0.852738i
\(66\) 4.16354 0.512496
\(67\) 4.68263 + 2.70352i 0.572074 + 0.330287i 0.757977 0.652281i \(-0.226188\pi\)
−0.185903 + 0.982568i \(0.559521\pi\)
\(68\) 2.16674 0.262755
\(69\) −1.11006 1.92268i −0.133635 0.231463i
\(70\) 12.4151i 1.48389i
\(71\) 0.805389i 0.0955821i 0.998857 + 0.0477911i \(0.0152182\pi\)
−0.998857 + 0.0477911i \(0.984782\pi\)
\(72\) 6.07534i 0.715986i
\(73\) −13.1489 + 7.59150i −1.53896 + 0.888518i −0.540058 + 0.841628i \(0.681598\pi\)
−0.998900 + 0.0468899i \(0.985069\pi\)
\(74\) 0.452163 + 0.783168i 0.0525628 + 0.0910415i
\(75\) −0.579939 + 1.00448i −0.0669656 + 0.115988i
\(76\) 0.827442i 0.0949141i
\(77\) −15.0644 −1.71675
\(78\) 2.72843 3.28446i 0.308933 0.371892i
\(79\) 1.10947 1.92166i 0.124825 0.216204i −0.796839 0.604191i \(-0.793496\pi\)
0.921665 + 0.387987i \(0.126830\pi\)
\(80\) −5.00360 2.88883i −0.559419 0.322981i
\(81\) 0.815011 0.0905567
\(82\) −7.92172 −0.874807
\(83\) 5.12515 2.95901i 0.562559 0.324793i −0.191613 0.981471i \(-0.561372\pi\)
0.754172 + 0.656677i \(0.228039\pi\)
\(84\) 2.75144i 0.300207i
\(85\) 7.33925 + 4.23732i 0.796053 + 0.459602i
\(86\) 11.0163 + 6.36025i 1.18791 + 0.685843i
\(87\) 2.75658 + 4.77453i 0.295536 + 0.511884i
\(88\) 5.41161 9.37319i 0.576880 0.999185i
\(89\) −1.16803 + 0.674360i −0.123810 + 0.0714820i −0.560626 0.828069i \(-0.689440\pi\)
0.436816 + 0.899551i \(0.356106\pi\)
\(90\) −2.85901 + 4.95194i −0.301366 + 0.521981i
\(91\) −9.87194 + 11.8838i −1.03486 + 1.24576i
\(92\) −1.38877 −0.144789
\(93\) 4.60046 3.26467i 0.477046 0.338531i
\(94\) 3.65126 + 6.32417i 0.376599 + 0.652288i
\(95\) −1.61817 + 2.80274i −0.166020 + 0.287556i
\(96\) −3.01197 1.73896i −0.307408 0.177482i
\(97\) −14.5197 8.38298i −1.47426 0.851163i −0.474677 0.880160i \(-0.657435\pi\)
−0.999579 + 0.0289974i \(0.990769\pi\)
\(98\) 13.2782i 1.34130i
\(99\) −6.00867 3.46911i −0.603894 0.348659i
\(100\) 0.362773 + 0.628342i 0.0362773 + 0.0628342i
\(101\) −8.71992 15.1034i −0.867665 1.50284i −0.864376 0.502845i \(-0.832287\pi\)
−0.00328846 0.999995i \(-0.501047\pi\)
\(102\) −3.50626 2.02434i −0.347171 0.200439i
\(103\) −5.79163 10.0314i −0.570666 0.988423i −0.996498 0.0836203i \(-0.973352\pi\)
0.425832 0.904802i \(-0.359982\pi\)
\(104\) −3.84786 10.4114i −0.377314 1.02092i
\(105\) −5.38078 + 9.31978i −0.525110 + 0.909518i
\(106\) 9.66830 + 5.58200i 0.939069 + 0.542172i
\(107\) 10.6807 1.03254 0.516271 0.856425i \(-0.327320\pi\)
0.516271 + 0.856425i \(0.327320\pi\)
\(108\) −1.59681 + 2.76576i −0.153653 + 0.266135i
\(109\) 16.8763i 1.61646i 0.588869 + 0.808229i \(0.299573\pi\)
−0.588869 + 0.808229i \(0.700427\pi\)
\(110\) 8.82189 5.09332i 0.841134 0.485629i
\(111\) 0.783880i 0.0744026i
\(112\) −8.64898 4.99349i −0.817252 0.471841i
\(113\) 5.90347 0.555352 0.277676 0.960675i \(-0.410436\pi\)
0.277676 + 0.960675i \(0.410436\pi\)
\(114\) 0.773063 1.33898i 0.0724040 0.125407i
\(115\) −4.70408 2.71590i −0.438658 0.253259i
\(116\) 3.44868 0.320202
\(117\) −6.67422 + 2.46667i −0.617032 + 0.228044i
\(118\) −6.01339 + 10.4155i −0.553577 + 0.958823i
\(119\) 12.6863 + 7.32443i 1.16295 + 0.671429i
\(120\) −3.86588 6.69591i −0.352905 0.611250i
\(121\) 0.680219 + 1.17817i 0.0618381 + 0.107107i
\(122\) 17.0488i 1.54353i
\(123\) −5.94668 3.43332i −0.536194 0.309572i
\(124\) −0.329693 3.51330i −0.0296073 0.315504i
\(125\) 9.55655i 0.854764i
\(126\) −4.94194 + 8.55969i −0.440263 + 0.762558i
\(127\) 3.42664 0.304065 0.152033 0.988375i \(-0.451418\pi\)
0.152033 + 0.988375i \(0.451418\pi\)
\(128\) 2.83457 1.63654i 0.250543 0.144651i
\(129\) 5.51314 + 9.54904i 0.485405 + 0.840746i
\(130\) 1.76317 10.2970i 0.154640 0.903106i
\(131\) −8.44037 + 14.6191i −0.737438 + 1.27728i 0.216207 + 0.976348i \(0.430631\pi\)
−0.953645 + 0.300933i \(0.902702\pi\)
\(132\) 1.95511 1.12878i 0.170171 0.0982480i
\(133\) −2.79708 + 4.84469i −0.242538 + 0.420088i
\(134\) −6.32004 −0.545968
\(135\) −10.8176 + 6.24552i −0.931027 + 0.537529i
\(136\) −9.11461 + 5.26232i −0.781571 + 0.451240i
\(137\) 4.63964i 0.396392i −0.980162 0.198196i \(-0.936492\pi\)
0.980162 0.198196i \(-0.0635082\pi\)
\(138\) 2.24733 + 1.29750i 0.191305 + 0.110450i
\(139\) 6.25380 10.8319i 0.530441 0.918750i −0.468929 0.883236i \(-0.655360\pi\)
0.999369 0.0355140i \(-0.0113068\pi\)
\(140\) 3.36588 + 5.82987i 0.284469 + 0.492714i
\(141\) 6.32991i 0.533075i
\(142\) −0.470691 0.815261i −0.0394995 0.0684152i
\(143\) 12.4943 + 2.13943i 1.04483 + 0.178908i
\(144\) −2.29985 3.98345i −0.191654 0.331955i
\(145\) 11.6815 + 6.74432i 0.970097 + 0.560086i
\(146\) 8.87336 15.3691i 0.734364 1.27196i
\(147\) −5.75484 + 9.96767i −0.474651 + 0.822120i
\(148\) 0.424652 + 0.245173i 0.0349062 + 0.0201531i
