Properties

Label 403.2.v.a.36.10
Level 403
Weight 2
Character 403.36
Analytic conductor 3.218
Analytic rank 0
Dimension 70
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 403 = 13 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 403.v (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.21797120146\)
Analytic rank: \(0\)
Dimension: \(70\)
Relative dimension: \(35\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.10
Character \(\chi\) \(=\) 403.36
Dual form 403.2.v.a.56.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.06311 + 0.613789i) q^{2} +0.887230 q^{3} +(-0.246526 + 0.426995i) q^{4} +(-0.237568 + 0.137160i) q^{5} +(-0.943226 + 0.544572i) q^{6} +(-1.34961 + 0.779199i) q^{7} -3.06042i q^{8} -2.21282 q^{9} +O(q^{10})\) \(q+(-1.06311 + 0.613789i) q^{2} +0.887230 q^{3} +(-0.246526 + 0.426995i) q^{4} +(-0.237568 + 0.137160i) q^{5} +(-0.943226 + 0.544572i) q^{6} +(-1.34961 + 0.779199i) q^{7} -3.06042i q^{8} -2.21282 q^{9} +(0.168374 - 0.291633i) q^{10} +(-4.65713 - 2.68880i) q^{11} +(-0.218725 + 0.378843i) q^{12} +(-0.395334 - 3.58381i) q^{13} +(0.956528 - 1.65676i) q^{14} +(-0.210777 + 0.121692i) q^{15} +(1.38540 + 2.39958i) q^{16} +(1.84514 + 3.19588i) q^{17} +(2.35248 - 1.35821i) q^{18} +(1.56033 - 0.900858i) q^{19} -0.135254i q^{20} +(-1.19742 + 0.691329i) q^{21} +6.60142 q^{22} +(-2.40111 - 4.15885i) q^{23} -2.71529i q^{24} +(-2.46237 + 4.26496i) q^{25} +(2.61999 + 3.56735i) q^{26} -4.62497 q^{27} -0.768370i q^{28} +(-0.431591 - 0.747537i) q^{29} +(0.149387 - 0.258746i) q^{30} +(1.09696 - 5.45863i) q^{31} +(2.35512 + 1.35973i) q^{32} +(-4.13195 - 2.38558i) q^{33} +(-3.92320 - 2.26506i) q^{34} +(0.213750 - 0.370225i) q^{35} +(0.545518 - 0.944864i) q^{36} +3.05644i q^{37} +(-1.10587 + 1.91543i) q^{38} +(-0.350752 - 3.17966i) q^{39} +(0.419766 + 0.727056i) q^{40} +(-9.49675 - 5.48295i) q^{41} +(0.848660 - 1.46992i) q^{42} +(1.99664 + 3.45827i) q^{43} +(2.29620 - 1.32571i) q^{44} +(0.525696 - 0.303510i) q^{45} +(5.10532 + 2.94756i) q^{46} +3.07294i q^{47} +(1.22917 + 2.12898i) q^{48} +(-2.28570 + 3.95894i) q^{49} -6.04552i q^{50} +(1.63707 + 2.83548i) q^{51} +(1.62773 + 0.714696i) q^{52} +(-4.52263 - 7.83343i) q^{53} +(4.91687 - 2.83876i) q^{54} +1.47518 q^{55} +(2.38467 + 4.13038i) q^{56} +(1.38437 - 0.799268i) q^{57} +(0.917660 + 0.529811i) q^{58} +(3.03098 - 1.74994i) q^{59} -0.120001i q^{60} +(-0.168588 + 0.292003i) q^{61} +(2.18426 + 6.47645i) q^{62} +(2.98645 - 1.72423i) q^{63} -8.87995 q^{64} +(0.585474 + 0.797174i) q^{65} +5.85697 q^{66} +(-6.25248 - 3.60987i) q^{67} -1.81950 q^{68} +(-2.13034 - 3.68986i) q^{69} +0.524789i q^{70} -0.262470i q^{71} +6.77216i q^{72} +(-3.86436 + 2.23109i) q^{73} +(-1.87601 - 3.24935i) q^{74} +(-2.18469 + 3.78400i) q^{75} +0.888338i q^{76} +8.38043 q^{77} +(2.32453 + 3.16506i) q^{78} +(-5.93089 + 10.2726i) q^{79} +(-0.658252 - 0.380042i) q^{80} +2.53506 q^{81} +13.4615 q^{82} +(1.42517 - 0.822823i) q^{83} -0.681721i q^{84} +(-0.876693 - 0.506159i) q^{85} +(-4.24530 - 2.45103i) q^{86} +(-0.382920 - 0.663237i) q^{87} +(-8.22884 + 14.2528i) q^{88} +(5.89130 - 3.40134i) q^{89} +(-0.372583 + 0.645332i) q^{90} +(3.32605 + 4.52871i) q^{91} +2.36774 q^{92} +(0.973252 - 4.84306i) q^{93} +(-1.88614 - 3.26689i) q^{94} +(-0.247123 + 0.428030i) q^{95} +(2.08953 + 1.20639i) q^{96} +(4.26027 + 2.45967i) q^{97} -5.61175i q^{98} +(10.3054 + 5.94983i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} + O(q^{10}) \) \( 70q - 6q^{2} + 4q^{3} + 30q^{4} + 6q^{6} - 12q^{7} + 58q^{9} - q^{10} - 6q^{11} + 13q^{12} - 14q^{13} - 14q^{14} - 15q^{15} - 28q^{16} + 6q^{17} + 12q^{19} + 9q^{21} - 8q^{22} + 10q^{23} + 19q^{25} + 34q^{27} - 18q^{29} - 31q^{30} + 2q^{31} + 36q^{32} - 12q^{33} - 9q^{34} - 12q^{35} + 8q^{36} - 21q^{38} - 30q^{39} + 5q^{40} + 18q^{41} - 49q^{42} + 19q^{43} - 42q^{44} - 63q^{45} - 6q^{46} - 27q^{48} + 9q^{49} - 7q^{51} - 43q^{52} - 22q^{53} + 18q^{54} + 30q^{55} + 25q^{56} - 15q^{57} - 12q^{58} + 33q^{59} - 13q^{61} - 17q^{62} - 6q^{63} - 38q^{64} + 9q^{65} - 52q^{66} + 30q^{67} + 88q^{68} - 16q^{69} + 9q^{73} - 19q^{74} + 25q^{75} + 34q^{77} + 14q^{78} + 6q^{79} + 6q^{80} + 22q^{81} - 78q^{82} + 54q^{83} - 33q^{85} + 24q^{86} - 14q^{87} + 16q^{88} - 6q^{89} - 11q^{90} - 70q^{91} - 6q^{92} + 7q^{93} - 43q^{94} + 25q^{95} - 36q^{96} - 75q^{97} - 93q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/403\mathbb{Z}\right)^\times\).