\(149\) 6.55646 3.78537i 0.537126 0.310110i −0.206787 0.978386i \(-0.566301\pi\)
0.743913 + 0.668276i \(0.232968\pi\)
\(150\) 1.35573i 0.110695i
\(151\) 3.83153i 0.311806i 0.987772 + 0.155903i \(0.0498287\pi\)
−0.987772 + 0.155903i \(0.950171\pi\)
\(152\) −2.00960 3.48073i −0.163000 0.282324i
\(153\) 3.37340 + 5.84291i 0.272724 + 0.472371i
\(154\) 15.2491 8.80407i 1.22881 0.709452i
\(155\) 5.75394 12.5451i 0.462168 1.00765i
\(156\) 0.390755 2.28202i 0.0312855 0.182708i
\(157\) 11.6904 0.932998 0.466499 0.884522i \(-0.345515\pi\)
0.466499 + 0.884522i \(0.345515\pi\)
\(158\) 2.59362i 0.206338i
\(159\) 4.83854 + 8.38060i 0.383721 + 0.664625i
\(160\) −8.50918 −0.672710
\(161\) −8.13125 4.69458i −0.640832 0.369985i
\(162\) −0.825000 + 0.476314i −0.0648182 + 0.0374228i
\(163\) 1.78776 + 1.03216i 0.140028 + 0.0808454i 0.568377 0.822768i \(-0.307571\pi\)
−0.428349 + 0.903613i \(0.640905\pi\)
\(164\) −3.71987 + 2.14767i −0.290473 + 0.167705i
\(165\) 8.82990 0.687407
\(166\) −3.45865 + 5.99056i −0.268443 + 0.464957i
\(167\) 14.0188i 1.08481i −0.840119 0.542403i \(-0.817515\pi\)
0.840119 0.542403i \(-0.182485\pi\)
\(168\) −6.68238 11.5742i −0.515557 0.892971i
\(169\) 9.87544 8.45433i 0.759649 0.650333i
\(170\) −9.90561 −0.759726
\(171\) −2.23132 + 1.28825i −0.170633 + 0.0985150i
\(172\) 6.89735 0.525918
\(173\) −14.6826 −1.11630 −0.558150 0.829740i \(-0.688489\pi\)
−0.558150 + 0.829740i \(0.688489\pi\)
\(174\) −5.58073 3.22204i −0.423074 0.244262i
\(175\) 4.90527i 0.370804i
\(176\) 8.19436i 0.617673i
\(177\) −9.02827 + 5.21248i −0.678607 + 0.391794i
\(178\) 0.788228 1.36525i 0.0590802 0.102330i
\(179\) −2.81043 −0.210061 −0.105031 0.994469i \(-0.533494\pi\)
−0.105031 + 0.994469i \(0.533494\pi\)
\(180\) 3.10044i 0.231093i
\(181\) −9.77098 16.9238i −0.726271 1.25794i −0.958449 0.285265i \(-0.907918\pi\)
0.232177 0.972673i \(-0.425415\pi\)
\(182\) 3.04774 17.7989i 0.225913 1.31934i
\(183\) 7.38906 12.7982i 0.546215 0.946072i
\(184\) 5.84199 3.37287i 0.430677 0.248652i
\(185\) 0.958932 + 1.66092i 0.0705021 + 0.122113i
\(186\) −2.74889 + 5.99332i −0.201559 + 0.439452i
\(187\) 12.0194i 0.878949i
\(188\) 3.42911 + 1.97980i 0.250094 + 0.144392i
\(189\) −18.6987 + 10.7957i −1.36013 + 0.785272i
\(190\) 3.78280i 0.274433i
\(191\) 12.0580 0.872485 0.436242 0.899829i \(-0.356309\pi\)
0.436242 + 0.899829i \(0.356309\pi\)
\(192\) 8.78813 0.634229
\(193\) 17.7432i 1.27719i −0.769545 0.638593i \(-0.779517\pi\)
0.769545 0.638593i \(-0.220483\pi\)
\(194\) 19.5970 1.40698
\(195\) 5.78636 6.96559i 0.414370 0.498816i
\(196\) 3.59987 + 6.23515i 0.257133 + 0.445368i
\(197\) 7.12081 + 4.11120i 0.507337 + 0.292911i 0.731738 0.681586i \(-0.238709\pi\)
−0.224402 + 0.974497i \(0.572043\pi\)
\(198\) 8.10977 0.576336
\(199\) −3.65433 −0.259049 −0.129524 0.991576i \(-0.541345\pi\)
−0.129524 + 0.991576i \(0.541345\pi\)
\(200\) −3.05209 1.76212i −0.215815 0.124601i
\(201\) −4.74433 2.73914i −0.334639 0.193204i
\(202\) 17.6536 + 10.1923i 1.24210 + 0.717129i
\(203\) 20.1921 + 11.6579i 1.41721 + 0.818226i
\(204\) −2.19529 −0.153701
\(205\) −16.8001 −1.17337
\(206\) 11.7252 + 6.76957i 0.816936 + 0.471658i
\(207\) −2.16218 3.74500i −0.150282 0.260296i
\(208\) 6.46423 + 5.36988i 0.448214 + 0.372334i
\(209\) 4.59004 0.317500
\(210\) 12.5787i 0.868012i
\(211\) 4.86764 0.335102 0.167551 0.985863i \(-0.446414\pi\)
0.167551 + 0.985863i \(0.446414\pi\)
\(212\) 6.05338 0.415748
\(213\) 0.816002i 0.0559115i
\(214\) −10.8116 + 6.24209i −0.739067 + 0.426701i
\(215\) 23.3630 + 13.4886i 1.59334 + 0.919916i
\(216\) 15.5126i 1.05550i
\(217\) 9.94600 21.6849i 0.675178 1.47207i
\(218\) −9.86297 17.0832i −0.668005 1.15702i
\(219\) 13.3221 7.69153i 0.900226 0.519746i
\(220\) 2.76172 4.78343i 0.186195 0.322499i
\(221\) −9.48170 7.87651i −0.637808 0.529831i
\(222\) −0.458121 0.793488i −0.0307470 0.0532554i
\(223\) 10.1507i 0.679740i 0.940472 + 0.339870i \(0.110383\pi\)
−0.940472 + 0.339870i \(0.889617\pi\)
\(224\) −14.7086 −0.982758
\(225\) −1.12961 + 1.95654i −0.0753072 + 0.130436i
\(226\) −5.97583 + 3.45015i −0.397506 + 0.229500i
\(227\) 3.60396i 0.239203i −0.992822 0.119602i \(-0.961838\pi\)
0.992822 0.119602i \(-0.0381617\pi\)
\(228\) 0.838346i 0.0555208i
\(229\) 0.685131 + 0.395560i 0.0452747 + 0.0261394i 0.522467 0.852660i \(-0.325012\pi\)
−0.477192 + 0.878799i \(0.658345\pi\)
\(230\) 6.34899 0.418640
\(231\) 15.2629 1.00423
\(232\) −14.5073 + 8.37577i −0.952448 + 0.549896i
\(233\) −9.00489 −0.589930 −0.294965 0.955508i \(-0.595308\pi\)
−0.294965 + 0.955508i \(0.595308\pi\)
\(234\) 5.31444 6.39750i 0.347416 0.418218i
\(235\) 7.74348 + 13.4121i 0.505129 + 0.874909i
\(236\) 6.52119i 0.424494i
\(237\) −1.12409 + 1.94698i −0.0730176 + 0.126470i
\(238\) −17.1224 −1.10988
\(239\) −8.36079 + 4.82711i −0.540815 + 0.312240i −0.745409 0.666607i \(-0.767746\pi\)
0.204594 + 0.978847i \(0.434412\pi\)
\(240\) 5.06953 + 2.92689i 0.327237 + 0.188930i
\(241\) 3.28910 1.89896i 0.211870 0.122323i −0.390310 0.920683i \(-0.627632\pi\)
0.602180 + 0.798360i \(0.294299\pi\)
\(242\) −1.37711 0.795077i −0.0885243 0.0511095i
\(243\) −15.9428 −1.02273
\(244\) −4.62213 8.00577i −0.295902 0.512517i
\(245\) 28.1599i 1.79907i
\(246\) 8.02610 0.511725
\(247\) 3.00792 3.62091i 0.191389 0.230393i
\(248\) 9.91960 + 13.9784i 0.629895 + 0.887627i
\(249\) −5.19269 + 2.99800i −0.329073 + 0.189991i
\(250\) 5.58511 + 9.67369i 0.353233 + 0.611818i
\(251\) −7.87245 13.6355i −0.496904 0.860664i 0.503089 0.864234i \(-0.332197\pi\)
−0.999994 + 0.00357078i \(0.998863\pi\)
\(252\) 5.35927i 0.337602i
\(253\) 7.70384i 0.484336i
\(254\) −3.46864 + 2.00262i −0.217642 + 0.125656i
\(255\) −7.43596 4.29315i −0.465658 0.268848i
\(256\) 6.76096 11.7103i 0.422560 0.731896i
\(257\) −0.232805 + 0.403230i −0.0145220 + 0.0251528i −0.873195 0.487371i \(-0.837956\pi\)
0.858673 + 0.512524i \(0.171289\pi\)
\(258\) −11.1614 6.44406i −0.694880 0.401189i
\(259\) 1.65756 + 2.87099i 0.102996 + 0.178394i
\(260\) −1.96368 5.31327i −0.121783 0.329515i
\(261\) 5.36928 + 9.29986i 0.332350 + 0.575647i
\(262\) 19.7311i 1.21899i
\(263\) −11.0160 19.0802i −0.679274 1.17654i −0.975200 0.221326i \(-0.928962\pi\)
0.295926 0.955211i \(-0.404372\pi\)
\(264\) −5.48292 + 9.49670i −0.337451 + 0.584481i
\(265\) 20.5042 + 11.8381i 1.25957 + 0.727210i
\(266\) 6.53877i 0.400917i
\(267\) 1.18342 0.683246i 0.0724239 0.0418140i
\(268\) −2.96776 + 1.71344i −0.181285 + 0.104665i
\(269\) −24.9132 −1.51898 −0.759492 0.650517i \(-0.774552\pi\)
−0.759492 + 0.650517i \(0.774552\pi\)
\(270\) 7.30010 12.6441i 0.444270 0.769498i
\(271\) 0.126715 0.0731590i 0.00769739 0.00444409i −0.496146 0.868239i \(-0.665252\pi\)
0.503844 + 0.863795i \(0.331919\pi\)
\(272\) 3.98415 6.90075i 0.241575 0.418419i
\(273\) 10.0020 12.0404i 0.605350 0.728717i
\(274\) 2.71153 + 4.69651i 0.163810 + 0.283727i
\(275\) 3.48558 2.01240i 0.210188 0.121352i
\(276\) 1.40707 0.0846954
\(277\) −4.68408 + 8.11307i −0.281439 + 0.487467i −0.971739 0.236056i \(-0.924145\pi\)
0.690300 + 0.723523i \(0.257478\pi\)
\(278\) 14.6196i 0.876823i
\(279\) 8.96081 6.35895i 0.536470 0.380700i
\(280\) −28.3178 16.3493i −1.69232 0.977059i
\(281\) 11.7302i 0.699767i 0.936793 + 0.349884i \(0.113779\pi\)
−0.936793 + 0.349884i \(0.886221\pi\)
\(282\) −3.69937 6.40750i −0.220294 0.381561i
\(283\) −4.17114 7.22463i −0.247949 0.429459i 0.715008 0.699116i \(-0.246423\pi\)
−0.962956 + 0.269657i \(0.913090\pi\)
\(284\) −0.442054 0.255220i −0.0262311 0.0151445i
\(285\) 1.63949 2.83968i 0.0971149 0.168208i
\(286\) −13.8978 + 5.13638i −0.821796 + 0.303720i
\(287\) −29.0399 −1.71417
\(288\) −5.86673 3.38716i −0.345700 0.199590i
\(289\) 2.65607 4.60045i 0.156240 0.270615i
\(290\) −15.7663 −0.925827
\(291\) 14.7111 + 8.49344i 0.862378 + 0.497894i
\(292\) 9.62268i 0.563125i
\(293\) −19.7758 + 11.4175i −1.15531 + 0.667020i −0.950176 0.311713i \(-0.899097\pi\)
−0.205137 + 0.978733i \(0.565764\pi\)
\(294\) 13.4531i 0.784603i
\(295\) −12.7530 + 22.0888i −0.742508 + 1.28606i
\(296\) −2.38179 −0.138439
\(297\) 15.3424 + 8.85792i 0.890255 + 0.513989i
\(298\) −4.42455 + 7.66354i −0.256307 + 0.443937i
\(299\) 6.07728 + 5.04844i 0.351458 + 0.291959i
\(300\) −0.367554 0.636621i −0.0212207 0.0367554i
\(301\) 40.3841 + 23.3158i 2.32770 + 1.34390i
\(302\) −2.23925 3.87850i −0.128855 0.223183i
\(303\) 8.83483 + 15.3024i 0.507548 + 0.879098i
\(304\) 2.63529 + 1.52148i 0.151144 + 0.0872631i
\(305\) 36.1566i 2.07032i
\(306\) −6.82951 3.94302i −0.390417 0.225407i
\(307\) 14.5589 + 8.40557i 0.830919 + 0.479731i 0.854167 0.519999i \(-0.174068\pi\)
−0.0232484 + 0.999730i \(0.507401\pi\)
\(308\) 4.77377 8.26841i 0.272011 0.471137i
\(309\) 5.86795 + 10.1636i 0.333816 + 0.578186i
\(310\) 1.50725 + 16.0617i 0.0856061 + 0.912242i
\(311\) −1.00498 −0.0569873 −0.0284937 0.999594i \(-0.509071\pi\)
−0.0284937 + 0.999594i \(0.509071\pi\)
\(312\) 3.89857 + 10.5486i 0.220713 + 0.597197i
\(313\) 15.6111 27.0392i 0.882390 1.52835i 0.0337148 0.999431i \(-0.489266\pi\)
0.848676 0.528914i \(-0.177400\pi\)
\(314\) −11.8337 + 6.83220i −0.667816 + 0.385563i
\(315\) −10.4807 + 18.1531i −0.590521 + 1.02281i
\(316\) 0.703161 + 1.21791i 0.0395559 + 0.0685128i
\(317\) −12.9118 7.45464i −0.725200 0.418694i 0.0914636 0.995808i \(-0.470845\pi\)
−0.816664 + 0.577114i \(0.804179\pi\)
\(318\) −9.79570 5.65555i −0.549316 0.317148i
\(319\) 19.1307i 1.07112i
\(320\) 18.6207 10.7507i 1.04093 0.600980i
\(321\) −10.8214 −0.603994
\(322\) 10.9746 0.611588