\(n\) \(249\) \(313\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06311 + 0.613789i −0.751735 + 0.434015i −0.826321 0.563200i \(-0.809570\pi\)
0.0745853 + 0.997215i \(0.476237\pi\)
\(3\) 0.887230 0.512242 0.256121 0.966645i \(-0.417555\pi\)
0.256121 + 0.966645i \(0.417555\pi\)
\(4\) −0.246526 + 0.426995i −0.123263 + 0.213497i
\(5\) −0.237568 + 0.137160i −0.106244 + 0.0613397i −0.552180 0.833725i \(-0.686204\pi\)
0.445937 + 0.895064i \(0.352871\pi\)
\(6\) −0.943226 + 0.544572i −0.385071 + 0.222321i
\(7\) −1.34961 + 0.779199i −0.510106 + 0.294510i −0.732877 0.680361i \(-0.761823\pi\)
0.222771 + 0.974871i \(0.428490\pi\)
\(8\) 3.06042i 1.08202i
\(9\) −2.21282 −0.737608
\(10\) 0.168374 0.291633i 0.0532447 0.0922225i
\(11\) −4.65713 2.68880i −1.40418 0.810703i −0.409360 0.912373i \(-0.634248\pi\)
−0.994818 + 0.101670i \(0.967581\pi\)
\(12\) −0.218725 + 0.378843i −0.0631404 + 0.109362i
\(13\) −0.395334 3.58381i −0.109646 0.993971i
\(14\) 0.956528 1.65676i 0.255643 0.442786i
\(15\) −0.210777 + 0.121692i −0.0544224 + 0.0314208i
\(16\) 1.38540 + 2.39958i 0.346350 + 0.599895i
\(17\) 1.84514 + 3.19588i 0.447513 + 0.775115i 0.998223 0.0595810i \(-0.0189765\pi\)
−0.550710 + 0.834696i \(0.685643\pi\)
\(18\) 2.35248 1.35821i 0.554486 0.320132i
\(19\) 1.56033 0.900858i 0.357965 0.206671i −0.310223 0.950664i \(-0.600404\pi\)
0.668188 + 0.743993i \(0.267070\pi\)
\(20\) 0.135254i 0.0302436i
\(21\) −1.19742 + 0.691329i −0.261298 + 0.150860i
\(22\) 6.60142 1.40743
\(23\) −2.40111 4.15885i −0.500667 0.867180i −1.00000 0.000770114i \(-0.999755\pi\)
0.499333 0.866410i \(-0.333578\pi\)
\(24\) 2.71529i 0.554257i
\(25\) −2.46237 + 4.26496i −0.492475 + 0.852992i
\(26\) 2.61999 + 3.56735i 0.513822 + 0.699615i
\(27\) −4.62497 −0.890076
\(28\) 0.768370i 0.145208i
\(29\) −0.431591 0.747537i −0.0801444 0.138814i 0.823167 0.567799i \(-0.192205\pi\)
−0.903312 + 0.428985i \(0.858871\pi\)
\(30\) 0.149387 0.258746i 0.0272742 0.0472403i
\(31\) 1.09696 5.45863i 0.197019 0.980400i
\(32\) 2.35512 + 1.35973i 0.416331 + 0.240369i
\(33\) −4.13195 2.38558i −0.719280 0.415276i
\(34\) −3.92320 2.26506i −0.672823 0.388454i
\(35\) 0.213750 0.370225i 0.0361303 0.0625795i
\(36\) 0.545518 0.944864i 0.0909196 0.157477i
\(37\) 3.05644i 0.502476i 0.967925 + 0.251238i \(0.0808376\pi\)
−0.967925 + 0.251238i \(0.919162\pi\)
\(38\) −1.10587 + 1.91543i −0.179396 + 0.310724i
\(39\) −0.350752 3.17966i −0.0561653 0.509154i
\(40\) 0.419766 + 0.727056i 0.0663708 + 0.114958i
\(41\) −9.49675 5.48295i −1.48314 0.856293i −0.483326 0.875440i \(-0.660571\pi\)
−0.999817 + 0.0191477i \(0.993905\pi\)
\(42\) 0.848660 1.46992i 0.130951 0.226814i
\(43\) 1.99664 + 3.45827i 0.304484 + 0.527382i 0.977146 0.212568i \(-0.0681827\pi\)
−0.672662 + 0.739950i \(0.734849\pi\)
\(44\) 2.29620 1.32571i 0.346166 0.199859i
\(45\) 0.525696 0.303510i 0.0783661 0.0452447i
\(46\) 5.10532 + 2.94756i 0.752738 + 0.434593i
\(47\) 3.07294i 0.448235i 0.974562 + 0.224118i \(0.0719499\pi\)
−0.974562 + 0.224118i \(0.928050\pi\)
\(48\) 1.22917 + 2.12898i 0.177415 + 0.307292i
\(49\) −2.28570 + 3.95894i −0.326528 + 0.565563i
\(50\) 6.04552i 0.854965i
\(51\) 1.63707 + 2.83548i 0.229235 + 0.397047i
\(52\) 1.62773 + 0.714696i 0.225725 + 0.0991105i
\(53\) −4.52263 7.83343i −0.621231 1.07600i −0.989257 0.146188i \(-0.953299\pi\)
0.368026 0.929816i \(-0.380034\pi\)
\(54\) 4.91687 2.83876i 0.669102 0.386306i
\(55\) 1.47518 0.198913
\(56\) 2.38467 + 4.13038i 0.318665 + 0.551945i
\(57\) 1.38437 0.799268i 0.183365 0.105866i
\(58\) 0.917660 + 0.529811i 0.120495 + 0.0695676i
\(59\) 3.03098 1.74994i 0.394600 0.227823i −0.289551 0.957163i \(-0.593506\pi\)
0.684151 + 0.729340i \(0.260173\pi\)
\(60\) 0.120001i 0.0154921i
\(61\) −0.168588 + 0.292003i −0.0215855 + 0.0373872i −0.876616 0.481190i \(-0.840205\pi\)
0.855031 + 0.518577i \(0.173538\pi\)
\(62\) 2.18426 + 6.47645i 0.277401 + 0.822510i
\(63\) 2.98645 1.72423i 0.376258 0.217233i
\(64\) −8.87995 −1.10999
\(65\) 0.585474 + 0.797174i 0.0726191 + 0.0988773i
\(66\) 5.85697 0.720944
\(67\) −6.25248 3.60987i −0.763863 0.441016i 0.0668183 0.997765i \(-0.478715\pi\)
−0.830681 + 0.556749i \(0.812049\pi\)
\(68\) −1.81950 −0.220647
\(69\) −2.13034 3.68986i −0.256463 0.444206i
\(70\) 0.524789i 0.0627243i
\(71\) 0.262470i 0.0311495i −0.999879 0.0155748i \(-0.995042\pi\)
0.999879 0.0155748i \(-0.00495780\pi\)
\(72\) 6.77216i 0.798107i
\(73\) −3.86436 + 2.23109i −0.452289 + 0.261129i −0.708796 0.705413i \(-0.750761\pi\)
0.256508 + 0.966542i \(0.417428\pi\)
\(74\) −1.87601 3.24935i −0.218082 0.377729i
\(75\) −2.18469 + 3.78400i −0.252266 + 0.436938i
\(76\) 0.888338i 0.101899i
\(77\) 8.38043 0.955039
\(78\) 2.32453 + 3.16506i 0.263202 + 0.358372i
\(79\) −5.93089 + 10.2726i −0.667278 + 1.15576i 0.311385 + 0.950284i \(0.399207\pi\)
−0.978662 + 0.205475i \(0.934126\pi\)
\(80\) −0.658252 0.380042i −0.0735948 0.0424900i
\(81\) 2.53506 0.281673
\(82\) 13.4615 1.48657
\(83\) 1.42517 0.822823i 0.156433 0.0903165i −0.419740 0.907644i \(-0.637879\pi\)
0.576173 + 0.817328i \(0.304545\pi\)
\(84\) 0.681721i 0.0743818i
\(85\) −0.876693 0.506159i −0.0950907 0.0549007i
\(86\) −4.24530 2.45103i −0.457783 0.264301i
\(87\) −0.382920 0.663237i −0.0410533 0.0711065i
\(88\) −8.22884 + 14.2528i −0.877197 + 1.51935i
\(89\) 5.89130 3.40134i 0.624477 0.360542i −0.154133 0.988050i \(-0.549259\pi\)
0.778610 + 0.627508i \(0.215925\pi\)
\(90\) −0.372583 + 0.645332i −0.0392737 + 0.0680240i
\(91\) 3.32605 + 4.52871i 0.348665 + 0.474738i
\(92\) 2.36774 0.246854
\(93\) 0.973252 4.84306i 0.100922 0.502202i
\(94\) −1.88614 3.26689i −0.194541 0.336954i
\(95\) −0.247123 + 0.428030i −0.0253543 + 0.0439149i
\(96\) 2.08953 + 1.20639i 0.213262 + 0.123127i
\(97\) 4.26027 + 2.45967i 0.432565 + 0.249742i 0.700439 0.713712i \(-0.252988\pi\)
−0.267874 + 0.963454i \(0.586321\pi\)
\(98\) 5.61175i 0.566872i
\(99\) 10.3054 + 5.94983i 1.03573 + 0.597981i
\(100\) −1.21408 2.10284i −0.121408 0.210284i
\(101\) 6.50755 + 11.2714i 0.647525 + 1.12155i 0.983712 + 0.179751i \(0.0575292\pi\)