\(323\) −3.86543 2.23170i −0.215078 0.124175i
\(324\) −0.258269 + 0.447334i −0.0143483 + 0.0248519i
\(325\) 0.696639 4.06840i 0.0386426 0.225674i
\(326\) −2.41290 −0.133638
\(327\) 17.0987i 0.945560i
\(328\) 10.4320 18.0688i 0.576012 0.997683i
\(329\) 13.3850 + 23.1835i 0.737939 + 1.27815i
\(330\) −8.93813 + 5.16043i −0.492028 + 0.284073i
\(331\) 24.2859i 1.33487i 0.744667 + 0.667436i \(0.232608\pi\)
−0.744667 + 0.667436i \(0.767392\pi\)
\(332\) 3.75072i 0.205848i
\(333\) 1.52685i 0.0836707i
\(334\) 8.19295 + 14.1906i 0.448298 + 0.776476i
\(335\) −13.4033 −0.732302
\(336\) 8.76295 + 5.05929i 0.478058 + 0.276007i
\(337\) −11.4686 −0.624737 −0.312368 0.949961i \(-0.601122\pi\)
−0.312368 + 0.949961i \(0.601122\pi\)
\(338\) −5.05554 + 14.3294i −0.274985 + 0.779418i
\(339\) −5.98126 −0.324858
\(340\) −4.65147 + 2.68553i −0.252261 + 0.145643i
\(341\) −19.4892 + 1.82889i −1.05540 + 0.0990402i
\(342\) 1.50578 2.60808i 0.0814231 0.141029i
\(343\) 18.6819i 1.00873i
\(344\) −29.0144 + 16.7515i −1.56435 + 0.903180i
\(345\) 4.76606 + 2.75169i 0.256596 + 0.148146i
\(346\) 14.8626 8.58093i 0.799019 0.461314i
\(347\) 1.53331 + 2.65577i 0.0823124 + 0.142569i 0.904243 0.427019i \(-0.140436\pi\)
−0.821930 + 0.569588i \(0.807103\pi\)
\(348\) −3.49413 −0.187305
\(349\) −17.8393 + 10.2995i −0.954915 + 0.551320i −0.894604 0.446859i \(-0.852542\pi\)
−0.0603106 + 0.998180i \(0.519209\pi\)
\(350\) −2.86677 4.96540i −0.153235 0.265412i
\(351\) 17.0418 6.29832i 0.909622 0.336179i
\(352\) 6.03422 + 10.4516i 0.321625 + 0.557071i
\(353\) 34.1839i 1.81943i −0.415238 0.909713i \(-0.636302\pi\)
0.415238 0.909713i \(-0.363698\pi\)
\(354\) 6.09262 10.5527i 0.323819 0.560871i
\(355\) −0.998227 1.72898i −0.0529804 0.0917648i
\(356\) 0.854791i 0.0453038i
\(357\) −12.8534 7.42094i −0.680276 0.392758i
\(358\) 2.84488 1.64249i 0.150357 0.0868084i
\(359\) 5.37225 3.10167i 0.283537 0.163700i −0.351487 0.936193i \(-0.614324\pi\)
0.635023 + 0.772493i \(0.280990\pi\)
\(360\) −7.52999 13.0423i −0.396865 0.687391i
\(361\) −8.64775 + 14.9783i −0.455145 + 0.788334i
\(362\) 19.7815 + 11.4209i 1.03969 + 0.600267i
\(363\) −0.689183 1.19370i −0.0361727 0.0626530i
\(364\) −3.39433 9.18426i −0.177911 0.481386i
\(365\) 18.8183 32.5943i 0.984997 1.70606i
\(366\) 17.2735i 0.902899i
\(367\) −11.8035 + 20.4442i −0.616135 + 1.06718i 0.374049 + 0.927409i \(0.377969\pi\)
−0.990184 + 0.139769i \(0.955364\pi\)
\(368\) −2.55363 + 4.42302i −0.133117 + 0.230566i
\(369\) −11.5830 6.68744i −0.602986 0.348134i
\(370\) −1.94137 1.12085i −0.100927 0.0582703i
\(371\) 35.4426 + 20.4628i 1.84009 + 1.06238i
\(372\) 0.334038 + 3.55960i 0.0173190 + 0.184556i
\(373\) −18.7239 + 32.4307i −0.969485 + 1.67920i −0.272437 + 0.962174i \(0.587830\pi\)
−0.697048 + 0.717024i \(0.745504\pi\)
\(374\) 7.02449 + 12.1668i 0.363228 + 0.629129i
\(375\) 9.68248i 0.500001i
\(376\) −19.2332 −0.991878
\(377\) −15.0915 12.5366i −0.777254 0.645670i
\(378\) 12.6186 21.8561i 0.649031 1.12416i
\(379\) 1.49487i 0.0767861i −0.999263 0.0383930i \(-0.987776\pi\)
0.999263 0.0383930i \(-0.0122239\pi\)
\(380\) −1.02556 1.77632i −0.0526102 0.0911235i
\(381\) −3.47179 −0.177865
\(382\) −12.2058 + 7.04701i −0.624502 + 0.360556i
\(383\) 18.6352i 0.952213i 0.879388 + 0.476107i \(0.157952\pi\)
−0.879388 + 0.476107i \(0.842048\pi\)
\(384\) −2.87192 + 1.65810i −0.146557 + 0.0846147i
\(385\) 32.3398 18.6714i 1.64819 0.951582i
\(386\) 10.3696 + 17.9607i 0.527800 + 0.914177i
\(387\) 10.7385 + 18.5997i 0.545870 + 0.945474i
\(388\) 9.20232 5.31296i 0.467177 0.269725i
\(389\) 4.06602 7.04255i 0.206155 0.357071i −0.744345 0.667795i \(-0.767238\pi\)
0.950500 + 0.310724i \(0.100571\pi\)
\(390\) −1.78641 + 10.4327i −0.0904582 + 0.528279i
\(391\) 3.74566 6.48767i 0.189426 0.328095i
\(392\) −30.2864 17.4859i −1.52970 0.883171i
\(393\) 8.55159 14.8118i 0.431371 0.747156i
\(394\) −9.61079 −0.484185
\(395\) 5.50047i 0.276759i
\(396\) 3.80818 2.19865i 0.191368 0.110486i
\(397\) −9.21992 + 5.32312i −0.462734 + 0.267160i −0.713193 0.700967i \(-0.752752\pi\)
0.250459 + 0.968127i \(0.419418\pi\)
\(398\) 3.69912 2.13569i 0.185420 0.107052i
\(399\) 2.83394 4.90853i 0.141875 0.245734i
\(400\) 2.66824 0.133412
\(401\) −9.93735 + 5.73733i −0.496247 + 0.286509i −0.727163 0.686465i \(-0.759161\pi\)
0.230915 + 0.972974i \(0.425828\pi\)
\(402\) 6.40332 0.319368
\(403\) −11.3288 + 16.5728i −0.564328 + 0.825551i
\(404\) 11.0530 0.549909
\(405\) −1.74964 + 1.01015i −0.0869401 + 0.0501949i
\(406\) −27.2528 −1.35253
\(407\) 1.36004 2.35566i 0.0674146 0.116766i
\(408\) 9.23471 5.33166i 0.457186 0.263957i
\(409\) −4.45110 + 2.56985i −0.220093 + 0.127071i −0.605993 0.795470i \(-0.707224\pi\)
0.385900 + 0.922540i \(0.373891\pi\)
\(410\) 17.0061 9.81845i 0.839869 0.484899i
\(411\) 4.70078i 0.231872i
\(412\) 7.34124 0.361677
\(413\) −22.0442 + 38.1817i −1.08473 + 1.87880i
\(414\) 4.37736 + 2.52727i 0.215136 + 0.124209i
\(415\) −7.33500 + 12.7046i −0.360061 + 0.623644i
\(416\) 12.1992 + 2.08889i 0.598114 + 0.102416i
\(417\) −6.33621 + 10.9746i −0.310285 + 0.537430i
\(418\) −4.64630 + 2.68254i −0.227258 + 0.131207i
\(419\) 11.4982 + 19.9155i 0.561726 + 0.972938i 0.997346 + 0.0728075i \(0.0231959\pi\)
−0.435620 + 0.900131i \(0.643471\pi\)
\(420\) −3.41023 5.90669i −0.166402 0.288217i
\(421\) 20.8178 12.0192i 1.01460 0.585779i 0.102064 0.994778i \(-0.467455\pi\)
0.912535 + 0.408999i \(0.134122\pi\)
\(422\) −4.92730 + 2.84478i −0.239857 + 0.138482i
\(423\) 12.3294i 0.599478i
\(424\) −25.4642 + 14.7018i −1.23665 + 0.713980i
\(425\) −3.91376 −0.189845
\(426\) 0.476894 + 0.826004i 0.0231056 + 0.0400200i
\(427\) 62.4986i 3.02452i
\(428\) −3.38461 + 5.86231i −0.163601 + 0.283366i
\(429\) −12.6590 2.16762i −0.611181 0.104654i
\(430\) −31.5324 −1.52063
\(431\) 12.3053i 0.592724i −0.955076 0.296362i \(-0.904227\pi\)
0.955076 0.296362i \(-0.0957735\pi\)
\(432\) 5.87237 + 10.1712i 0.282534 + 0.489364i
\(433\) −2.69026 + 4.65967i −0.129286 + 0.223930i −0.923400 0.383839i \(-0.874602\pi\)
0.794114 + 0.607769i \(0.207935\pi\)
\(434\) 2.60536 + 27.7635i 0.125061 + 1.33269i
\(435\) −11.8354 6.83319i −0.567466 0.327627i
\(436\) −9.26289 5.34793i −0.443612 0.256120i
\(437\) 2.47754 + 1.43041i 0.118517 + 0.0684257i
\(438\) −8.99028 + 15.5716i −0.429572 + 0.744041i
\(439\) 16.8924 29.2585i 0.806230 1.39643i −0.109228 0.994017i \(-0.534838\pi\)
0.915458 0.402414i \(-0.131829\pi\)
\(440\) 26.8294i 1.27904i
\(441\) −11.2093 + 19.4151i −0.533777 + 0.924528i
\(442\) 14.2012 + 2.43169i 0.675481 + 0.115664i
\(443\) 7.32579 + 12.6886i 0.348059 + 0.602856i 0.985905 0.167309i \(-0.0535076\pi\)
−0.637846 + 0.770164i \(0.720174\pi\)
\(444\) −0.430248 0.248404i −0.0204187 0.0117887i
\(445\) 1.67165 2.89538i 0.0792438 0.137254i
\(446\) −5.93233 10.2751i −0.280904 0.486540i
\(447\) −6.64285 + 3.83525i −0.314196 + 0.181401i
\(448\) 32.1868 18.5831i 1.52068 0.877968i
\(449\) −3.20288 1.84918i −0.151153 0.0872684i 0.422516 0.906356i \(-0.361147\pi\)
−0.573669 + 0.819087i \(0.694480\pi\)
\(450\) 2.64070i 0.124484i
\(451\) 11.9137 + 20.6351i 0.560993 + 0.971669i
\(452\) −1.87075 + 3.24024i −0.0879927 + 0.152408i
\(453\) 3.88202i 0.182393i
\(454\) 2.10625 + 3.64813i 0.0988513 + 0.171215i
\(455\) 6.46355 37.7473i 0.303016 1.76962i
\(456\) 2.03608 + 3.52659i 0.0953481 + 0.165148i
\(457\) 1.87042 1.07989i 0.0874944 0.0505149i −0.455614 0.890177i \(-0.650580\pi\)
0.543109 + 0.839662i \(0.317247\pi\)
\(458\) −0.924705 −0.0432086
\(459\) −8.61356 14.9191i −0.402046 0.696365i
\(460\) 2.98135 1.72128i 0.139006 0.0802553i
\(461\) −0.0377362 0.0217870i −0.00175755 0.00101472i 0.499121 0.866532i \(-0.333656\pi\)
−0.500879 + 0.865518i \(0.666990\pi\)
\(462\) −15.4500 + 8.92008i −0.718801 + 0.415000i
\(463\) 4.48424i 0.208400i 0.994556 + 0.104200i \(0.0332282\pi\)
−0.994556 + 0.104200i \(0.966772\pi\)
\(464\) 6.34137 10.9836i 0.294391 0.509900i
\(465\) −5.82976 + 12.7105i −0.270349 + 0.589433i
\(466\) 9.11526 5.26270i 0.422256 0.243790i
\(467\) 8.00968 0.370644 0.185322 0.982678i \(-0.440667\pi\)
0.185322 + 0.982678i \(0.440667\pi\)
\(468\) 0.761115 4.44494i 0.0351826 0.205467i
\(469\) −23.1684 −1.06982
\(470\) −15.6768 9.05100i −0.723116 0.417491i
\(471\) −11.8445 −0.545764
\(472\) −15.8379 27.4321i −0.729000 1.26267i
\(473\) 38.2614i 1.75926i
\(474\) 2.62780i 0.120699i
\(475\) 1.49460i 0.0685771i
\(476\) −8.04031 + 4.64207i −0.368527 + 0.212769i
\(477\) 9.42454 + 16.3238i 0.431520 + 0.747415i
\(478\) 5.64218 9.77255i 0.258067 0.446986i
\(479\) 21.1019i 0.964172i 0.876124 + 0.482086i \(0.160121\pi\)
−0.876124 + 0.482086i \(0.839879\pi\)
\(480\) 8.62131 0.393507
\(481\) −0.967039 2.61658i −0.0440932 0.119306i
\(482\) −2.21961 + 3.84448i −0.101101 + 0.175111i
\(483\) 8.23839 + 4.75644i 0.374860 + 0.216425i
\(484\) −0.862219 −0.0391918
\(485\) 41.5606 1.88717
\(486\) 16.1382 9.31739i 0.732043 0.422645i
\(487\) 5.94762i 0.269512i −0.990879 0.134756i \(-0.956975\pi\)
0.990879 0.134756i \(-0.0430251\pi\)
\(488\) 38.8870 + 22.4514i 1.76033 + 1.01633i
\(489\) −1.81132 1.04577i −0.0819107 0.0472912i
\(490\) −16.4574 28.5051i −0.743471 1.28773i
\(491\) 14.4600 25.0454i 0.652569 1.13028i −0.329928 0.944006i \(-0.607024\pi\)
0.982497 0.186277i \(-0.0596422\pi\)
\(492\) 3.76889 2.17597i 0.169915 0.0981003i
\(493\) −9.30148 + 16.1106i −0.418918 + 0.725587i
\(494\) −0.928625 + 5.42320i −0.0417808 + 0.244002i
\(495\) 17.1989 0.773035
\(496\) −11.7956 5.41016i −0.529638 0.242923i