−0.336187 + 0.941795i \(0.609137\pi\)
\(102\) −3.48078 2.00963i −0.344648 0.198983i
\(103\) 6.16565 + 10.6792i 0.607520 + 1.05225i 0.991648 + 0.128975i \(0.0411687\pi\)
−0.384128 + 0.923280i \(0.625498\pi\)
\(104\) −10.9680 + 1.20989i −1.07550 + 0.118639i
\(105\) 0.189645 0.328475i 0.0185075 0.0320559i
\(106\) 9.61615 + 5.55189i 0.934003 + 0.539247i
\(107\) 1.08103 0.104507 0.0522537 0.998634i \(-0.483360\pi\)
0.0522537 + 0.998634i \(0.483360\pi\)
\(108\) 1.14017 1.97484i 0.109713 0.190029i
\(109\) 15.4015i 1.47519i 0.675242 + 0.737597i \(0.264039\pi\)
−0.675242 + 0.737597i \(0.735961\pi\)
\(110\) −1.56828 + 0.905449i −0.149530 + 0.0863312i
\(111\) 2.71177i 0.257389i
\(112\) −3.73950 2.15900i −0.353350 0.204007i
\(113\) −19.8340 −1.86583 −0.932914 0.360099i \(-0.882743\pi\)
−0.932914 + 0.360099i \(0.882743\pi\)
\(114\) −0.981164 + 1.69943i −0.0918944 + 0.159166i
\(115\) 1.14085 + 0.658673i 0.106385 + 0.0614215i
\(116\) 0.425592 0.0395153
\(117\) 0.874804 + 7.93034i 0.0808757 + 0.733161i
\(118\) −2.14819 + 3.72077i −0.197757 + 0.342524i
\(119\) −4.98046 2.87547i −0.456558 0.263594i
\(120\) 0.372429 + 0.645066i 0.0339980 + 0.0588862i
\(121\) 8.95926 + 15.5179i 0.814478 + 1.41072i
\(122\) 0.413910i 0.0374737i
\(123\) −8.42580 4.86464i −0.759728 0.438629i
\(124\) 2.06038 + 1.81409i 0.185028 + 0.162910i
\(125\) 2.72255i 0.243513i
\(126\) −2.11663 + 3.66611i −0.188564 + 0.326603i
\(127\) −12.4623 −1.10585 −0.552925 0.833231i \(-0.686488\pi\)
−0.552925 + 0.833231i \(0.686488\pi\)
\(128\) 4.73015 2.73096i 0.418090 0.241385i
\(129\) 1.77147 + 3.06828i 0.155970 + 0.270147i
\(130\) −1.11172 0.488130i −0.0975045 0.0428118i
\(131\) 9.19073 15.9188i 0.802998 1.39083i −0.114637 0.993407i \(-0.536571\pi\)
0.917635 0.397425i \(-0.130096\pi\)
\(132\) 2.03726 1.17621i 0.177321 0.102376i
\(133\) −1.40390 + 2.43162i −0.121733 + 0.210848i
\(134\) 8.86281 0.765630
\(135\) 1.09874 0.634360i 0.0945648 0.0545970i
\(136\) 9.78073 5.64691i 0.838691 0.484218i
\(137\) 11.2493i 0.961092i −0.876970 0.480546i \(-0.840438\pi\)
0.876970 0.480546i \(-0.159562\pi\)
\(138\) 4.52959 + 2.61516i 0.385584 + 0.222617i
\(139\) 7.87215 13.6350i 0.667707 1.15650i −0.310837 0.950463i \(-0.600609\pi\)
0.978544 0.206039i \(-0.0660574\pi\)
\(140\) 0.105390 + 0.182540i 0.00890704 + 0.0154274i
\(141\) 2.72641i 0.229605i
\(142\) 0.161102 + 0.279036i 0.0135193 + 0.0234162i
\(143\) −7.79502 + 17.7533i −0.651852 + 1.48460i
\(144\) −3.06564 5.30985i −0.255470 0.442488i
\(145\) 0.205064 + 0.118394i 0.0170296 + 0.00983207i
\(146\) 2.73884 4.74380i 0.226668 0.392600i
\(147\) −2.02794 + 3.51249i −0.167262 + 0.289706i
\(148\) −1.30508 0.753491i −0.107277 0.0619366i
\(149\) −5.47443 + 3.16066i −0.448483 + 0.258932i −0.707189 0.707024i \(-0.750037\pi\)
0.258706 + 0.965956i \(0.416704\pi\)
\(150\) 5.36376i 0.437949i
\(151\) 3.46784i 0.282208i −0.989995 0.141104i \(-0.954935\pi\)
0.989995 0.141104i \(-0.0450653\pi\)
\(152\) −2.75700 4.77526i −0.223622 0.387325i
\(153\) −4.08298 7.07192i −0.330089 0.571731i
\(154\) −8.90936 + 5.14382i −0.717936 + 0.414501i
\(155\) 0.488104 + 1.44725i 0.0392054 + 0.116246i
\(156\) 1.44417 + 0.634099i 0.115626 + 0.0507686i
\(157\) 9.71851 0.775621 0.387811 0.921739i \(-0.373231\pi\)
0.387811 + 0.921739i \(0.373231\pi\)
\(158\) 14.5613i 1.15843i
\(159\) −4.01261 6.95005i −0.318221 0.551175i
\(160\) −0.746001 −0.0589766
\(161\) 6.48115 + 3.74189i 0.510786 + 0.294902i
\(162\) −2.69506 + 1.55599i −0.211744 + 0.122250i
\(163\) −1.09485 0.632114i −0.0857556 0.0495110i 0.456509 0.889719i \(-0.349100\pi\)
−0.542265 + 0.840208i \(0.682433\pi\)
\(164\) 4.68238 2.70337i 0.365633 0.211098i
\(165\) 1.30882 0.101892
\(166\) −1.01008 + 1.74951i −0.0783974 + 0.135788i
\(167\) 12.6771i 0.980985i −0.871445 0.490492i \(-0.836817\pi\)
0.871445 0.490492i \(-0.163183\pi\)
\(168\) 2.11575 + 3.66459i 0.163234 + 0.282729i
\(169\) −12.6874 + 2.83361i −0.975956 + 0.217970i
\(170\) 1.24270 0.0953107
\(171\) −3.45274 + 1.99344i −0.264038 + 0.152442i
\(172\) −1.96889 −0.150126
\(173\) 13.4548 1.02295 0.511476 0.859298i \(-0.329099\pi\)
0.511476 + 0.859298i \(0.329099\pi\)
\(174\) 0.814175 + 0.470064i 0.0617225 + 0.0356355i
\(175\) 7.67472i 0.580154i
\(176\) 14.9002i 1.12315i
\(177\) 2.68918 1.55260i 0.202131 0.116700i
\(178\) −4.17542 + 7.23203i −0.312961 + 0.542064i
\(179\) −4.81557 −0.359932 −0.179966 0.983673i \(-0.557599\pi\)
−0.179966 + 0.983673i \(0.557599\pi\)
\(180\) 0.299292i 0.0223079i
\(181\) 0.104258 + 0.180580i 0.00774945 + 0.0134224i 0.869874 0.493274i \(-0.164200\pi\)
−0.862125 + 0.506696i \(0.830867\pi\)
\(182\) −6.31565 2.77305i −0.468147 0.205552i
\(183\) −0.149576 + 0.259074i −0.0110570 + 0.0191513i
\(184\) −12.7278 + 7.34841i −0.938307 + 0.541732i
\(185\) −0.419221 0.726112i −0.0308217 0.0533848i
\(186\) 1.93794 + 5.74610i 0.142097 + 0.421324i
\(187\) 19.8449i 1.45120i
\(188\) −1.31213 0.757559i −0.0956970 0.0552507i
\(189\) 6.24192 3.60377i 0.454033 0.262136i
\(190\) 0.606726i 0.0440165i
\(191\) −0.826743 −0.0598210 −0.0299105 0.999553i \(-0.509522\pi\)
−0.0299105 + 0.999553i \(0.509522\pi\)
\(192\) −7.87855 −0.568586
\(193\) 13.5080i 0.972327i −0.873868 0.486164i \(-0.838396\pi\)
0.873868 0.486164i \(-0.161604\pi\)
\(194\) −6.03888 −0.433566
\(195\) 0.519450 + 0.707277i 0.0371986 + 0.0506491i
\(196\) −1.12697 1.95196i −0.0804976 0.139426i
\(197\) −22.8354 13.1840i −1.62696 0.939325i −0.984994 0.172590i \(-0.944786\pi\)
−0.641964 0.766735i \(-0.721880\pi\)
\(198\) −14.6078 −1.03813
\(199\) 14.1313 1.00174 0.500870 0.865523i \(-0.333014\pi\)
0.500870 + 0.865523i \(0.333014\pi\)
\(200\) 13.0525 + 7.53589i 0.922954 + 0.532868i
\(201\) −5.54739 3.20279i −0.391283 0.225907i
\(202\) −13.8365 7.98852i −0.973535 0.562071i
\(203\) 1.16496 + 0.672590i 0.0817642 + 0.0472066i
\(204\) −1.61432 −0.113025
\(205\) 3.00816 0.210099
\(206\) −13.1096 7.56882i −0.913388 0.527345i
\(207\) 5.31324 + 9.20280i 0.369296 + 0.639639i
\(208\) 8.05195 5.91365i 0.558303 0.410038i
\(209\) −9.68890 −0.670195
\(210\) 0.465608i 0.0321300i
\(211\) 22.8152 1.57067 0.785333 0.619074i \(-0.212492\pi\)
0.785333 + 0.619074i \(0.212492\pi\)
\(212\) 4.45978 0.306299
\(213\) 0.232872i 0.0159561i
\(214\) −1.14926 + 0.663527i −0.0785619 + 0.0453578i
\(215\) −0.948672 0.547716i −0.0646989 0.0373539i
\(216\) 14.1543i 0.963081i
\(217\) 2.77290 + 8.22179i 0.188237 + 0.558131i
\(218\) −9.45326 16.3735i −0.640255 1.10895i
\(219\) −3.42857 + 1.97949i −0.231681 + 0.133761i
\(220\) −0.363670 + 0.629894i −0.0245186 + 0.0424675i
\(221\) 10.7240 7.87609i 0.721374 0.529803i
\(222\) −1.66445 2.88292i −0.111711 0.193489i
\(223\) 24.7537i 1.65763i −0.559524 0.828814i \(-0.689016\pi\)
0.559524 0.828814i \(-0.310984\pi\)
\(224\) −4.23800 −0.283163
\(225\) 5.44880 9.43760i 0.363253 0.629173i
\(226\) 21.0858 12.1739i 1.40261 0.809797i
\(227\) 7.61806i 0.505628i 0.967515 + 0.252814i \(0.0813561\pi\)
−0.967515 + 0.252814i \(0.918644\pi\)
\(228\) 0.788160i 0.0521972i
\(229\) −7.80218 4.50459i −0.515582 0.297672i 0.219543 0.975603i \(-0.429543\pi\)
−0.735125 + 0.677931i \(0.762877\pi\)
\(230\) −1.61714 −0.106631
\(231\) 7.43537 0.489211
\(232\) −2.28777 + 1.32085i −0.150200 + 0.0867178i
\(233\) −27.8218 −1.82267 −0.911333 0.411669i \(-0.864946\pi\)
−0.911333 + 0.411669i \(0.864946\pi\)
\(234\) −5.79758 7.89392i −0.378999 0.516041i
\(235\) −0.421484 0.730033i −0.0274946 0.0476221i
\(236\) 1.72562i 0.112328i
\(237\) −5.26206 + 9.11416i −0.341808 + 0.592028i
\(238\) 7.05973 0.457614
\(239\) 4.40039 2.54057i 0.284638 0.164336i −0.350883 0.936419i \(-0.614119\pi\)
0.635521 + 0.772084i \(0.280785\pi\)
\(240\) −0.584021 0.337185i −0.0376984 0.0217652i
\(241\) 17.0436 9.84013i 1.09788 0.633859i 0.162213 0.986756i \(-0.448137\pi\)
0.935662 + 0.352897i \(0.114803\pi\)
\(242\) −19.0494 10.9982i −1.22454 0.706990i
\(243\) 16.1241 1.03436
\(244\) −0.0831226 0.143973i −0.00532138 0.00921690i
\(245\) 1.25402i 0.0801166i
\(246\) 11.9434 0.761486
\(247\) −3.84536 5.23580i −0.244674 0.333146i
\(248\) −16.7057 3.35714i −1.06081 0.213179i
\(249\) 1.26445 0.730033i 0.0801315 0.0462639i
\(250\) 1.67107 + 2.89438i 0.105688 + 0.183057i
\(251\) −6.20033 10.7393i −0.391361 0.677858i 0.601268 0.799047i \(-0.294662\pi\)
−0.992629 + 0.121190i \(0.961329\pi\)
\(252\) 1.70027i 0.107107i
\(253\) 25.8244i 1.62357i
\(254\) 13.2488 7.64922i 0.831306 0.479955i
\(255\) −0.777828 0.449079i −0.0487095 0.0281224i
\(256\) 5.52748 9.57388i 0.345468 0.598368i
\(257\) −3.82629 + 6.62734i −0.238678 + 0.413402i −0.960335 0.278848i \(-0.910047\pi\)
0.721657 + 0.692250i \(0.243381\pi\)
\(258\) −3.76656 2.17462i −0.234496 0.135386i
\(259\) −2.38158 4.12501i −0.147984 0.256316i
\(260\) −0.484724 + 0.0534704i −0.0300613 + 0.00331609i
\(261\) 0.955034 + 1.65417i 0.0591151 + 0.102390i
\(262\) 22.5647i 1.39405i
\(263\) 4.77666 + 8.27342i 0.294542 + 0.510161i 0.974878 0.222739i \(-0.0714997\pi\)
−0.680337 + 0.732900i \(0.738166\pi\)
\(264\) −7.30087 + 12.6455i −0.449337 + 0.778275i
\(265\) 2.14886 + 1.24065i 0.132004 + 0.0762123i
\(266\) 3.44678i 0.211336i
\(267\) 5.22694 3.01777i 0.319883 0.184685i
\(268\) 3.08280 1.77985i 0.188312 0.108722i
\(269\) 11.4766 0.699739 0.349869 0.936799i \(-0.386226\pi\)
0.349869 + 0.936799i \(0.386226\pi\)
\(270\) −0.778727 + 1.34879i −0.0473918 + 0.0820850i
\(271\) −27.5798 + 15.9232i −1.67535 + 0.967266i −0.710794 + 0.703401i \(0.751664\pi\)
−0.964560 + 0.263865i \(0.915003\pi\)
\(272\) −5.11252 + 8.85515i −0.309992 + 0.536922i
\(273\) 2.95097 + 4.01801i 0.178601 + 0.243181i
\(274\) 6.90470 + 11.9593i 0.417128 + 0.722487i
\(275\) 22.9352 13.2416i 1.38305 0.798501i
\(276\) 2.10073 0.126449
\(277\) −9.74193 + 16.8735i −0.585336 + 1.01383i 0.409497 + 0.912311i \(0.365704\pi\)
−0.994833 + 0.101520i \(0.967629\pi\)
\(278\) 19.3274i 1.15918i
\(279\) −2.42737 + 12.0790i −0.145323 + 0.723150i
\(280\) −1.13304 0.654163i −0.0677123 0.0390937i
\(281\) 26.1212i 1.55826i 0.626863 + 0.779130i \(0.284339\pi\)
−0.626863 + 0.779130i \(0.715661\pi\)
\(282\) −1.67344 2.89848i −0.0996519 0.172602i
\(283\) −11.4423 19.8186i −0.680173 1.17809i −0.974928 0.222522i \(-0.928571\pi\)
0.294754 0.955573i \(-0.404762\pi\)
\(284\) 0.112074 + 0.0647057i 0.00665034 + 0.00383958i
\(285\) −0.219255 + 0.379761i −0.0129875 + 0.0224951i
\(286\) −2.60976 23.6582i −0.154319 1.39894i
\(287\) 17.0892 1.00875
\(288\) −5.21147 3.00884i −0.307089 0.177298i
\(289\) 1.69089 2.92871i 0.0994641 0.172277i
\(290\) −0.290675 −0.0170690
\(291\) 3.77984 + 2.18229i 0.221578 + 0.127928i
\(292\) 2.20008i 0.128750i
\(293\) −25.9208 + 14.9654i −1.51431 + 0.874286i −0.514448 + 0.857521i \(0.672003\pi\)
−0.999859 + 0.0167648i \(0.994663\pi\)
\(294\) 4.97891i 0.290376i
\(295\) −0.480042 + 0.831458i −0.0279491 + 0.0484093i
\(296\) 9.35398 0.543689
\(297\) 21.5391 + 12.4356i 1.24983 + 0.721587i
\(298\) 3.87996 6.72029i 0.224760 0.389296i
\(299\) −13.9553 + 10.2493i −0.807056 + 0.592731i
\(300\) −1.07716 1.86570i −0.0621901 0.107716i
\(301\) −5.38937 3.11155i −0.310638 0.179347i
\(302\) 2.12852 + 3.68671i 0.122483 + 0.212146i
\(303\) 5.77369 + 10.0003i 0.331690 + 0.574503i
\(304\) 4.32336 + 2.49610i 0.247962 + 0.143161i
\(305\) 0.0924941i 0.00529619i
\(306\) 8.68134 + 5.01217i 0.496279 + 0.286527i
\(307\) −9.56620 5.52305i −0.545972 0.315217i 0.201524 0.979484i \(-0.435411\pi\)
−0.747496 + 0.664267i \(0.768744\pi\)
\(308\) −2.06599 + 3.57840i −0.117721 + 0.203898i
\(309\) 5.47035 + 9.47492i 0.311197 + 0.539009i
\(310\) −1.40722 1.23900i −0.0799247 0.0703706i
\(311\) 25.5425 1.44838 0.724192 0.689599i \(-0.242213\pi\)
0.724192 + 0.689599i \(0.242213\pi\)
\(312\) −9.73110 + 1.07345i −0.550915 + 0.0607720i
\(313\) 9.85687 17.0726i 0.557143 0.965001i −0.440590 0.897708i \(-0.645231\pi\)
0.997733 0.0672921i \(-0.0214359\pi\)
\(314\) −10.3319 + 5.96511i −0.583062 + 0.336631i
\(315\) −0.472990 + 0.819243i −0.0266500 + 0.0461591i
\(316\) −2.92423 5.06492i −0.164501 0.284924i
\(317\) −4.35753 2.51582i −0.244743 0.141302i 0.372612 0.927987i \(-0.378462\pi\)