\(497\) −1.72549 2.98863i −0.0773987 0.134059i
\(498\) 3.50422 6.06949i 0.157028 0.271981i
\(499\) −18.7977 10.8528i −0.841499 0.485840i 0.0162742 0.999868i \(-0.494820\pi\)
−0.857774 + 0.514028i \(0.828153\pi\)
\(500\) 5.24530 + 3.02838i 0.234577 + 0.135433i
\(501\) 14.2035i 0.634566i
\(502\) 15.9379 + 9.20174i 0.711343 + 0.410694i
\(503\) −4.42500 7.66432i −0.197301 0.341735i 0.750351 0.661039i \(-0.229884\pi\)
−0.947652 + 0.319304i \(0.896551\pi\)
\(504\) −13.0160 22.5443i −0.579778 1.00421i
\(505\) 37.4392 + 21.6156i 1.66602 + 0.961880i
\(506\) −4.50233 7.79827i −0.200153 0.346675i
\(507\) −10.0056 + 8.56574i −0.444363 + 0.380418i
\(508\) −1.08587 + 1.88078i −0.0481776 + 0.0834461i
\(509\) −18.0788 10.4378i −0.801329 0.462647i 0.0426068 0.999092i \(-0.486434\pi\)
−0.843936 + 0.536444i \(0.819767\pi\)
\(510\) 10.0361 0.444408
\(511\) 32.5285 56.3410i 1.43898 2.49238i
\(512\) 22.3513i 0.987798i
\(513\) 5.69738 3.28938i 0.251545 0.145230i
\(514\) 0.544230i 0.0240050i
\(515\) 24.8665 + 14.3567i 1.09575 + 0.632631i
\(516\) −6.98823 −0.307640
\(517\) 10.9825 19.0222i 0.483008 0.836594i
\(518\) −3.35576 1.93745i −0.147444 0.0851267i
\(519\) 14.8761 0.652989
\(520\) 21.1647 + 17.5817i 0.928134 + 0.771007i
\(521\) 6.59279 11.4191i 0.288836 0.500278i −0.684697 0.728828i \(-0.740065\pi\)
0.973532 + 0.228550i \(0.0733986\pi\)
\(522\) −10.8702 6.27590i −0.475775 0.274689i
\(523\) −3.50825 6.07647i −0.153405 0.265706i 0.779072 0.626934i \(-0.215691\pi\)
−0.932477 + 0.361229i \(0.882357\pi\)
\(524\) −5.34934 9.26532i −0.233687 0.404757i
\(525\) 4.96991i 0.216905i
\(526\) 22.3020 + 12.8761i 0.972413 + 0.561423i
\(527\) 17.3017 + 7.93559i 0.753675 + 0.345680i
\(528\) 8.30234i 0.361313i
\(529\) 9.09923 15.7603i 0.395619 0.685232i
\(530\) −27.6741 −1.20209
\(531\) −17.5853 + 10.1529i −0.763138 + 0.440598i
\(532\) −1.77274 3.07047i −0.0768578 0.133122i
\(533\) 24.0855 + 4.12420i 1.04326 + 0.178639i
\(534\) −0.798614 + 1.38324i −0.0345594 + 0.0598587i
\(535\) −22.9289 + 13.2380i −0.991305 + 0.572330i
\(536\) 8.32279 14.4155i 0.359490 0.622655i
\(537\) 2.84746 0.122877
\(538\) 25.2186 14.5599i 1.08725 0.627724i
\(539\) 34.5880 19.9694i 1.48981 0.860143i
\(540\) 7.91657i 0.340675i
\(541\) 3.20842 + 1.85238i 0.137941 + 0.0796402i 0.567382 0.823455i \(-0.307956\pi\)
−0.429441 + 0.903095i \(0.641290\pi\)
\(542\) −0.0855122 + 0.148111i −0.00367306 + 0.00636193i
\(543\) 9.89973 + 17.1468i 0.424838 + 0.735841i
\(544\) 11.7355i 0.503155i
\(545\) −20.9171 36.2294i −0.895989 1.55190i
\(546\) −3.08790 + 18.0334i −0.132150 + 0.771759i
\(547\) 18.6284 + 32.2653i 0.796493 + 1.37957i 0.921887 + 0.387459i \(0.126647\pi\)
−0.125394 + 0.992107i \(0.540019\pi\)
\(548\) 2.54656 + 1.47026i 0.108784 + 0.0628063i
\(549\) 14.3925 24.9285i 0.614255 1.06392i
\(550\) −2.35220 + 4.07413i −0.100298 + 0.173721i
\(551\) −6.15240 3.55209i −0.262101 0.151324i
\(552\) −5.91897 + 3.41732i −0.251928 + 0.145451i
\(553\) 9.50786i 0.404315i
\(554\) 10.9500i 0.465222i
\(555\) −0.971568 1.68281i −0.0412408 0.0714311i
\(556\) 3.96353 + 6.86504i 0.168091 + 0.291143i
\(557\) −29.9953 + 17.3178i −1.27094 + 0.733780i −0.975166 0.221477i \(-0.928912\pi\)
−0.295778 + 0.955257i \(0.595579\pi\)
\(558\) −5.35431 + 11.6738i −0.226666 + 0.494193i
\(559\) −30.1830 25.0732i −1.27661 1.06048i
\(560\) 24.7564 1.04615
\(561\) 12.1778i 0.514148i
\(562\) −6.85547 11.8740i −0.289180 0.500875i
\(563\) −35.3597 −1.49024 −0.745118 0.666933i \(-0.767607\pi\)
−0.745118 + 0.666933i \(0.767607\pi\)
\(564\) −3.47430 2.00589i −0.146294 0.0844630i
\(565\) −12.6734 + 7.31697i −0.533172 + 0.307827i
\(566\) 8.44453 + 4.87545i 0.354950 + 0.204931i
\(567\) −3.02434 + 1.74610i −0.127010 + 0.0733294i
\(568\) 2.47939 0.104033
\(569\) −21.2017 + 36.7225i −0.888823 + 1.53949i −0.0475545 + 0.998869i \(0.515143\pi\)
−0.841268 + 0.540618i \(0.818191\pi\)
\(570\) 3.83264i 0.160532i
\(571\) −9.29369 16.0971i −0.388929 0.673645i 0.603377 0.797456i \(-0.293822\pi\)
−0.992306 + 0.123812i \(0.960488\pi\)
\(572\) −5.13360 + 6.17980i −0.214647 + 0.258390i
\(573\) −12.2169 −0.510367
\(574\) 29.3959 16.9717i 1.22696 0.708385i
\(575\) 2.50852 0.104612
\(576\) 17.1176 0.713232
\(577\) −18.7381 10.8185i −0.780078 0.450378i 0.0563798 0.998409i \(-0.482044\pi\)
−0.836458 + 0.548031i \(0.815378\pi\)
\(578\) 6.20912i 0.258265i
\(579\) 17.9770i 0.747100i
\(580\) −7.40351 + 4.27442i −0.307414 + 0.177486i
\(581\) −12.6789 + 21.9605i −0.526011 + 0.911077i
\(582\) −19.8552 −0.823024
\(583\) 33.5797i 1.39073i
\(584\) 23.3705 + 40.4788i 0.967077 + 1.67503i
\(585\) 11.2707 13.5676i 0.465986 0.560952i
\(586\) 13.3454 23.1150i 0.551295 0.954871i
\(587\) −28.4879 + 16.4475i −1.17582 + 0.678861i −0.955044 0.296463i \(-0.904193\pi\)
−0.220778 + 0.975324i \(0.570860\pi\)
\(588\) −3.64730 6.31731i −0.150412 0.260522i
\(589\) −3.03048 + 6.60726i −0.124869 + 0.272247i
\(590\) 29.8128i 1.22737i
\(591\) −7.21464 4.16537i −0.296771 0.171341i
\(592\) 1.56168 0.901638i 0.0641848 0.0370571i
\(593\) 34.6753i 1.42394i −0.702208 0.711971i \(-0.747803\pi\)
0.702208 0.711971i \(-0.252197\pi\)
\(594\) −20.7072 −0.849629
\(595\) −36.3126 −1.48867
\(596\) 4.79819i 0.196541i
\(597\) 3.70248 0.151533
\(598\) −9.10222 1.55859i −0.372217 0.0637355i
\(599\) −0.0123804 0.0214435i −0.000505850 0.000876157i 0.865772 0.500438i \(-0.166828\pi\)
−0.866278 + 0.499562i \(0.833494\pi\)
\(600\) 3.09231 + 1.78534i 0.126243 + 0.0728864i
\(601\) 13.1476 0.536300 0.268150 0.963377i \(-0.413588\pi\)
0.268150 + 0.963377i \(0.413588\pi\)
\(602\) −54.5055 −2.22148
\(603\) −9.24104 5.33532i −0.376324 0.217271i
\(604\) −2.10301 1.21417i −0.0855704 0.0494041i
\(605\) −2.92054 1.68617i −0.118737 0.0685528i
\(606\) −17.8862 10.3266i −0.726579 0.419490i
\(607\) −1.77389 −0.0719999 −0.0360000 0.999352i \(-0.511462\pi\)
−0.0360000 + 0.999352i \(0.511462\pi\)
\(608\) 4.48160 0.181753
\(609\) −20.4582 11.8115i −0.829007 0.478628i
\(610\) 21.1309 + 36.5998i 0.855565 + 1.48188i
\(611\) −7.80894 21.1292i −0.315916 0.854794i
\(612\) −4.27599 −0.172847
\(613\) 13.9621i 0.563925i 0.959425 + 0.281962i \(0.0909853\pi\)
−0.959425 + 0.281962i \(0.909015\pi\)
\(614\) −19.6498 −0.793000
\(615\) 17.0215 0.686373
\(616\) 46.3760i 1.86854i
\(617\) 11.3258 6.53897i 0.455960 0.263249i −0.254384 0.967103i \(-0.581873\pi\)
0.710344 + 0.703854i \(0.248539\pi\)
\(618\) −11.8797 6.85877i −0.477873 0.275900i
\(619\) 10.8427i 0.435804i 0.975971 + 0.217902i \(0.0699213\pi\)
−0.975971 + 0.217902i \(0.930079\pi\)
\(620\) 5.06228 + 7.13360i 0.203306 + 0.286492i
\(621\) 5.52084 + 9.56238i 0.221544 + 0.383725i
\(622\) 1.01730 0.587339i 0.0407900 0.0235501i
\(623\) 2.88953 5.00482i 0.115767 0.200514i
\(624\) −6.54941 5.44064i −0.262186 0.217800i
\(625\) 14.7067 + 25.4728i 0.588268 + 1.01891i
\(626\) 36.4942i 1.45860i
\(627\) −4.65052 −0.185724
\(628\) −3.70458 + 6.41652i −0.147829 + 0.256047i
\(629\) −2.29067 + 1.32252i −0.0913349 + 0.0527323i
\(630\) 24.5009i 0.976137i
\(631\) 46.1760i 1.83824i 0.393980 + 0.919119i \(0.371098\pi\)
−0.393980 + 0.919119i \(0.628902\pi\)
\(632\) −5.91585 3.41552i −0.235320 0.135862i
\(633\) −4.93178 −0.196021
\(634\) 17.4268 0.692106
\(635\) −7.35619 + 4.24710i −0.291922 + 0.168541i
\(636\) −6.13314 −0.243195
\(637\) 6.91288 40.3714i 0.273898 1.59957i
\(638\) 11.1805 + 19.3652i 0.442641 + 0.766677i
\(639\) 1.58941i 0.0628762i
\(640\) −4.05676 + 7.02652i −0.160358 + 0.277748i
\(641\) 24.0310 0.949167 0.474583 0.880211i \(-0.342599\pi\)
0.474583 + 0.880211i \(0.342599\pi\)
\(642\) 10.9541 6.32434i 0.432323 0.249602i
\(643\) −9.87327 5.70034i −0.389364 0.224799i 0.292521 0.956259i \(-0.405506\pi\)
−0.681884 + 0.731460i \(0.738839\pi\)
\(644\) 5.15342 2.97533i 0.203073 0.117244i
\(645\) −23.6708 13.6664i −0.932037 0.538112i
\(646\) 5.21707 0.205263
\(647\) 0.779003 + 1.34927i 0.0306258 + 0.0530454i 0.880932 0.473243i \(-0.156917\pi\)
−0.850306 + 0.526288i \(0.823583\pi\)
\(648\) 2.50901i 0.0985634i
\(649\) 36.1748 1.41998
\(650\) 1.67250 + 4.52540i 0.0656010 + 0.177501i
\(651\) −10.0771 + 21.9707i −0.394951 + 0.861099i
\(652\) −1.13305 + 0.654165i −0.0443736 + 0.0256191i
\(653\) 9.41441 + 16.3062i 0.368414 + 0.638112i 0.989318 0.145775i \(-0.0465675\pi\)
−0.620904 + 0.783887i \(0.713234\pi\)
\(654\) 9.99294 + 17.3083i 0.390755 + 0.676807i
\(655\) 41.8451i 1.63502i
\(656\) 15.7964i 0.616744i
\(657\) 25.9489 14.9816i 1.01236 0.584488i
\(658\) −27.0981 15.6451i −1.05640 0.609910i
\(659\) 16.2447 28.1366i 0.632804 1.09605i −0.354172 0.935180i \(-0.615237\pi\)
0.986976 0.160868i \(-0.0514293\pi\)
\(660\) −2.79811 + 4.84646i −0.108916 + 0.188648i
\(661\) −20.2696 11.7026i −0.788395 0.455180i 0.0510022 0.998699i \(-0.483758\pi\)
−0.839397 + 0.543518i \(0.817092\pi\)
\(662\) −14.1933 24.5835i −0.551639 0.955467i
\(663\) 9.60664 + 7.98030i 0.373091 + 0.309929i
\(664\) −9.10932 15.7778i −0.353510 0.612298i
\(665\) 13.8672i 0.537747i
\(666\) −0.892330 1.54556i −0.0345771 0.0598893i
\(667\) 5.96177 10.3261i 0.230841 0.399828i
\(668\) 7.69448 + 4.44241i 0.297708 + 0.171882i
\(669\) 10.2844i 0.397619i
\(670\) 13.5676 7.83327i 0.524163 0.302626i
\(671\) −44.4101 + 25.6402i −1.71443 + 0.989828i
\(672\) 14.9024 0.574872
\(673\) 1.42451 2.46732i 0.0549108 0.0951083i −0.837263 0.546800i \(-0.815846\pi\)
0.892174 + 0.451691i \(0.149179\pi\)
\(674\) 11.6092 6.70258i 0.447170 0.258174i
\(675\) 2.88431 4.99577i 0.111017 0.192287i