−0.617355 + 0.786685i \(0.711796\pi\)
\(318\) 8.53173 + 4.92580i 0.478436 + 0.276225i
\(319\) 4.64184i 0.259893i
\(320\) 2.10959 1.21797i 0.117930 0.0680867i
\(321\) 0.959125 0.0535331
\(322\) −9.18693 −0.511968
\(323\) 5.75807 + 3.32442i 0.320388 + 0.184976i
\(324\) −0.624957 + 1.08246i −0.0347198 + 0.0601365i
\(325\) 16.2583 + 7.13861i 0.901846 + 0.395979i
\(326\) 1.55194 0.0859540
\(327\) 13.6646i 0.755656i
\(328\) −16.7801 + 29.0640i −0.926526 + 1.60479i
\(329\) −2.39444 4.14728i −0.132010 0.228647i
\(330\) −1.39143 + 0.803341i −0.0765956 + 0.0442225i
\(331\) 3.96226i 0.217786i 0.994054 + 0.108893i \(0.0347305\pi\)
−0.994054 + 0.108893i \(0.965269\pi\)
\(332\) 0.811388i 0.0445307i
\(333\) 6.76336i 0.370630i
\(334\) 7.78108 + 13.4772i 0.425762 + 0.737441i
\(335\) 1.98052 0.108207
\(336\) −3.31780 1.91553i −0.181001 0.104501i
\(337\) −8.53161 −0.464746 −0.232373 0.972627i \(-0.574649\pi\)
−0.232373 + 0.972627i \(0.574649\pi\)
\(338\) 11.7489 10.7998i 0.639058 0.587434i
\(339\) −17.5973 −0.955756
\(340\) 0.432255 0.249562i 0.0234423 0.0135344i
\(341\) −19.7858 + 22.4721i −1.07146 + 1.21693i
\(342\) 2.44710 4.23851i 0.132324 0.229192i
\(343\) 18.0328i 0.973682i
\(344\) 10.5838 6.11053i 0.570638 0.329458i
\(345\) 1.01220 + 0.584394i 0.0544950 + 0.0314627i
\(346\) −14.3040 + 8.25843i −0.768989 + 0.443976i
\(347\) −0.0798658 0.138332i −0.00428742 0.00742603i 0.863874 0.503708i \(-0.168031\pi\)
−0.868161 + 0.496282i \(0.834698\pi\)
\(348\) 0.377598 0.0202414
\(349\) −12.6711 + 7.31566i −0.678268 + 0.391598i −0.799202 0.601062i \(-0.794744\pi\)
0.120934 + 0.992661i \(0.461411\pi\)
\(350\) 4.71066 + 8.15910i 0.251795 + 0.436122i
\(351\) 1.82841 + 16.5750i 0.0975932 + 0.884710i
\(352\) −7.31208 12.6649i −0.389735 0.675041i
\(353\) 5.43755i 0.289412i 0.989475 + 0.144706i \(0.0462236\pi\)
−0.989475 + 0.144706i \(0.953776\pi\)
\(354\) −1.90593 + 3.30118i −0.101299 + 0.175455i
\(355\) 0.0360004 + 0.0623545i 0.00191070 + 0.00330943i
\(356\) 3.35407i 0.177766i
\(357\) −4.41881 2.55120i −0.233868 0.135024i
\(358\) 5.11950 2.95574i 0.270574 0.156216i
\(359\) 19.8828 11.4793i 1.04937 0.605855i 0.126899 0.991916i \(-0.459498\pi\)
0.922474 + 0.386060i \(0.126164\pi\)
\(360\) −0.928868 1.60885i −0.0489557 0.0847937i
\(361\) −7.87691 + 13.6432i −0.414574 + 0.718064i
\(362\) −0.221677 0.127985i −0.0116511 0.00672675i
\(363\) 7.94892 + 13.7679i 0.417210 + 0.722629i
\(364\) −2.75369 + 0.303763i −0.144333 + 0.0159215i
\(365\) 0.612031 1.06007i 0.0320352 0.0554866i
\(366\) 0.367233i 0.0191956i
\(367\) 17.6679 30.6018i 0.922259 1.59740i 0.126347 0.991986i \(-0.459675\pi\)
0.795912 0.605412i \(-0.206992\pi\)
\(368\) 6.65300 11.5233i 0.346812 0.600695i
\(369\) 21.0146 + 12.1328i 1.09398 + 0.631608i
\(370\) 0.891359 + 0.514626i 0.0463396 + 0.0267542i
\(371\) 12.2076 + 7.04806i 0.633787 + 0.365917i
\(372\) 1.82803 + 1.60951i 0.0947790 + 0.0834493i
\(373\) −0.984924 + 1.70594i −0.0509975 + 0.0883302i −0.890397 0.455184i \(-0.849573\pi\)
0.839400 + 0.543514i \(0.182907\pi\)
\(374\) 12.1806 + 21.0974i 0.629842 + 1.09092i
\(375\) 2.41553i 0.124737i
\(376\) 9.40449 0.484999
\(377\) −2.50841 + 1.84227i −0.129190 + 0.0948815i
\(378\) −4.42392 + 7.66245i −0.227542 + 0.394114i
\(379\) 26.1831i 1.34493i −0.740127 0.672467i \(-0.765235\pi\)
0.740127 0.672467i \(-0.234765\pi\)
\(380\) −0.121844 0.211041i −0.00625048 0.0108262i
\(381\) −11.0569 −0.566463
\(382\) 0.878922 0.507446i 0.0449696 0.0259632i
\(383\) 3.58799i 0.183338i −0.995790 0.0916688i \(-0.970780\pi\)
0.995790 0.0916688i \(-0.0292201\pi\)
\(384\) 4.19673 2.42298i 0.214164 0.123647i
\(385\) −1.99092 + 1.14946i −0.101467 + 0.0585818i
\(386\) 8.29107 + 14.3606i 0.422004 + 0.730933i
\(387\) −4.41820 7.65255i −0.224590 0.389001i
\(388\) −2.10053 + 1.21274i −0.106638 + 0.0615677i
\(389\) −2.49316 + 4.31828i −0.126408 + 0.218946i −0.922283 0.386516i \(-0.873678\pi\)
0.795874 + 0.605462i \(0.207012\pi\)
\(390\) −0.986353 0.433083i −0.0499459 0.0219300i
\(391\) 8.86080 15.3474i 0.448110 0.776149i
\(392\) 12.1160 + 6.99518i 0.611951 + 0.353310i
\(393\) 8.15429 14.1236i 0.411329 0.712443i
\(394\) 32.3689 1.63072
\(395\) 3.25392i 0.163723i
\(396\) −5.08110 + 2.93357i −0.255335 + 0.147418i
\(397\) 27.8750 16.0936i 1.39901 0.807717i 0.404718 0.914442i \(-0.367370\pi\)
0.994289 + 0.106725i \(0.0340365\pi\)
\(398\) −15.0232 + 8.67362i −0.753043 + 0.434769i
\(399\) −1.24558 + 2.15740i −0.0623569 + 0.108005i
\(400\) −13.6455 −0.682274
\(401\) 32.1120 18.5399i 1.60360 0.925837i 0.612837 0.790209i \(-0.290028\pi\)
0.990760 0.135628i \(-0.0433051\pi\)
\(402\) 7.86335 0.392188
\(403\) −19.9964 1.77330i −0.996091 0.0883344i
\(404\) −6.41711 −0.319263
\(405\) −0.602248 + 0.347708i −0.0299259 + 0.0172778i
\(406\) −1.65131 −0.0819533
\(407\) 8.21815 14.2343i 0.407358 0.705566i
\(408\) 8.67775 5.01010i 0.429613 0.248037i
\(409\) −12.5136 + 7.22471i −0.618756 + 0.357239i −0.776385 0.630259i \(-0.782949\pi\)
0.157628 + 0.987498i \(0.449615\pi\)
\(410\) −3.19802 + 1.84638i −0.157939 + 0.0911861i
\(411\) 9.98071i 0.492312i
\(412\) −6.07996 −0.299538
\(413\) −2.72710 + 4.72348i −0.134192 + 0.232427i
\(414\) −11.2972 6.52242i −0.555225 0.320559i
\(415\) −0.225716 + 0.390952i −0.0110800 + 0.0191911i
\(416\) 3.94196 8.97786i 0.193270 0.440176i
\(417\) 6.98440 12.0973i 0.342028 0.592409i
\(418\) 10.3004 5.94694i 0.503809 0.290874i
\(419\) −11.2477 19.4817i −0.549488 0.951742i −0.998310 0.0581201i \(-0.981489\pi\)
0.448821 0.893622i \(-0.351844\pi\)
\(420\) 0.0935047 + 0.161955i 0.00456256 + 0.00790259i
\(421\) −17.2509 + 9.95980i −0.840756 + 0.485411i −0.857521 0.514448i \(-0.827997\pi\)
0.0167648 + 0.999859i \(0.494663\pi\)
\(422\) −24.2552 + 14.0037i −1.18072 + 0.681692i
\(423\) 6.79988i 0.330622i
\(424\) −23.9735 + 13.8411i −1.16426 + 0.672185i
\(425\) −18.1737 −0.881556
\(426\) 0.142934 + 0.247569i 0.00692518 + 0.0119948i
\(427\) 0.525455i 0.0254285i
\(428\) −0.266502 + 0.461596i −0.0128819 + 0.0223121i
\(429\) −6.91597 + 15.7512i −0.333906 + 0.760476i