\(676\) 1.51090 + 8.09942i 0.0581115 + 0.311516i
\(677\) 7.00045 + 12.1251i 0.269049 + 0.466007i 0.968617 0.248560i \(-0.0799572\pi\)
−0.699567 + 0.714567i \(0.746624\pi\)
\(678\) 6.05458 3.49561i 0.232525 0.134248i
\(679\) 71.8397 2.75696
\(680\) 13.0446 22.5939i 0.500238 0.866437i
\(681\) 3.65145i 0.139924i
\(682\) 18.6592 13.2413i 0.714499 0.507037i
\(683\) −37.2648 21.5148i −1.42590 0.823242i −0.429103 0.903256i \(-0.641170\pi\)
−0.996794 + 0.0800140i \(0.974504\pi\)
\(684\) 1.63293i 0.0624368i
\(685\) 5.75054 + 9.96022i 0.219717 + 0.380560i
\(686\) −10.9182 18.9109i −0.416860 0.722022i
\(687\) −0.694159 0.400773i −0.0264838 0.0152904i
\(688\) 12.6827 21.9671i 0.483523 0.837487i
\(689\) −26.4898 22.0052i −1.00918 0.838332i
\(690\) −6.43265 −0.244887
\(691\) 4.43752 + 2.56200i 0.168811 + 0.0974631i 0.582025 0.813171i \(-0.302261\pi\)
−0.413214 + 0.910634i \(0.635594\pi\)
\(692\) 4.65278 8.05885i 0.176872 0.306352i
\(693\) 29.7293 1.12932
\(694\) −3.10421 1.79222i −0.117834 0.0680316i
\(695\) 31.0047i 1.17608i
\(696\) 14.6984 8.48614i 0.557142 0.321666i
\(697\) 23.1700i 0.877627i
\(698\) 12.0386 20.8515i 0.455669 0.789242i
\(699\) 9.12354 0.345084
\(700\) −2.69235 1.55443i −0.101761 0.0587520i
\(701\) −21.1090 + 36.5619i −0.797277 + 1.38092i 0.124107 + 0.992269i \(0.460394\pi\)
−0.921383 + 0.388655i \(0.872940\pi\)
\(702\) −13.5697 + 16.3352i −0.512157 + 0.616532i
\(703\) −0.505049 0.874771i −0.0190483 0.0329926i
\(704\) −26.4094 15.2475i −0.995342 0.574661i
\(705\) −7.84551 13.5888i −0.295479 0.511785i
\(706\) 19.9780 + 34.6029i 0.751882 + 1.30230i
\(707\) 64.7157 + 37.3636i 2.43388 + 1.40520i
\(708\) 6.60712i 0.248311i
\(709\) −5.64475 3.25900i −0.211993 0.122394i 0.390244 0.920711i \(-0.372391\pi\)
−0.602237 + 0.798317i \(0.705724\pi\)
\(710\) 2.02093 + 1.16678i 0.0758440 + 0.0437886i
\(711\) −2.18951 + 3.79235i −0.0821132 + 0.142224i
\(712\) 2.07602 + 3.59577i 0.0778021 + 0.134757i
\(713\) −11.0895 5.08631i −0.415306 0.190484i
\(714\) 17.3480 0.649232
\(715\) −29.4741 + 10.8931i −1.10227 + 0.407378i
\(716\) 0.890597 1.54256i 0.0332832 0.0576482i
\(717\) 8.47096 4.89071i 0.316354 0.182647i
\(718\) −3.62540 + 6.27938i −0.135299 + 0.234344i
\(719\) −4.18015 7.24023i −0.155893 0.270015i 0.777491 0.628894i \(-0.216492\pi\)
−0.933384 + 0.358879i \(0.883159\pi\)
\(720\) 9.87446 + 5.70102i 0.367999 + 0.212465i
\(721\) 42.9831 + 24.8163i 1.60077 + 0.924207i
\(722\) 20.2159i 0.752358i
\(723\) −3.33244 + 1.92399i −0.123935 + 0.0715539i
\(724\) 12.3853 0.460296
\(725\) −6.22934 −0.231352
\(726\) 1.39526 + 0.805554i 0.0517830 + 0.0298969i
\(727\) 17.7235 30.6980i 0.657328 1.13853i −0.323977 0.946065i \(-0.605020\pi\)
0.981305 0.192460i \(-0.0616467\pi\)
\(728\) 36.5843 + 30.3908i 1.35591 + 1.12636i
\(729\) 13.7078 0.507697
\(730\) 43.9918i 1.62821i
\(731\) −18.6029 + 32.2212i −0.688054 + 1.19174i
\(732\) 4.68304 + 8.11126i 0.173090 + 0.299801i
\(733\) 26.8709 15.5139i 0.992499 0.573020i 0.0864787 0.996254i \(-0.472439\pi\)
0.906020 + 0.423234i \(0.139105\pi\)
\(734\) 27.5930i 1.01848i
\(735\) 28.5310i 1.05238i
\(736\) 7.52185i 0.277259i
\(737\) 9.50487 + 16.4629i 0.350116 + 0.606419i
\(738\) 15.6333 0.575469
\(739\) −0.976612 0.563847i −0.0359252 0.0207414i 0.481930 0.876210i \(-0.339936\pi\)
−0.517855 + 0.855468i \(0.673269\pi\)
\(740\) −1.21550 −0.0446828
\(741\) −3.04755 + 3.66863i −0.111955 + 0.134770i
\(742\) −47.8361 −1.75612
\(743\) 9.48013 5.47336i 0.347792 0.200798i −0.315920 0.948786i \(-0.602313\pi\)
0.663712 + 0.747988i \(0.268980\pi\)
\(744\) −10.0503 14.1626i −0.368462 0.519224i
\(745\) −9.38344 + 16.2526i −0.343783 + 0.595449i
\(746\) 43.7709i 1.60257i
\(747\) −10.1143 + 5.83952i −0.370065 + 0.213657i
\(748\) 6.59711 + 3.80884i 0.241214 + 0.139265i
\(749\) −39.6339 + 22.8826i −1.44819 + 0.836113i
\(750\) −5.65870 9.80116i −0.206627 0.357888i
\(751\) 49.4399 1.80409 0.902044 0.431645i \(-0.142067\pi\)
0.902044 + 0.431645i \(0.142067\pi\)
\(752\) 12.6108 7.28082i 0.459867 0.265504i
\(753\) 7.97618 + 13.8152i 0.290668 + 0.503452i
\(754\) 22.6033 + 3.87040i 0.823163 + 0.140952i
\(755\) −4.74894 8.22540i −0.172831 0.299353i
\(756\) 13.6842i 0.497690i
\(757\) 5.65061 9.78714i 0.205375 0.355720i −0.744877 0.667201i \(-0.767492\pi\)
0.950252 + 0.311482i \(0.100825\pi\)
\(758\) 0.873640 + 1.51319i 0.0317320 + 0.0549615i
\(759\) 7.80535i 0.283316i
\(760\) 8.62826 + 4.98153i 0.312980 + 0.180699i
\(761\) −4.68908 + 2.70724i −0.169979 + 0.0981375i −0.582576 0.812776i \(-0.697955\pi\)
0.412597 + 0.910914i \(0.364622\pi\)
\(762\) 3.51435 2.02901i 0.127311 0.0735033i
\(763\) −36.1563 62.6245i −1.30894 2.26716i
\(764\) −3.82105 + 6.61826i −0.138241 + 0.239440i
\(765\) −14.4838 8.36223i −0.523663 0.302337i