\(430\) 1.34473 0.0648486
\(431\) 24.8520i 1.19708i 0.801093 + 0.598540i \(0.204252\pi\)
−0.801093 + 0.598540i \(0.795748\pi\)
\(432\) −6.40743 11.0980i −0.308278 0.533953i
\(433\) −2.86280 + 4.95852i −0.137577 + 0.238291i −0.926579 0.376100i \(-0.877265\pi\)
0.789002 + 0.614391i \(0.210598\pi\)
\(434\) −7.99435 7.03872i −0.383741 0.337870i
\(435\) 0.181939 + 0.105042i 0.00872330 + 0.00503640i
\(436\) −6.57635 3.79686i −0.314950 0.181836i
\(437\) −7.49307 4.32612i −0.358442 0.206947i
\(438\) 2.42998 4.20884i 0.116109 0.201106i
\(439\) 9.03336 15.6462i 0.431139 0.746755i −0.565833 0.824520i \(-0.691445\pi\)
0.996972 + 0.0777655i \(0.0247785\pi\)
\(440\) 4.51466i 0.215228i
\(441\) 5.05784 8.76044i 0.240850 0.417164i
\(442\) −6.56657 + 14.9555i −0.312340 + 0.711358i
\(443\) −0.549650 0.952022i −0.0261147 0.0452319i 0.852673 0.522445i \(-0.174980\pi\)
−0.878787 + 0.477214i \(0.841647\pi\)
\(444\) −1.15791 0.668520i −0.0549520 0.0317265i
\(445\) −0.933055 + 1.61610i −0.0442311 + 0.0766105i
\(446\) 15.1935 + 26.3160i 0.719434 + 1.24610i
\(447\) −4.85708 + 2.80424i −0.229732 + 0.132636i
\(448\) 11.9845 6.91925i 0.566214 0.326904i
\(449\) −5.80695 3.35265i −0.274047 0.158221i 0.356678 0.934227i \(-0.383909\pi\)
−0.630725 + 0.776006i \(0.717243\pi\)
\(450\) 13.3777i 0.630629i
\(451\) 29.4851 + 51.0696i 1.38840 + 2.40478i
\(452\) 4.88960 8.46903i 0.229987 0.398350i
\(453\) 3.07677i 0.144559i
\(454\) −4.67588 8.09887i −0.219450 0.380099i
\(455\) −1.41132 0.619676i −0.0661637 0.0290509i
\(456\) −2.44609 4.23676i −0.114549 0.198404i
\(457\) −2.35218 + 1.35803i −0.110030 + 0.0635261i −0.554005 0.832513i \(-0.686901\pi\)
0.443975 + 0.896039i \(0.353568\pi\)
\(458\) 11.0595 0.516775
\(459\) −8.53374 14.7809i −0.398321 0.689912i
\(460\) −0.562500 + 0.324759i −0.0262267 + 0.0151420i
\(461\) 2.16705 + 1.25115i 0.100930 + 0.0582718i 0.549615 0.835418i \(-0.314774\pi\)
−0.448686 + 0.893690i \(0.648108\pi\)
\(462\) −7.90465 + 4.56375i −0.367757 + 0.212325i
\(463\) 4.34544i 0.201950i 0.994889 + 0.100975i \(0.0321962\pi\)
−0.994889 + 0.100975i \(0.967804\pi\)
\(464\) 1.19585 2.07127i 0.0555160 0.0961565i
\(465\) 0.433060 + 1.28405i 0.0200827 + 0.0595462i
\(466\) 29.5778 17.0767i 1.37016 0.791064i
\(467\) −33.3536 −1.54342 −0.771710 0.635974i \(-0.780599\pi\)
−0.771710 + 0.635974i \(0.780599\pi\)
\(468\) −3.60188 1.58150i −0.166497 0.0731047i
\(469\) 11.2512 0.519534
\(470\) 0.896172 + 0.517405i 0.0413373 + 0.0238661i
\(471\) 8.62255 0.397306
\(472\) −5.35554 9.27606i −0.246509 0.426965i
\(473\) 21.4742i 0.987384i
\(474\) 12.9192i 0.593398i
\(475\) 8.87300i 0.407121i
\(476\) 2.45562 1.41775i 0.112553 0.0649826i
\(477\) 10.0078 + 17.3340i 0.458225 + 0.793669i
\(478\) −3.11875 + 5.40183i −0.142648 + 0.247074i
\(479\) 12.9519i 0.591787i 0.955221 + 0.295894i \(0.0956174\pi\)
−0.955221 + 0.295894i \(0.904383\pi\)
\(480\) −0.661874 −0.0302103
\(481\) 10.9537 1.20831i 0.499446 0.0550944i
\(482\) −12.0795 + 20.9224i −0.550208 + 0.952988i
\(483\) 5.75027 + 3.31992i 0.261646 + 0.151061i
\(484\) −8.83474 −0.401579
\(485\) −1.34947 −0.0612764
\(486\) −17.1418 + 9.89680i −0.777566 + 0.448928i
\(487\) 15.3387i 0.695061i 0.937669 + 0.347530i \(0.112980\pi\)
−0.937669 + 0.347530i \(0.887020\pi\)
\(488\) 0.893651 + 0.515950i 0.0404537 + 0.0233559i
\(489\) −0.971387 0.560831i −0.0439276 0.0253616i
\(490\) 0.769706 + 1.33317i 0.0347718 + 0.0602265i
\(491\) 17.4590 30.2399i 0.787915 1.36471i −0.139327 0.990246i \(-0.544494\pi\)
0.927242 0.374463i \(-0.122173\pi\)
\(492\) 4.15435 2.39851i 0.187293 0.108133i
\(493\) 1.59269 2.75863i 0.0717313 0.124242i
\(494\) 7.30173 + 3.20601i 0.328520 + 0.144245i
\(495\) −3.26431 −0.146720
\(496\) 14.6182 4.93015i 0.656375 0.221370i
\(497\) 0.204517 + 0.354233i 0.00917383 + 0.0158895i
\(498\) −0.896173 + 1.55222i −0.0401585 + 0.0695565i
\(499\) −15.6816 9.05376i −0.702004 0.405302i 0.106090 0.994357i \(-0.466167\pi\)
−0.808093 + 0.589055i \(0.799500\pi\)
\(500\) 1.16252 + 0.671179i 0.0519893 + 0.0300160i
\(501\) 11.2475i 0.502502i
\(502\) 13.1833 + 7.61139i 0.588400 + 0.339713i
\(503\) −8.60554 14.9052i −0.383702 0.664591i 0.607886 0.794024i \(-0.292018\pi\)
−0.991588 + 0.129433i \(0.958684\pi\)
\(504\) −5.27686 9.13979i −0.235050 0.407119i
\(505\) −3.09197 1.78515i −0.137591 0.0794380i
\(506\) −15.8508 27.4543i −0.704652 1.22049i
\(507\) −11.2567 + 2.51406i −0.499926 + 0.111653i
\(508\) 3.07227 5.32133i 0.136310 0.236096i
\(509\) 26.2989 + 15.1837i 1.16568 + 0.673005i 0.952658 0.304043i \(-0.0983366\pi\)
0.213021 + 0.977048i \(0.431670\pi\)
\(510\) 1.10256 0.0488222
\(511\) 3.47692 6.02221i 0.153810 0.266407i
\(512\) 24.4947i 1.08252i
\(513\) −7.21649 + 4.16644i −0.318616 + 0.183953i
\(514\) 9.39415i 0.414358i
\(515\) −2.92952 1.69136i −0.129090 0.0745302i
\(516\) −1.74685 −0.0769010
\(517\) 8.26252 14.3111i 0.363385 0.629402i
\(518\) 5.06377 + 2.92357i 0.222489 + 0.128454i
\(519\) 11.9375 0.523999
\(520\) 2.43969 1.79179i 0.106987 0.0785753i
\(521\) −4.10444 + 7.10910i −0.179819 + 0.311456i −0.941818 0.336122i \(-0.890885\pi\)
0.761999 + 0.647578i \(0.224218\pi\)
\(522\) −2.03062 1.17238i −0.0888778 0.0513136i
\(523\) −1.96709 3.40709i −0.0860146 0.148982i 0.819808 0.572638i \(-0.194080\pi\)
−0.905823 + 0.423656i \(0.860747\pi\)
\(524\) 4.53150 + 7.84879i 0.197959 + 0.342876i
\(525\) 6.80924i 0.297180i
\(526\) −10.1563 5.86373i −0.442835 0.255671i
\(527\) 19.4692 6.56622i 0.848091 0.286029i
\(528\) 13.2199i 0.575323i
\(529\) −0.0306928 + 0.0531615i −0.00133447 + 0.00231137i
\(530\) −3.04598 −0.132309
\(531\) −6.70703 + 3.87230i −0.291060 + 0.168044i
\(532\) −0.692192 1.19891i −0.0300103 0.0519794i
\(533\) −15.8955 + 36.2022i −0.688509 + 1.56809i
\(534\) −3.70455 + 6.41647i −0.160312 + 0.277668i
\(535\) −0.256819 + 0.148274i −0.0111032 + 0.00641046i
\(536\) −11.0477 + 19.1352i −0.477189 + 0.826515i
\(537\) −4.27251 −0.184373
\(538\) −12.2009 + 7.04419i −0.526018 + 0.303697i
\(539\) 21.2896 12.2916i 0.917008 0.529435i
\(540\) 0.625544i 0.0269191i
\(541\) 25.0468 + 14.4608i 1.07684 + 0.621716i 0.930043 0.367450i \(-0.119769\pi\)
0.146801 + 0.989166i \(0.453102\pi\)
\(542\) 19.5470 33.8564i 0.839615 1.45426i
\(543\) 0.0925009 + 0.160216i 0.00396959 + 0.00687554i
\(544\) 10.0356i 0.430272i
\(545\) −2.11246 3.65889i −0.0904880 0.156730i
\(546\) −5.60343 2.46033i −0.239805 0.105292i
\(547\) −2.00926 3.48013i −0.0859096 0.148800i 0.819869 0.572551i \(-0.194046\pi\)
−0.905778 + 0.423752i \(0.860713\pi\)
\(548\) 4.80339 + 2.77324i 0.205191 + 0.118467i
\(549\) 0.373056 0.646151i 0.0159216 0.0275771i
\(550\) −16.2552 + 28.1548i −0.693122 + 1.20052i
\(551\) −1.34685 0.777604i −0.0573777 0.0331270i
\(552\) −11.2925 + 6.51972i −0.480640 + 0.277498i
\(553\) 18.4854i 0.786079i
\(554\) 23.9180i 1.01618i
\(555\) −0.371945 0.644228i −0.0157882 0.0273460i
\(556\) 3.88137 + 6.72273i 0.164607 + 0.285107i
\(557\) −11.2005 + 6.46660i −0.474579 + 0.273999i −0.718155 0.695883i \(-0.755013\pi\)
0.243575 + 0.969882i \(0.421680\pi\)
\(558\) −4.83338 14.3312i −0.204613 0.606690i
\(559\) 11.6045 8.52274i 0.490817 0.360473i
\(560\) 1.18451 0.0500549
\(561\) 17.6070i 0.743366i
\(562\) −16.0329 27.7698i −0.676307 1.17140i
\(563\) −24.4537 −1.03060 −0.515300 0.857010i \(-0.672320\pi\)
−0.515300 + 0.857010i \(0.672320\pi\)
\(564\) −1.16416 0.672129i −0.0490201 0.0283017i
\(565\) 4.71193 2.72043i 0.198232 0.114449i
\(566\) 24.3289 + 14.0463i 1.02262 + 0.590410i
\(567\) −3.42135 + 1.97531i −0.143683 + 0.0829554i
\(568\) −0.803269 −0.0337044
\(569\) −4.73695 + 8.20464i −0.198583 + 0.343956i −0.948069 0.318064i \(-0.896967\pi\)
0.749486 + 0.662020i \(0.230301\pi\)
\(570\) 0.538305i 0.0225471i
\(571\) 5.05489 + 8.75533i 0.211541 + 0.366399i 0.952197 0.305485i \(-0.0988186\pi\)
−0.740656 + 0.671884i \(0.765485\pi\)
\(572\) −5.65888 7.70507i −0.236610 0.322165i
\(573\) −0.733511 −0.0306429
\(574\) −18.1678 + 10.4892i −0.758310 + 0.437810i
\(575\) 23.6498 0.986263
\(576\) 19.6498 0.818740
\(577\) −15.5728 8.99097i −0.648305 0.374299i 0.139502 0.990222i \(-0.455450\pi\)
−0.787807 + 0.615923i \(0.788783\pi\)
\(578\) 4.15140i 0.172675i
\(579\) 11.9847i 0.498067i
\(580\) −0.101107 + 0.0583742i −0.00419824 + 0.00242386i
\(581\) −1.28229 + 2.22098i −0.0531982 + 0.0921419i
\(582\) −5.35787 −0.222091
\(583\) 48.6418i 2.01454i
\(584\) 6.82806 + 11.8265i 0.282547 + 0.489386i
\(585\) −1.29555 1.76401i −0.0535644 0.0729327i
\(586\) 18.3712 31.8198i 0.758906 1.31446i
\(587\) −25.4651 + 14.7023i −1.05106 + 0.606828i −0.922945 0.384932i \(-0.874225\pi\)
−0.128112 + 0.991760i \(0.540892\pi\)
\(588\) −0.999878 1.73184i −0.0412343 0.0714198i
\(589\) −3.20584 9.50548i −0.132094 0.391667i
\(590\) 1.17858i 0.0485213i
\(591\) −20.2603 11.6973i −0.833397 0.481162i
\(592\) −7.33418 + 4.23439i −0.301433 + 0.174032i
\(593\) 10.8711i 0.446421i −0.974770 0.223211i \(-0.928346\pi\)
0.974770 0.223211i \(-0.0716538\pi\)
\(594\) −30.5314 −1.25272
\(595\) 1.57760 0.0646751
\(596\) 3.11674i 0.127667i
\(597\) 12.5377 0.513133
\(598\) 8.54518 19.4618i 0.349438 0.795851i
\(599\) −6.76610 11.7192i −0.276455 0.478835i 0.694046 0.719931i \(-0.255826\pi\)
−0.970501 + 0.241096i \(0.922493\pi\)
\(600\) 11.5806 + 6.68607i 0.472776 + 0.272957i
\(601\) −41.7461 −1.70286 −0.851429 0.524470i \(-0.824263\pi\)
−0.851429 + 0.524470i \(0.824263\pi\)
\(602\) 7.63935 0.311357
\(603\) 13.8356 + 7.98801i 0.563431 + 0.325297i
\(604\) 1.48075 + 0.854910i 0.0602508 + 0.0347858i
\(605\) −4.25686 2.45770i −0.173066 0.0999197i
\(606\) −12.2762 7.08766i −0.498686 0.287916i
\(607\) −31.3651 −1.27307 −0.636536 0.771247i \(-0.719633\pi\)
−0.636536 + 0.771247i \(0.719633\pi\)
\(608\) 4.89969 0.198709
\(609\) 1.03359 + 0.596742i 0.0418831 + 0.0241812i
\(610\) 0.0567719 + 0.0983317i 0.00229863 + 0.00398134i
\(611\) 11.0129 1.21484i 0.445532 0.0491471i
\(612\) 4.02623 0.162751
\(613\) 7.37822i 0.298003i −0.988837 0.149002i \(-0.952394\pi\)
0.988837 0.149002i \(-0.0476060\pi\)
\(614\) 13.5599 0.547235
\(615\) 2.66893 0.107622
\(616\) 25.6476i 1.03337i
\(617\) −34.5961 + 19.9741i −1.39279 + 0.804125i −0.993623 0.112755i \(-0.964032\pi\)
−0.399163 + 0.916880i \(0.630699\pi\)
\(618\) −11.6312 6.71528i −0.467876 0.270128i
\(619\) 7.99077i 0.321176i 0.987021 + 0.160588i \(0.0513391\pi\)
−0.987021 + 0.160588i \(0.948661\pi\)
\(620\) −0.738300 0.148367i −0.0296508 0.00595857i
\(621\) 11.1051 + 19.2346i 0.445632 + 0.771857i
\(622\) −27.1546 + 15.6777i −1.08880 + 0.628619i
\(623\) −5.30065 + 9.18099i −0.212366 + 0.367829i
\(624\) 7.14393 5.24676i 0.285986 0.210039i
\(625\) −11.9384 20.6780i −0.477538 0.827120i
\(626\) 24.2002i 0.967233i
\(627\) −8.59628 −0.343302
\(628\) −2.39586 + 4.14975i −0.0956052 + 0.165593i
\(629\) −9.76803 + 5.63957i −0.389477 + 0.224864i
\(630\) 1.16127i 0.0462659i
\(631\) 16.7976i 0.668701i −0.942449 0.334351i \(-0.891483\pi\)
0.942449 0.334351i \(-0.108517\pi\)
\(632\) 31.4385 + 18.1510i 1.25055 + 0.722008i
\(633\) 20.2424 0.804561
\(634\) 6.17673 0.245309
\(635\) 2.96064 1.70933i 0.117489 0.0678325i
\(636\) 3.95685 0.156899
\(637\) 15.0917 + 6.62641i 0.597956 + 0.262548i
\(638\) −2.84911 4.93480i −0.112797 0.195371i
\(639\) 0.580801i 0.0229761i
\(640\) −0.749155 + 1.29757i −0.0296129 + 0.0512911i
\(641\) −39.3048 −1.55244 −0.776222 0.630459i \(-0.782867\pi\)
−0.776222 + 0.630459i \(0.782867\pi\)
\(642\) −1.01966 + 0.588701i −0.0402427 + 0.0232342i
\(643\) 37.0921 + 21.4151i 1.46277 + 0.844531i 0.999139 0.0414971i \(-0.0132127\pi\)
0.463632 + 0.886028i \(0.346546\pi\)
\(644\) −3.19554 + 1.84494i −0.125922 + 0.0727010i
\(645\) −0.841690 0.485950i −0.0331415 0.0191343i
\(646\) −8.16198 −0.321129
\(647\) 13.0053 + 22.5259i 0.511292 + 0.885584i 0.999914 + 0.0130884i \(0.00416627\pi\)
−0.488622 + 0.872495i \(0.662500\pi\)
\(648\) 7.75833i 0.304776i
\(649\) −18.8209 −0.738785
\(650\) −21.6660 + 2.39000i −0.849810 + 0.0937434i
\(651\) 2.46020 + 7.29461i 0.0964227 + 0.285898i
\(652\) 0.539819 0.311665i 0.0211409 0.0122057i
\(653\) 18.2932 + 31.6848i 0.715869 + 1.23992i 0.962623 + 0.270844i \(0.0873027\pi\)
−0.246754 + 0.969078i \(0.579364\pi\)
\(654\) −8.38721 14.5271i −0.327966 0.568054i
\(655\) 5.04239i 0.197023i
\(656\) 30.3843i 1.18631i
\(657\) 8.55114 4.93700i 0.333612 0.192611i
\(658\) 5.09112 + 2.93936i 0.198472 + 0.114588i
\(659\) 18.0056 31.1866i 0.701398 1.21486i −0.266578 0.963813i \(-0.585893\pi\)
0.967976 0.251043i \(-0.0807735\pi\)
\(660\) −0.322658 + 0.558861i −0.0125595 + 0.0217536i
\(661\) −1.66959 0.963936i −0.0649394 0.0374928i 0.467179 0.884163i \(-0.345270\pi\)
−0.532118 + 0.846670i \(0.678604\pi\)
\(662\) −2.43199 4.21234i −0.0945221 0.163717i
\(663\) 9.51465 6.98790i 0.369518 0.271388i
\(664\) −2.51818 4.36162i −0.0977243 0.169264i
\(665\) 0.770232i 0.0298683i
\(666\) 4.15128 + 7.19023i 0.160859 + 0.278616i
\(667\) −2.07260 + 3.58984i −0.0802512 + 0.138999i
\(668\) 5.41306 + 3.12523i 0.209438 + 0.120919i
\(669\) 21.9622i 0.849107i
\(670\) −2.10552 + 1.21562i −0.0813432 + 0.0469635i
\(671\) 1.57027 0.906598i 0.0606198 0.0349988i
\(672\) −3.76008 −0.145048
\(673\) 24.9778 43.2628i 0.962823 1.66766i 0.247468 0.968896i \(-0.420401\pi\)
0.715354 0.698762i \(-0.246265\pi\)
\(674\) 9.07007 5.23661i 0.349366 0.201707i
\(675\) 11.3884 19.7253i 0.438340 0.759227i
\(676\) 1.91784 6.11602i 0.0737631 0.235232i
\(677\) 21.8340 + 37.8176i 0.839149 + 1.45345i 0.890607 + 0.454774i \(0.150280\pi\)
−0.0514580 + 0.998675i \(0.516387\pi\)
\(678\) 18.7080 10.8011i 0.718476 0.414812i
\(679\) −7.66629 −0.294205
\(680\) −1.54906 + 2.68305i −0.0594036 + 0.102890i
\(681\) 6.75897i 0.259004i
\(682\) 7.24146 36.0347i 0.277290 1.37984i
\(683\) −29.0981 16.7998i −1.11341 0.642826i −0.173698 0.984799i \(-0.555572\pi\)
−0.939710 + 0.341973i \(0.888905\pi\)
\(684\) 1.96574i 0.0751618i
\(685\) 1.54295 + 2.67247i 0.0589531 + 0.102110i
\(686\) 11.0684 + 19.1710i 0.422592 + 0.731951i
\(687\) −6.92232 3.99661i −0.264103 0.152480i
\(688\) −5.53227 + 9.58218i −0.210916 + 0.365317i
\(689\) −26.2856 + 19.3051i −1.00140 + 0.735465i
\(690\) −1.43478 −0.0546211
\(691\) 18.1280 + 10.4662i 0.689623 + 0.398154i 0.803471 0.595344i \(-0.202984\pi\)
−0.113848 + 0.993498i \(0.536318\pi\)
\(692\) −3.31696 + 5.74514i −0.126092 + 0.218398i
\(693\) −18.5444 −0.704444
\(694\) 0.169813 + 0.0980416i 0.00644601 + 0.00372161i
\(695\) 4.31897i 0.163828i
\(696\) −2.02978 + 1.17189i −0.0769386 + 0.0444205i
\(697\) 40.4673i 1.53281i
\(698\) 8.98054 15.5548i 0.339919 0.588756i
\(699\) −24.6843 −0.933647
\(700\) 3.27707 + 1.89202i 0.123861 + 0.0715114i
\(701\) 13.8589 24.0044i 0.523445 0.906633i −0.476183 0.879346i \(-0.657980\pi\)
0.999628 0.0272868i \(-0.00868674\pi\)
\(702\) −12.1174 16.4989i −0.457341 0.622711i
\(703\) 2.75342 + 4.76906i 0.103847 + 0.179869i
\(704\) 41.3551 + 23.8764i 1.55863 + 0.899875i
\(705\) −0.373954 0.647707i −0.0140839 0.0243940i
\(706\) −3.33751 5.78074i −0.125609 0.217561i
\(707\) −17.5653 10.1413i −0.660612 0.381405i
\(708\) 1.53102i 0.0575392i
\(709\) 2.12083 + 1.22446i 0.0796494 + 0.0459856i 0.539296 0.842116i \(-0.318690\pi\)
−0.459646 + 0.888102i \(0.652024\pi\)
\(710\) −0.0765451 0.0441933i −0.00287268 0.00165855i
\(711\) 13.1240 22.7315i 0.492189 0.852497i
\(712\) −10.4095 18.0298i −0.390114 0.675696i
\(713\) −25.3356 + 8.54472i −0.948824 + 0.320002i
\(714\) 6.26360 0.234409
\(715\) −0.583189 5.28677i −0.0218100 0.197714i
\(716\) 1.18716 2.05622i 0.0443663 0.0768446i
\(717\) 3.90416 2.25407i 0.145803 0.0841797i
\(718\) −14.0918 + 24.4077i −0.525900 + 0.910886i
\(719\) −16.5731 28.7054i −0.618071 1.07053i −0.989837 0.142204i \(-0.954581\pi\)
0.371767 0.928326i \(-0.378752\pi\)
\(720\) 1.45660 + 0.840966i 0.0542841 + 0.0313410i
\(721\) −16.6425 9.60854i −0.619798 0.357841i
\(722\) 19.3390i 0.719725i
\(723\) 15.1216 8.73046i 0.562378 0.324689i
\(724\) −0.102809 −0.00382087
\(725\) 4.25095 0.157876
\(726\) −16.9012 9.75792i −0.627263 0.362150i
\(727\) −1.04414 + 1.80851i −0.0387251 + 0.0670738i −0.884738 0.466088i \(-0.845663\pi\)
0.846013 + 0.533162i \(0.178996\pi\)
\(728\) 13.8597 10.1791i 0.513676 0.377263i
\(729\) 6.70060 0.248170
\(730\) 1.50263i 0.0556149i
\(731\) −7.36816 + 12.7620i −0.272521 + 0.472020i
\(732\) −0.0737488 0.127737i −0.00272583 0.00472128i
\(733\) −13.0829 + 7.55343i −0.483229 + 0.278992i −0.721761 0.692142i \(-0.756667\pi\)
0.238532 + 0.971135i \(0.423334\pi\)
\(734\) 43.3775i 1.60109i
\(735\) 1.11261i 0.0410391i
\(736\) 13.0595i 0.481378i
\(737\) 19.4124 + 33.6233i 0.715066 + 1.23853i
\(738\) −29.7879 −1.09651
\(739\) 7.46606 + 4.31053i 0.274644 + 0.158566i 0.630996 0.775786i \(-0.282646\pi\)
−0.356352 + 0.934352i \(0.615980\pi\)
\(740\) 0.413395 0.0151967
\(741\) −3.41172 4.64535i −0.125333 0.170651i
\(742\) −17.3041 −0.635253
\(743\) −24.1198 + 13.9256i −0.884871 + 0.510880i −0.872261 0.489040i \(-0.837347\pi\)
−0.0126094 + 0.999920i \(0.504014\pi\)
\(744\) −14.8218 2.97856i −0.543393 0.109199i
\(745\) 0.867032 1.50174i 0.0317656 0.0550196i
\(746\) 2.41814i 0.0885345i
\(747\) −3.15365 + 1.82076i −0.115386 + 0.0666182i
\(748\) 8.47366 + 4.89227i 0.309828 + 0.178879i
\(749\) −1.45898 + 0.842340i −0.0533098 + 0.0307784i
\(750\) 1.48263 + 2.56798i 0.0541379 + 0.0937695i
\(751\) 44.5125 1.62428 0.812142 0.583460i \(-0.198302\pi\)
0.812142 + 0.583460i \(0.198302\pi\)
\(752\) −7.37378 + 4.25725i −0.268894 + 0.155246i
\(753\) −5.50112 9.52821i −0.200472 0.347227i
\(754\) 1.53596 3.49817i 0.0559364 0.127396i
\(755\) 0.475648 + 0.823846i 0.0173106 + 0.0299828i
\(756\) 3.55369i 0.129246i
\(757\) 11.6808 20.2317i 0.424546 0.735334i −0.571832 0.820370i \(-0.693767\pi\)
0.996378 + 0.0850361i \(0.0271006\pi\)
\(758\) 16.0709 + 27.8356i 0.583721 + 1.01103i
\(759\) 22.9122i 0.831660i
\(760\) 1.30995 + 0.756299i 0.0475168 + 0.0274339i
\(761\) −21.2467 + 12.2668i −0.770191 + 0.444670i −0.832943 0.553359i \(-0.813346\pi\)
0.0627518 + 0.998029i \(0.480012\pi\)
\(762\) 11.7548 6.78661i 0.425830 0.245853i
\(763\) −12.0008 20.7860i −0.434459 0.752504i
\(764\) 0.203813 0.353015i 0.00737371 0.0127716i
\(765\) 1.93997 +